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Abstract

A research field currently advancing is the use of machine learning on camera
trap data, yet few explore deep learning for camera traps to be run in real-time.
A camera trap has the purpose to capture images of bypassing animals and is tra-
ditionally based only on motion detection. This work integrates machine learning
on the edge device to also perform object detection. Related research is brought
up and model tests are performed with a focus on the trade-off regarding infer-
ence speed and model accuracy. Transfer learning is used to utilize pre-trained
models and thus reduce training time and the amount of training data. Four
models with slightly different architecture are compared to evaluate which model
performs best for the use case. The models tested are SSD MobileNet V2, SSD In-
ception V2, and SSDLite MobileNet V2, SSD MobileNet V2 quantized. Since the
client-side usage of the model, the SSD MobileNet V2 was finally selected due
to a satisfying trade-off between inference speed and accuracy. Even though it is
less accurate in its detections, its ability to detect more images per second makes
it outperform the more accurate Inception network in object tracking.

A contribution of this work is a light-weight tracking solution using tubelet pro-
posal. This work further discusses the open set recognition problem, where just a
few object classes are of interest while many others are present. The subject of
open set recognition influences data collection and evaluation tests, it is however
left for further work to research how to integrate support for open set recognition
in object detection models. The proposed system handles detection, classification,
and tracking of animals in the African savannah, and has potential for real usage
as it produces meaningful events.
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1
Introduction

Biodiversity is declining at a rapid pace, and conservationists are faced with the
tough quest of surveying wildlife populations. A research field currently advanc-
ing is the use of machine learning on camera trap images. Some applications aim
to achieve overall biodiversity statistics, analysis which does not need to be run in
real-time. However, few explore the usage of animal detection for use on-device.
In environments where animals are directly threatened, it is naturally desirable
with a system that requires minimal manual work and low latency, and which can
generate warning alarms. Moreover, if the device is to be placed out in nature and
run self-sufficient in terms of energy supply, there is a need for thoughtful design
choices of the system.

1.1 Background

Ngulia is a rhino sanctuary in Kenya and home to about 80 individuals of black
rhinoceros, vulnerable to poaching. This drives Project Ngulia, a public-private
partnership to combat this problem. Camera traps are to be placed around the
park, powered by solar cells, and connected to a mobile network. With a detector
that automatically sends interesting observations in real-time to a server, it can
improve decision making on actions for protection.

1.2 Motivation

Deploying a camera trap system out in the field involves a set of challenges. For
example, to handle night vision, close-up shots, or network constraints. In this
work, the following challenges are addressed:

1



2 1 Introduction

• The need to pick events sparsely in time but with high confidence, due to
limited power and bandwidth.

• Training a model without access to image data from the deployment site.

• Prioritizing some classes while still being able to detect the others. For
instance, to detect a rhinoceros while a herd of buffalo is visible at the same
time.

1.3 Aim

The aim is to develop a detector that analyses the video images from camera traps
in real-time. Classes to identify are rhinoceros, humans and a set of six common
large animals in the African savannah. The scope of this project also includes to
extract events of importance.

1.4 Research questions

1. How can a multi-class detector be designed to handle the open set problem,
where just a few of the species are of interest? Should other species be
included in the training data, and if so, to what extent?

2. Given the continuous output from object detection, what lightweight solu-
tion can be proposed to assemble events of interest?

3. How will the trade-off between inference speed and accuracy for a cnn
model affect the quality of real-time object tracking?

1.5 Limitations

The accuracy of the prediction model will depend on the amount of training data,
which is limited. This is due to manual collection and annotation of images, and
sparse resources of images that are available to public use for some species. Fur-
ther, detection models which requires too long inference time for real-time object
tracking will not be considered.



2
Theory

All research questions arise from the topic of deep learning, and especially convo-
lutional neural networks (cnn). In this chapter, the core concepts of deep learn-
ing are covered as well as related work within the field of lightweight machine
learning and event extraction.

2.1 Deep learning

Deep learning is a sub-field of machine learning and its methods are based on
artificial neural networks, algorithms inspired by the structure and function of
the human brain. Today’s computer power and the extensive amount of data
makes deep learning more powerful than ever before. Common applications of
computer vision are image classification and object detection. With image clas-
sification, the objective is to categorize the input image as a whole, an approach
mainly used for single object images. For the case where multiple objects are
present, object detection is widely used as it both classifies and localizes each
detected object. [1, 2]

2.1.1 Convolutional neural networks

cnn is a well known tool used for computer vision and it has increased in accu-
racy during the last decades. A cnn is built up of an input layer, an output layer,
and intermediate hidden layers. An overview of the architecture of a convolu-
tional neural network can be seen in Figure 2.1. [2]

Convolution is a mathematical operation that is fundamental for cnns. The re-
sult of an image convolution can express how information from an image source
matches with another. When this second source is a small matrix, a kernel, it can

3



4 2 Theory

Figure 2.1: The general architecture of a CNN.

Figure 2.2: As the kernel slides over the input image, it is filtered by convo-
lution. This example kernel emphasizes pixel differences along a line from
the top left to the bottom right.

slide over the whole image and produce a filtered version of the image. Patches of
the image which agree with the filter will contribute to meaningful information
in the resulting image, as seen in Figure 2.2.

The input of the cnn is a tensor, a generalization of a matrix in higher dimen-
sions. When the tensor has passed a convolutional layer, the input image is ab-
stracted to a feature map. The output value is calculated by each neuron by
applying a non-linear function, called activation function, determined by a vec-
tor of weights and biases. As the learning phase of a neural network is iterative,
the biases and weights are adjusted such that the neurons represent meaningful
filters. That is, the weights, biases, and activation function together determine
how much the given input should activate a neuron. To tune these parameters, a
loss function measures the discrepancy between the current output of the network
and the desired output. Given the loss values, weights and biases are adjusted so
that the loss value is minimized. [3]

2.1.2 Definitions

To configure a neural network, functions of its behavior are to be set. These
include activation functions, loss functions and optimizers. Loss functions mea-
sure the penalty given a prediction and the true annotation, which are used to
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optimize the weights and biases of a model during training. In the case of object
detection, a common approach is to use a combination of classification loss and
localization loss.

Activation functions

Activation functions are applied to represent a neuron’s output as a function of its
input. The activation function Rectified Linear Units (relu), shown in Equation
(2.1), has shown to speed up model optimization. Alternative activation func-
tions, like Sigmoid and tanh, have been found to cause slower training, due to
the functions causing the weights to become very large or very small after some
epochs of training. [4]

f (x) = max(0, x) (2.1)

Classification loss functions

Classification loss measures the predicted class probability towards the ground
truth. Both Sigmoid and Softmax are common classification functions and also
used for loss computation. The Sigmoid function is a logistic function which lim-
its the output to a range between 0 and 1, which is convenient in the prediction
of probabilities and often used in classification problems with two classes. The lo-
gistic Sigmoid is defined by Equation (2.2) and the prediction ŷ from the Sigmoid
is defined by Equation (2.3), where W are the weights, h the hidden features and
b the bias. [3]

σ (x) =
1

1 + exp(−x)
(2.2)

ŷ = σ (W T h + b) (2.3)

The Softmax function is a multi-class generalisation of the logistic function. Soft-
max is often used as output to a classifier, to represent the probability distribu-
tion over n different classes. Elements in the prediction ŷi are between 0 and 1
and the entire vector sums up to 1. A linear layer predicts unnormalized log prob-
abilities z as Equation (2.4). Formally, the Softmax function is given by Equation
(2.5) where the Softmax can exponentiate and normalize z to obtain desired ŷ. [3]

z = W T h + b (2.4)

Sof tmax(z)i =
exp(zi)∑
j exp(zj )

(2.5)

