
Linköpings universitetSE–581 83 Linköping+46 13 28 10 00 , www.liu.se

Linköping University | Department of Computer and Information Science
Master’s thesis, 30 ECTS | Computer Science

2020 | LIU-IDA/LITH-EX-A--20/015--SE

QUIC Behavior over DualConnectivity
– Understanding QUIC throughput and fairness
QUIC Beteende över dubbla anslutningar

David Hasselquist
Christoffer Lindström

Supervisor : Nikita KorzhitskiiAdvisor : Andrei Gurtov
Examiner : Niklas Carlsson
External supervisor : Stefan Sundkvist

http://www.liu.se


Upphovsrätt

Detta dokument hålls tillgängligt på Internet - eller dess framtida ersättare - under 25 år från publicer-ingsdatum under förutsättning att inga extraordinära omständigheter uppstår.Tillgång till dokumentet innebär tillstånd för var och en att läsa, ladda ner, skriva ut enstaka ko-pior för enskilt bruk och att använda det oförändrat för ickekommersiell forskning och för undervis-ning. Överföring av upphovsrätten vid en senare tidpunkt kan inte upphäva detta tillstånd. All annananvändning av dokumentet kräver upphovsmannens medgivande. För att garantera äktheten, säker-heten och tillgängligheten finns lösningar av teknisk och administrativ art.Upphovsmannens ideella rätt innefattar rätt att bli nämnd som upphovsman i den omfattning somgod sed kräver vid användning av dokumentet på ovan beskrivna sätt samt skydd mot att dokumentetändras eller presenteras i sådan form eller i sådant sammanhang som är kränkande för upphovsman-nens litterära eller konstnärliga anseende eller egenart.För ytterligare information om Linköping University Electronic Press se förlagets hemsida
http://www.ep.liu.se/.

Copyright

The publishers will keep this document online on the Internet - or its possible replacement - for aperiod of 25 years starting from the date of publication barring exceptional circumstances.The online availability of the document implies permanent permission for anyone to read, to down-load, or to print out single copies for his/hers own use and to use it unchanged for non-commercialresearch and educational purpose. Subsequent transfers of copyright cannot revoke this permission.All other uses of the document are conditional upon the consent of the copyright owner. The publisherhas taken technical and administrative measures to assure authenticity, security and accessibility.According to intellectual property law the author has the right to bementionedwhen his/her workis accessed as described above and to be protected against infringement.For additional information about the Linköping University Electronic Press and its proceduresfor publication and for assurance of document integrity, please refer to its www home page:
http://www.ep.liu.se/.

©David HasselquistChristoffer Lindström

http://www.ep.liu.se/
http://www.ep.liu.se/


Abstract

QUIC is a relatively new transport layer network protocol that has gained popularity
over the last few years. The protocol was initially developed by Google and standard-
ization work has been continued by the Internet Engineering Task Force (IETF) with the
goal of it becoming the next generation transport protocol. While the standardization
work is not yet finished, the protocol has seen a large adoption, already covering a large
portion of the internet traffic. As a new protocol, many researchers have studied QUIC
and compared it to TCP in typical scenarios. However, few studies have been performed
on QUIC in specific scenarios. In this thesis, we present the first performance study of
QUIC over Dual Connectivity (DC). DC is a multi-connectivity technique that allows
users to connect to multiple cell towers with one user equipment. It is an important
lower-layer feature accelerating the transition from 4G to 5G, which is also expected to
play an important role in standalone 5G networks. With DC, higher throughput and reli-
ability can be achieved by using multiple paths simultaneously. However, the drawback
of DC is that it introduces packet reordering and jitter, which can significantly impact
the performance of upper-layer protocols such as TCP and QUIC.

To study the extent of this effect, a testbed is set up to evaluate QUIC over DC.
Our performance evaluation compares the throughput of QUIC over DC with that of
TCP over DC, and evaluates the fairness of QUIC over DC. Using a series of throughput
and fairness experiments, we show how QUIC is affected by different DC parameters,
network conditions, and whether the DC implementation aims to improve throughput or
reliability. Our findings provide network operators with insights into understanding the
impacts of splitting QUIC traffic in a DC environment. We show the value of increasing
the UDP receive buffers when running QUIC over DC and that QUIC can utilize the
increased bandwidth and reliability in DC, provided that the links’ characteristics are
similar. We also show that with reasonably selected DC parameters and increased UDP
receive buffers, QUIC over DC performs similarly to TCP over DC and achieves optimal
systemwide fairness under symmetric link conditions when DC is not used for packet
duplication.



Acknowledgments

We would like to express our deepest gratitude toward Professor Niklas Carlsson for his
guidance, support and invaluable feedback during the thesis. We are grateful for all dis-
cussions, lessons and feedback he has given us during our years at Linköping University.

We would also like to express our gratitude and thank Nikita Korzhitskii and Professor
Andrei Gurtov for their guidance and constructive feedback on this thesis.

We want to thank Ericsson for the opportunity to do this thesis and especially thank
Stefan Sundkvist for his help and guidance during the thesis.

Finally, we would like to extend many thanks to our colleagues, friends and families
for their help and support.

iv



Contents

Abstract iii

Acknowledgments iv

Contents v

List of Figures viii

List of Tables xi

List of Algorithms and Code xii

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Aim . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Research questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.5 Delimitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.6 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Background 5
2.1 QUIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 QUIC specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.2 Aioquic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.1.3 Ngtcp2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 QUIC packet structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.1 Long header packets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.2 Short header packets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 Dual connectivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.4 Packet Data Convergence Protocol . . . . . . . . . . . . . . . . . . . . . . . . 12
2.5 Logging, visualizing and analyzing QUIC . . . . . . . . . . . . . . . . . . . . . 12

2.5.1 QUIC trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.5.2 Qlog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.5.3 Qvis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.6 Controlling data traffic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.6.1 TC, NetEm and qdisc . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.6.2 Iptables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.6.3 Netfilter queue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.7 Congestion control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.7.1 NewReno . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.7.2 CUBIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.7.3 BBR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.8 Fairness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

v



3 Related Work 19
3.1 QUIC versus TCP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2 Dual connectivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.3 Multipath . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.4 Fairness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4 Method 25
4.1 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.2 Server proxy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.3 Client proxy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.4 Performance testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5 Results 33
5.1 PDCP reordering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.2 Throughput . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.2.1 Dual connectivity batch size . . . . . . . . . . . . . . . . . . . . . . . . 36
5.2.2 Dual connectivity ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.2.3 Bandwidth ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.2.4 Delay ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.2.5 Random loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.3 Fairness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.3.1 Dual connectivity batch size . . . . . . . . . . . . . . . . . . . . . . . . 43
5.3.2 Dual connectivity ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.3.3 Bandwidth ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.3.4 Delay ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.3.5 Random loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

6 Discussion 48
6.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

6.1.1 QUIC versus TCP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
6.1.2 Standard deviation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
6.1.3 Fairness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

6.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
6.3 The work in a wider context . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

7 Conclusion 54
7.1 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

Bibliography 56

A Example Qlog file 62

B Proxy code 64
B.1 Client . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
B.2 Server . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

C Qvis PDCP reordering 70

D Throughput with bandwidth trace 72

E Throughput with bandwidth trace over ngtcp2 and CUBIC 74

F Throughput results with ngtcp2 and CUBIC 76

G Fairness results with ngtcp2 and NewReno 78

vi



H Fairness results with ngtcp2 and CUBIC 80

vii



List of Figures

1.1 Overview of QUIC in the network stack . . . . . . . . . . . . . . . . . . . . . . . . 2

2.1 Timeline of 1-RTT handshake and 0-RTT handshake . . . . . . . . . . . . . . . . . 6
2.2 Long header packet format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3 Version negotiation format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.4 Short packet format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.5 Dual connectivity and PDCP in radio access network . . . . . . . . . . . . . . . . 11
2.6 Overview of multi-connectivity architecture . . . . . . . . . . . . . . . . . . . . . 12
2.7 PDCP layer in the network stack . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.8 Kernel traffic flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.9 Iptables traversal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4.1 Testbed for throughput and fairness . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.2 LTE bandwidth trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5.1 PDCP time and loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.2 Congestion window w/ and w/o DC and PDCP. Note differences in y-scale . . . . 34
5.3 Detailed case of reordering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.4 Throughput based on file size. Default values: DC batch size of 100, DC ratio

1:1, 10ms delay, 0% loss, 20Mbps/link . . . . . . . . . . . . . . . . . . . . . . . . 36
5.5 Throughput based on DC batch size. Default values: DC ratio 1:1, 10ms delay,

0% loss, 20Mbps/link . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.6 Link usage with DC batch 50 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.7 Link usage with DC batch 200 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.8 Link usage with DC batch 500 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.9 Throughput based on DC ratio. Default values: DC batch size of 100, 10ms

delay, 0% loss, 20Mbps/link . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.10 Link usage with DC ratio 9:1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.11 Throughput based on BW ratio. Default values: DC batch size of 100, DC ratio

1:1, 10ms delay, 0% loss/link . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.12 Throughput based on delay ratio. Default values: DC batch size of 100, DC ratio

1:1, 0% loss, 20Mbps/link . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
5.13 Throughput based on random loss. Default values: DC batch size of 100, DC

ratio 1:1, 10ms delay, 20Mbps/link . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.14 Fairness of QUIC/TCP in SC/DC . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.15 Fairness based on DC batch size. Default values: DC ratio 1:1, 10ms delay, 0%

loss, 20Mbps/link . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.16 Fairness based on DC ratio. Default values: DC batch size of 100, 10ms delay,

0% loss, 20Mbps/link . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

viii



5.17 Fairness based on BW ratio. Default values: DC batch size of 100, DC ratio 1:1,
10ms delay, 0% loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.18 Fairness based on delay ratio. Default values: DC batch size of 100, DC ratio
1:1, 0% loss, 20Mbps/link . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.19 Fairness based on random loss. Default values: DC batch size of 100, DC ratio
1:1, 10ms delay, 20Mbps/link . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

6.1 Internet usage per 100 inhabitants . . . . . . . . . . . . . . . . . . . . . . . . . . 53

C.1 Qvis PDCP reordering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

D.1 Throughput based on DC batch size (repeated Figure 5.5 with BW trace) . . . . 72
D.2 Throughput based on DC ratio (repeated Figure 5.9 with BW trace) . . . . . . . 72
D.3 Throughput based on low delay ratio (repeated Figure 5.12a with BW trace) . . 72
D.4 Throughput based on high delay ratio (repeated Figure 5.12b with BW trace) . . 72
D.5 Throughput based on random loss without packet duplication (repeated Fig-

ure 5.13a with BW trace) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
D.6 Throughput based on random loss with packet duplication (repeated Fig-

ure 5.13b with BW trace) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

E.1 Throughput based on DC batch size (repeated Figure 5.5 with BW trace over
ngtcp2 and CUBIC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

E.2 Throughput based on DC ratio (repeated Figure 5.9 with BW trace over ngtcp2
and CUBIC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

E.3 Throughput based on low delay ratio (repeated Figure 5.12a with BW trace over
ngtcp2 and CUBIC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

E.4 Throughput based on high delay ratio (repeated Figure 5.12b with BW trace
over ngtcp2 and CUBIC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

E.5 Throughput based on random loss without packet duplication (repeated Fig-
ure 5.13a with BW trace over ngtcp2 and CUBIC) . . . . . . . . . . . . . . . . . . 75

E.6 Throughput based on random loss with packet duplication (repeated Fig-
ure 5.13b with BW trace over ngtcp2 and CUBIC) . . . . . . . . . . . . . . . . . . 75

F.1 Throughput based on DC batch size (repeated Figure 5.5 with ngtcp2 and CUBIC) 76
F.2 Throughput based on DC ratio (repeated Figure 5.9 with ngtcp2 and CUBIC) . . 76
F.3 Throughput based on BW ratio (repeated Figure 5.11a with ngtcp2 and CUBIC) 76
F.4 Throughput based on BW and DC ratio (repeated Figure 5.11b with ngtcp2 and

CUBIC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
F.5 Throughput based on low delay ratio (repeated Figure 5.12a with ngtcp2 and

CUBIC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
F.6 Throughput based on high delay ratio (repeated Figure 5.12b with ngtcp2 and

CUBIC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
F.7 Throughput based on random loss without packet duplication (repeated Fig-

ure 5.13a with ngtcp2 and CUBIC) . . . . . . . . . . . . . . . . . . . . . . . . . . 77
F.8 Throughput based on random loss with packet duplication (repeated Fig-

ure 5.13b with ngtcp2 and CUBIC) . . . . . . . . . . . . . . . . . . . . . . . . . . 77

G.1 Fairness based on DC batch size (repeated Figure 5.15 with ngtcp2 and NewReno) 78
G.2 Fairness based on DC ratio (repeated Figure 5.16 with ngtcp2 and NewReno) . 78
G.3 Fairness based on BW ratio (repeated Figure 5.17a with ngtcp2 and NewReno) . 78
G.4 Fairness based on BW and DC ratio (repeated Figure 5.17b with ngtcp2 and

NewReno) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
G.5 Fairness based on low delay ratio (repeated Figure 5.18a with ngtcp2 and

NewReno) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

ix



G.6 Fairness based on high delay ratio (repeated Figure 5.18b with ngtcp2 and
NewReno) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

G.7 Fairness based on random loss without packet duplication (repeated Fig-
ure 5.19a with ngtcp2 and NewReno) . . . . . . . . . . . . . . . . . . . . . . . . . 79

G.8 Fairness based on random loss with packet duplication (repeated Figure 5.19b
with ngtcp2 and NewReno) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

H.1 Fairness based on DC batch size (repeated Figure 5.15 with ngtcp2 and CUBIC) 80
H.2 Fairness based on DC ratio (repeated Figure 5.16 with ngtcp2 and CUBIC) . . . 80
H.3 Fairness based on BW ratio (repeated Figure 5.17a with ngtcp2 and CUBIC) . . 80
H.4 Fairness based on BW and DC ratio (repeated Figure 5.17b with ngtcp2 and

CUBIC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
H.5 Fairness based on low delay ratio (repeated Figure 5.18a with ngtcp2 and CUBIC) 81
H.6 Fairness based on high delay ratio (repeated Figure 5.18b with ngtcp2 and

