
Linköpings universitet
SE–581 83 Linköping

013-28 10 00 , www.liu.se

Linköpings universitet | Institutionen för datavetenskap
Examensarbete på grundnivå, 16hp | Datateknik

2020 | LIU-IDA/LITH-EX-G--2020/050--SE

En fallstudie på prestandajäm-
förelse mellan monoli sk och
mikrotjänst arkitektur baserat på
e kvalitetskontroll system
A case study of performance comparison betweenmonolithic and
microservice-based quality control system

Mats Eriksson

Handledare : Peter Dalenius
Examinator : Judy Foo

Extern handledare : Jonas Thellman

http://www.liu.se


Upphovsrätt

De a dokument hålls llgängligt på Internet - eller dess fram da ersä are - under 25 år från publice-
ringsdatum under förutsä ning a inga extraordinära omständigheter uppstår.

Tillgång ll dokumentet innebär llstånd för var och en a läsa, ladda ner, skriva ut enstaka kopi-
or för enskilt bruk och a använda det oförändrat för ickekommersiell forskning och för undervisning.
Överföring av upphovsrä en vid en senare dpunkt kan inte upphäva de a llstånd. All annan använd-
ning av dokumentet kräver upphovsmannensmedgivande. För a garantera äktheten, säkerheten och
llgängligheten finns lösningar av teknisk och administra v art.
Upphovsmannens ideella rä innefa ar rä a bli nämnd som upphovsman i den omfa ning som

god sed kräver vid användning av dokumentet på ovan beskrivna sä samt skydd mot a dokumentet
ändras eller presenteras i sådan form eller i sådant sammanhang som är kränkande för upphovsman-
nens li erära eller konstnärliga anseende eller egenart.

För y erligare informa on om Linköping University Electronic Press se förlagets hemsida
http://www.ep.liu.se/.

Copyright

The publishers will keep this document online on the Internet - or its possible replacement - for a
period of 25 years star ng from the date of publica on barring excep onal circumstances.

The online availability of the document implies permanent permission for anyone to read, to down-
load, or to print out single copies for his/hers own use and to use it unchanged for non-commercial
research and educa onal purpose. Subsequent transfers of copyright cannot revoke this permission.
All other uses of the document are condi onal upon the consent of the copyright owner. The publisher
has taken technical and administra ve measures to assure authen city, security and accessibility.

According to intellectual property law the author has the right to bemen onedwhen his/her work
is accessed as described above and to be protected against infringement.

For addi onal informa on about the Linköping University Electronic Press and its procedu-
res for publica on and for assurance of document integrity, please refer to its www home page:
http://www.ep.liu.se/.

© Mats Eriksson

http://www.ep.liu.se/
http://www.ep.liu.se/


A case study of performance comparison between
monolithic and microservice-based quality control

system
Mats Eriksson

mater307@student.liu.se
Linköping University
Linköping, Sweden

ABSTRACT
Microservice architecture has emerged as a new way to cre-
ate large complex applications by removing some problems
that exist for a monolithic counterpart. While this will as-
set agility, resilience, maintainability and scalability within
the application, other problems will be predominant such
as performance. This case study aims to provide more clar-
ity on this matter by comparing a microservice architecture
with a monolithic architecture. By conducting several ex-
periment on two self-developed systems it could be found
that microservice architecture will must likely show a lower
performance in terms of throughput and latency on HTTP
requests which use internal communication requests. On
small intensive HTTP requests with minimum internal com-
munication the difference between the architectures is so
low it could almost be neglected. With microservice archi-
tecture comes other challenges that a company must keep
into account such loadbalancing, caching and orchestration
which are beneficial for the performance.

KEYWORDS
Containers,Microservice,MicroserviceArchitecture, Perfor-
mance

1 INTRODUCTION
The most common way to design and develop a software
application is to use a single executable that is deployed on
one machine. This is usually called a monolith. For such ap-
plication resources and dependencies are shared within the
application. This software development strategy works well
as long as the system are contained as small application. Bad
scalability, technology lock-in and slow deployment cycle
are a few problems which the developers have to deal with
for a monolithic architecture [4] [11].
However, the shift towards microservices and microservice
architecture make an appealing new approach where each
microservice typically handle one specific task by decouple
from the rest of the application. This increasesmaintainabil-
ity and evolvability within the microservice and generally

make it easier to assign one development team the respon-
sibility for a one microservice [2]. This does also increase
scalability when a service could be deployed independently,
due to firm module boundary around each service [11].
This new architecture does not always bring benefits. It is
still quite unclear how performance is affected in compari-
son tomonolithic architecture.There are studieswhich show
almost no performance difference at all while other show as
half the performance or more [15] [14]. One of the reasons
for different end results is due to the configuration has been
altered for each study. There is also an uncertainty how the
internal communication is done within each architecture.
This case study will focus on how such microservice archi-
tecture could be implemented on an existing company, what
benefits or drawbacks could be applied for such a system
compared to a monolithic architecture, performance wise.
The study will also evaluate the effect of caching within a
microservice architecture.