For the loss function, these probabilities are measures towards the true probabil-
ity distribution with cross entropy, which quantifies the difference between two
probability distributions. Equation (2.6) presents cross entropy, where ŷ is the
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predicted value, y is the ground truth value and M is the number of classes.

cross entropy = −
M∑
i

yi log(ŷi) (2.6)

Localization loss

Localization is the ability of the network to locate an object in an image. The lo-
calization loss is the computed error between the ground truth and the predicted
bounding boxes. Smooth L1 localization loss is defined by Equation (2.7) and is
less sensitive to outliers than the L2 loss. Both L1 and L2 are penalty terms to the
loss function with the purpose to avoid overfitting. [5]

smoothL1(x) =

0.5x2 if |x| < 1
|x| − 0.5 otherwise

(2.7)

Regularization loss

Regularization loss is a technique used to penalise large weights. It makes slight
modifications to the learning algorithm such that the model can generalize better.
This in turn improves the model’s performance on unseen data. The L2 regular-
ization is also known as weight decay as it forces the weights to decay towards
zero, but not exactly zero, see definition in Equation (2.8) where θi represents
the feature weights. [3]

R(θ) = ||θ||22 =
n∑
i=1

θ2
i (2.8)

Optimizer

An optimizer updates the model given the output of the loss function, a required
component to minimize the loss. A popular choice of optimizer is Adam, which
has empirically been shown to achieve good performance. It combines the best
features of other well known optimizers and can handle sparse gradients on noisy
problems [6].

2.1.3 Transfer learning

cnns require a large amount of training data in order to avoid overfitting. That is,
the prediction model would fail to predict future observations reliably if it corre-
sponds too close to a particular dataset. The ability to perform well on previously
unobserved inputs is called generalization and to achieve it, transfer learning is a
helpful learning approach. [3]

Transfer learning is defined as the improvement of learning a new task through
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the transfer of knowledge from a related task that has already been learned [7].
Deep neural networks trained on image data sets often show the phenomenon of
early layers learn to detect simple patterns, such as edges. These patterns are not
specific to a dataset or task but are general to many different tasks, and thus a
transfer of knowledge can be done by initializing the weights from a pre-trained
model. Additionally, it is common to freeze the first layers of the network and re-
place only the last layers with the fine-tuning, layers which detect patterns more
specific to the dataset.

2.2 Deep learning for camera traps

Camera traps are motion-activated cameras that are generally inexpensive and
non-intrusive. The extraction of useful information from camera traps can be
a cumbersome process since they can produce millions of images. Fortunately,
automatic extraction of interesting information can be performed with computer
vision, and more particularly, cnns.

2.2.1 Related work on camera traps

There is a collection of works done concerning deep learning on camera trap data.
Recurring challenges are multi-species images and limited-data problems. In the
wild, one can count on many different species captured in the same image due
to animals moving in flock. However, both examples using object detection and
image classification exist.

Schneider et al. [8] compare two deep learning object detection classifiers, Faster
Region-based Convolutional Neural Networks (Faster r-cnn), and You Only Look
Once (yolo) v2.0. They also present a generous summary of previous work on
the topic of automating the analysis of camera trap images. From 2013 and
on-wards, researchers have tried a wide range of model architectures including
AlexNet, the Visual Geometry Group (vgg) network, GoogLeNet and ResNet.
However, they point out that all approaches they inspected share the limitation
of returning only one output per image, which they state to be unrealistic for
meaningful camera trap data analysis. Schneider et al. apply object detection
and show that Faster r-cnn outperformed yolo v2.0 in terms of accuracy, how-
ever the trade-off regarding inference speed is evident. Moreover, they test and
evaluate if transfer learning is applicable for ecological research scenarios, with
promising results. The authors advocate for further work to utilize object detec-
tion with Faster r-cnn or one of its successors.

More recently, research within this field tend to explore object detection rather
than classification. Cheema et al. embrace object detection in their pipeline for
recognition of individuals of patterned species [9]. Further, they point out the
benefits of Faster r-cnn to provide robustness to blur, partial occlusions, illumi-
nation, and pose variations. To handle the challenge of limited data, they apply
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data augmentation and thus thrice the number of training images. More specifi-
cally, augmentation techniques used were horizontally flipping, contrast enhance-
ment and random filtering.

Norouzzadeh et al. [10] present a deep active learning system which main con-
tribution is a system that simplifies the process of bounding box annotation of
data collected with camera traps. For clarity, active learning is a special case of
machine learning in which a learning algorithm can interactively ask a user for
corrections and continue its learning [11]. Moreover, the work of Norouzzadeh
et al. strengthens the assumption that detectors can generalize better than clas-
sification models. Their paper hypothesized that an object detection model is
less sensitive to image backgrounds. They apply transfer learning based on a pre-
trained Faster r-cnn model, and inference does not seem to be performed with
any computational restrictions [10].

As stated earlier, few explore deep learning for camera traps to be run in real-
time, however, some examples were found. Wilber et al. [12] aim to offer light-
weight detection algorithms that run on inexpensive mobile hardware. They
present their work on building vision tools for field biologists to study threat-
ened species in the Mojave Desert. The two species are Mohave Ground Squirrel
and Desert Tortoise and, which is interesting as they enter the subject of detec-
tion of small objects. They refer to the open set problem and how it complicates
the training, as it is not feasible to create a training set for all possible negative
examples that may pass by.

Wilber et al. [12] proposed a lightweight solution for recognition, where they
adopt Support-vector machine (svm) as a non-probabilistic linear classifier. Their
full systems performs the following steps; images are periodically captured from
the video stream, animals within the frame are detected and classified, and fi-
nally the results are tabulated and presented to the biologists. The classification
has a second stage model to classify subspecies if the first model signaled for
an animal of interest. Wilber et al. also confirm that the majority of previous
research requires a massive amounts of computing resources, or make inappro-
priate assumptions that limit the systems for very constrained problems. Further,
they point out that while biologist could use off-the-shelf commercial surveil-
lance software, however, those are in general designed for completely different
scenarios and thus ill-suited for fauna surveys. An interesting discussion they
bring up is that in animal population studies, it is not crucial to achieve perfect
accuracy on a per frame basis, as long as its species can be correctly identified
across a sequence of captured frames.

In contrast to research with focus mainly on the model, Badrinath et al. aim to
propose a more complete architecture for a real time surveillance system [13].
The purpose of their application is to distinguish harmful animals from innocu-
ous ones. For the classification task, their work also utilizes svm, and histogram
of oriented gradients (hog) used for feature extraction. Unfortunately, no details
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on the tracking component of the system are given, although they emphasize its
importance as existing surveillance systems in general limit to notify only when
an animal enters the scene.

2.2.2 Open set recognition

When handling data from a camera trap, it can be assumed that many species will
be captured. Training data should typically include the classes to label, whereas
it is an ongoing research topic on how to handle all other objects that may ap-
pear. This is referred to as open set recognition, which includes several aspects
in the pipeline; from model representations to datasets and evaluation criteria.
The main goal is, as shown in Figure 2.3, to cluster the known classes such that
outliers will be rejected as unknown classes, rather than label them as the most
promising class. [14]

Visualization adapted from Geng et al. [14]

Figure 2.3: For object detection in an open set domain, the detections in
(a) should either belong to one of the known classes or be considered as an
unknown class, as seen in (c). Figure (b) shows traditional multi-class classi-
fication, where each detection always fall into one of the distinct classes.