CUBIC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
H.7 Fairness based on random loss without packet duplication (repeated Fig-

ure 5.19a with ngtcp2 and CUBIC) . . . . . . . . . . . . . . . . . . . . . . . . . . 81
H.8 Fairness based on random loss with packet duplication (repeated Figure 5.19b

with ngtcp2 and CUBIC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

x



List of Tables

2.1 Long packet type values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.1 Overview of related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.1 Hardware and operating systems . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.2 Iptables rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.3 Attribute configurations for (eno1 down / eno2 down / eno1 up) . . . . . . . . . . 31
4.4 Linux configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5.1 BW and RTT with Std Dev for w/ and w/o proxy . . . . . . . . . . . . . . . . . . . 35
5.2 Values for Figure 5.4 with Std Dev . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.3 Values for Figure 5.5 with Std Dev . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.4 Values for Figure 5.9 with Std Dev . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.5 Values for Figure 5.11 with Std Dev . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.6 Values for Figure 5.12 with Std Dev . . . . . . . . . . . . . . . . . . . . . . . . . . 40
5.7 Values for Figure 5.13 with Std Dev . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.8 Values for Figure 5.15 with Std Dev . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.9 Values for Figure 5.16 with Std Dev . . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.10 Values for Figure 5.17 with Std Dev . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.11 Values for Figure 5.18 with Std Dev . . . . . . . . . . . . . . . . . . . . . . . . . . 46
5.12 Values for Figure 5.19 with Std Dev . . . . . . . . . . . . . . . . . . . . . . . . . . 47

xi



List of Algorithms and Code

1 PDCP reordering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2 PDCP reordering timeout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.1 Client side configuration code . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.2 Server side configuration code . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
A.1 Example Qlog file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
B.1 Client proxy code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
B.2 Server proxy code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

xii



1 Introduction

The arrival of smartphones and smart devices has changed the mobile traffic landscape.
These devices have made it easier for end-users to view videos and stream data. With the
improvement of smart devices, users’ expectations on mobile streaming started to rise
and users expected an increase in the quality of service. These demands and expecta-
tions put heavy pressure on the protocols responsible for delivering the data. Over the
last decades, much focus has been put into increasing throughput, reducing latency, and
keeping the reliability and quality of service high [1]. Several generations of cellular net-
works have evolved, where the release of the latest generation, 5G, has already begun.
With 5G, users can achieve higher speeds and reliability, while at the same time have
lower latency than the previous generations [2].

With the release of a new generation cellular network, much focus goes into transition-
ing from previous generations. One of the features used to accelerate the transitioning in
the current generation switch is Dual Connectivity (DC) [3, 4], where users can transmit
and receive from two base stations simultaneously. DC was introduced in 4G but gained
popularity with the introduction of 5G. It is often used for transitioning from the existing
4G infrastructure to the new 5G infrastructure, where users are using both 4G and 5G
radio networks. It is also often used to combine WiFi with 4G or 5G solutions [6, 5]. DC
can be used to transmit duplicate packets to increase reliability or the two links can be
used to gain a higher throughput. It is also possible that DC could be a part of the fu-
ture solution that allows 5G to meet the requirements of Ultra-reliable and Low-Latency
Communications (URLLC) [7, 8].

In the network stack, throughput and reliability are dependent on many layers. As
new techniques and technologies are introduced on the lower layers, the performance of
the upper layers might degrade or improve as a result [9]. The transport layer could be
one such layer where the introduction of DC in the link layer might lead to problems as
DC may introduce jitter or reordering of packets.

One of the most popular transport protocols today is the Transmission Control Protocol
(TCP). TCP’s defining traits are its reliability and its ease of use. However, it has become
hard to deploy updates for TCP because it is built into the operating systems (OS) of
computers [10]. For TCP to be updated, a new OS version has to be deployed. This can
be difficult to achieve as companies can be cautious with releasing a new OS update and
choosing features to include in the release.

1



TCP

HTTP/2

TLS

IP IP

HTTP/3

QUIC

TLS

UDP

Application

Transport

Network

Figure 1.1: Overview of QUIC in the network stack

Another problem is the widespread hardware that uses TCP. Studies have shown that
it takes a considerable amount of time for updates to cascade down to every node in a
network [10]. Furthermore, users might fall behind in updating the OS after a release has
been made. With users employing a variety of TCP versions, potential bugs or malfunc-
tions may arise.

In an attempt to solve these problems, Google introduced in 2013 a new transport
protocol named QUIC. Some of the addressed problems were the latency issues and the
slow deployment with TCP [10]. In the network stack, QUIC is implemented in both the
transport and application layer. It is located in user-space on top of User Datagram Pro-
tocol (UDP), which is an unreliable, simple and connection-less transport protocol. The
left part of Figure 1.1 shows the traditional network stack using HTTP/2 over TLS and
TCP and the right part of the figure shows QUIC’s placement in the network stack. QUIC
utilizes UDP, adding minimal overhead in order to become reliable and provide flow and
congestion control [10]. As nodes, routers and firewalls view a QUIC packet as a regular
UDP packet, there is no need for changes or updates in the current internet infrastruc-
ture. Initial research has shown that QUIC allows for a performance increase over TCP
in several cases while providing an easier way for continuous deployment [10]. Google
Search services, Chrome, Chromium, YouTube and Facebook are examples of popular
services that today use QUIC [10, 11].

At first, in 2013, QUIC was only enabled for experimentation within the Google devel-
opment team. Later in 2014, the experiment spread to Google Chrome users, where the
protocol was enabled for less than 0.025% of the users. It was not until 2015 that QUIC
received a significant increase in its usage. In November 2015, around 11% of Google’s
egress traffic was done over QUIC [10].

The QUIC transport protocol has gained popularity over the years. At the end of
2016, over 30% of Google’s egress traffic was done using QUIC, which was estimated to
correspond to about 7% of all communication over the internet [10]. In November 2019,
more than 50% of Google’s egress traffic and more than 80% of Facebook’s API requests
from one of their primary mobile application was done over QUIC [11]. Measurements
from a large telecom company showed that around 10% of their download link volume
was using QUIC [11]. Other parties, including Mozilla Firefox, have announced that they
will soon be supporting QUIC [12], so it can be expected that QUIC traffic will increase in
the future.

2



1.1. Motivation

1.1 Motivation

Due to the increasing use and popularity of both QUIC and DC, combined with the contin-
uous rollout of 5G networks using DC, it is important to understand how QUIC performs
over DC. Different major companies have started developing interests in QUIC and how
it affects the network. One such company is Ericsson, who is interested in how QUIC
interacts with 5G radio networks. While DC became more popular and well used with 5G,
it is still a relatively new feature. Many parties are pushing the deployment of QUIC and
5G, and it is therefore important to study QUIC’s behavior in 5G radio networks.

1.2 Aim

In this thesis, a first performance evaluation of QUIC over DC will be presented. A testbed
will be set up to simulate DC, and different network parameters will be used to emulate
different network behaviors, including a wide range of bandwidth, delay, and loss condi-
tions. QUIC will be compared with TCP to see if there are any performance advantages
when used in a DC environment. Lastly, the impact that QUIC has on fairness in a DC
environment will be studied.

1.3 Research questions

The following research questions will be answered in the thesis:

1. How is the throughput of QUIC affected by Dual Connectivity?

2. How does QUIC compare to TCP in a Dual Connectivity environment?

3. How is the fairness of QUIC in a Dual Connectivity environment?

1.4 Contributions

In this thesis, the first performance study of QUIC over DC is presented. By setting up a
DC testbed and running a series of throughput and fairness experiments, we provide key
insights for network operators to understand the impacts of splitting QUIC traffic with
different DC parameters and network conditions. We show the value of increasing the
UDP receive buffers when running QUIC over DC, that QUIC over DC can achieve similar
throughput as TCP over DC, and that QUIC over DC can achieve optimal fairness under
symmetric link conditions, except if DC duplicates packets to increase reliability.

1.5 Delimitations

This thesis contains the following delimitations:

• There are many implementations of QUIC [13]. In this thesis, aioquic will be primar-
ily studied with ngtcp2 adding complementary results. These were chosen as they
are simple, popular and up to date QUIC libraries. More details about aioquic and
ngtcp2 are described in Sections 2.1.2 and 2.1.3, respectively.

• The latest draft of QUIC from the Internet Engineering Task Force (IETF) at the time
of writing will be used. The current draft version for QUIC is 27 [14].

• The latest draft of the logging format Qlog from the IETF at the time of writing will
be used. Currently, the latest draft of Qlog is 01 [15].

3



1.6. Thesis outline

• DC is performed in a similar way on an uplink as on a downlink. Therefore, in this
thesis, DC will only be performed and studied on the downlink, with data flowing on
two paths from the server to the user.

• The power consumption of DC will not be taken into consideration.

1.6 Thesis outline

The outline of the thesis will be as follows. Chapter 2 will present a theoretical view of
QUIC, DC and other tools used in the thesis. Then, Chapter 3 will present the related
works, focusing on QUIC versus TCP, DC, multipath as well as fairness, followed by Chap-
ter 4 which will present the methodology and the experimental setup. The results will be
presented in Chapter 5 and discussed in Chapter 6. Lastly, Chapter 7 will conclude the
thesis and present future work.

4



2 Background

This section explains the theory needed for the rest of this thesis. First, QUIC is pre-
sented, followed by Packet Data Convergence Protocol (PDCP) and Dual Connectivity
(DC). Then, tools for analyzing QUIC and controlling data traffic are presented. Finally,
some of the congestion control algorithms that QUIC may use are presented.

2.1 QUIC

The transport protocol QUIC was introduced in 2013 by Google. It was initially an
acronym for "Quick UDP Internet Connections", but today, QUIC is the actual name of
the protocol. Currently there are two major branches of QUIC being developed. The orig-
inal branch is known as gQUIC, which is developed by Google. The other major branch is
called IETF QUIC, as it is being standardized by IETF. The two branches are still closely
intertwined as both draws from each other as new concepts are introduced.

QUIC follows the traditional network stack, seen in the left part of Figure 1.1, but
with some alternations at the upper layer. It works as a hybrid between the transport and
application layer, as seen in the right part of Figure 1.1. It is a reliable protocol, even
though it uses the unreliable UDP protocol as an underlying protocol. This is because the
flow and congestion control are built into the protocol at the user-space and application
layer.

QUIC was designed from the ground with the goals of improving the performance
and latency issues with TCP, as well as to enable rapid deployment of a new evolution
transport protocol [10]. Other features that came along with this was increased security,
reduction of head-of-line blocking delays and reduction in the initial handshake.

In order to enable security and rapid deployment of a new QUIC version, QUIC en-
crypts as much as possible of the QUIC packet located inside the UDP payload. The fields
that are not encrypted are needed for either routing or decryption, and most of these are
authenticated end-to-end. The data sent in the initial connection handshake, e.g. ver-
sion negotiation packets, are authenticated in the final key derivation. By limiting the
exposures of the QUIC headers, middleboxes such as NAT, cannot monitor, interfere or
tamper with the QUIC packet (UDP payload) in transit. As few parties can see the actual
QUIC headers and data, the QUIC protocol will be able to change and evolve without
interference.

5



2.1. QUIC

The UDP and IP headers are however not encrypted by the QUIC protocol, which
means that a NAT will still be able to make some modifications to the IP and ports fields.
At the QUIC endpoints, packets received with new IP addresses and ports can still be
accepted, as QUIC identifies connections using a connection ID encoded in every QUIC
packet, see Section 2.2.

Head-of-line blocking occurs when a packet first in line is holding up other packets. In
HTTP/1.1, the term is often referring to a client having a limited number of TCP connec-
tions available, and new connections have to wait for previous ones to complete. HTTP/2
solved this issue by introducing multiplexing, where clients can send multiple requests
over the same TCP connection without having to wait for previous ones to complete.
However, due to TCP and its congestion control, a single lost packet in the TCP stream
will cause head-of-line blocking, where packets that were being downloaded in parallel in
other requests will have to wait for the lost packet to be retransmitted and received.

To avoid head-of-line blocking that is often caused in a TCP connection, QUIC uses
UDP and supports multiple HTTP streams within the same connection. A packet loss on
one stream only affects that single stream and packets on other streams can be reassem-
bled and continue being delivered to the application. Multiple objects can therefore be
successfully retrieved in parallel, even though some packets are lost on other streams.

QUIC uses TLS 1.3 for the initial handshake process and is therefore able and achieve
Zero Round Trip Time (0-RTT). With 0-RTT, a client can start to send application data,
e.g. HTTP requests, before the initial handshake is completed, reducing the connection
establishment delay. 0-RTT is made possible if the client and the server had previously
had a successful TLS connection. The client can use the cached information to establish a
new connection, eliminating the need for requesting server information. This means that
the client will be able to calculate the initial session encryption keys before setting up a
new connection to the server.

The timeline of the 0-RTT idea is shown in Figure 2.1. The left part of the figure shows
a 1-RTT handshake, and the right part of the figure shows a 0-RTT handshake. After a
successful 1-RTT handshake, the client can use the cached information to initiate a 0-
RTT handshake. In case the 0-RTT connection establishment fails, due to e.g. expired
information, the server will respond with the new server information. The client and then
immediately resend the request, causing only a 1-RTT connection establishment.

Client Server

Hello

Response

Client complete

Server complete

Response

Initial 1-RTT handshake

Client Server
Client complete

Response

0-RTT handshake

Request

Server complete

Request

Figure 2.1: Timeline of 1-RTT handshake and 0-RTT handshake

6



2.1. QUIC

2.1.1 QUIC specifications

QUIC uses concepts from FACK [16], SACK [17], RACK [18], Fast Retransmit [20, 19] and
Fast Recovery [20, 19], but making them specific for QUIC [21].

SACK works similarly in QUIC as in TCP-SACK, allowing for ACKing ranges of se-
quence numbers rather than the latest. However, in QUIC, acknowledgements (ACKs)
are not allowed to be reneged. TCP use reneging to unacknowledge already ACKED pack-
ets in order to save memory on the receiver side. Reneging was considered to add too
much complexity for a minuscule benefit to be added to QUIC. Another change for SACK
in QUIC is that QUIC allows for more ranges.