2 BACKGROUND
Quality control is one of the main pillar in production to en-
sure that all delivered products from the factory maintain
high customer value and low refund rate. By adding check-
points along the manufacturing process, measured data can
be checked so they are within the control limit. Usually this
could be visualized in a control chart which is a very pow-
erful tool [1]. Six Sigma and Lean Six Sigma (LSS) are for
example well known quality disciplines to reduce variation
in production using this principle [16].

Under normal circumstances measured values are stored
in a database until responsible person collect the data and
convert them into a valid control chart or diagram.Thiswork
could be automated by an application doing the necessary
calculations and evaluation. Finished data could be fetched
and presented to a frontend for easy conversion to a dia-
gram. A typical development of such application, would be
monolithic three-tier application where necessary data is
collected from a datastorage and presented by a backend to
a frontend.

1



Mats Eriksson

3 RESEARCH QUESTIONS
The purpose of the report has been to evaluate if the quality
control system can be utilized as microservice architecture
and compare the performance on a monolithic counterpart.
This has been done in three steps, beginning with a theoret-
ical part checking previous research in this area. Then the
report has extend into executing the theoretical part into
a practical system, which will be used to compare the per-
formance on both monolithic and microservice architecture.
The report emphasise on answering the following research
questions:

• Will amicroservice architecture have any performance
advantages or disadvantages versus a monolithic ar-
chitecture in our case study?

• How important is caching for the case study and es-
pecially for a microservice architecture?

4 DELIMITATIONS
To narrowing the research question all experiments was exe-
cuted under synchronous measurements. Under a more real
scenario the microservice architecture has to be analysed
under an asynchronous environment.Thiswill probably lead
to exchange of communication protocol such asAMQP1 that
allows the messages to queue up. This will increase reliabil-
ity and performance on an asynchronous event driven sys-
tem.

5 THEORY
Under normal circumstances a software application is de-
veloped under monolith architecture. However, in the last
decades newways to structure the code has evolved. Service-
oriented architecture (SOA) and microservice architecture
(MSA) has an increasing interest due to the benefits of de-
couple features and by that removing its dependency to other
features or resources. Historically SOA started to be used
and implemented in the 2000s, while for MSA in the 2010s.

Monolithic Architecture (MA)
The main way to implement an application is to design a
single executable program which share resources with the
same machine. Here the resources could be anything from
hardware related as memory, database etc to more software
related resources as for example files and drivers.Thismakes
the development easy and fast, but causes bigger issueswhen
the application is growing. At some point it will become
unmanageable. Any changes to the application will result
into a new version which has to be deployed with a risk
of shutting down the whole application. Also, when adding
new features, the development team will be restricted to the

1Advanced Message Queuing Protocol

same language which the application is based on.

Fowler and Lewis [11] describe a monolithic enterprise
application usually based on three parts; client-side, server-
side and database. The client-side work as an interface for
the user and mostly built on javascript for a browser. The
server-side application will handle HTTP requests from the
client-side and execute relevant procedures to handle a re-
sponse back to the client. Finally, there is a databasemanage-
ment system to handle all queries from the server-side appli-
cation. This can also be called three-tier application, where
the client-side goes under the name presentation tier, server-
side as application tier and the database as data tier. If the
server-side application consist of a single logical executable
it could be called a monolith.

Microservice Architecture (MSA)
Microservice Architecture (MSA) or microservices (MS) is
a rather new software architecture which has received an
increasing amount attention from many companies. Some
companieswhich has embrace this architecture type areAma-
zon2, Netflix3, Uber4. Especially the benefits in the area of
scaling and maintainability are attractive features, making
it easy to change and redeploy each microservice. Because
a microservice is totally decoupled from other services it is
easy to develop amicroservice for a cloud solution. Strangely
enough there is no formal definition of what a microservice
is, but it does have to fulfil the features of a small service
which could be deployed, scaled and tested independently.
Each microservice usually is assigned to a single task and
communicatewith othermicroservices under aHTTPmech-
anism. Dragoni N. have tried to define a microservice as the
following [4]:

• Definition of microservice: A microservice is a co-
hesive, independent process interacting via messages.

• Definition of a microservice architecture: A mi-
croservice architecture is a distributed applicationwhere
all its modules are microservices.

At first glance this seems very similar to what REST ar-
chitecture try to achieve. In fact a RESTful API is very popu-
lar method to use as communication between microservices.
The profit of using a microservice architecture will mainly
be in the areas of agility, scalability, and resilience [3].