Previous work [15, 16] share a similar approach to achieve rejection for unknown
classes in the task of image classification. These approaches are based on the idea
to perform projection for all training samples to a single point, a mean activation
vector, and thus be able to calculate an outlier score based on distance. Hassen et
al. [15] propose a loss function to achieve the following two properties; that in-
stances of the same class are closer together, and that instances of different classes
are further apart. Their customized loss function enables the use of the same dis-
tance function both during training and also for computation of the outlier score
as inference is run. Bodesheim et al. [16] implicate that standard multi-class clas-
sification is related to novelty detection but does not treat the regions between
classes such that they can be distinctly separated. That is, outlier detection is
difficult especially when classes overlap in feature space, which is also inferred
by Hassen et al. regarding their two beneficial properties.
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Miller et al. [17] discuss how previous work on open set recognition mainly fo-
cuses on image classification rather than object detection. Especially, it is no
longer obvious how to generate a mean activation vector when detections are
generated from different image regions of different sizes and resolutions.

2.2.3 Detection of small objects

An important aspect is how much variation in object size the model should han-
dle to work with. Camera traps placed on open plains will often capture objects
on a far distance, and careful design decisions are necessary for the model to
detected those. As earlier described, a cnn generally down-sample the input at
each layer of the feature extraction. Naturally, an already small image does not
contain enough information to be down-sampled as many times as a large image.
The cnnmodel Single Shot Multiple Detector (ssd), further described in Section
2.3.3, presents an approach to perform the prediction from the layer depth that
makes most sense according to the image resolution [18]. When a pre-trained
model is used for transfer learning, one should keep in mind what dataset it is
trained on. As for example, objects in the Common Objects in Context Dataset
(coco) dataset has a width and height in the range between 40 and 140 pixels,
and thus weights for the feature extraction are trained accordingly [19]. That is,
the decision has to be made whether it is reasonable to freeze layers or re-train
them, depending on the object sizes present in the target domain.

2.3 Edge machine learning

Machine learning is typically run on the server, but moves more and more to
edge devices [20]. As for example, sensors can be integrated for usage with self-
driving cars [21] and voice-activated device control [22]. Common challenges
with deployment on these devices are the reduced computer power, limited re-
stricted memory and eventual battery constraints [20].

2.3.1 TensorFlow Lite

In May 2017, Google announced TensorFlow Lite, a deep learning framework
for mobile and embedded devices [23]. Already in early 2019, over 2 billion de-
vices were deployed with TensorFlow Lite. Training of the original TensorFlow
model can still take place on a high powered machine. After training, a model
file is saved which defines all nodes; its operations, inputs and outputs. Addition-
ally, training produces a checkpoint file which stores a capture of all weights and
biases values. These files together create a frozen graph with all nodes frozen ex-
cept for the input and output. It is then no longer accessible for training, however
it is well fitted for inference.
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2.3.2 Related work on edge machine learning

Warden and Situnayake released the book Tinyml [24] at the end of 2019, both in-
volved in the TensorFlow team at the time of writing. The book guides through a
series of example projects, and discusses the common challenges with deep learn-
ing on tiny devices. The majority of their implementations are based on ultra-
low-power microcontrollers and while Raspberry Pi is rather a micro-computer,
valuable insights can be retrieved from this source. Details about the TensorFlow
Lite conversion are covered, and optimization options as model quantization. An-
other reduction of computational time mentioned is the possibility to cut off the
image pre- and post-processing part of the network, as it may not be needed in
the client application.

Object detection and tracking is on the verge of being affiliated with Tinyml,
due to its computational complexity [20]. Previous implementations which are
light-weight exist, which prove that and multi-class detectors can run on mo-
bile devices. For instance, Liu et. al [25] presents a mobile solution where real-
time object detection assists an application for augmented reality. Their solution
achieves an end-to-end latency of 16.7 milliseconds for each processed frame.
Likewise, Königshof et. al [21] developed a real-time vision system that recog-
nizes and tracks lanes, road boundaries, and multiple vehicles in videos, which
is able to run in real-time with simple, low-cost hardware.

2.3.3 Efficient detection models

Depending on the use case for the network, its structure is chosen accordingly. A
networks size depends on the number of calculations needed, and some models
are designed with the purpose of being efficient over accurate. A detection model
consists of a base network and a classifier head as seen in Figure 2.4. Efficient
base networks are for example MobileNet and Inception, and a typical classifier
head to combine with them is ssd [2]. Other fast detection models exist, such as
the yolo network. It is equally fast as the ssd but not as accurate [26]. More-
over, the yolo network does not work well in real-time applications on non-gpu
computers [27].

Figure 2.4: A detection model consists of a base network and a classifier
head.

Another way to increase efficiency of a model is to use quantization. It can reduce
latency by simplifying the calculations that occur during inference, potentially at
the expense of some accuracy. Quantization works by reducing the precision of
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the numbers used to represent a model’s parameters. This results in a smaller
model size and faster computation. [28]

SSD - Single Shot multiple detector

The ssd is one of the first attempts at using cnn’s pyramid feature hierarchy
for efficient detection of objects of various sizes. It uses the vgg-16 model for
extracting useful image features [29], and on top of that adds additional convolu-
tion layers of decreasing sizes. These convolution layers can be seen as a pyramid
representation of images of various scales, see Figure 2.5 [30]. Large fine-grained
feature maps at earlier levels capture small objects and small coarse-grained fea-
ture maps detect large objects. The detection happens in every pyramidal layer,
targeting objects of various sizes.

Figure 2.5: The model architecture of SSD.

Some object detection systems follow the approach of hypothesizing bounding
boxes, re-sample pixels or features for each box and applying a high-quality clas-
sifier. While being accurate, this approach is computationally heavy and not fit
for embedded devices and is too slow for real-time applications. In contrast, the
ssd decreases the output space into a set of default bounding boxes over differ-
ent aspect ratios and scales per feature map. At prediction, the network generates
scores for the presence of each object category in each default box to better match
the object shape. [18]

MobileNet V2

MobileNet V2 is a light-weight architecture which utilizes shortcut connections
between layers, as well as depth-wise convolutions, both methods to keep the
number of mathematical operations low. The model has three convolution layers
in a block, see Figure 2.6. The first layer of the block is a 1x1 convolution and its
purpose is to expand the number of channels in the data before it goes into the
depth-wise convolution. The depth-wise convolution filters the inputs, which is
then followed by a 1x1 point-wise convolution layer. The point-wise convolution,
called the projection layer or bottleneck layer, makes the number of channels
smaller and thus reduces the amount of data that flows through the network. [31]
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The input and output of the block are low-dimensional tensors, while the filter-
ing inside a block is done on a high-dimensional tensor. The residual connection
exists to help with the flow of gradients through the network and is only used
when the number of channels going into the block is the same as the channels
going out of it. [31]

Each layer, except from the projection layer, has batch normalization and an ac-
tivation function named relu-6. relu-6 is a relu with an upper bound at 6
and according to Krizhevsky who first used it, it encouraged their model to learn
sparse features earlier [32]. The full MobileNet V2 architecture consists of 17 of
the building blocks seen in Figure 2.6, in a row. This is followed by a regular
1x1 convolution, a global average pooling layer, and a classification layer, the full
architecture can be seen in Figure 2.7.

ssd is designed to be independent of the base network, and can thus run on
top of any base network, including MobileNet. A variant called ssdLite uses

Figure 2.6: Layers in each residual block of MobileNet V2.

Figure 2.7: Architecture of the MobileNetV2 with classifier head.
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depthwise separable layers instead of regular convolutions. With ssdLite on top
of MobileNet, true real-time results can be achieved (30 FPS or more).

Inception V2

Inception is another light-weight architecture which can be used as the base net-
work in a detection model. A motivation for the first work of Szegedy et al. [33],
Inception V1, was to improve the performance of deep cnns without increasing
the network size and computational cost. Especially, their focus lies on extracting
appropriate features regardless on the size of the object, which they achieve by
the design choice to have filters of multiple sizes operate on the same network
level. Figure 2.8 shows the type of module which an Inception model is mainly
built up with.