QUIC makes use of a concept called Probe Timeouts (PTO). A PTO is a timer that is
set for each ACK-eliciting packet, based on the smoothed RTT, variance in RTT, and the
maximum amount of delay that the peer can delay an ACK. The timer shows when an
ACK for a packet is expected. When the timer runs out, the sender sends one or two
ACK-eliciting probes to force the peer to send new ACKs. The packets-in-flights are not
considered lost yet, as it can be that only the ACK is delayed or lost. The probes are not
hindered by the congestion limits, thus allowing QUIC to exceed the congestion window
temporarily. When a PTO occurs, the PTO timer will be doubled. PTO is used to recover
from tail losses and losses of ACKs. The QUIC implementation uses the design from
RACK [18], RTO [19], and F-RTO [22].

A packet is considered lost if it is unacknowledged and has a sequence number kPack-
etThreshold(3) smaller than an ACKed packet or the packet was sent too long ago. The
kPacketThreshold is from the FACK concept, while the time threshold is part of the RACK
concept. The leeway for time and sequence is granted to allow for reordering to a small
degree. If packets are declared lost, QUIC enters a recovery window. As QUIC does not
resend lost packets with the same sequence number, QUIC will exit the recovery window
when a packet that was sent after the recovery window started is ACKed.

QUIC collapses the congestion window only if persistent congestion is declared. Per-
sistent congestion is only declared if all packets have been lost within a time window. The
time window is calculated according to:

time_window = (smoothed_rtt + 4ˆ rttvar + max_ack_delay)ˆ kPersistentCongestionThreshold,

where kPersistentCongestionThreshold is a constant recommended to be 3 and the
max_ack_delay is the maximum amount of delay a receiver will delay acknowledging pack-
ets. max_ack_delay is recommended by the peer, with the default value being 0ms for
initial and handshake packets, and 25ms otherwise. smoothed_rtt is the estimated RTT
for future packets and is calculated from RTT samples. RTT samples are generated on
ACKs under certain conditions. The conditions are that the received ACK should contain
an ACK for an ACK-eliciting packet and the packet with the largest sequence number in
the ACK was newly acknowledged. smoothed_rtt is calculated with the help of latest_rtt,
which is the send time of the packets with the largest sequence number in the RTT sample
subtracted from the time when the ACK was received. The latest_rtt is then adjusted to
have the delay introduced by the peer delaying the ACK subtracted from it if the latest_rtt
would be smaller than the smallest RTT seen so far in the connection. The smoothed_rtt
is then 0.875% of the old smoothed_rtt added to 0.125% of the adjusted RTT. rttvar is the
0.25% of the distance between the new smoothed_rtt added to 0.75% of the old rttvar.

The QUIC RFC requires that traffic bursts are controlled by either a pacer or limit,
whereas a pacer is recommended. There are different kinds of pacers, but the general
idea is to pace outgoing packets to avoid short-term congestion and losses. The require-
ment of a pacer for QUIC differs from TCP, which does not require one. However, there
have been studies about pacers for TCP, showing the benefits and drawbacks of them [23].

7



2.2. QUIC packet structure

2.1.2 Aioquic

There are over 37 implementations of QUIC [13], one of those being aioquic [24]. Aioquic
is a simple QUIC library written in Python and built on Python’s standard asynchronous
I/O framework named asyncio. It follows the progression of IETF QUIC and makes up-
dates accordingly. Besides conforming to the latest draft of the QUIC network protocol, it
also includes some other features such as:

• A Minimal TLS 1.3

• A HTTP/3 stack

• NewReno congestion control algorithm, which is recommended by the QUIC
RFC [21] and explained in detail in Section 2.7.1.

• IPv4 and IPv6 support

• Logging in Qlog format

2.1.3 Ngtcp2

Ngtcp2 is another QUIC version that also follows the IETF recommendations [25]. One
major difference from aioquic is that ngtcp2 is implemented in C as opposed to Python.
There is also an implementation of the CUBIC congestion control algorithm in addition
to NewReno, and the pacer implementation differs as the IETF recommendations only
demand a pacer but do not give an implementation for it. Similarly to aioquic, ngtcp2 also
conforms to the latest QUIC draft and supports logging in Qlog format.

2.2 QUIC packet structure

QUIC packets can be categorized into two categories; long header packet and short
header packet. Before the connection establishment of 1-RTT keys, the QUIC packets
are sent using the long header packet format. When the initial connection establishment
is done, the protocol then switches packet format to a short header packet format.

2.2.1 Long header packets

The QUIC segment structure of long header packets is depicted in Figure 2.2. The first
bit, known as Header Form, indicates whether the packet should be interpreted as a long
header packet or a short header packet. For long header packets, this bit is always set
to 1. The bit following Header Form is known as Fixed Bit. For the latest draft, this bit
should always be set to 1. The next two bits, Long Packet Type (T), are used to identify
the four possible long packet types, shown in Table 2.1. The following four Type-Specific
Bits (X) depend on Long Packet Type.

After the Type-Specific Bits is a 32-bit field indicating the QUIC version that deter-
mines how the rest of the protocol fields should be interpreted. The DCID length is an
8-bit field encoded as an unsigned integer, indicating the length of the Destination Con-
nection ID (DCID). Following the DCID length is the actual DCID data, which can hold a
maximum of 20 bytes, corresponding to 160 bits.

After DCID comes Source Connection ID (SCID) length and its data, behaving similarly
as the DCID length and data. The DCID and SCID are used to ensure consistent routing of
the packets and can be used to tie the packets to a connection, including when e.g. when
migrating across IP addresses.

8



2.2. QUIC packet structure

Initial packet

The initial packet is used by both the client and the server to perform a key exchange.
In addition to the fields of a long header packet, an initial packet also contains fields for
token length, token, length of the remaining packet, packet number as well as payload.
The details of these fields can be found in the RFC [14].

In the long header packet, the packet type is set to 0 to indicate an initial packet. The
first two bits of the Type-Specific Bits (X) are Reserved Bits (R). The last two bits are
Packet Number Length (P), used to indicate that the length of the packet number is either
8, 17, 24 or 32 bits.

0-RTT

The 0-RTT packet is used by setting the packet type to 1 in the long header packet. This
packet is used to carry data at the beginning of the connection before the connection
setup has finished. In addition to the fields of a long packet type, a 0-RTT packet contains
a length, a packet number and a payload field. Similar to the initial packet, the first two
bits of the Type-Specific-Bits (X) are reserved, and the last two are used for the packet
number length.

Handshake

The handshake packet is used for acknowledgments and messages carrying cryptographic
handshakes. The packet type is set to a value of 2, indicating a handshake packet. It has
the same packet fields as a 0-RTT packet. The Type-Specific-Bits (X) behave in the same
way as the initial packet and 0-RTT packet.

Retry

When the server receives an initial packet from a client, it can request to validate the
client’s address by performing an address validation using retry packets. The structure
of a retry packet is similar to the long header packet but contains two additional fields;
a Retry Token and a Retry Integrity Tag. The details of these fields can be found in the
RFC [14]. The packet type of the long header is set to the value 3 and the Type-Specific
Bits (X) are unused.

Version (32)

X X X X

DCID Length (8)

Destination Connection ID (0 - 160)

SCID Length (8)

Source Connection ID (0 - 160)

T T11

Figure 2.2: Long header packet format

Table 2.1: Long packet type values

Bit values Packet type

00 Initial

01 0-RTT

10 Handshake

11 Retry

9



2.2. QUIC packet structure

...

Version 0x00000000 (32)

Unused (7)

DCID Length (8)

Destination Connection ID (0 - 2040)

SCID Length (8)

Source Connection ID (0 - 2040)

1

Supported Version 1 (32)

Supported Version 2 (32)

Supported Version N (32)

Figure 2.3: Version negotiation format

Destination Connection ID (0 - 160)

Protected Payload (*)

10

Packet Number (8, 16, 24 or 32)

S R R K P P

Figure 2.4: Short packet format

Version Negotiation Packets

One last packet that is classified as a long packet header, but does not use the Type-
Specific Bits is the version negotiation packet. When a client requests a QUIC communi-
cation using a QUIC version that is not supported by the server, the server will respond
with a single Version Negotiation packet. This packet adds another round trip of delay
before a successful connection can be established. This delay is not caused if the client
initially chooses a supported QUIC version.

The structure of the version negotiation packet is shown in Figure 2.3. Here, the first
bit is set to 1, indicating that it is classified as a long header packet used for connection
setup. The next 7 bits are unused and set as random values by the server. The following
32-bit field is set to 0x00000000, indicating a version negotiation packet. This value
always contains only zeros and is not version-specific.

After the version field comes DCID length and data, as well as SSCID fields. These
are similar to the counterparts in a standard long packet header. However, as the version
negotiation packet is not version-specific and future version of QUIC may support larger
values for Connection ID, there are 255 bytes (2040 bits) reserved for the Source and
Destination Connection ID, respectively. Following the Connection ID, comes a list of
32-bit QUIC versions that are supported by the server.

2.2.2 Short header packets

The short header packets are used to transmit data after the initial connection establish-
ment has finished. The structure is a short header packet contains nine fields shown in
Figure 2.4. The first field, Header Form, is always set to 0 to indicate a short header
Packet. The second bit, Fixed Bit, is always set to 1. The third bit, Spin Bit (S), is a
latency bit used to enable passive latency monitoring. The following two bits, R, are re-
served. The K bit is the Key Phase used for by the recipient of the packet for identifying
packet protection keys. The following Packet Number Length (P) bits are used to indicate
the length of the Packet Number, which can be either 1, 2, 3 or 4 bytes, corresponding to
8, 16, 24 or 32 bits respectively.

10



2.3. Dual connectivity

Master
eNB

Secondary
eNB

UE

X2 link

(a) Dual connectivity overview

Master
eNB UE

GTPU

PGW

SGW

RLC (link layer)

MAC (link layer)

Physical layer

Internet
GPTU

PDCP (link layer)

GTPU (X2 link)

Secondary
eNB

RLC (link layer)

MAC (link layer)

Physical layer

Packet
Processor

(PP)

(b) Dual connectivity and PDCP

Figure 2.5: Dual connectivity and PDCP in radio access network

The following field, DCID, contains a connection ID similar to the one used in the Long
Header Packet. As with the long header Packet, the connection ID can be a maximum of
20 bytes, corresponding to 160 bits. The remaining fields are Packet Number, whose size
is determined by the Packet Number Length as well as the Protected Payload.

2.3 Dual connectivity

Dual Connectivity (DC), also described as inter-node radio resource aggregation, is a
multi-connectivity technique introduced in release 12 of the third generation partnership
project (3GPP) [26]. The aim was to increase reliability, performance, and signaling load
due to frequent handovers in scenarios where macro and micro cells are connected with
a non-ideal backhaul link. DC tries to achieve this by splitting the traffic over multiple
paths.

Figure 2.5a shows an overview of DC in a Radio Access Network (RAN) environment.
With DC, a User Equipment (UE) connects to two different network nodes [27, 28], also
known as Evolved Node B (eNB). One of the nodes will serve as Master eNB (MeNB), and
the other one will serve as Secondary eNB (SeNB). The MeNB and SeNB are connected
with a backhaul link, also known as X2 link.

Figure 2.6 shows the three common architecture options for multi-connectivity in a 5G
network. DC is similar to carrier aggregation [30, 29], but is performed in the PDCP layer
instead of the MAC layer. Carrier aggregation uses the same scheduler for the separate
connections and requires an ideal backhaul link, which results in the split connections
often transmitted from the same node. DC uses two separate packet schedulers together
with a non-ideal backhaul (X2) link, and packets are therefore often originating from two
geographically separate nodes. As shown in Figure 2.6, a third option is to split the data
on the transport layer. Some solutions exist for this, such as SCTP [31], Multipath TCP
(MP-TCP), or Multipath QUIC (MP-QUIC) [29, 32]. Multipath routing can also be split at
the network/IP layer. One solution for this is Multipath Host Identity Protocol (mHIP),
which provides secure and multipath data delivery [33]. There are also several special-
izations of DC [34]. The specialization of each version depends on which technologies are
aggregated. LTE WiFi aggregation (LWA) is an example of such a specialization, where
LTE and WiFi are used.

11



2.4. Packet Data Convergence Protocol

Application
Multipath TCP
IP IP

PDCP
RLC
MAC

Physical

PDCP
RLC
MAC

Physical

Application
TCP
IP

RLC
MAC

Physical

PDCP
RLC
MAC

Physical

Application
TCP
IP

Physical

PDCP
RLC
MAC

Physical

Dual Connectivity Carrier AggregationMultipath

Figure 2.6: Overview of multi-connectivity architecture

2.4 Packet Data Convergence Protocol

Packet Data Convergence Protocol (PDCP) is a sublayer located inside the link layer, just
below the network layer and above Radio Link Control (RLC) and Media Access Con-
trol (MAC), see Figure 2.7. The main tasks of PDCP in LTE are header compression and
decompression, ciphering, integrity protection, transfer of data, and sequence number-
ing [35]. In some scenarios, it also provides reordering and in-order delivery [35]. In 5G,
PDCP always provides features for reordering and in-order delivery [36].

A more detailed view of DC and PDCP in a radio access network (RAN) environment is
depicted in Figure 2.5b. Each of the MeNB and SeNB contains a separate RLC and MAC
layer, while sharing the same Packet Data Convergence Protocol (PDCP) layer. The PDCP
layer can be broken out into a unit called a Packet Processor (PP), which connects to
Serving Gateway (SGW), MeNB and SeNB using a GTPU-tunnel. SGW is connected to the
Packet Data Network Gateway (PGW), which in turn connects to the public internet. The
PP can also be a part of MeNB. In this case, MeNB splits the traffic and the link between
MeNB and SeNB becomes the backhaul (X2) link. In both scenarios, the traffic is split on
the PDCP layer.

PDCP

RLC

MAC

Physical

Network Layer 3

Layer 2
(link)

Layer 1

Figure 2.7: PDCP layer in the network stack

2.5 Logging, visualizing and analyzing QUIC

As QUIC exists in userspace, it is easy to edit and make changes to the transport protocol.
Hence it is simple to add a logger of events within the application layer. If one has
access to a single endpoint or multiple endpoints, then manually logging can provide
more information that a packet sniffer could. Currently, two formats might be considered
as the de-facto standard: QUIC-trace and Qlog.

12



2.5. Logging, visualizing and analyzing QUIC

2.5.1 QUIC trace

QUIC-trace is a utility that is currently partially implemented in Chromium [37]. The
traces are represented as protobuffers, where code to read or write traces can be gen-
erated for multiple languages. QUIC-trace was developed by Google to trace QUIC con-
nections. The tool can also visualize the traces and the focus is to assist in dealing with
congestion. The traces are represented as a Protocol Buffer, meaning that code can be
generated that can log the desired events.