• Agility: During development of a microservice the
teamhave easier to understand and overview the code-
base when specification window is much smaller than
for a monolithic application. The microservice can be

2https://www.amazon.com/
3https://www.netflix.com
4https://www.uber.com

2



A case study of performance comparison between monolithic and microservice-based quality control system

deployed and tested independently, whichmake it eas-
ier to maintain.

• Scalability: Because the microservice is independent
it can also be scaled at run time. Resources and work-
load could easily be modified or moved according to
demand.

• Resilience: A microservice architecture is more re-
silient, if a component or service in the system fails.
With decoupledmicroservices, synchronous dependen-
cies could be avoided and small lightweight services
can easily be taken down instead of risking large areas
of functionality breakdown.

Figure 1: Scalability of a microservice architecture

Microservice architecture does not only comes with ben-
efits. Like any other architecture there will be areas that
could cause problems. A few of them are as following :

• Performance: One percussive negative impact of a
microservice architecture is the performance. The de-
composition of the system into microservices will in-
crease the number of requests across the network. For
a monolithic architecture data could easily be fetched
from a database and ones loaded into the memory it
can be accessed anywherewithin the application. How-
ever, for a microservice architecture same operation
could involve a chain of synchronous call each con-
tributing to the response time of the application [13][4].

• Security: As any distributed system with communi-
cation to another external system there could be a risk
for security vulnerabilities. Asmanymicroservices uses
REST protocol as the main interface the development
team has to add additional security in the overhead or
even encrypt the messages [4].

• Load balancing: As the traffic increase the need to
distribute themessages betweenmicroservices will be
more important. This is especially notable when a mi-
croservice is scaled up with several instances.

• Reliability:Themicroservice architecture is built around
small simple components which in total will create
a system. As the system grows it will become more

complex and it’s important that themessages between
each service are reliable. For example adding asyn-
chronicity will increase the complexity and shift the
message passing mechanism to a more unreliable sys-
tem [4].

Representational State Transfer (REST)
Representational State Transfer was defined by Roy Fielding
in his PhD dissertion and is a software architecture which
uses set of constraint for creating a service [6]. The princi-
ple is that the main communication is done with a client-
stateless-server (CSS) architecture.

• Client-Server: By separating user (client) from the
storage (server), portability is increased across multi-
ple platforms. This will also improve scalability.

• Stateless:The communicationmust be stateless, mean-
ing that a request must contain the necessary informa-
tion to be handled.

• Cache: A request could be labelled cacheable so the
client could reuse it later if the request is equivalent
with the cacheable request.

• Uniform Interface: To simplify and improve the overview
of the system the interface between components are
uniformed. Any process, resource or data that are not
used in the service has to be decoupled, so the service
could work independent. This will come with the cost
of decreasing efficiency.

• Layered System: Within a complex system, its neces-
sary to isolate different services within layers. Adding
a new services or components will be easier and it’s
possible to load balance the system. However, by de-
fault the overhead and latency will increase.

There is one additional architectural constraint “Code on
demand” that is optional, but this is of no interest in this
case study. All microservices andAPI are using REST in both
architectures.This is because of its simplicity and it does not
enforce any protocols or rules within the lower level.

Containers
Containers are a virtualization technologywhich has gained
popularity for its easy way to build, ship and distribute an
application. A container enables to isolate an environment
which bundles one or more software feature(s) with its de-
pendencies and resources into a single image for easy trans-
fer. The image can later be executed by another host, which
makes the deployment very convenient, fast and elastic. A
container has less overhead compared to a virtual machine
(VM) as the hypervisor layer is not present.
In general, a container will equals or exceeds a virtual ma-
chine in performance. Small intensive I/O request, where
extra overhead has to be applied on each virtual machine

3



Mats Eriksson

request has a significant effect on the performance, which
benefits a container system. However, in large I/O request
or streaming, the difference could be neglected [5].
Docker was selected as deployment platform of the case
study due to its lightweight and popularity. Also, the mono-
lithic architecture was set up in a container so the compari-
son would be equal in the scope of hardware and underlying
dependencies and resources. Deployment of an application
which are done directly on a single-tenant physical server
is called bare-metal.

Figure 2: Typical structure of Docker containers

JMeter
Apache JMeter [8] is an apache project aimed to analyse per-
formance of mostly web applications. The application can
however handle several other protocols. The tool is devel-
oped in Java and used for so-called load testing. The proce-
dure for a load test is to mimic a browser behaviour by sub-
mitting request and wait for a response by the server while
measure the end-to-end response time. The aim in a perfor-
mance test of a web application is to generate requests that
are so similar to a real user as possible [12]. In general three
different check is performed in practice [10].

• Crash check: This test is performed to check if the
application has crashed, reload or another severe in-
terrupt.