They also included extra 1x1 convolutions to limit the number of input channels
and thus lower the computational needs. With Inception V2 [34], the problem on
"representational bottlenecks" was tackled, that is, when the convolutions alter
the input dimensions to the extent that causes too large information loss. Their
solution was to expand the filters to make them wider rather than deeper, as
going deeper in a network implicates reduction in dimensions. As for example,
the 5x5 convolution seen in Figure 2.8 was replaced with two 3x3 convolutions.

2.4 Evaluation of a detector

In this section, evaluation metrics used within object detection is covered. This
includes the terms precision and recall, which are general within the field of ma-
chine learning, as well as metrics specific to object detection.

2.4.1 Precision and Recall

To calculate the average precision of a model, precision and recall are used, de-
fined in Equation (2.9) and (2.10). Precision measures how accurate the predic-
tions are, measured in percentage of correct predictions. Recall measures how

Figure 2.8: Architecture of the Inception module.
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well the model finds all the positives. An overview of the terms true positive, false
positive, false negative and true negative can be seen in Table 2.1. As a hands on
description of the terms with an example of the rhinoceros class: true positive is
when a rhinoceros is detected as a rhinoceros, false positive is when something
else is detected as a rhinoceros, false negative is when the detector fails to recog-
nize a rhinoceros, true negative is when the detector does not detect something
else as a rhinoceros.

Table 2.1: Terms to describe the relationship between the predicted detec-
tion and the actual.

Actual
Positive Negative

Predicted Positive true positive false positive
Negative false negative true negative

precision =
true positive

true positive + false positive
(2.9)

recall =
true positive

true positive + false negative
(2.10)

When the number of true positives, false negatives and false positives is deter-
mined from the test set, the precision and recall can be calculated. This can be
plotted in a precision-recall curve. The average precision (ap) is defined as the
area under the precision-recall curve and is given by Equation (2.11), where p is
precision and r is recall. [35]

AP =

1∫
0

p(r) dr (2.11)

To evaluate a detector the metric mean average precision (map) can be used. map
is the average value of the ap for N classes, it is defined by Equation (2.12).

mAP =
1
N

N∑
i=1

APi (2.12)

2.4.2 Intersection over union

To get an account of how well the detector locates the objects the intersection over
union (iou) is calculated, defined in Equation (2.13). iou is the measure of the
overlap of two bounding boxes. It measures how much the predicted bounding
box overlaps with the ground truth, see Figure 2.9. A threshold value is set to
label the detection as true positive or false positive. If the iou is greater than the
threshold it is considered as a true positive, and else a false positive.
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IoU =
area of overlap
area of union

(2.13)

Figure 2.9: Area of the union and area of the intersection.

2.4.3 COCO evaluation

The public dataset coco is widely used for training image-based models. It has
80 object categories and is often used to compare state-of-the-art models [36].
coco’s detection evaluation presents 12 metrics given under four categories [37].
coco uses an interpolated ap, where the ap is an average of multiple iou:s, that
is, where ap is mentioned it is actually referred to map since it is averaged over
all classes. The evaluation is given in the following categories:

• Average Precision (ap) - given over different iou thresholds

• Average Recall (ar) - given with 1, 10 or 100 detections per image.

• Average Precision (ap) across scales - small, medium and large objects de-
fined by pixel size.

• Average Recall (ar) across scales - small, medium and large objects defined
by pixel size.

2.4.4 PASCAL VOC evaluation

pascal voc is measured with map, where a value close to 1 reflects good per-
formance [38]. In order to use map in object detection, the predicted boxes and
classes are sorted in decreasing order of probability and matched with the ground
truth boxes and classes. The iou is calculated and to be considered a correct de-
tection the iou needs to exceed 50%. The match is predicted as true positive if
and only if it has not previously been seen, to mitigate duplicate detections of
objects.
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2.5 Event extraction

To prevent the server from overflooding with data, it is crucial to ensure that only
relevant data is uploaded. A single-image detector has no temporal aspect, how-
ever its results can be evaluated over time. For this purpose, different approaches
to extract high-confident events are discussed in this section.

2.5.1 Precision for single image versus for image sequence

Previous research presents approaches to achieve high precision on a single im-
age, like seen in [19, 39], their models got better precision by cropping the image
around interesting objects, or include more of the background around bounding
boxes. Both are techniques which imply resizing the image patch to cover more
or less pixels, so that features can be extracted at the most appropriate scale.
However, as Wilber et al. [12] stated, it might be more important to achieve
high precision over a sequence of images when it comes to animal surveillance.
Likewise, Wu et al. [40] describe the challenge on object detection in video as
to utilize the temporal continuity of videos to improve the accuracy. The task
to treat detections over time is often referred to as object tracking. Exactly how
object tracking is applied, and whether additional processing steps are included
differs quite between implementations.

2.5.2 Object tracking

In addition to the task of detecting objects in an image, it is often valuable to
track them in a sequence of consecutive images [41]. With tracking, objects can
be assigned with unique ID numbers assigned to them and extra information can
be retrieved, such as how long a particular individual has been present. A set of
challenges are associated with object tracking, as object occlusion and measure-
ment noise due to occasionally missed detections. Complete tracking solutions
generally consist of two main components, a detector and a tracker. The task of
the detector is to obtain information about detected objects, like bounding box
coordinates, which is fed as input to the tracker. The method for the detections
itself varies. For simple objects, processing as edge and contour detection can
be used for separation. In more complex scenarios, as with several classes and
various backgrounds, detection with pure image processing is difficult to achieve
[41]. As described in Section 2.1.1, machine learning methods are widely used
for the purpose of object detection nowadays.

Recently, deep learning based approaches have arisen also for the tracking com-
ponent. Emami et al. [42] presents an overview of machine learning methods for
multi-target tracking. These methods are based on cnn with several consecutive
images as input, that is, resourceful training data. For this work, solutions that
are not associated with a set of fixed classes are aimed for, and among those are
standard Kalman filtering and tubelet proposal.
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2.5.3 Kalman filter for box tracking

The Kalman filter is a recursive algorithm to provide an estimate of the current
state, given previous measurements and predictions [43]. Thus, when a new mea-
surement is not available, the state can still be estimated. Bewley et al. [41]
presents how Kalman filters can be used for box tracking, which is convenient as
bounding boxes are generally the output from object detection. In their work, the
state to be estimated with a Kalman filter represents the bounding box location
for an object, its position and velocity over time.

2.5.4 Tubelet Proposal

The counterpart to bounding box proposals in static object detection is called
tubelets for video tracking, that is, sequences of bounding box proposals as seen
in Figure 2.10. Within object detection from video, a major topic is how to pro-
pose and filter these tubelets.

Figure 2.10: Visualization of the tubelet definition. Consecutive detections
on the same object are handled as a tubelet. The aim of a tubelet proposal
algorithm is to propose which detections should be associated

ImageNet has a challenge on object detection from video, referred to as the VID
task [44]. Kang et al. [45] introduce a complete framework for the VID task based
on still-image object detection and object tracking. In VID, each video frame
contains an unknown number of object instances and classes. This is closer to
real-world scenarios than many previous problems worked on, according to their
study of related work. The proposed solution of Kang et al. consists of two
main modules, one that proposes tubelets, and one which classifies the tubelets
and performs re-scoring. The results are promising and show consistent perfor-
mance improvement over still-image detections. Unfortunately, the module for
re-scoring requires one temporal convolutional network per class, trained on an-
notated video data. As this kind of dataset requires substantial resources, it is
impractical for a solution that wishes to be adapted to arbitrary classes. However,
parts of their solution are of interest, as the implementation steps they refer to
as "High-confidence Tracking" and "Tubelet Perturbation and Max Pooling". That
is, they describe how detection boxes can be treated and filtered to match them
in consecutive frames. As for example, an interesting insight is how they allow
a relatively low threshold of 0.1 to keep a track. Moreover, if a detection over-
laps more than 30% with an existing track, it will not be chosen as a new tubelet
anchor.
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As is often the case with machine learning, development is an iterative process.
After a round of data collection and pre-processing, training of the very first
model could be run. Model requirements were identified as it got clear what
scenarios were critical, i.e. what images the detector could not handle, and design
choices were made thereafter. Moreover, a light-weight client application was
developed, which includes an algorithm for event extraction as well as the server
communication.