2.5.2 Qlog

Qlog is a format for logging information about protocols on endpoints and is currently
being standardized by the IETF [15]. At the time of writing, the latest Qlog version is
01, with 02 just about to be released. The motivation behind creating the Qlog format
is that debugging a complex transport protocol can be challenging. Having a common
and standardized logging format allows for easy sharing of log data and the creation of
debugging and visualization tools.

While the format is not dependant on one specific transport protocol, there are some
specialized versions of Qlog explicitly designed for studying one protocol. One such ver-
sion is specific for QUIC, as Qlog was initially designed for the QUIC protocol [38]. The
protocol specializations are achieved by adding events that are specific to the particular
protocol.

The main goal of the format is streamable event-based logging. The defining features
of the format are that the metadata should be stored together with event data, the logs
should be human-readable and the format consists of top-level elements, which are con-
tainers for individual streams. A list of possible events can be seen in the Qlog RFC for
event definitions [39]. The logs are defined similarly to JSON files but with some differ-
ences, such as not repeating field names in some instances. Several implementations of
QUIC, including aioquic, have options to enable logging in the Qlog format. An example
of a Qlog file showing some of the possible events can be seen in Appendix A.

2.5.3 Qvis

The creators of Qlog have also created another tool named Qvis, formerly known as
QUICvis [38]. Qvis is a tool that visualizes logs made in the Qlog format, among other
formats such as pcap. It is similar to the visualization view of QUIC-trace but used to
visualize Qlog format instead of the QUIC-trace format.

Currently, the tool allows for four different perspectives. The first perspective is a
sequential view that shows the sequence of traffic between a host and a client. This
view presents information such as ACKs, sequence numbers and which stream the packet
was targeting. The second perspective can be used to identify congestion. This window
presents RTT and the amount of data sent over time. The congestion window and control
limits can also be presented.

The third perspective demonstrates how multiple HTTP streams are being multiplexed
over to a single transport stream, where it is possible to see in what order specific
streams are being served. The fourth perspective is a packetization diagram. The view
shows which QUIC packets are packed inside which QUIC frames, which QUIC frames
are packed inside which HTTP/3 frame, and what stream this HTTP/3 frame belongs to.
This can be helpful to see the size of stream and data frames, as well as to see how their
boundaries correspond to other data or frame boundaries.

In addition to these four perspectives, it is also possible to see connection statistics.
This perspective shows event and frame counts, such as the number of packets lost, re-
ceived or the number of encryption and handshake packets.

13



2.6. Controlling data traffic

A live demonstration of the Qvis tool together with example visualizations can be found
at Hasselt University1.

2.6 Controlling data traffic

By controlling data traffic, a realistic environment can be simulated and emulated. This
section explains the various tools used in this thesis to control data loss, bandwidth and
delay. An overview of the tools and the kernel traffic flow for outgoing and incoming
traffic can be seen in Figure 2.8a and 2.8b, respectively.

Kernel

Netfilter-
Queue

NIC

Kernel

Queue handler
(Proxy)

QDISC
loss/rate

QDISC
delay

Outgoing
interface

(a) Outgoing traffic flow

NIC

Kernel

Netfilter-
Queue

Kernel

Queue handler
(Proxy)

QDISC
FIFO

Incoming
interface

(b) Incoming traffic flow

Figure 2.8: Kernel traffic flow

2.6.1 TC, NetEm and qdisc

Tc is a tool in Linux that allows users to configure the Linux kernel packet scheduler [40].
Netem is an extension of tc that allows for emulating network characteristics. The char-
acteristics are such as delay, loss and bandwidth rate. The Linux kernel packet scheduler
function is to manage the traffic that goes between the kernel and the network interfaces.
The scheduler does shaping, scheduling, policing and dropping to manage the traffic.
Shaping is done to control the rate of outgoing traffic. Thus can the bandwidth of a link
and the burstiness of the traffic be controlled.

Scheduling occurs on outgoing traffic and decides the order of the traffic. The stan-
dard schedule is First-In-First-Out (FIFO), but this can be altered to allow e.g. reorder-
ing. Policing is only applied to incoming traffic and works similarly to shaping. Limiting
bandwidth on incoming traffic through policing will drop packets exceeding the rate in
comparison to shaping that will buffer packets to a certain extent.

Qdisc, classes and filters are used to achieve the functionality mentioned above. Qdisc
is an acronym for queueing discipline. It uses a buffer as a queue and is assigned to a
specific interface. When the kernel intends to send packets to an interface, the packets
are instead placed in a qdisc. The interface can then read from the qdisc. Classes can
contain several qdisc:s and be assigned to other qdisc:s. Thus, a treelike structure can be
built. Classes can also contain filters that assign to which qdisc a packet will be placed.

As seen in Figure 2.8, several qdisc:s can be assigned to the same interface. Vary-
ing order of the queues has shown to give varying traffic behavior even if the queues
ruleset do not change [41]. In this thesis, the qdisc handling loss and bandwidth rate

1https://quic.edm.uhasselt.be/ , https://qvis.edm.uhasselt.be/

14



2.6. Controlling data traffic

control is placed before the qdisc handling delay, as this order is shown to improve per-
formance [41].

2.6.2 Iptables

Iptables is a tool within Linux that allows users with superuser access rights to manage
or inspect the tables that the standard firewall in Linux kernel uses to filter incoming
and outgoing packets [42]. Iptables has four tables by default: filter, nat and mangle and
raw. Nat is used when packets require address translations. Mangle is used for setting
specific headers in a packet or for marking packets, where the mark will only exist within
the kernel. Filter is the default table and should be used to filter and drop packets. Raw
is a table that is not commonly used. It gets triggered by hooks with higher priority and
the table can be used to allow exemptions from tracking.

The iptables tool includes chains that consist of matching rules and targets. The tar-
gets include instructions on what to do with the packet if it matches a specific rule. A
target can be a verdict such as ACCEPT, DROP, QUEUE or RETURN. QUEUE passes the
packet to userspace while RETURN returns from the current chain to the calling chain,
where the next rule will be checked. A target can also be a user-defined chain. The built-
in chains in the mentioned tables are PREROUTING, INPUT, OUTPUT, POSTROUTING
and FORWARD. However, not all of these chains exist in each of the mentioned tables.

The chains are triggered at different times, depending on the location of the packets.
In the table PREROUTING, a packet is checked for rule matching just before getting
routed, while the INPUT table matches packets before being delivered to a local process.
OUTPUT, on the other hand, matches packets leaving a local process and POSTROUTING
matches just before the packets leave the system. Figure 2.9 shows an overview of the
order of tables and how chains are applied to packets.

NAT
PREROUTING

Mangle
INPUT

Filter
INPUT

NAT
OUTPUT

Filter
OUTPUT

Mangle
FORWARD

Filter
FORWARD

Mangle
POSTROUTING

NAT
POSTROUTING

Mangle
OUTPUT

Raw 
PREROUTING

Mangle
PREROUTING

Routing
Decision

Routing
Decision

Local process Routing
Decision

Raw
OUTPUT

Incoming
traffic

Outgoing
traffic

Figure 2.9: Iptables traversal

2.6.3 Netfilter queue

Netfilter queue (NFQUEUE) in Linux kernel is a user-mode module that can be used to
manage network packets in iptables. When a packet receives a QUEUE verdict from an
iptables rule, it is placed in a queue by the kernel. Netfilter target modules in userspace
can then read from this queue and manage the packets. As shown in Figure 2.8, a queue
handler succeeds a NFQUEUE. This is only the case when packets are matched to an
iptables rule and placed in the queue.

One of the userspace libraries providing an API to the queued packets is libnetfilter-
queue2. It allows individual reading and altering of enqueued packets and issuing verdicts
such as ACCEPT or DROP.

2https://netfilter.org/projects/libnetfilter_queue/

15



2.7. Congestion control

2.7 Congestion control

Sending more data than the network can handle leads to packet loss and delay. In the
case of loss, packets will be resent, which can lead to even more delay. With large delays,
unnecessary duplicate packets can be sent.

Congestion control is needed to avoid sending more traffic than the network can han-
dle. With congestion control, the amount of data sent is limited according to some approx-
imation of the connection capacity. TCP tends to use the ACKs to make the approximation.
Another critical aspect that congestion control provides, depending on the implementa-
tion, is fairness. Fairness is that one flow does not consume all of the bandwidth if other
connections are present. Instead, the flows share the bandwidth equally. This is achieved
by additive-increase-multiplicative-decrease (AIMD). AIMD refers to that the limit of max-
imum traffic in flight increases slower in comparison to the reduction of the maximum
traffic in flight in case of loss of packets. When a protocol is fair, it is often referred to
as TCP-friendly. There are many variations of congestion control algorithms for TCP, each
with its benefits and drawbacks. QUIC, as a TCP-friendly protocol, uses the same algo-
rithms as TCP for congestion control with some added tweaks to conform to the slightly
different attributes of QUIC.

The recommended congestion control algorithm by the QUIC RFC is NewReno [21].
However, QUIC can use other congestion control algorithms as well, such as CUBIC or
BBR, provided that the algorithms follow the specified guidelines of the RFC 8085 [43].

2.7.1 NewReno

NewReno is based on the Reno implementation [44]. It contains the same features such
as slow start, fast recovery, fast retransmit and congestion avoidance. Fast retransmit
concerns the scenario when multiple duplicate ACKs are received. This would mean that
at least one of the packets in the middle of a sequence has been lost. Instead of waiting
for a timeout for the lost packet, the lost packet is immediately resent and the occurrence
is considered as packet loss. Slow start is that for each ACK, the congestion window
(cwnd) increases by one up until the slow start threshold (ssthresh), where the congestion
avoidance phase will start. In this phase, the cwnd is increased by one once the number
of ACKs received equals the size of the congestion window.

Fast recovery occurs when a loss is detected by duplicate ACKs. The congestion win-
dow will then set ssthresh to half of the current cwnd instead of zero, and the cwnd
growth algorithm is set according to the congestion avoidance phase. NewReno adds to
the fast recovery and fast retransmit. Normal Reno handles poorly when multiple packets
are lost if it is caused by duplicate ACKs, leading to multiple fast recoveries. NewReno
deals with this by not exiting fast recovery before all the packets that were in the air are
ACKed or until a timeout is raised. During fast recovery, partial ACKs can be received.
Partial ACKs are those that acknowledge a part of the sequence. When a partial ACK is
received, the same amount of packets that match the number of packets ACKed in the last
ACK received is sent.

2.7.2 CUBIC

CUBIC is another congestion control algorithm [45]. It is the standard algorithm on Linux
for TCP and is well-used in different QUIC implementations. CUBIC uses fast recovery,
retransmit and slow start, which is the same as in Reno. The defining trait of CUBIC is that
it uses a cubic function to increase the size of the congestion window during congestion
avoidance. More specifically, the window is determined as:

Wcubic(t) = Cˆ (t´ K)3 + Wmax, (2.1)

16



2.8. Fairness

where

K =
3

c

(Wmax ˆ (1´ βcubic)

C
, (2.2)

Wmax is the window size before the previous congestion event, C is a constant, t is the
elapsed time from the start of the current congestion avoidance, and βcubic is the decrease
factor. When a congestion event is detected, the congestion window is set to Wmaxˆ βcubic.
With these parameters, K is the time it would take for the function to reach Wmax again
after a such window reduction.

CUBIC can run in three different modes. The first mode is the TCP-friendly region,
where the cubic function grows like standard TCP. CUBIC enters this mode if the algo-
rithm recognizes that it is growing slower than standard TCP. The second mode occurs
when cwnd is less than Wmax. This mode is called the concave region. In this mode, for
each received ACK, the CUBIC cwnd will grow according to the following equation:

cwndnew = cwndold +
(Wcubic(t + RTT)´ cwndold)

cwndold
. (2.3)

At this state, the cwnd will grow aggressively at the start but at a slower rate closer to
Wmax.

In the third mode called the convex region, the cwnd is larger than the Wmax and the
cubic function will grow according to Equation 2.3 for each received ACK. In this mode,
the cwnd grows slowly at the start but shifts to a more aggressive growth over time. The
aggressive growth is used to find a new Wmax. Congestion events are detected by multiple
ACKs or by ACKs with the ECN-Echo flag set. CUBIC is a popular alternative to NewReno
for QUIC.

2.7.3 BBR

The Bottleneck Bandwidth and Round-trip (BBR) algorithm [46] is another popular con-
gestion control algorithm that QUIC can use. It is a model-based algorithm as opposed
to CUBIC and Reno, which are loss-based algorithms. An argument for a model-based
algorithm over a loss-based is that hardware has changed since the idea for the previous
algorithms were presented. Memory has become much cheaper, which has led to that
router and switches are likely to have more memory. However, this has led scenarios
such as bufferbloat, which occurs when a network link becomes congested. Bufferbloat
is caused by excess buffering of packets, where packets might be queued in large buffers
for seconds rather than milliseconds. A system applying a FIFO queuing discipline with
a large buffer can therefore increase latency and lower network throughput. A too small
buffer size will have similar problems with packets constantly being dropped as there is
no room for them.

Loss-based algorithms handle bufferbloat situations poorly as they will continuously
lower their cwnds in the case of the smaller buffer sizes. For larger sizes of buffers, the
cwnd might grow too quickly for the buffer to start emptying. BBR tries to take this into
account by adjusting the flow according to the connection’s worst bottleneck. It does this
by measuring the RTT of each packet and taking the minimum of the RTT over a window
(RTprop). BBR also measures the delivery rate by taking the amount of data divided by
the time taken over a window (BtlBw). BBR attempts to achieve that the arrival rate of
packets at the chokepoint equals BtlBW and that the number of packets in flight is BtlBw
multiplied by RTprop.

2.8 Fairness

High throughput is usually desirable by most users. However, blindly grabbing for band-
width can lead to detrimental effects such as lower overall throughput or that some flows

17



2.8. Fairness

are entirely denied [47]. Thus another concept, fairness, is essential for transport pro-
tocols. When new protocols are presented, they are usually compared against TCP, as
TCP is one of the most used protocols. If a protocol is fair towards TCP, it is generally
considered fair and can be declared as TCP-friendly [47].

TCP achieves flow-based fairness, but it is flawed. TCP’s AIMD should lead to each
flow over a link balancing each flow out. However, if a user opens multiple flows over the
same link or possibly different links, then that user would gain more throughput over his
multiple flows compared to a user with a single flow. MP-TCP adds an extra constraint
on how its congestion window grows to avoid the scenario. MP-TCP should not take more
capacity than a single TCP connection on the best of its paths [48].