• Perfromance check: Performance check.This is usu-
ally performed to evaluate if there are any performance
fluctuations in the system.

• Basic error check: A more in-depth analysis of the
log files from the system.

Related studies in performancemeasurement formicroser-
vice architecture have used JMeter. This case study will also
use JMeter as load test tool to receive comparable result.

Caching
While there existmany reports about cache in general, about
how they should be designed for optimal performance in
a CPU, operating system or a database. There are less in-
formation how cache would affect a microservice architec-
ture. Sam Newman [13] has dedicated a whole chapter on
caching. The benefit of using cashing is to optimize the per-
formance by removing needless operation by storing pre-
vious result to be reused. This could for example be inter-
nal communication requests between two microservices or
fetching data from a database. One problem with adding
caching to a system is by exaggerate and adding too much.
If the microservice architecture have multiple services, and
they use large amount of internal requests, the freshness of
the data will be hard to determine. This goes usually under
the name cache poisoning. Caching could be summarized as
client-side, proxy or server-side caching.

Related work
There are many publications discussing migration from ex-
istingmonolith application tomicroservice architecture. How-
ever, most of them are just discussion and does not show any
relevant information how to approach the refactoring pro-
cess.This could be because it is a relatively new topic within
software development (2020).
One recent study [9] compared differentmicroservice frame-
works, where two was chosen to be implemented into an ex-
isting monolithic system. The result shows positive effects
inmaintainability and scalabilitymostly due to themicroser-
vice architecture. The downside is that ones the framework
was selected all new implemented microservices has to use
the same framework.There was also an issue of load balanc-
ing on large datafiles.

In an industrial case study [2] where an application was
migrated to a microservice architecture, showed that each
service had reduced feature overlapping and are not technol-
ogy dependent making the architecture multilingual. The
development team was not dependent on any platform, but
could choose any language for implementing the microser-
vice. The application was a bank FX Core system (Danske
bank) that was refactored as microservice architecture.

There have been several case studieswhich comparemono-
lithic with microservice architecture in different environ-
ments. Villamizar et al. [15] has performed an evaluation
comparing the average response time when deployed on
the cloud. The performance analyse was executed with JMe-
ter [8] which act as a frontend and was configured to send
two types of requests. The first request has a high payload
which was sent 30 times/min with an average response time

4



A case study of performance comparison between monolithic and microservice-based quality control system

of 3000ms. The second request represent a small but more
used request which was send 1100 times/min and with an
average response time of 300ms. The result shows a small
performance degrade on the heavy payload request on the
microservice architecture, while on the fast and more fre-
quent request the performance was instead increased. How-
ever, the differences are so small that the architecture type
will only be a small part of the impact on the overall perfor-
mance.

Another case study made by Flygare and Holmqvist [7]
compared three different architectures;monolithic,microser-
vice and bare-metal with the performance aspects of RAM,
CPU, latency and throughput collected by JMeter and Data-
dog. The analysis was performed locally on two comput-
ers where four stateless microservices (REST) was inspected.
The same hardware was later used to measure the perfor-
mance onmonolithic and bare-metal system to have as equal
conditions and circumstances as possible.Themeasurement
was made on six different request, three INSERT and three
GET, send to eachmicroservice.The results shows that hard-
ware resources such as CPU-usage and RAM-usage has ami-
nor increase for microservice architecture system.Through-
put and latency was also measured to a minor decreasing
performance for the same system. However, the collected
measurements show very high error rates which make the
result very indefinite.

Ueda, Takanori and Nakaike [14] made a very detailed
study comparing microservice architecture with monolithic
architecture in a container environment. Docker was used
as container platform. The two architecture was analysed
with help of Acme Air, an open-source benchmark applica-
tion that was configured to mimic an airline ticket reserva-
tion service. The experiment show that microservice archi-
tecture spent longer time on requests. Difference of twice
the time or even more was measured. The study also con-
cluded that ”The performance gap between the two service
models is expected to increase as the granularity of services
decreases”. The study also recommend that optimizing the
communication between services will lead to improved per-
formance of the application.

6 METHOD
This chapter will outline the description of the quality con-
trol system and how it works. The system was the founda-
tion for the performance experiments described in perfor-
mance setup. This will be followed by information of the
implementation.

The quality control system
The quality control system was developed with four major
points in mind.The design of the quality control system can
be viewed in figure 3.Many of the points listedwill be solved
in a microservice architecture where the overall behaviour
of the system will correspond from the correlation between
the microservices.

• No technology lock-in: The system must handle all
request from different departments within or outside
the facility.There should not be any limitations, when
for example a second part application is using another
operative system or software. Conflict could be reduced
by using fixed interfaces between the system and sec-
ond part application.