3.1 Tools and frameworks

For training of the neural network, the deep learning library TensorFlow was
used along with the TensorFlow Object Detection api, which both simplifies the
process of training models to detect objects by using pre-trained models. Google
Colaboratory was used to edit and run Colab notebooks as it is hosted online and
offers free use of gpu, where a notebook is a document composed of cells, each
of which can contain code, text, figures and more [46].

LabelImg [47] was used to annotate the images for training, which is a graphical
image annotation tool written in Python and available as open source. Further,
all components for the tracking algorithm are written i Python.

19
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3.2 System overview

Figure 3.1 illustrates the workflow of the full system. The different development
areas are:

• Detection. Training a neural network, or practically, a mathematical model
that takes an image as input and generates bounding boxes with associated
scores and object class. Section 3.3 describes the process of training the
detection model.

• Tracking. Designing an algorithm to keep track on detections over time
with the purpose to extract events. The method to establish object tracking
is described in Section 3.4.

• Edge application. Building a complete application that manages both the
video stream, object detection, tracking, and server communication. Sec-
tion 3.5 provides a short description of the edge application.

Figure 3.1: Workflow of the full system. The development stage illustrates
the process to train and prepare a cnn model for deployment. Scripts for
tracking was integrated directly with the edge application on a Raspberry
Pi.

3.3 Object detector

A model was built for detection of savannah animals and humans, based on a
pre-trained model using transfer learning. The first steps of building a detector
was to collect and pre-process data. Four models were selected and compared
against each other based on some objectives and the best performing model was
selected for the application.
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3.3.1 Identified model objectives

The following model objectives were identified to aim for:

• Handle multiple spatial scales and aspect ratios.

• Model should have low inference speed ( < 100 ms ) and small model size
( < 100 MB ).

• Achieve an ap of at least 70% for each class.

3.3.2 Data collection

Classes included in the training data were rhinoceros, lion, leopard, zebra, buf-
falo, giraffe, elephant and human. The data was collected from the sources seen
in Table 3.1 and visualized in Figure 3.2. Source 1 and 7-12 are camera trap
images, which represents the target setting. In particular, source 1 is available
for direct access, as it is a partner of the project. However, as Cheem et. al. [9]
stated and is commonly known, camera trap images typically suffer from blur,
poor lighting conditions and occlusion of the animals. Thus, the complementary
sources 2-6 were included to ensure that the training data contains good images
of the main features of the animals. Images from Google and YouTube were col-
lected by searches on buffalo, humans on the savannah, rhinoceros and giraffe.

Table 3.1: Images collected from different data sources.

Nr Source Images Species Collected
1 Kolmården Zoo 200 Rhinoceros, Zebra
2 Animals with Attributes [48, 49] 1677 Elephant, Giraffe, Leopard, Lion,

Rhinoceros, Zebra
3 iNaturalist [50] 33 Rhinoceros
4 Google 152 Buffalo, Human
5 YouTube 441 Buffalo, Giraffe, Human

Rhinoceros
6 Unsplash [51] 320 Buffalo, Elephant, Giraffe,

Leopard,Lion, Rhinoceros
7 Wildlife Image and 400 Giraffe, Zebra

localization Dataset [52]
8 Snapshot Mountain Zebra [53] 108 Buffalo
9 Snapshot Enonkishu [54] 57 Buffalo, Elephant

10 Snapshot Kruger [55] 369 Buffalo, Elephant, Leopard, Lion,
Zebra

11 Snapshot Karoo [56] 145 Zebra
12 Snapshot Serengeti [57, 58] 943 Buffalo, Leopard, Lion,

Rhinoceros
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Figure 3.2: Overview of collected images from data sources.

In total, 4845 images were collected and annotated. However, a script was writ-
ten to sort out images which had bounding boxes covering more than 90% of the
area to remove images which were taken to close up to the animal. Moreover, a
set of images was picked for validation purposes. In the end, the training dataset
contained 4008 images. The distribution over the classes can be seen in Figure
3.3.

Camera trap images have been prioritized when selecting the data sources, as
training data similar to the target domain is beneficial for the model performance.
Figure 3.4 shows example images from the eight different camera trap locations
used in the data collection.

Figure 3.3: Data distribution over the classes. The vertical axis represents
the number of images for each object class
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Figure 3.4: Example of images collected from camera traps and used for
training.

Figure 3.5: Annotation of images in LabelImg.

3.3.3 Data preprocessing

All images were resized and cropped to 400x400 pixels. The images were then
annotated in LabelImg, see Figure 3.5, where bounding boxes are drawn tight
around objects of classes to detect. The program generates an xml-file in the for-
mat of pascal voc with object annotations. Each file contains the image name
and the width and height, and one annotation object per animal in the image.
Each annotation holds bounding box coordinates, describing the position of the
animal in the image. The bounding box is specified with the values: xmin, xmax,
ymin and ymax. These values make up the points acting as corners of the bound-
ing box.
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Figure 3.6: Table with annotation of the training and testing images.

Table 3.2: Comparison between pre-trained models.

Model name COCO mAP Speed (ms)
ssd_mobilenet_v2_quantized_coco 0.22 29

ssd_mobilenet_v2_coco 0.22 31
ssd_inception_v2_coco 0.24 42

ssdlite_mobilenet_v2_coco 0.22 27

The xml files were converted into a csv file holding all the annotations from
the dataset. Each image may have one or multiple annotations, that is, one or
several rows in the csv file. An extract of the csv table can be seen in Figure
3.6. The data was separated with a ratio of 9:1 into train and test. Importantly,
when dealing with a multi-class detector, an even distribution over the classes
in the train and test data is important. Thus, the splitting was achieved through
stratification, a method which take class attribute into account. Annotations were
then converted into TFRecord format, a format created by TensorFlow for the
purpose to read linearly efficiently in the training phase [59].

3.3.4 Training CNN models

Four models were trained with slightly different architectures. MobileNet V2 was
set as base network for three models, and Inception V2 for the fourth. Further,
one of the MobileNet models was quantized and one used the Lite version of its
ssd classifier head, which are both approaches for efficiency. Table 3.2 displays
the speed and coco map of the pre-trained models downloaded from Tensor-
Flow’s official GitHub page [60].

As earlier mentioned, TensorFlow’s Object Detection api was used for training.
To apply transfer learning, a model pre-trained on the coco dataset was loaded.
Such model is defined by a set of files:

• A graph protocol, defining the structure of the model.

• A checkpoint file, containing values of the weights.

• A configuration file, with all configurations and hyperparameters that were
used to train the model.
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The graph protocol and the checkpoint file were used for further training of the
model, together with the configuration file. However, as the configuration was
previously set for a large dataset, it was partly overridden. Fundamentally, the
number of classes for the new detection problem was set in the configuration, as
well as the corresponding label map. When training starts, new images are fed
as input to the graph, and weights get updated by backpropagation. New check-
point files are saved regularly and when the model converged, a new frozen graph
was exported.

The following hyperparameters were set in the configuration file:

• Optimizer: Adam with initial learning rate of 0.0002 [3, 6].

• Regularization loss: L2

• Localization loss: Smooth L1 localization loss

• Classification loss: Sigmoid cross entropy classification loss

• Batch size: 64

• Image input: 300x300 pixels

• Data augmentation:

– random horizontal flip

– random rgb to gray

The numeric output of the last linear layer in the network is converted to proba-
bilities with the Softmax function.