There are multiple views of what is considered fair and multiple ways of calculating
fairness. One way is with the use of Max-Min fairness [49], which tries to maximize
the minimum rate. Multiple flows can be considered Max-Min fair when an attempt to
increase the throughput of a flow would result in a decrease in the throughput of a flow
with less or equal throughput.

Another way of calculating fairness is with the use of Proportional fairness [50]. Here,
the goal is to maximize a logarithmic utility function. This is achieved when the sum of
proportional changes is 0 or negative. The sum of proportional changes is calculated
according to the following equation:

ÿ

N

x1
n ´ xn

xn
, (2.4)

where N is a set of flows, and x is the rate, and x1
n is the corresponding value of xn in a

new set, and n is a flow.
Weighted proportional fairness [51] can also be used, which adds to proportional fair-

ness by allowing weights on the flows. These weights are used to be able to prioritize
flows over others.

A fourth view is that fairness should not be flow-based but rather cost-based [52].
Fairness would be achieved by users paying for what they use (or cause). The amount of
congestion a user causes and how much they are willing to pay for it would be used to
balance the flows, instead of trying to balance that everyone would have equal flow.

Lastly, Jain’s Fairness Index (JFI) [53] can be used to calculate the fairness of multiple
flows. It is a popular method used in many scientific studies, including multipath stud-
ies [55, 48, 54]. The fairness index can be calculated according to the following equation:

JFI =

(
n

ÿ

i=1

xi)
2

nˆ
n

ÿ

i=1

x2
i

, (2.5)

where n is the number of users and xi is throughput for a flow. The equation results in
a value between 0 and 1, where 1 is 100% fairness. A lower value would mean that it is
fair to that percentage of users. For example, a system with a fairness index of 0.7 means
that the flows are fair against 70% of all users.

18



3 Related Work

The QUIC protocol has not only received attention from different companies but from
several researchers as well. Initially, the interests were in the performance of QUIC,
often comparing it to TLS and TCP to see if QUIC was worth studying. In this section,
the related work is presented. First, work comparing QUIC with TCP is presented. Then,
related work concerning DC and multipath is presented. Lastly, work studying fairness in
relevant areas is presented. An overview of the presented works and their areas of study
is shown in Table 3.1.

3.1 QUIC versus TCP

TCP has for a long time been the standard and most used transport protocol. As QUIC
is a potential replacement for TCP, it is natural that several studies compare QUIC to
TCP. The comparisons make it easier to see the benefits and drawbacks of QUIC as well
as its performance. One of the earlier work comparing QUIC with TCP is done by Cook
et al. [56]. The authors evaluate the performance of QUIC compared to HTTP/2 over
TCP/TLS. They perform their measurements on a local testbed and the internet in order
to identify the impact of QUIC and show where it can be beneficial. Their main results
showed that connections over QUIC are much less sensitive to network delay and packet
loss than connections using HTTP/2 over TCP. Furthermore, the authors compare QUIC
connections on 4G with ADSL links, showing that QUIC only clearly outperforms HTTP/2
over TCP in the case of 4G. The authors concluded that the performance benefits are not
very clear when used in stable network environments. The large benefits are shown in
unstable network links such as wireless, satellite, 4G and 5G.

Another early work that studies QUIC and its usage is done by Rüth et al. [57]. Here,
the authors present a first look at QUIC in the wild, also known as the open internet.
They monitor TCP and QUIC usage by regularly probing the entire IPv4 address space.
The measurements spanned over a time period of 15 months from August 2016 to October
2017. During this time, they found that the number of IPv4 addresses supporting QUIC
communication has tripled to over 600 000 IP addresses and it is steadily increasing.
They identified Google as the largest contributor to the QUIC infrastructure, followed by
Akamai. The authors also probed the Alexa Top 1M list and the complete set of .com, .net
and .org domains, containing more than 150 million domains, which is around 46% of the

19



3.1. QUIC versus TCP

Table 3.1: Overview of related work

Focus Areas of study

R
e
fe

re
n

c
e

Y
e
a
r

Q
U

IC

T
C

P

P
e
rf

o
rm

a
n

c
e

Q
U

IC
vs

T
C

P

D
u

a
l

c
o
n

n
e
c
ti

vi
ty

M
u

lt
ip

a
th

F
a
ir

n
e
ss

O
th

e
r

[56] 2017 X X X

[57] 2018 X X X

[58] 2017 X X X X

[59] 2017 X X X

[60] 2016 X X

[6] 2017 X X X X X

[5] 2016 X X X

[61] 2017 X X

[62] 2008 X X X

[32] 2017 X X X X

[63] 2019 X X X

[64] 2019 X X X

[65] 2017 X X X X

[66] 2012 X X X

[55] 2010 X X X X

domain namespace. Out of these domains, only around 0.1% were able to initiate a QUIC
handshake. However, the aggregated traffic share of these domains is non-negligible. The
authors show that for a European IXP and a Tier-1 ISP, QUIC accounts for 2.6% and 7.8%,
respectively. For a mobile ISP, this percentage reaches 9.1% and is almost exclusively
contributed by Google. The authors perform measurements on vantage points on the
internet and not at the end-users, as we do in this thesis. The authors did also not focus
their measurements on 5G radio networks.

Kakhki et al. [58] evaluates several versions of gQUIC by comparing it against TCP
with TLS and HTTP/2. To be able to find the cause of performance differences, the authors
instrument the code of gQUIC to infer a state machine of gQUIC and to study the time
spent in each state. Greybox testing was done on Google’s servers to be able to adjust
variables on Google’s gQUIC example server, as it is non-performant1. Several experi-
ments were performed over multiple scenarios, such as in desktop and mobile platforms,
and fixed-line and cellular networks. The authors show that gQUIC is unfair towards TCP
but performs better than TCP in multiple scenarios, but the performance difference is
smaller on mobile platforms and cellular networks. QUIC handles the increased losses on

1https://www.chromium.org/quic/playing-with-quic

20



3.2. Dual connectivity

cellular networks better, but the increased reordering of packets poorly. Having reorder-
ing of packets is typical for DC, which might give TCP an advantage in DC.

3.2 Dual connectivity

QUIC is a relatively new transport protocol, and there are few studies of it in specific
scenarios, such as dual connectivity (DC). TCP, on the other hand, is an old and well-used
protocol and is still being researched today.

One work studying TCP together with DC is done by Polese et al. [59]. The authors
investigate how TCP performs when mobility management is performed by no handover,
DC and hard handover. In the DC scenario, the UE connects to both LTE and mmWave
base stations. In the hard handover scenario, the UE connects to mmWave base stations
with a possible fallback to the LTE base station. The UE connects to the same mmWave
base station during the entire simulation in the no handover scenario. It is important to
note that the authors are interested in the performance gain from mobility management
rather than the increased bandwidth from using multiple base stations. Their results
show that DC can improve TCP goodput by quickly moving the traffic from one of the two
DC links to the other.

There have also been studies on how DC improves the throughput for multiple users
rather than focusing on only one. Legg et al. [60] investigate how load balancing and
two different versions of split bears handle the load of the nodes in the network. Load
balancing, in this case, means that the traffic through MeNB and SeNB gets split 0/100
to put less load on the MeNB. Their so-called standard split bearer redirects part of the
traffic of users with below target throughput to SeNBs. The smart SeNB redirects traffic
of satisfied users from cells that also contain unsatisfied users to reduce the load on
the original cell. Their results show that the smart split bearer performed better than
the standard split bearer while the standard split bearer performed marginally better
than load balancing. In addition, split bearer after load balancing was tested with yet
another marginal performance increase. The authors indicate that load balancing might
be a better solution than split bearer as the performance is similar, but the complexity to
handle load balancing is smaller.

There are several specialized branches of DC, depending on the radio access technol-
ogy being used. One such specialization is LTE-WLAN Aggregation (LWA), which allows
for network traffic to be sent over LTE and WLAN. Jin et al. [6] takes a look at this area
as they define LTE-W, a mechanism that allows for aggregation of LTE and WiFi links.
The authors add two key algorithms, the mode selection and bearer-split scheduling. The
mode selection algorithm decides whether the traffic should be sent over LTE, WiFi or
both LTE and WiFi. The mode is dependant on throughput and capacity of links and
amount of connections. The goal of the algorithm is to achieve fairness over the joint
throughput of WiFi and LTE. The other major algorithm presented was the scheduling
of the traffic over the links. Improper scheduling would lead to a reordering of packets.
The authors used TCP, which expects packets in sequence, as the transport protocol in
their research. Their algorithm would schedule the outgoing packets to the link with the
shortest delay between the arrival and the sending of a packet. Thus, the scheduling
is based on the links available bandwidth, total bytes of unACKed bytes, processing and
propagation delays of the links. Additionally, the authors added a reordering algorithm
at the PDCP layer. Their results show that splitting TCP over LTE and WiFi at the PDCP
layer can achieve similar throughput and better fairness than MP-TCP; demonstrating the
value of lower-layer traffic splitting.

Khadraoui et al. [5] focuses on TCP in an LWA scenario by investigating how TCP is
affected when sending packets on multiple paths. They also study the effect of PDCP
reordering and network coding. Network coding refers to, in this case, the sending of the

21



3.3. Multipath

linear combinations of packets. A packet can then be used to reconstruct a lost packet as
long as the other packets from the combination were received. The LTE link was much
slower than the WiFi link in their experiments. Their experiments show that using both
links can perform worse than using only one link. They also show that PDCP reordering
can have adverse effects on the throughput of TCP. They attribute the performance loss of
the reordering to the delay difference between the links being too big, resulting in a head-
of-line blocking and round trip timeout. The experiments with network coding show that
if they sent a redundant package every fifth packet, they gained the most throughput.
This throughput was slightly higher than the one seen from not using network coding.
The results can be explained by the number of packets that were recovered due to the
redundant data. The authors also performed tests more and less frequency of redundant
data. Their findings were that less frequent redundancy used too much bandwidth for
redundant data while the more frequent were not able to recover packets due to too
many packets being lost.

While some works have looked at TCP with DC, no prior work has studied QUIC per-
formance over DC.

3.3 Multipath

Some previous work has focused on studying multipathing, which is similar to DC but
performed at higher levels in the network stack. Polese et al. [61] discuss challenges and
trends of TCP in the future 5G mmW Networks. One particular challenge is that TCP’s
congestion control suffers from the packet loss caused by temporary increased distance
and line of sight blocking. A trend that can mitigate this challenge is Multipath TCP (MP-
TCP), where the UE can connect to the 5G network as well as the LTE network, which
is less affected by the aforementioned issues. The authors proceed to show that the con-
gestion control algorithm used by MP-TCP can have significant effects on the throughput
and latency depending on the distance and line of sight. They conclude that the transport
layer should not be the only layer where solutions for utilizing multi-connectivity should
be looked for and that energy consumption should also be kept in mind.

Lane et al. [62] investigates how TCP is affected by the packets being spread over
multiple paths and how reordering of packets at the network layer at the receiver side can
assist TCP’s performance. The authors used a tool called SORA to perform multipathing.
SORA adds headers to IP packets to be able to route them through an overlay network
by using UDP/IP. With this tool, the authors were able to add sequence numbers to the
packets, allowing for reordering of packets at the network layer. The results show that
the higher the latency differences between the packets and the more paths taken, the
more critical packet reordering is at the receiver side.

MP-TCP is not the only version of multipathing. De Coninck et al. [32] implement
a multipath version of QUIC called Multipath QUIC (MP-QUIC). The authors base the
implementation of quic-go and weaknesses in MP-TCP that QUIC can potentially solve,
such as head-of-line blocking and allowing extra connections to send data early in the
sessions. The authors also compare MP-QUIC with QUIC, as well as with TCP and MP-
TCP. They performed tests in four different scenarios: a low bandwidth-delay product with
no random losses, a low bandwidth-delay product with random losses, high bandwidth-
delay product with no random losses and high bandwidth-delay product with random
losses. They showed that their implementation of MP-QUIC outperforms MP-TCP in most
scenarios, but it did not show much improvement over QUIC in short transfers.

De Coninck et al. [63] proposed a new version of QUIC, named Pluginized QUIC
(PQUIC), where servers and clients can exchange and enable plugins for extra functional-
ity in the QUIC protocol. While this work was not strictly about multipathing, the authors
demonstrated the usefulness of their tool by creating several plugins that they evaluated.

22



3.4. Fairness

One of these plugins was a multipath plugin, adding multipath capabilities to QUIC. They
evaluate the plugin and show that for small files, there is little gain with using two paths,
as the initial congestion window puts constraints on each path. However, with larger files,
multipath efficiently uses the two paths, and performance advantages can be seen.

Mogensen et al. [64] expands MP-QUIC to create a version called Selective Redundant
MP-QUIC (SR-MPQUIC). SR-MPQUIC allows for low latency and maximum reliability for
priority data by altering the congestion control algorithm, the scheduler and the stream
framer. The scheduler will use either the shortest round-trip or round-robin to decide
which path shall be taken by the packets. The stream framer will fill packets by selecting
data from application streams by either prioritization or round-robin. The framer will also
fill multiple scheduled packets with stream data if the stream is marked for duplication.
The congestion algorithm is altered to temporarily allow more packets to be sent than the
congestion window permits. The congestion window will then be temporarily lowered by
the amount of data that was sent over the limit in the next time instance. This is only
allowed for prioritized packets to avoid background data hindering priority data from
being sent when the congestion window is filled with background data.

Furthermore, the authors present the enhanced attributes of their algorithm by com-
paring it to algorithms with partial implementations of the new features. One comparison
algorithm uses the prioritization framer and schedule but does not duplicate any packets.
The other algorithm uses the duplication on all packets and the new congestion algorithm.
Their proposed algorithm was shown to reduce the latency significantly on prioritized data
with little cost to the latency of background data and bandwidth used. The results show
the importance of proper packet scheduling and the value of packet duplication.

While additional communication between the transport and link layer would be re-
quired to benefit DC, QUIC (together with HTTP/3) also includes some unique attributes
to assist packet/flow scheduling [67].