• Enduser data: The system should deliver data as raw
measured values which could be converted into any
control chart or diagram by the end user. Secondly it
should deliver data in form of a control chart which
could easily be visualized by any frontend application.
This represents a fast way for any department within
the facility to monitor any quality issue.

• Independence: Any calculation, conversion or changes
made on the raw measured values into quality param-
eters has to be done independent within the system. If
any process parameter goes out of scope it has to be
reported or notified to responsible end-user.

• Hook-in solution:The quality control system should
add a new feature to an already existing system with-
out changing any important data or software. Most fa-
cilities have many ways to record quality parameters
causing difficulties if the software or it’s resources are
altered.

Performance setup
From a performance perspective there are two different sce-
narios which are of interest. Small intensive HTTP request
which interact by the quality control system by reading, adding
or removing single object within either the quality or pro-
duction database. This mean minimum internal communi-
cation within the architecture. This measurement will be re-
ferred to as S1. The second scenario (S2) generate a qual-
ity control chart which involves a large dataflow between
REST_quality and REST_prod microservice. In the same re-
quest production data are calculated and checked according
control limits. After generation the final control chart is re-
sponded back to the user.

JMeter was configuration to run as many requests as pos-
sible for 120 seconds on each thread. The number of threads
were setup to vary from 1 to 120 in the step of 10 and rep-
resent the number of user on the system. Before each test

5



Mats Eriksson

Figure 3: The design of the quality control system consist
of four microservices. The REST_API work as a gateway be-
tween frontend and services. The REST_production microservice
gathers production data from the existing production database.The
REST_auth microservice handle all security related issues, such as
user information and tokens. The last microservice REST_quality
gather, calculate and evaluate statistical data. All data from this
service will be stored in the statistical database. This service can
also track a chosen process parameters which can give an alarm
when going out of scope.

there was a 20 seconds ramp-up time, which represent the
timeframe where all threads have to be started. The first
configuration (S1) run three different request methods, each
aiming at onemicroservice avoiding any performance peeks
of a certain type of request. Both requests and responses
in S1 have a small payload. The second configuration (S2)
use high payload request which requires several internal re-
questswithin the architecture.Themicroservice REST_quality
calls for a large amount of data from REST_prod, which is
calculated into chart control data. The final results was col-
lected by saving the performance aspects into CSV files with
the respect onmean latency time, error rate and throughput.
Request methods and number of properties, together with
affected microservice are according to table 1.

Table 1: Performance scenario S1 and S2

S1 - Requests No. properties Microservice
POST, GET and DELETE 8 REST_auth
POST, GET and DELETE 3 REST_quality
GET 5x8 (rows) REST_prod
S2 - Requests No. properties Microservice
GET 5x3000 (rows) REST_quality

REST_prod

Figure 4: Setup A. Microservice Architecture setup, where
each microservice is running in its own Docker container.

Experiments
The performance measurement consist of two setups, one
for a microservice architecture (setup A) which is very sim-
ilar to the quality control system in figure 3. The second
setup consists of a monolithic three-tier architecture with
API, backend and frontend (setup B). In both cases the fron-
tend has been exchanged with JMeter [8] which execute and
measure the request data. Both setups are illustrated in fig-
ure 4 and figure 5. In the aim of providing answer to the sec-
ond research question, how a microservice architecture will
respond to using cache, two more experiment was made by
adding a cache feature to the same setup (A and B) giving to-
tal four experiments. All experiments were made on a wired
local Gigabit Ethernet network to isolate the setup and re-
move any external performance latency to themeasurement.
Before executing the experiments unnecessary service and
background tasks were shutdown to avoid interference with
the result.

In related work [7][14][15] the performance aspects on
CPU and RAM usage was measured as a part of their work.
In this report both variables was removed due two reasons.
Firstly, the testedmeasurement toolswhere not reliable enough,
mostly because it doesn’t isolate the measurement to a cer-
tain process. Secondly, related methods have no consistency
of which type of measurement tool to use, which make the
comparison of the result almost impossible.

Performance metrics
To compare the two different setup some metrics has to be
defined before analysing the result. Following metrics was
decided to be used.

6



A case study of performance comparison between monolithic and microservice-based quality control system

Figure 5: Setup B. Monolithic Arcitecture setup inside a
Docker container.

• Server throughput (requests/sec): One of the most
important measurement is the number of request the
system can handle under different situations.The through-
put is measured in average of requests per seconds
and is done with the tool JMeter [8].

• Latency time (milliseconds): Represent the time be-
tween send request to start timestamp of received re-
sponse in the respect of the enduser (JMeter). The la-
tency time includes transfer of request to the API, pro-
cess the request and return the data as JSON. How-
ever, it does not represent the time for a fully received
response, which is called response time. The response
time will always be higher than latency time. The la-
tency time was measured as an average in millisec-
onds also recorded by JMeter [8].