Model design tests

To prove the hypothesis regarding the benefit of transfer learning, a model with
all the same data and parameters was trained, except that no pre-trained weights
were initialized. Instead, the weights are initialized with a truncated normal ini-
tializer which generates a random normal distribution, given mean value and
standard deviation as hyperparameters. The mean was set to zero and the stan-
dard deviation to 0.03, which are the default values in TensorFlow’s Object De-
tection api.

For tests concerning the open set problem, a MobileNet V2 model was trained
without the elephant and buffalo classes. A small test set with unseen data was
used to compare the detections generated by this model and the normal Mo-
bileNet V2 model. Likewise, a model was trained without applying data aug-
mentation.
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3.3.5 Model evaluation

As training was running, its evaluation progress could be monitored in Tensor-
Board which provides graphs over the training progress. To be considered as a
well performing model, the ap for each class was desired to be as high as possible
and the loss function to be minimized. Initially when training the models, coco
evaluation was used to tune the hyperparameters in the configuration file since
it gives an estimate of how well a model performs on small versus large objects.
Later, when more classes were added, the evaluation was performed with Pascal
voc evaluation, as pascal voc displays the ap for each class and more informa-
tion about the loss functions.

Loss values and ap for the classes were taken into consideration when selecting
what model to use. As the application is dependent on an efficient model, the
models were also evaluated in the object tracking task, with the purpose to in-
vestigate which model had the shortest inference time and thus can process the
streaming video with a higher sampling rate. This evaluation is further discussed
in section 3.4.2.

3.4 Object tracking

Two methods were tested for the purpose of object tracking, Kalman filter for box
tracking and tubelet proposal. It soon became clear that while Kalman filter has
the advantage to predict the state at detection failures, this exact object tracking
may not be necessary. After all, the ambition was mainly to detect whether an ob-
ject was present or not, rather than following its exact movement. As Kang et al.
[45] describe tubelets, it seemed to match well with the needs for this project and
was chosen for the final implementation. However, as a light-weight and more
general solution was aimed for, no additional networks were used but simply
the information given by an arbitrary object detection model: bounding boxes,
classes, and scores.

To repeat the definition of a tubelet, it is a set of detections over consecutive
frames which are assumed to belong to the same object. Exactly how this data as-
sociation is achieved differs between implementations, as well as how the tracked
tubelets are managed. Below follows a description of how object tracking with
tubelets was implemented.

3.4.1 Tubelet proposal implementation

Three classes were implemented to build up the data structure for the problem:

• Tubelet - an object which holds all detections that has been estimated to
match each other, based on bounding box attributes and detection score.
As an active tubelet, the detections may signal for different classes, however,
the true class should appear in majority.
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• Event - a summarized version of a tubelet which is not longer active, as,
with memory efficiency in mind, keeps only the information needed to filter
and upload events. Importantly, it has a fixed object class, a confidence
value, a representative image, and time interval information.

• TubeletManager - keeps track of all active tubelets. It can register and
deregister tubelets. Importantly it holds the update function which matches
detections to active tubelets and finishes tubelets which have not matched
for a certain number of frames.

Figure 3.7: Flow-chart of how the tracking solution was integrated with the
cnnmodel inference during video streaming.

Figure 3.7 shows a flow-chart of how the tracking solution was integrated with
the cnn model inference during video streaming. Below are some implementa-
tion details which are commonly discussed for a object tracking solution:

• High-confidence anchors - detections with high score are chosen as an-
chors, i.e the starting detection, for a new tubelet. New tubelets are not
initiated if their anchor box has an iou percentage larger than 0.3 towards
the latest detection of another tubelet.

• Matching of tracking - every new bounding box with score above a thresh-
old of 0.1 will match existing tubelets based on Euclidean distance. If two
detections have the same tubelet as its closest, priority will go to the closest
detection.
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• Re-scoring and final class decision - as a tubelet may sample several object
class proposals during its active time, the most occurring class is chosen.
This happens since the detection of an animal alter in accuracy over time, as
seen in Figure 3.8, and sometimes produces false negatives. Moreover, the
average score for the chosen class is calculated to represent the confidence
score.

• Release of tracking - tubelets without a match within the last 2 seconds are
deregistered.

The hypothesis behind this implementation is that if an animal is sporadically vis-
ible, its detections will be included in some tubelet and after the tubelet summary,
the filtration will reveal its character. Filtering that is applied to the tubelets to
make events are that the average accuracy over the detections needs to be over
0.5 and that there are at least 5 frames in the tubelet.

Figure 3.8: Example of detection scores over time for a tubelet which tracks
a rhinoceros. Notice how the score is sporadically low, which the tubelet
need to have accommodation for to continuously follow the object.

3.4.2 Real-time tracking aspects

As the application is to be run continuously, the inference time plays an impor-
tant role. Given the fps for the input video and the model inference time, it could
be determined how many frames to skip to keep up in real-time. Consequently,
the more frames that are skipped, the harder it became to match detections due
to object movement. On the other hand, a model with longer inference time
generally reflects higher detection accuracy. Therefore, a part of the method to
produce a tracking solution was to save results for both model architectures to
compare.
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Figure 3.9: The objective of tests on recorded videos is to get a measurement
of how well the different models can extract events in relation to the ground
truth.

Tracking tests

Events in a set of video sequences were manually annotated by specifying a set of
time intervals and the number of rhinoceros visible. Each time a new rhinoceros
entered the frame, it was considered as a new event. Likewise, an event finishes
when the rhinoceros leaves the frame. During evaluation, the event extraction
was approved if it produced an event in that time interval. Figure 3.9 shows an
example of how an event extraction of a video sequence is compared with the
ground truth events.

To further test the models in tracking they were run simultaneously on a real-
time video stream from Kolmården Zoo for 8 hours. The events that the applica-
tion judged as interesting were sent up to a Dropbox server for manual control.
The false positives for the respective model were counted since it is not desired
to receive a lot of false alarms.

3.5 Edge application

The edge application is a Python program, with instructions as follows:

Before main loop
Initiate video stream with OpenCV, load the detection model from the tflite-file
and initiate server connection, for example, to Dropbox. The program parame-
ters are set, as which classes to look for and how often to upload events.

Main loop
Read a frame and prepare input tensor (resize+normalize), invoke the model and
receive output tensor. This output tensor contains the resulting bounding boxes,
classes and scores which are used to annotate the frame, and are sent to the up-
date function of the tracking component. Extracted events are stored to a tempo-
rary event log until the next server upload.
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Results

Results for a set of cnnmodels are presented, both for still images and also in the
setting of real-time detection where the tracking component is added. While all
models are suitable for edge-device applications, the impact of inference speed
versus model accuracy for object tracking is presented.

4.1 Insights on qualified training data

Research insights in combination with evaluations with different datasets gave
recommendations for multi-class detection as follows:

• It is vital to split the data such that the distribution for a given class is
even between train and test. If not, validation results will give an incorrect
measurement of the actual performance of the model.

• As expected, the model which was trained without transfer learning shows
slow training progress. After the same number of training steps as when the
pre-trained model converges, this model still has map values less than 1 %
for all classes. With transfer learning, an acceptable result was achieved
with only 300-500 images per class after 80 epochs.

• Given the small training set, the addition of augmented data increased the
model map from 0.76 to 0.82. Figure 4.1 shows this results, as well as the ap
comparison for each class. This result was achieved with the only difference
being that the augmentation techniques horizontal flip and gray-scale were
randomly applied and generated more training examples.

• Model accuracy increases as similar object classes are included in the train-
ing dataset. Figure 4.2 shows how the model trained without buffalo and
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elephant generates incorrect detections of rhinoceros, as it is the most simi-
lar class (in comparison to giraffe, leopard, lion, human and zebra ). By in-
cluding the buffalo and elephant classes in the training dataset, the model
accuracy was significantly better. Note that this model was trained with
assumption of a closed set of animals.