3.4 Fairness

Yu et al. [65] take a look at QUIC as a general-purpose transport protocol. The authors
use libQUIC to compile QUIC, which is a library of QUIC based on gQUIC. The library uses
CUBIC as the congestion control algorithm rather than NewReno used in this thesis. The
authors compare QUIC to TCP by running multiple tests where they change network con-
ditions such as RTT, buffer size and bandwidth. Furthermore, the authors test throughput
and fairness by using multiple competing connections and single connections in a setup
environment emulated by Mininet. They calculate the average link utilization by dividing
the number of bytes received per flow with the minimum value of the bandwidth. The au-
thors also compare the utility of the different flow to understand the fairness between the
two protocols. Their experiments show that TCP starves QUIC, seeing as big of a differ-
ence as five times more link utilization for TCP. The authors link the worse performance
of QUIC to the packet pacer as longer RTT causes worse link utilization for QUIC when
competing with TCP.

Judging fairness over a single link with a single bottleneck is rather simple. However,
when multiple links with different amounts of resources are added, it quickly becomes
more complicated. For example, should a user that is served over two flows and links,
where on each link there is another flow, be served with half of each link’s capacity? In
that case, the user would have double the capacity of the other users if the link were
of equal bandwidth. For a more system wide fairness, the user with two flows could be
granted less of each link capacity so that all flows would be allowed equal throughput. As
such, we take a look at studies on multipathing as scenarios like these are common in the
area.

23



3.4. Fairness

Becke et al. [66] study the fairness of different congestion algorithms in three different
scenarios. The first scenario is with two single connections over one link. The second
scenario is one connection with two flows and one connection with one flow, where all
flows share one bottleneck. The third scenario is one connection with two flows and one
connection with one flow, but only one sub-flow and the connection with one flow share
a bottleneck. The congestion control algorithms studied are Reno for single connections,
MP-Reno where the Reno algorithm is applied separately to each sub-flow, MP-TCP and
Resource Pooling version 2 (RP-MP-v2) [68]. RP-MP-v2 allows for shifting part of the
congestion window to another path if it senses underutilization or overutilization of a
path.

Furthermore, the authors specify that fairness in their study targets TCP-friendliness
and further specialize fairness in two directions. The first direction is link-centric flow
fairness, where connections should share the capacity of the links equally, meaning that
the sum of sub-flows should equal that of a single connection. The second direction is
network-centric flow fairness, where all flows share the capacity of the network equally.
The authors also use the protocol SCTP in a simulation to show that in the second sce-
nario, both RP-MP-v2 and MP-TCP achieve link-centric fairness to some extent, depending
on the network configurations. Both algorithms achieve network-centric fairness in the
third scenario.

Raiciu et al. [55] take a look at how MP-TCP can replace single connections and load
balancing in data centers. The authors emulate different topologies for data-centers with
MP-TCP as the transport protocol. Their interest lies in throughput and fairness, where
Jain’s fairness index was used to judge the fairness of the system. For specific topolo-
gies, MP-TCP significantly improved fairness and provided throughput closer to optimal
compared to single connectivity using random load balancing. The more paths that were
used gave higher throughput and more fair results. To judge fairness, they and many
other studies [55, 48, 54] evaluate multipathing using the Jain’s fairness index (JFI) [53].
Similar to these works, JFI is used in this thesis.

24



4 Method

This section explains the methodology of the thesis. First, the experimental setup is
presented, showing how components are connected and configured. Then, configurations
for the server and client proxy simulating the PDCP layer in DC are shown. Finally, the
methodology for data gathering and test configurations is presented.

4.1 Experimental setup

To study QUIC’s performance and simulate DC, previously shown in Figure 2.5, a testbed
was set up using two machines. At a high level, one machine was used to capture client-
side behavior and performance, and one machine to capture server- and network-side
effects. The two machines were connected via two network interface pairs, each sup-
porting 10 Gbps full duplex. The hardware specifications of these machines are given in
Table 4.1.

Table 4.1: Hardware and operating systems

Part Model

C
li

e
n

t

OS Ubuntu 18.04.3 LTS

Kernel Linux 4.15.0-74-lowlatency

Processor 1 & 2 Intel(R) Xeon(R) CPU E5-2690 v3 @ 2.60GHz

eno1 & eno2 82599ES 10-Gigabit SFI/SFP+ Network Connection

RAM 33 GB

S
e
rv

e
r

OS Ubuntu 18.04.3 LTS

Kernel Linux 5.3.0-26-generic

Processor 1 & 2 Intel(R) Xeon(R) CPU E5-2667 v3 @ 3.20GHz

eno1 & eno2 82599ES 10-Gigabit SFI/SFP+ Network Connection

RAM 308 GB

25



4.1. Experimental setup

Machine 1 (server side)

eno2

eno2

eno1

eno1

Machine 2 (client side)

10.255.200.3 10.255.201.51

10.255.200.2 10.255.201.50

Network
namespace

veth0

veth1

QUIC client
DC

10.0.0.1

10.0.0.2

QUIC server
port 4433

Proxy

Proxy

(a) Throughput

Machine 1 (server side)

eno2

eno2

eno1

eno1

Machine 2 (client side)

10.255.200.3 10.255.201.51

10.255.200.2 10.255.201.50

Proxy

QUIC server
port 8000

Network
namespace

veth0

veth1

QUIC client
DC

10.0.0.1

10.0.0.2

QUIC server
port 9000

QUIC server
port 4433

ProxyProxy

ProxyProxyProxy

QUIC client
SC

QUIC client
SC

(b) Fairness

Figure 4.1: Testbed for throughput and fairness

Figure 4.1 shows an overview of the testbed used for studying QUIC performance over
DC. In our baseline tests, both the QUIC server and QUIC client used aioquic HTTP/3
server [24]. A connection establishment was done by having aioquic client requesting a
size to aioquic server. The server will respond with a plain text that equals the requested
size in MB. The client was restarted after each test to get a 1-RTT connection establish-
ment.

When running comparison tests with TCP, the same HTTP server as QUIC was used,
but served with Hypercorn1 over HTTP/2 with TLS 1.3 instead. With TCP, the client re-
quest was done using curl over HTTP/2. Both TCP and QUIC used NewReno as congestion
algorithm.

In a DC environment, the splitting of traffic is achieved at the upper sections of the
link layer. Therefore, the layers above the link layer are unaware of that the traffic being
sent over multiple paths. As such, QUIC (and TCP) was not needed to be modified to
support DC. However, as DC was introduced for radio technology, the link layer functions
and structure differ from the Ethernet links that were used. To simulate the functionality
of DC and PDCP that DC relies upon, two proxies were implemented. One proxy is set up
at the client side while the other one is on the server side, see Figure 4.1a.

As a QUIC connection gets tied to both an IP address (interface) and a socket, trying to
force another interface’s incoming data to the QUIC connection proved to be complicated.
To solve this, the QUIC client was launched inside a network namespace. Two virtual
interfaces were created to forward data to and from the network namespace. One virtual

1https://pgjones.gitlab.io/hypercorn/

26



4.1. Experimental setup

Table 4.2: Iptables rules

ID Table Rule Action

S
e
rv

e
r

S1
mangle

OUTPUT
UDP/TCP source port 4433

and dest. addr. 10.0.0.2
NFQUEUE 0

S2
mangle

OUTPUT
UDP/TCP source port 8000

and dest. addr. 10.0.0.2
NFQUEUE 1

S3
mangle

OUTPUT
UDP/TCP source port 9000

and dest. addr. 10.0.0.2
NFQUEUE 2

S4
mangle

POSTROUTING
UDP/TCP source port 4433

TEE gateway
10.255.200.2

C
li

e
n

t

C1
filter

FORWARD
TCP SYN or RST

set TCP MSS
to 1280

C2
mangle

PREROUTING
UDP/TCP source port 4433 NFQUEUE 0

C3
mangle

PREROUTING
UDP/TCP source port 8000 NFQUEUE 1

C4
mangle

PREROUTING
UDP/TCP source port 9000 NFQUEUE 2

interface was placed outside the network namespace and tunneled data through to the
second virtual interface placed inside the network namespace. The server side does not
require a network namespace as DC is only studied on the downlink. Traffic from the
QUIC client always goes through one link; in this case, the interface eno1.

When studying the fairness of QUIC, the testbed was extended with two additional
servers and clients, see Figure 4.1b. One connection was performing DC, while the other
two connections used single connectivity (SC) over interface eno1 and eno2, respectively.
The server with port 8000 was operating only on interface eno1, while the server on port
9000 downloaded only on interface eno2. The QUIC server on port 4433 was running
with DC and operated therefore on both interfaces. Each server and client were equipped
with its own proxy, as the proxy simulates the functionality of the PDCP layer for each
connection independently.

Extra delay, loss and a bandwidth limitation have to be added to simulate a real net-
work environment. To accomplish this, tools such as TC, netem and Qdisc in Linux were
used. These tools allowed us to control parameters such as delay, bandwidth and loss for
each interface independently.

Listing 4.1 and 4.2 show the commands used to configure our machines on the client
and the server side, respectively. The configurations are done similarly for the two ma-
chines, but with different addresses. In addition, the client machine also creates a net-
work namespace and associated virtual interfaces, as well as disabling reverse path filter-
ing (rp_filter) in the Linux kernel. Reverse path filtering was disabled to allow incoming
packets on interface eno2 on the client side, with a source IP from the interface eno1 on
the server side. This was done to keep the IP source address originating from the QUIC
server the same, resulting in the QUIC client sending responses using only one uplink
interface.

Another difference between the client and the server is that the client adjusts the
recommended maximum segment size during the TCP connection establishment, see rule
C1 in Table 4.2. This will make the server adjust the size of the TCP segments, allowing
room for the additional headers of the sequence number. The segment size was adjusted
to 1280, which corresponds to the same size as the UDP frames.

27



4.1. Experimental setup

1 # Set interface IP
2 sudo ifconfig eno1 10.255.201.50 netmask 255.255.255.0
3 sudo ifconfig eno2 10.255.200.2 netmask 255.255.255.0
4

5 # Network namespace
6 sudo ip netns add ns
7 sudo ip link add veth0 type veth peer name veth1
8 sudo ip link set dev veth1 netns ns
9 sudo ip link set dev veth0 up

10 sudo ip address add 10.0.0.1/24 dev veth0
11

12 sudo ip netns exec ns ip link set dev lo up
13 sudo ip netns exec ns ip link set dev veth1 up
14 sudo ip netns exec ns ip address add 10.0.0.2/24 dev veth1
15 sudo ip netns exec ns ip route add 0/0 via 10.0.0.1 dev veth1
16

17 # Set new reno as congenstion controller
18 sudo sysctl ẃ net . ipv4 . tcp_congestion_control=reno
19 sudo ip netns exec ns sysctl ẃ net . ipv4 . tcp_congestion_control=reno
20

21 # Iptables
22 sudo iptables ´t mangle Á PREROUTING ṕ udp ´́ sport 4433 ´j NFQUEUE
23 sudo iptables ´t mangle Á PREROUTING ṕ tcp ´́ sport 4433 ´j NFQUEUE
24 sudo iptables ´t mangle Á PREROUTING ṕ udp ´́ sport 8000 ´j NFQUEUE
25 sudo iptables ´t mangle Á PREROUTING ṕ tcp ´́ sport 8000 ´j NFQUEUE
26 sudo iptables ´t mangle Á PREROUTING ṕ udp ´́ sport 9000 ´j NFQUEUE
27 sudo iptables ´t mangle Á PREROUTING ṕ tcp ´́ sport 9000 ´j NFQUEUE
28

29 # Set mss for TCP
30 sudo iptables Á FORWARD ṕ tcp ´́ tcṕ flags SYN,RST SYN ´j TCPMSS ´́ set́ mss 1280
31

32 # Default delay and bandwidth
33 sudo tc qdisc add dev eno1 root handle 1:0 netem rate 20mbit l imit 10000
34 sudo tc qdisc add dev eno1 parent 1:1 handle 10: netem delay 10ms 1ms distribution normal l imit 10000
35

36 # Disable spoof protection and enable ip forward by modifying / etc / sysctl . conf
37 # Reload f i l e with command ’sudo sysctl ṕ ’
38 # Confirm changes with command ’ sysctl á | grep \ \ . rp_f i l ter ’
39 # net . ipv4 . conf . a l l . rp_f i l ter = 0
40 # net . ipv4 . conf . default . rp_f i l ter = 1
41 # net . ipv4 . conf .eno1. rp_f i l ter = 0
42 # net . ipv4 . conf .eno2. rp_f i l ter = 0
43 # net . ipv4 . conf . lo . rp_f i l ter = 0
44 # net . ipv4 . conf . veth0 . rp_f i l ter = 0
45 # net . ipv4 . conf . veth1 . rp_f i l ter = 0
46 # net . ipv4 . ip_forward=1

Listing 4.1: Client side configuration code

1 # Set interface IP
2 sudo ifconfig eno1 10.255.201.51 netmask 255.255.255.0
3 sudo ifconfig eno2 10.255.200.3 netmask 255.255.255.0
4

5 # Add routing to client network namespace
6 sudo ip route add 10.0.0.0/24 dev eno1 proto kernel scope link src 10.255.201.51
7 #sudo arp ś 10.0.0.2 xx : xx : xx : xx : xx : xx
8

9 # Set NewReno as congestion controller
10 sudo sysctl ẃ net . ipv4 . tcp_congestion_control=reno
11

12 # Iptables
13 sudo iptables ´t mangle Á OUTPUT ṕ udp ´́ sport 4433 ´́ destination 10.0.0.2 ´j NFQUEUE´́ queué num 0
14 sudo iptables ´t mangle Á OUTPUT ṕ tcp ´́ sport 4433 ´́ destination 10.0.0.2 ´j NFQUEUE´́ queué num 0
15 sudo iptables ´t mangle Á OUTPUT ṕ udp ´́ sport 8000 ´́ destination 10.0.0.2 ´j NFQUEUE´́ queué num 1
16 sudo iptables ´t mangle Á OUTPUT ṕ tcp ´́ sport 8000 ´́ destination 10.0.0.2 ´j NFQUEUE´́ queué num 1
17 sudo iptables ´t mangle Á OUTPUT ṕ udp ´́ sport 9000 ´́ destination 10.0.0.2 ´j NFQUEUE´́ queué num 2
18 sudo iptables ´t mangle Á OUTPUT ṕ tcp ´́ sport 9000 ´́ destination 10.0.0.2 ´j NFQUEUE´́ queué num 2
19

20 # Use with SC on eno1 to send DC 100/100
21 #sudo iptables ´t mangle Á POSTROUTING ṕ udp ´́ sport 4433 ´j TEE ´́ gateway 10.255.200.2
22 #sudo iptables ´t mangle Á POSTROUTING ṕ tcp ´́ sport 4433 ´j TEE ´́ gateway 10.255.200.2
23

24 # Default delay and bandwidth
25 sudo tc qdisc add dev eno1 root handle 1:0 netem rate 20mbit l imit 100
26 sudo tc qdisc add dev eno1 parent 1:1 handle 10: netem delay 10ms 1ms distribution normal l imit 10000
27

28 sudo tc qdisc add dev eno2 root handle 1:0 netem rate 20mbit l imit 100
29 sudo tc qdisc add dev eno2 parent 1:1 handle 10: netem delay 10ms 1ms distribution normal l imit 10000

Listing 4.2: Server side configuration code

28



4.2. Server proxy

4.2 Server proxy

To capture the PDCP functionality, packets originating from the server are caught by
iptables if the packets have a port number equal to one of the QUIC servers and the
destination is the network namespace’s IP address, see rule S1-S3 in Table 4.2. The action
for these rules is to deliver the packet to the queue number of 1, 2 or 3 of NFQUEUE,
depending on the rule.