• Error rate (percent):The recording of this aspect has
no other purpose than to ensure that the system does
not validate any threats on the measurements. The
end result for all measurement should be at or close
to 0% for a successful experiment.

Implementation
Because the mainstream language on the existing platform
was written in Python all microservices was decided to be
done in the same language. Flask was used as web frame-
work for the API and the selectionwasmademostly because
of its lightweight features. While there are more popular
and stronger web frameworks which could be used (exam-
ple Django), Flask was used due to less built-in tools which
give as more flexibility during the development phase, but
also more work. To ensure security of the API and handle
data to a database following extensions were used.

• Flask, version 1.1.2: To create the interface by routes
• Flask-Cors, version 3.0.8: To ensure that the client has

a valid origin - CORS.
• Flask-Caching, version 1.8.0: Caching support for Flask

Table 2: Hardware setup for Docker

Hardware Value
OS Linux Ubuntu 18.04.4 LTS
Memory 8 GB RAM
Processor Intel©Core i5-4670K CPU@3.40GHzx4

• PyJWT, version 1.7.1: To handle the authorization and
JWT-token for the microservice.

• pymssql, version 2.1.4: To connect and handle data
to/from MS-SQL database.

• smtplib, version : Used for sending an end user warn-
ing for triggered quality control parameter.

• python-dotenv, version 0.13.0: To handle all environ-
mental variables.

It is important to highlight that the implementation of
the application can be done on any other framework or lan-
guage, which follow the features of REST and microservice.
The route setup follow the defined interface which was spec-
ified by the bounded context. In an attempt to replicate the
concept this will of course change according to that case and
setup. The data was stored on a MS-SQL database. Before
deployment each microservice was tested by using python
unittest checking each request call.
The deploymentwasmade onDocker 19.03.6 where eachmi-
croservice has its own container located in a Docker bridge
network. Gunicorn 20.0.4 was used as Web Server Gateway
Interface for both the microservice architecture and mono-
lithic system. The MS-SQL database was placed into a con-
tainer, but not within the same Docker bridge network as
the microservices. The hardware setup for Docker can be vi-
sualized in table 2.
Flask framework does not support caching by default, but
could be added with the extension Flask-Caching. For this
setup the cache type was set to filesystem which instantiate
a file for each thread created by Gunicorn. A cache feature
was applied to all methods that fetch data, hence all GET
methods.

7 PERFORMANCE RESULTS
Experiment 1, S1 without cache
The result from the performance measurement of a none
cached system can be shown in figure 6 and figure 7. In the
experiment one (figure 6) both throughput and latency show
almost the same performance with a small advantage for the
monolithic architecture.The linear relation between latency
and number of threads is caused by synchronised measure-
ment where the bottleneck is the database.The latency show
an average linear coefficient difference of 5,79 ms/thread

7



Mats Eriksson

Table 3: Latency linear coefficient values

Test Monolithic Microservice Difference
Without cache - Figure 6 & 7

S1 22,8 ms/thread 28,6 ms/thread 5,8 ms/thread
S2 44,6 ms/thread 148,6 ms/thread 104,0 ms/thread

With cache - Figure 8 & 9
S1 23,5 ms/thread 34,6 ms/thread 11,1 ms/thread
S2 - 67.4 ms/thread -

Table 4: Mean throughput values

Test Monolithic Microservice Difference
Without cache - Figure 6 & 7

S1 39,6 requests/s 33,1 requests/s 6,5 requests/s
S2 19,0 requests/s 5,2 requests/s 13,8 requests/s

With cache - Figure 8 & 9
S1 39.2 requests/s 27.4 requests/s 11.8 requests/s
S2 - 12.4 requests/s -

and average throughput difference of 6,5 requests/s better
performance for monolithic architecture.

Experiment 2, S2 without cache
Furthermore, the result from experiment two, S2 without
caching, (figure 7) shows a very large difference between
microservice architecture and monolithic architecture. The
latency has a linear coefficient difference of 104 ms/thread
which is almost 18 times worse than using small intensive
HTTP requests as in experiment one. Because the system
does not use any caching it is obvious that when a microser-
vice needs data from anothermicroservice the internal delay
time will be added to the total request call. This could also
be shown in the average throughput difference of 13.8 req/s
which is about 2,1 times worse than from experiment 1 (S1).

Experiment 3, S1 with cache
When running the performance experiment three, S1 with
caching implemented it could be shown that for small HTTP
requests the cache capabilities does not add any major per-
formance impact. In fact for the microservice architecture
the latency actually increase making it worse, which was
not expected.