Figure 4.1: Improvements in ap with the addition of augmented data

Figure 4.2: Comparison of models trained with and without buffalo and ele-
phant classes, in a closed set setting. The detections in row (a) were gener-
ated with a model trained without a buffalo nor elephant class, and all are
incorrectly detected as rhinoceros with score values close to 1. Likewise, row
(b) shows results from a model trained with all the same model parameters,
except for the addition of the two classes, and it correctly detects all four
images
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Figure 4.3: Comparison of map per class for the different models.

Table 4.1: Inference time per model.

Model Raspberry Pi (s) CPU (s)
ssd_inception_v2 0.804 0.267
ssd_mobilenet_v2 0.314 0.183

ssd_mobilenet_v2_quantized 0.316 0.174
ssdlite_mobilenet_v2 0.314 0.177

4.2 Results from training

From the training some quantitative and qualitative results could be found. Fig-
ure 4.3 shows a comparison of map and ap over classes for the different models.
The inference time for each model is presented in Table 4.1.

4.2.1 Qualitative results

Figure 4.4 presents successful detections on the rhinoceros class, from evalua-
tion data. These examples include cases where the rhinoceros is partially oc-
cluded and is present at a relatively far distance. For the two images where the
rhinoceros are farthest away, their detections are only 27 × 27 and 30 × 48 pix-
els respectively. These sizes fall within, and slightly above, the scale "small" in
coco’s detection evaluation which is 32 × 32 pixels.

The detector has some difficulties in certain situations, for example partial oc-
clusion, objects far away or when the object is camouflaged by its surrounding.
Figure 4.5 shows a set of images that were difficult to detect correctly.

4.3 Results from event extraction

Two main aspects to evaluate an event are 1) to look at the confidence score, and
2) to measure the overlap with the ground truth event. Ideally, a detected event
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would cover the full time span of which the animals are in the field of view. Re-
sults regarding how the models split, miss to detect events were extracted are
presented in this section.

Figure 4.4: Examples of successfully detected rhinoceros on unseen data.

Figure 4.5: Examples of images that were not properly detected. Red boxes
mark incorrect or missed detections while green boxes represent correct de-
tections. The images show that occlusion and and objects far away are diffi-
cult to detect.
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4.3.1 Results from test with human labeled videos

Three videos were annotated manually by defining time spans for where an event
should occur, as well as the number of animals present. Inference was run 3-5
times per second for the MobileNet models and 2-3 times per second for the In-
ception model. The relatively low fps may be caused by running the tests on
videos instead of live-stream, due to time spent on decoding. The results from
the test with the manually labeled videos showed that MobileNet V2 quantized
was the only model that missed an event, a false negative, see Test 3 in Figure
4.6. The network that splits the event the least amount of times is MobileNet V2.
ssdLite MobileNet V2 and MobileNet V2 Quantized split events the most.

To get an estimate how confident the models are the mean accuracy for those im-
ages with the correct classification are compared with the ground truth, together
with the standard deviation it can be seen in Figure 4.7.

Figure 4.6: Result from the event extraction tests on three videos, comparing
the predictions from the models with the manually annotated ground truth.
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Figure 4.7: Mean accuracy of correct identified images in event with stan-
dard deviation calculated with the n-1 method which gives an estimate of the
mean deviation.

4.3.2 Results from real-time video stream

Object detection and tracking were run on a video stream from Kolmården Zoo
simultaneously for the four models during 8 hours. The events they extracted
were uploaded to a server where they could be analyzed. The metric to look at
here was how many true positives, false positives and false negatives the models
produce. The results from this test can be seen in Table 4.2 where MobileNet V2
generates the least amount of false positives and MobileNet V2 Quantized the
most. Inception and the stardard MobileNet miss to detect two more events than
the quantized and ssdLite versions of MobileNet, which also split events more
often. With the true positives, false positives and false negatives the precision
and recall can be calculated.

Table 4.2: Detection of true positives (TP), false positives (FP), false nega-
tives (FN) and event splits with precision and recall calculated.

Model TP FP FN Splits Precision Recall
ssd_inception_v2 19 6 13 1 0.76 0.59
ssd_mobilenet_v2 24 4 13 1 0.86 0.65

ssd_mobilenet_v2 (Q) 28 12 11 4 0.70 0.71
ssdlite_mobilenet_v2 26 7 11 2 0.78 0.70

4.4 Edge device compatibility

Examples of edge devices which the model can run on are smartphones and Rasp-
berry Pi. Figure 4.8 shows a demonstration of the detector in a simple application.
The setup on Kolmården Zoo can be seen in Figure 4.9, where a pan-tilt-zoom
(ptz) camera surveys the rhinoceros habitat. In the electrical cabinet which is
self-sufficient, powered by a solar panel and running its own network, a Rasp-
berry Pi receives the video stream and analyzes the frames, extracting events.
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The events are uploaded to a Dropbox server and available for further usage, as
for example to be fetched via the Dropbox API and displayed on a web-page as a
surveillance monitor.

Figure 4.8: A TFLite model can be integrated in an Android/IOS App for
demonstration of the detection model.

Figure 4.9: The video stream from a camera is sent to a Raspberry Pi, pow-
ered by batteries charged by a solar panel. The video stream is processed
and analyzed by the detector and the tracking algorithm. Events are contin-
uously sent to a server and are, as one use case, displayed on a monitor.





5
Discussion

This chapter contains discussions about the results and the method, as well as
ethical and societal aspects related to the project.

5.1 Results

A contribution of this work is insights which are of importance for the deploy-
ment of a cnn model in a real-world setting. Annotated data is demanding in
terms of resources and practical insights on what image characteristics needs to
be represented in the training data has been presented. Moreover, a client-side
solution for animal detection and tracking was proposed and evaluated.

5.1.1 Quality of detection models

Overall the four models achieved satisfying results with high map from training.
Decisive for the quality evaluation was how likely the models were to produce
false positives. The models all have some flaws regarding incorrect detections
that appear occasionally, however, it happened most frequently for the quantized
and the ssdLite model compared to the ssd MobileNet V2 and ssd Inception
models.

MobileNet V2 was selected as the final model for the application. This due to its
traits of generating a small amount of false positives and not splitting an event
into smaller ones. Even though it missed to detect some events compared to the
other models, the false negatives seen in Table 4.2, the low amount of false posi-
tives reflect that it has higher precision. It also performed well in the tests with
labeled video events, given that it detected all events. Further, the model file size
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is 25 MB for MobileNet V2 and 55 MB for Inception. MobileNet V2 is thus less
than half the size of the Inception network which is an advantage considering the
goal platform.

A good indication of the model quality is the versatility of detection capability
shown in Figure 4.4. Rhinoceros are correctly detected both at close and far dis-
tance, as well as occluded, features which agree with the identified model objec-
tives. These results are achieved with a model with a size far less than 100 MB.
However, the inference speed of the models unfortunately reaches above the de-
sired limit of 100 ms.

While the models perform acceptable results, they have potential to be further
fine-tuned, and especially the optimization of hyperparameters could be explored
more systematically. While several variations were tested and resulted in im-
provement, further hyperparameter tuning is encouraged before deployment of
the final model. The network is not able to detect objects very far away with high
reliability, which may be an objective to aim for.

5.1.2 Expected results in deployment

In a closed habitat like the one at Kolmården Zoo, there is a known number of
species in the enclosure. To launch the system in such an area, the model could be
extended to include a class with animals that are not in the current model. Such
class could be broader and include goat-like species such as water buck, antelope
and gazelle. In contrast to the case of an enclosure, false positives are expected
in an environment with a more varying fauna and a larger number of unknown
species. It is thus motivated to further look into the open set problem and ensure
that unknown classes are rejected at detection and not classified as the class that
it resembles the most.