The server proxy will read packets from NFQUEUE in the order they entered through
the use of the library libnetfilter_queue. The packets can then be altered and receive a
verdict, such as DROP or ACCEPT. The verdict DROP will drop and ignore the packet,
while the verdict ACCEPT will let the packet proceed through. In our case, all packets on
the server proxy were modified before being passed through.

The server proxy has two tasks. The first task is to route traffic from the server to
the client through two different network interfaces. The proxy will alter the IP destina-
tion header of a packet. The destination will be set to one of the client’s interface IP
addresses. When running DC, the server proxy alternates the destination address to one
of the client’s two IP addresses to simulate DC.

In iptables, the packets are caught in the OUTPUT chain, which is after routing and
local processing has been performed. However, the packets will be rerouted before en-
tering the POSTROUTING chain, as previously shown in Figure 2.9. The OUTPUT chain
can therefore change the outgoing interface by modifying the destination IP address.

The second task is to keep track of the sequence of a packet by adding a PDCP se-
quence number of 2 bytes (16 bits) to each packet. This is done to ensure that the client
proxy can perform PDCP reordering of the packets. The sequence number is added to
the back of the UDP/TCP payload and the length and checksum of the IP and UDP/TCP
headers are recalculated. The full code for the proxy can be found in Appendix B.2.

Rule S4 in Table 4.2 is used for duplicating each packet and sending the duplicated
packet on interface eno2. The original packet will go through the interface eno1, which
leads to duplicate packets being sent. This rule is used to study QUIC’s behavior when
using DC to increase reliability of the connection. Rule S2, S3, C3 and C4 are used when
studying the fairness of QUIC, where three server proxies and three client proxies are
used.

4.3 Client proxy

At the client proxy, packets sent with the source port number equal to one of the server
ports will be caught in the PREROUTING chain and delivered to NFQUEUE, see rule C2-
C4 in Table 4.2. When the client proxy reads from the queue using the libnetfilter_queue
library, it will simulate the PDCP layer. The functions that are simulated are the converg-
ing of the two streams into one as well as PDCP reordering.

The sequence numbers that were added by the server proxy will be removed and the
destination IP address will be set to the QUIC client’s address in the network namespace.
Then, the packet data, including the headers, will be stored in a local buffer. If a packet
is received in order, the packet will receive an ACCEPT verdict and be forwarded to the
QUIC client immediately. However, if a packet is out of order, it is kept until the missing
packets are processed or until a PDCP timer of 200ms is reached, see Algorithm 1 for
pseudocode. The PDCP timer is used to wait for a missing packet. If the timer is reached,
all packets before the missing packet and all consecutive packets after the missing pack-
ets are delivered. PDCP will restart the timeout if there are gaps in the packet numbers
above the awaited packet, see Algorithm 2 for pseudocode. The reordering algorithm
follows the PDCP standard described in 3GPP [36]. The full code for the client proxy
implementing this algorithm can be found in Appendix B.1.

29



4.4. Performance testing

Algorithm 1 PDCP reordering

if received_seq_lowbits is sizeof(buffer) from expected_ to_deliver_lowbits then
set current_seq_highbits accordingly

end if
current_32bit_seq Ð current_seq_highbits and received_seq_lowbits
if current_32bit_seq < expected_to_delivered_seq then

discard packet
return

end if
store packet in buffer
if current_seq_32bit ě next_expected_sequence then

next_expected_sequence Ð current_seq_32_bit + 1
end if
if current_seq_32bit == next_expected_to_deliver_sequence then

deliver in order sequential packets starting from current_seq_32bit
set next_expected_to_deliver_sequence to first packet not delivered

end if
if t-Reordering is running &&

next_expected_to_deliver_sequence ě packet_that_triggered_reorder then
stop and reset t-Reorder

end if
if t-Reordering is not running &&

next_expected_to_deliver_sequence < next_expected_sequence then
packet_that_triggered_reorder Ð next_expected_sequence
start t-Reorder

end if

Algorithm 2 PDCP reordering timeout

deliver in order packets up to next_expected_to_deliver_sequence
deliver in order sequential packets higher than next_expected_to_deliver_sequence
next_expected_to_deliver_sequence Ð sequence_of_first_packet_not_delivered
if next_expected_to_deliver_sequence < next_expected_sequence then

packet_that_triggered_reorder Ð next_expected_sequence
start t-Reorder

end if

4.4 Performance testing

When studying QUIC throughput, the testbed shown in Figure 4.1a is used. The extended
testbed shown in Figure 4.1b is used for studying the fairness of QUIC. To understand
how DC affects QUIC, a series of tests are performed that captures the impact of different
DC parameters and network conditions. By performing a one-factor experiment and al-
ternating only one attribute at a time, a more in-depth understanding of how that specific
attribute affects QUIC can be reached. As such, the tests are run with default values for
all attributes except for one. With the default configuration, each link operates at 20Mbps
and has a normally distributed per-packet delay with a mean of 10ms and a standard de-
viation of 10%. The default value, together with the lowest and highest value tested for
each attribute, is shown in Table 4.3. When applicable, values are shown independently
for each interface in the format of (eno1 downlink / eno2 downlink / eno1 uplink).

For delay and bandwidth, the ratio between interface eno1 and interface eno2 is being
studied. The sum of all delay and bandwidth in the network is constant. Therefore, when
increasing the delay or bandwidth on one interface, the delay or bandwidth on the other
interface will be decreased. For example, a bandwidth ratio of 3:1 corresponds to 30Mbps

30



4.4. Performance testing

Table 4.3: Attribute configurations for (eno1 down / eno2 down / eno1 up)

Attribute Min value Default value Max value Unit

File size 10 100 1000 MB

DC batch size 2 100 500 packets

DC (ratio) split 0 / 100 50 / 50 100 / 0 %

Delay low 10 / 3.33 / 10 10 / 10 / 10 16.67 / 10 / 10 ms

Delay high 100 / 33.33 / 10 100 / 100 / 10 166.67 / 100 / 10 ms

Bandwidth 20 / 6.67 / 20 20 / 20 / 20 33.33 / 20 / 20 Mbps

Loss 0 / 0 / 0 0 / 0 / 0 0.2 / 0.2 / 0 %

Loss duplicate 0 / 0 / 0 0 / 0 / 0 5.0 / 5.0 / 0 %

and 10Mbps for the downlink interfaces eno1 and eno2, respectively. Furthermore, the
delay attribute is split into two categories, one low and one high, with a sum of 20ms and
200ms downlink delay, respectively.

The default DC batch size and DC ratio was configured to 100 and 1:1, respectively.
These attributes determine how many packets are sent over each interface before the
server proxy switches to the other interface. For example, with a DC batch size of 100
and a DC ratio of 9:1 (90% eno1 and 10% eno2), the proxy would send 90 packets over
eno1, before switching over to send 10 packets over eno2.

The bandwidth attribute limits the maximum speed of the links and the file size at-
tribute shows the requested download size from the client. For the fairness tests, each
client downloads a 1GB file and the clients’ performance was measured for the first three
minutes of the download.

The attributes loss and loss duplicate are used to study QUIC in lossy environments
with and without packet duplication. When packets are duplicated, each downlink is
tested with a loss percentage of up to 5%, while the loss attribute is only varied up to
0.2% when DC is not duplicating packets.

For each test configuration, we run ten tests and calculate both average and standard
deviation values for the metrics of interest. Furthermore, all tests are performed with
three different Linux configurations, see Table 4.4. rmem_default and rmem_max are
kernel parameters that control the default and the max receive buffer size that sockets
are able to use. tcp_rmem values are specific for TCP sockets, where the default value
overrides the value set by net.core.rmem_default.

The first configuration uses QUIC with standard Linux buffer sizes in the kernel. The
second configuration also uses QUIC, but with a larger buffer size. The larger size is used
to give a fair comparison to TCP, as the kernel performs buffer autotuning for TCP [69].
This means that both UDP and TCP packets will not be dropped at the receiving socket

Table 4.4: Linux configurations

Config
net.core.

rmem_default
net.core.

rmem_max
tcp_rmem

(min, default, max)

QUIC default 212 992 33 554 432 -

QUIC modified 33 554 432 33 554 432 -

TCP default - 33 554 432 (4096, 131 072, 6 291 456)

31



4.4. Performance testing

inside the network namespace due to full buffer size. When studying fairness, QUIC with
modified buffer size is used and the fairness is calculated using JFI.

Measurement data is collected and logged during data gathering to be analyzed after-
ward. Qlog is used for data logging and the log files are analyzed with Qvis. As the Qlog
format is human-readable, manual analysis and summaries have also been performed. As
logging with Qlog introduces additional delay, it is only used for understanding the be-
havior of QUIC in interesting scenarios. When studying QUIC performance and fairness,
the data collection is performed without Qlog.

Other tools, such as Wireshark and Nethogs2 have also been used. Wireshark was
used as a complement to the other tools, to confirm or to look at special corner cases.
Nethogs, together with other Linux scripts, were used for bandwidth monitoring in order
to see how DC was performed by looking at the incoming traffic rate per interface.

Lastly, experiments concerning DC batch size, DC ratio, delay and loss are repeated
but performed using a real LTE sampled bandwidth trace. The sample bandwidth was
collected by Raca et al. [70] and named Static A_2018.02.12_16.14.02. The bandwidth is
set for both downlinks and the average throughput for the first 200 seconds of the trace
is 4.5Mbps. Figure 4.2 shows the sampled bandwidth trace used as a function of time.

Time (s)

B
an

dw
id

th
 (M

bp
s)

0

5

10

15

0 40 80 120 160 200

Figure 4.2: LTE bandwidth trace [70]

2https://linux.die.net/man/8/nethogs , https://github.com/raboof/nethogs

32



5 Results

The results section consists of three parts. First, results showing PDCP layer functionality
is presented. Then, throughput results are shown by altering configuration parameters
such as delay, bandwidth and loss. Lastly, results concerning the fairness of QUIC is
presented.

5.1 PDCP reordering

Figure 5.1 shows the download time and loss for SC and DC without PDCP functionality
implemented, as well as DC with PDCP functionality. These results were obtained using
QUIC with default buffer sizes together with default attribute values described in Sec-
tion 4.4, with a small adjustment of excluding the normal distribution of the link delay.
This distribution was excluded to remove extra reordering of packets that occur due to
different packet delay. This means that when running SC with PDCP, all packets, except
the lost packets, were delivered in order. When running without PDCP, the packets were
still passing through the proxy, but no PDCP reordering was performed.

The leftmost column in Figure 5.1 shows the download time for a 100MB file with
different configurations. When DC turns on, without turning PDCP on, the download time

44
57

2813 99 8

207
268

499

Ti
m

e 
&

 L
os

s 
oc

ca
si

on
s

P
ac

ke
t l

os
s

0

20

40

60

80

100

0

100

200

300

400

500

SC w/o 
PDCP

DC w/o 
PDCP

DC w/ 
PDCP

Time Loss occasions Packet loss

Figure 5.1: PDCP time and loss

33



5.1. PDCP reordering

Figure 5.2: Congestion window w/ and w/o
DC and PDCP. Note differences in y-scale

Time

P
ac

ke
t n

um
be

r

0

28

56

84

11
2

14
0

0 18 35 53 70 88 105

cwnd Packet sent Packet received Packet lost

Figure 5.3: Detailed case of reordering

increases. This is due to packet reordering, which causes gaps in ACKs from the client.
QUIC allows a gap of maximum two packets, leading to all packets below this gap being
considered lost. As NewReno is used as congestion control, each packet loss occasion
will cause the congestion window to be reduced by half, slowing the transmission and
increasing the transmission time.

When PDCP is turned on, the download time decreases below the other two cases.
DC with PDCP is faster than SC without PDCP as the connection is now utilizing two
links. It is also faster than DC without PDCP as packets are now being reordered back at
the proxy before being delivered to the QUIC client. This shows that DC with PDCP is the
most optimal case compared to the other two with regards to throughput and transmission
time.

The rightmost column in Figure 5.1 shows the total amount of packet loss that oc-
curred during the transmission. When using SC without PDCP, we do not get zero packet
loss, as packets are being dropped due to buffers getting full. With more reordering, it
is natural that the total amount of packets considered loss is increased, which is shown
in the case of DC without PDCP. The third configuration with DC and PDCP has much
more loss than the previous two. This can be explained by the fact that fast transmission
may cause more packet loss, as when buffers get full, many packets will be dropped in
batches, but causing the congestion window to be reduced only once. Therefore, it is
more representative to look at the number of packet drop occasions that occur, which
can be seen in the middle column of the figure. It can be seen that the more packet loss
occasions, the longer time it takes to download the file.

Figure 5.2 shows the number of packet drop occasions, as well as the congestion
window for the three diffenret configurations. DC without PDCP has many more packet
drop occasions than SC without PDCP, which has a few more than DC with PDCP. The
number of packet drop occasions reflects the throughput and download time.

Figure 5.3 shows a detailed version from a server view of a typical packet drop oc-
casion that occurs due to reordering when using DC without PDCP. A full visualization
of the figure using Qvis and a real sample transmission is shown in Appendix C. As seen
in the figure, packets are being sent and acknowledged. As QUIC is using SACK, allow-
ing cumulative ACKs of ranges, a client can acknowledge a packet gap using one single
ACK packet. In the figure, 12 data packets are sent and 4 ACKs are received. Due to
reordering in packet delivery to the QUIC client, the second ACK from the client shows
a packet gap of 3 packets. The recommended initial packet threshold for QUIC is 3 [21].