Experiment 4, S2 with cache
The fourth experiment, executing S2 with caching, showed
a performance increase on both latency and throughput for

Figure 6: S1 - Throughput and latency without cache.
Grey columns:
Throughput for setup A in request per seconds.
Black columns:
Throughput for setup B in request per seconds.
Green line (triangle):
Latency for setup A in milliseconds.
Red line (square):
Latency for setup B in milliseconds.

Figure 7: S2 - Throughput and latency without cache.
Grey columns:
Throughput for setup A in request per seconds.
Black columns:
Throughput for setup B in request per seconds.
Green line (triangle):
Latency for setup A in milliseconds.
Red line (square):
Latency for setup B in milliseconds.

the microservice architecture. The latency coefficient was
lowered from 148,6 ms/thread to 67,4 ms/thread which is
almost 2,2 times better. Also, the throughput increase from
5,2 requests/s to 12,4 requests/s (2,4 times better).

8



A case study of performance comparison between monolithic and microservice-based quality control system

Figure 8: S1 - Throughput and latency with cache.
Grey columns:
Throughput for setup A in request per seconds.
Black columns:
Throughput for setup B in request per seconds.
Green line (triangle):
Latency for setup A in milliseconds.
Red line (square):
Latency for setup B in milliseconds.

Figure 9: S2 - Throughput and latency with cache.
Grey columns:
Throughput for setup A in request per seconds.
Green line (triangle):
Latency for setup A in milliseconds.

8 DISCUSSION
Experiment 1, S1 without cache
The result from experiment one is similar to the result done
by Villamizar et al.[15] and the thesis made by Flygare and
Holmquist [7] which shows that microservice architecture
is in general slower than a monolithic architecture. How-
ever, the performance difference is minor and should be
compared against other features that a microservice archi-
tecture could provide.

Experiment 2, S2 without cache
If the API was added with a load balancing feature it will
probably increase the throughput on the microservice ar-
chitecture, especially if the system have more than three
underlying microservices. This is suppoerted by the expe-
rience from Gouigoux and Tamzalit [9]. A microservice also
has the option to scale up, by starting more microservices
for increasing delivery on request answers. The complexity
from handle large result set has moved outside of the mi-
croservice and challenges such as data exchange have to be
balanced by the orchestration or choregraphy.

Experiment 3, S1 with cache
Thestrange result frommicroservice architecturewith caching,
was not investigated to find out this odd behaviour. But
one speculation would be that the time for reaching the
caching on filesystem is longer then fetching the data di-
rectly from the database.The throughput confirms the same
pattern, where the number of executed requests/s dropped
from 33,1 to 27,4.The results from the cachedmeasurements
can be visualised in figure 8 and figure 9.

Experiment 4, S2 with cache
The cache feature fulfills a much more important role for
a system which uses data rich API calls or large payload
HTTP request between services.Themeasurements for cached
monolithic system was executed but values was removed
from the analysis, because it basically shows the latency
time for direct access to the cache.The extreme high through-
put reveal that the system was reading a cachefile in a very
time consuming way. The result from the error-rate was
measured to 0% for all experiments, except for experiment
four, cached, microservice setup. In this case JMeter was re-
porting an average error-rate of 0,10%. The log files from
the microservice revealed that the connection was broken
due toChunkedEncodingError where the content_chunk_size
was not correct. Another cache method such as Memcached
5 would have been more appealing for a microservice sys-
tem with better memory management and easier to handle
large data caches.

Development issues
It is rather appealing to have one isolated and decoupled
process within themicroservice. However, the decouple pro-
cess could cause some problems if the internal structure of
the database can not be changed. For example the use of se-
rializers within the Flask framework was limited or in some
cases not used at all. This has to be compensated with rather
complicated SQL queries which is hard to read and under-
stand. For some routes most of the response time consist
5https://www.memcached.org/

9



Mats Eriksson

of two or three SQL queries to fulfil the response. Another
problem was to execute SQL queries which use some sort of
combination feature as for example inner join and all tables
are not decoupled to the same microservice. This could of
course be solved by decouple the database to each microser-
vice and in an event of schema change it will only affect that
microservice.

As the number of different microservices increases the
management of the overall system getsmore complex.While
the development for each microservice is easy to handle
with an isolated specific task, the orchestration take a much
more important role in the design phase. In all experiments
the external request was not load balanced at the API. To
compensate the direct communication between eachmicroser-
vice the underlyingmicroservices REST_prod and REST_quality
had increased number of responsiveworkers to increase their
performance.
The repetitive delivery process for each microservice to a
container is a very time consuming task. It is essential that
adoption to software tools which could automate this pro-
cess is made early in the project to save time. Also, during
the development, each microservice is tested in different en-
vironments making it essential to handle different configu-
ration options, so the microservice can be deployed locally,
as bare-metal or container.