5.1.3 Quality of event extraction

A hypothesis was that it is not crucial to look at perfect accuracy per image frame
basis, rather it is of higher importance that it correctly identifies targets across a
sequence of captured frames. As the events are filtered so that the mean accuracy
for the events are higher than 0.5, it increases the possibility that events sent to
the server are true positive events. By observing the real-time detection, it was
noted how false positive detections sporadically appeared, but how they were
successfully rejected by the event extraction. The test on a real time video stream,
see Table 4.2, showed that for the time span of 8 hours only four false positives
were extracted for the selected model ssd MobileNet V2. When analyzing the
false positives it could be seen that they were all of a species that had not been
included in the training set, more specific an antelope type of animal, which was
thus an unknown class for the network.
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5.2 Discussion of method

The method includes the whole chain from data collection and annotation, model
training, and implementation of event extraction from object tracking, to finally
testing of the system.

5.2.1 Data collection

While the supply of images with humans is quite unlimited, not as many are
captured in savannah-like nature at far distance. At least images of this kind are
rarely gathered as a dataset. A possible option is to re-train and update the model
after data on the target location has been captured.

5.2.2 Annotation difficulties

In many cases it was not trivial how to annotate the images, especially animals
that move in flock. Further, as an animal approaches or disappears towards the
horizon, at one point it is no longer relevant to annotate it. That is, the same
object could appear several times in the training data and at one time update the
weights as it is a positive detection, and next time as a negative detection. On the
other hand, it is hard task to collect a sufficient dataset without the use of this
kind of sequential images which are produced by camera traps.

5.2.3 Detection approach

As it can be interpreted from section 2.2.1, there are several options whether how
to detect and classify animals. A distinction can be made between models which
perform image classification or object detection, for this project the latter was
chosen since several species are expected to be present simultaneously. In retro-
spect, this path was never doubted during development or testing. In particular,
the location attributes provided by object detection was highly beneficial for the
tracking component.

5.2.4 Tracking approach

Since Kalman filters are commonly used for object tracking, it is relevant to dis-
cuss whether the choice of tubular proposal can be justified. The main advantage
of using a Kalman filter would have been the possibility to estimate the new lo-
cation of an object, based on previous observations. During development and
testing, these estimations were concluded to rather complicate tracking, as the
estimated location tend to drift incoherent with the animal movement. In com-
parison with, as for example, cars on a highway, one can conclude that mammals
move more unpredictably. This amplifies as inference runs only a few times per
seconds, and the animal has even more room to change direction. On the other
hand, the Kalman filter would be helpful in situations where a single animal
is quickly passing by. It may be the case that Kalman filters could add more
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value then what was revealed during the tests, as further exploration of alterna-
tive state definitions or velocity models could be performed. However, for this
use case where an exact position is not necessary, tubelet proposal is satisfactory
to extract events for when specific object classes are present. Regarding the im-
plementation details listed in Section 3.4.1, it is encouraged to further explore
alternative settings, such as a more sophisticated approach of tubelet matching.

Currently, each model has a fixed fps to ensure that the video stream is processed
in real time. To improve this implementation, a more dynamic approach could
be to fetch the latest frame as soon as the previous one is processed.

5.3 Work in a wider context

With the exploitation of Internet of Things, one can assume that edge machine
learning applications will grow too. The real use of this solutions is not far away,
and real-world aspects are discussed accordingly.

5.3.1 Ethical and societal aspects

Client-side solutions have the integrity aspect in its favor, since data is not sent to
the server until an event occurs. Similar applications can be found in smart-home
products, where voice activation component may be run on the client. Thereafter,
the spoken language is to be processed on the server, when the user is aware
about the recordings. That is, more than limiting data transfer, integrity is an ad-
vantage of client-side solutions which is relevant as soon as humans are involved
in the video surveillance.

For the use case of surveillance of threatened species, information security be-
comes vital. Poachers are rarely those who fancy the finished ivory product, but
rather workmen. Sadly, journalists have encountered cases where someone drifts
between protecting the animals and hunting them, depending on how urgent
their economical situation is. This raises the question of who should have access
to the detection results.

5.3.2 Use case customization

The solution has been developed with generality in mind. For a specific appli-
cation however, it can be further explored what functionality is provided in the
camera of choice. As for example, some cameras has build-in motion detection
which could be used to trigger the classification and tracking. Further, with the
use of a ptz camera, many possibilities open up. If the program has permis-
sion to control the camera, it could use tracking positions to zoom in and cap-
ture detailed images of an individual. As seen in section 2.2.1, classification of
individuals is an on-going research topic. While the proposed system analyses
only finished tubelets, it might be possible to zoom in on a tubelet which seems
promising already while it is still active.
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Conclusion

The aim to develop an object detection which can identify a set of African animal
species was fulfilled. A tracking solution was further successfully set up. The
research questions are discussed more in detail in this section.

6.1 Research questions

1. How can a multi-class detector be designed to handle the open set prob-
lem, where just a few of the species are of interest? Should other species
be included in the training data, and if so, to what extent?

As a conclusion, objects that share many visual features should be included
in the training. The effort of additional data collection for a small set of
classes would compensate for its benefit to distinguish the classes. Regard-
ing to what extent classes should be added, one could decide to only include
classes which are obviously similar. In the case of rhinoceros for example, it
could be motivated to include a buffalo class since they are relatively similar,
while a distinctly different animal such as an ostrich should not be needed.
For this purpose, one should look further at the options to reject outliers,
which currently seems to be an unsolved task for single shot detectors as
ssd.

2. Given the continuous output from object detection, what lightweight so-
lution can be proposed to assemble events of interest?

A contribution of this work is a tracking solution using tubelet proposal,
along with a simple event filtration. The solution produces meaningful
events as long as the cnnmodel generates detections which are reasonably
accurate. That is, the solution meets its goal. While related work has pre-
sented state-of-the-art accuracy with deep learning based tracking, it can be
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concluded that for real-world usage, more light-weight tracking solutions
can suffice. Especially, an advantage is its flexibility to track any object
class.

3. How will the trade-off between inference speed and accuracy for a CNN
model affect the quality of real-time object tracking?

MobileNet V2 was selected, despite that it has neither the fastest inference
time or the highest training accuracy compared to the other models. But
in combination it results in the least number of false alarms and it is also
conveniently small in model size. MobileNet V2 is a optimal trade-off, it is
small, fast and accurate enough. As a conclusion, if model optimizations
leads to a substantial decrease in inference time, it should be considered
and tested against a more accurate model. In contrast, if the optimization
benefit is only subtle and not crucial for the deployment platform, no partic-
ular advantage can be obtained in the task of event extraction in real-time
detection.

6.2 Future work

This work has been developed towards a target application, and for this appli-
cation in particular, some future adjustment are suggested. The performance of
the detector might be limited due to the quality of the current training data, and
thus a quick fix will be to gather more diversified data from the target location.
It would also be interesting to further investigate how the system could be com-
bined with other sensors, such as sound, lidar or ir sensors to only trigger to
start the system when living creature is near. It would thus reduce the use of en-
ergy, and possibly also increase the system performance during the night hours
when many animals, especially rhinoceros, are active. Additional sensor infor-
mation could also be used together with the pan-tilt-zoom functionality to look
more closely at the moving object.

An interesting spin-off of this work is to tackle the challenge of recognition of
individuals. The question remains whether it is relevant to annotate images on a
individual level, or rather rely on active learning. Another previously suggested
solution is to use a database where representative images of individuals can be
stored for comparison at inference time. Intuitively, recognition of individuals
moves the scope of this work towards a less generalized domain, as the unique
characteristic differs between animal species.
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