9 CONCLUSIONS
Based on the development and measurements of the case
study some conclusions could be experienced and identified
in regards to microservice architecture. While the simplic-
ity of making a microservice has increased with indepen-
dent codebase and deployment, the overall management of
the total system is more cumbersome. The design phase of
the system must be more aware of what encapsulate the
logic, resources and responsibility of each service. The com-
plexity of using decoupled microservices creates challenges
such data exchange, load balancing, strict interfaces and or-
chestration. Dispensation of any key features in the orches-
tration will punish the system with lower performance in
both throughput and responsetime compared to a mono-
lithic system. This is particularly prominent when dealing
with HTTP requests with large amount of internal commu-
nication calls. Using cache will in general increase the per-
formance of the application but depending on the behaviour
of the application it maybe not necessary. Also here will
HTTP requests which usemany internal requests havemust
profit from using caching.

10 FUTUREWORK
This report have mostly focused around measuring perfor-
mance for two architecture types that are under constant
load from requests. Another interesting aspect would be to
examine the patterns from zero load up to constant load un-
der the same conditions and set up.This would be especially
interesting with regards to scaling and monitoring of a sys-
tem. It could also be that a company could accept a lower
performance, but with a better behaviour before reaching
maximum capacity.

REFERENCES
[1] Bergman, B., and Klefsjö, B. Kvalitet från behov till användning,

2nd. ed. Studentlitteratur, Lund, Sweden, 1995.
[2] Bucchiarone, A., Dragoni, N., Dustdar, S., Larsen, S. T., andMaz-

zara, M. From monolithic to microservices: An experience report
from the banking domain. Ieee Software 35, 3 (2018), 50–55.

[3] Clark, K. Microservices, soa, and apis: Friends or enemies?, 2016.
[4] et al., D. N. Microservices: yesterday, today, and tomorrow, 1st ed.

Springer International Publishing, Cham, Sept. 2017.
[5] Felter, W., Ferreira, A., Rajamony, R., and Rubio, J. An updated

performance comparison of virtual machines and linux containers. In
2015 IEEE international symposium on performance analysis of systems
and software (ISPASS) (2015), IEEE, pp. 171–172.

[6] Fielding, R., and Taylor, R. Architectural styles and the design of
network-based software architectures, vol. 7. University of California,
Irvine, 2000.

[7] Flygare, R., and Holmqvist, A. Performance characteristics be-
tween monolithic and microservice-based systems. Master’s thesis,
, Department of Software Engineering, 2017.

[8] Foundation, A. S. Apache jmeter - load test applications andmeasure
performance, 2004.

[9] Gouigoux, J., and Tamzalit, D. From monolith to microservices:
Lessons learned on an industrial migration to a web oriented archi-
tecture. In 2017 IEEE International Conference on Software Architecture
Workshops (ICSAW) (April 2017), pp. 62–65.

[10] Jiang, Z. M. Automated analysis of load testing results. In Proceedings
of the 19th international symposium on Software testing and analysis
(2010), pp. 143–146.

[11] Lewis, J., and Fowler, M. Microservices - a definition of this new
architectural term, 2014.

[12] Menascé, D. A. Load testing of web sites. IEEE internet computing 6,
4 (2002), 70–74.

[13] Newman, S. Building microservices: designing fine-grained systems. ”
O’Reilly Media, Inc.”, 2015.

[14] Ueda, T., Nakaike, T., and Ohara, M. Workload characterization
for microservices. In 2016 IEEE international symposium on workload
characterization (IISWC) (2016), IEEE, pp. 1–10.

[15] Villamizar, M., Garcés, O., Castro, H., Verano, M., Salamanca,
L., Casallas, R., and Gil, S. Evaluating the monolithic and the
microservice architecture pattern to deploy web applications in the
cloud. In 2015 10th Computing Colombian Conference (10CCC) (2015),
IEEE, pp. 583–590.

[16] Young Hoon Kwak, F. T. A. Benefits, obstacles, and future of six
sigma approach. Technovation 5, 6 (May 2006).

10


	Abstract
	1 Introduction
	2 Background
	3 Research questions
	4 Delimitations
	5 Theory
	Monolithic Architecture (MA)
	Microservice Architecture (MSA)
	Representational State Transfer (REST)
	Containers
	JMeter
	Caching
	Related work

	6 Method
	The quality control system
	Performance setup
	Experiments
	Performance metrics
	Implementation

	7 Performance results
	Experiment 1, S1 without cache
	Experiment 2, S2 without cache
	Experiment 3, S1 with cache
	Experiment 4, S2 with cache

	8 Discussion
	Experiment 1, S1 without cache
	Experiment 2, S2 without cache
	Experiment 3, S1 with cache
	Experiment 4, S2 with cache
	Development issues

	9 Conclusions
	10 Future work
	References