34



5.2. Throughput

This means that a packet is considered lost if it has a packet number less than 3 below
the maximum acknowledged packet number.

When this occurs, packet loss is triggered and the congestion control algorithm
NewReno will enter fast recovery. In this case, NewReno mistakenly enters fast recovery
as the packets are not lost, but instead reordered by more than 3 packets. As shown in
the figure, the assumed lost packets are immediately acknowledged after the loss detec-
tion, meaning that the retransmission of some packets and the entering of fast recovery
mode was unnecessary. The packet threshold mechanism at QUIC is similar to the 3 dupli-
cate ACK mechanism present in TCP Reno. In this thesis, when fairness and throughput
is studied, PDCP reordering is be used as it minimizes the amount of reordering at the
client due to DC.

To evaluate the overhead that the PDCP proxy adds to the system, measurements with
and without the proxy has been performed. Without a proxy, packets are being passed
directly to the interfaces, resulting in packets not placed inside an NFQUEUE. Table 5.1
shows the results from 10 independent measurements using the default values, with the
exception of removing the normal distribution of the link delay to reduce the amount of
reordering and give a fair comparison. The results show that when running with PDCP
proxy, the average RTT increases with 2ms. This corresponds to 1ms per proxy, as packets
are passed through both a client and a server proxy. With an increase of around 2ms, the
throughput decreases from 18.28Mbps to 17.00Mbps. Even though the tc module adds
only an extra delay of 20ms, an average RTT of over 50ms can be observed. This is due
to the tc module limiting the link bandwidth, causing congestion and packet buffering,
which increases packet delay even further.

Table 5.1: BW and RTT with Std Dev for w/ and w/o proxy

Without proxy With proxy

RTT (ms) 56.01 (0.62) 58.07 (0.85)

BW (Mbps) 18.28 (0.17) 17.00 (0.30)

5.2 Throughput

This section focuses on the throughput by varying different DC and network parameters.
The results are shown for three Linux configurations: QUIC default, QUIC buffer modified,
and TCP default. Complementary results are shown in Appendix F (Figures F.1 to F.8),
where the QUIC implementation ngtcp2 and the congestion control algorithm CUBIC are
used.

The throughput is independent of the file size, as shown in Figure 5.4 and Table 5.2.
The only significant difference occurs when the file size is very small, as the connection
establishment is non-negligible. A file size of 100MB is considered large enough to be
representative. With a file size of 100MB, the download time in seconds can be calculated
by dividing 800 with the bandwidth in Mbps, using the following equation:

Time [s]ˆ Bandwidth [Mbps] = 100 [MB] file = 800 [Mb] file (5.1)

35



5.2. Throughput

File	size	(MB)

Th
ro
ug
hp
ut
	(M

bp
s)

TCP
QUIC
QUIC	buffer	modified

0 100 200 300 400 500
0

10

20

30

40

Figure 5.4: Throughput based on file size.
Default values: DC batch size of 100, DC
ratio 1:1, 10ms delay, 0% loss, 20Mbps/link

Table 5.2: Values for Figure 5.4 with Std Dev

MB QUIC QUIC bm. TCP
10 35.2 (0.94) 34.3 (0.98) 35.2 (0.06)
100 33.0 (1.03) 35.6 (0.25) 36.3 (0.20)
200 34.0 (0.89) 35.8 (0.13) 36.5 (0.13)
300 33.7 (0.45) 35.8 (0.07) 36.4 (0.26)
400 33.8 (0.48) 35.8 (0.12) 36.5 (0.09)
500 33.7 (0.40) 35.8 (0.06) 36.5 (0.18)
600 33.5 (0.31) 35.8 (0.10) 36.4 (0.16)
700 33.3 (0.33) 35.8 (0.09) 36.4 (0.15)
800 33.4 (0.34) 35.8 (0.06) 36.3 (0.15)
900 33.2 (0.20) 35.8 (0.04) 36.4 (0.14)
1000 33.3 (0.16) 35.8 (0.06) 36.5 (0.06)

5.2.1 Dual connectivity batch size

When using DC, network operators must select a good DC batch size for each connection.
To illustrate the impact of this choice on QUIC performance, a test varying DC batch
size has been performed. Figure 5.5 and Table 5.3 show the throughput as a function
of the DC batch size. In general, a larger DC batch size results in lower throughput.
This can be explained by the fact that a larger DC batch size leads to lower utilization
of both links. For example, Figure 5.6 shows the bandwidth link utilization of the two
links for the first three seconds of the transmission when using a DC batch size of 50.
As seen in the figure, the transmission begins with a version and key negotiation over
one interface before sending data heavily on both interfaces. With a DC batch size of
50, the link utilization overlaps heavily. In contrast, Figures 5.7 and 5.8 show the link
utilization for a DC batch size of 200 and 500, respectively. Here, a larger DC batch size
leads to less bandwidth usage overlap. The lack of utilizing both links simultaneously
when using a larger DC batch size decreases the total throughput. However, there is
also a penalty to using too small batch sizes, as this significantly increases the number
of reordered packets. The best batch sizes are instead typically in the mid-range (e.g.,
around 100-150), with the sweet spot depending on the protocol being used. Finally, we
note that QUIC with modified buffers perform similar to TCP for much of the parameter
range. When varying the DC batch size attribute over a bandwidth trace, similar trends
are observed as shown in Figures D.1 and E.1 in the appendices.

DC	batch	size

Th
ro
ug
hp
ut
	(M

bp
s)

TCP
QUIC
QUIC	buffer	modified

0 100 200 300 400 500
0

10

20

30

40

Figure 5.5: Throughput based on DC batch
size. Default values: DC ratio 1:1, 10ms de-
lay, 0% loss, 20Mbps/link

Time (s)

Th
ro

ug
hp

ut
 (M

bp
s)

0

10

20

30

0.0 0.5 1.0 1.5 2.0 2.5 3.0

eno1 eno2

Figure 5.6: Link usage with DC batch 50

36



5.2. Throughput

Time (s)

Th
ro

ug
hp

ut
 (M

bp
s)

0

10

20

30

0.0 0.5 1.0 1.5 2.0 2.5 3.0

eno1 eno2

Figure 5.7: Link usage with DC batch 200

Time (s)

Th
ro

ug
hp

ut
 (M

bp
s)

0

10

20

30

0.0 0.5 1.0 1.5 2.0 2.5 3.0

eno1 eno2

Figure 5.8: Link usage with DC batch 500

Table 5.3: Values for Figure 5.5 with Std Dev

Batch QUIC QUIC bm. TCP
2 31.0 (1.39) 35.5 (0.28) 36.4 (0.61)
10 31.3 (0.97) 35.4 (0.13) 36.6 (0.27)
50 32.0 (0.68) 35.7 (0.27) 36.0 (0.49)

100 32.5 (1.15) 35.6 (0.24) 36.3 (0.18)
150 32.9 (0.80) 35.4 (0.27) 36.0 (0.31)
200 31.9 (0.62) 35.1 (0.25) 35.3 (0.34)
250 31.3 (0.88) 34.2 (0.15) 34.4 (0.67)
300 25.6 (0.40) 33.6 (0.18) 29.4 (0.67)
350 24.5 (0.13) 28.3 (0.97) 29.8 (0.30)
400 24.1 (0.38) 23.9 (0.33) 28.1 (1.11)
450 23.8 (0.20) 23.7 (0.17) 26.1 (0.56)
500 22.8 (0.14) 23.9 (0.24) 23.6 (0.20)

5.2.2 Dual connectivity ratio

Network operators also control the DC ratio that determines the split over the two links.
Figure 5.9 and Table 5.4 show the throughput as a function of the percent of packets
sent over the main interface (eno1). A usage of 70% means that eno1 is sending 70%
of all the packets, while eno2 is sending the remaining 30%. Naturally, a usage of 0% or
100% means that one interface is inactive and therefore only SC is used. The results show
that the throughput peaks at the default case of 50% per link, and decreases as a convex
function as the split becomes more uneven. This is because an uneven DC ratio, e.g. using
90% / 10% (9:1) on eno1 and eno2, will underutilize the DC capacity. Figure 5.10 shows
the link utilization for the two links when using a DC ratio of 9:1 for the first three seconds.
The transmission starts with a version and key negotiation. Due to the high percentage on
interface eno1, there is a small packet drop at the beginning of the transmission, which
can be seen in the figure. It can also be seen that eno1 fully utilizes its bandwidth capacity,
while eno2 does not constantly reach its capacity of 20Mbps, which leads to a lower total
throughput. This test demonstrates the value of DC, as the throughput is the same or
greater in all cases compared to using only SC. When varying the DC ratio attribute over
a bandwidth trace, similar trends are observed as shown in Figures D.2 and E.2 in the
appendices.

37



5.2. Throughput

Interface	eno1	(%)

Th
ro
ug
hp
ut
	(M

bp
s)

TCP QUIC QUIC	buffer	modified

0 20 40 60 80 100
0

10

20

30

40

Figure 5.9: Throughput based on DC ratio.
Default values: DC batch size of 100, 10ms
delay, 0% loss, 20Mbps/link

Time (s)

Th
ro

ug
hp

ut
 (M

bp
s)

0

10

20

30

0.0 0.5 1.0 1.5 2.0 2.5 3.0

eno1 eno2

Figure 5.10: Link usage with DC ratio 9:1

Table 5.4: Values for Figure 5.9 with Std Dev

eno1 % Ratio QUIC QUIC bm. TCP
0 0:1 17.2 (0.09) 17.3 (0.13) 17.7 (0.15)
10 1:9 19.2 (0.16) 19.7 (0.10) 20.1 (0.14)
20 1:4 20.9 (0.41) 22.2 (0.13) 22.5 (0.20)
30 1:2.3 22.9 (0.47) 25.4 (0.24) 25.9 (0.17)
40 1:1.5 27.1 (1.19) 29.5 (0.35) 30.3 (0.12)
50 1:1 32.5 (0.73) 35.7 (0.33) 36.0 (0.38)
60 1.5:1 26.3 (0.84) 29.6 (0.21) 30.2 (0.20)
70 2.3:1 22.5 (0.51) 25.5 (0.23) 25.9 (0.09)
80 4:1 20.8 (0.45) 22.2 (0.16) 22.6 (0.12)
90 9:1 19.3 (0.19) 19.6 (0.12) 20.1 (0.13)
100 1:0 17.2 (0.11) 17.3 (0.12) 17.8 (0.07)

5.2.3 Bandwidth ratio

Figure 5.11a shows the throughput when varying the downlink bandwidth of the links.
The sum of the bandwidth links was kept the same at 40Mbps, and the uplink was kept
at a constant 20Mbps. The results show that the closer the bandwidths are to each other,
the higher the throughput. A larger difference in link bandwidth will introduce more
reordering. The PDCP layer, with a large timeout at 200ms, will be able to mitigate this.
However, some packets will be delayed while waiting for other packets, which increases
overall packet RTT.

As the DC ratio is kept the same, the same amount of packets will be sent on the two
links. Naturally, this leads to underutilizing the link with higher bandwidth, while the link
with lower bandwidth is used at maximum capacity. To balance the link load based on
bandwidth, a test varying both the bandwidth and DC ratio has been performed. In the
case that a link has 80% of the total bandwidth, DC will direct 80% of the packets towards
the interface for that link. The results are shown in Figure 5.11b. Here, the trend is the
same as when varying only the bandwidth ratio. However, it is barely noticeable for QUIC
buffer modified and TCP. As the link usage is now balanced, the throughput stays near
the maximum throughput. This illustrates the importance of adapting the DC parameters
based on the available bandwidth of the links.

With a larger difference link bandwidth capacity, more reordering will still occur. A
larger reordering also results in more packets being delivered in larger bursts from the
PDCP layer. QUIC default has significantly lesser throughput compared to QUIC buffer
modified, as bursts will cause packet drops due to full buffers. QUIC buffer modified and
TCP, with a large amount of buffer space, are less affected by the bursts and can therefore
stay at almost maximum bandwidth capacity. Table 5.5 shows the detailed data for when
varying BW ratio with and without matching the DC ratio.

38



5.2. Throughput

Bandwidth	ratio

Th
ro
ug
hp
ut
	(M

bp
s)

TCP
QUIC
QUIC	buffer	modified

1:1 2:1 3:1 4:1 5:1
0

10

20

30

40

(a) BW ratio

Bandwidth	ratio	and	DC	ratio

Th
ro
ug
hp
ut
	(M

bp
s)

TCP
QUIC
QUIC	buffer	modified

1:1 2:1 3:1 4:1 5:1
0

10

20

30

40

(b) BW and DC ratio

Figure 5.11: Throughput based on BW ratio. Default values: DC batch size of 100, DC
ratio 1:1, 10ms delay, 0% loss/link

Table 5.5: Values for Figure 5.11 with Std Dev

BW ratio BW eno1 BW eno2 DC ratio eno1 % eno2 % QUIC QUIC bm. TCP
1.0 : 1 20.0 20.0 1 : 1 50 50 32.1 (1.43) 35.8 (0.19) 36.3 (0.26)
1.5 : 1 24.0 16.0 1 : 1 50 50 26.4 (0.78) 29.1 (0.08) 29.2 (0.27)
2.0 : 1 26.7 13.3 1 : 1 50 50 22.6 (0.58) 24.4 (0.07) 24.6 (0.14)
2.5 : 1 28.6 11.4 1 : 1 50 50 19.4 (0.37) 20.9 (0.08) 21.1 (0.09)
3.0 : 1 30.0 10.0 1 : 1 50 50 17.3 (0.36) 18.4 (0.06) 18.6 (0.07)
3.5 : 1 31.1 8.9 1 : 1 50 50 15.6 (0.18) 16.4 (0.05) 16.5 (0.07)
4.0 : 1 32.0 8.0 1 : 1 50 50 14.1 (0.27) 14.8 (0.05) 14.9 (0.06)
4.5 : 1 32.7 7.3 1 : 1 50 50 13.4 (0.03) 13.5 (0.05) 13.6 (0.03)
5.0 : 1 33.3 6.7 1 : 1 50 50 12.3 (0.03) 12.4 (0.03) 12.5 (0.02)
1.0 : 1 20.0 20.0 1.0 : 1 50 50 32.5 (1.36) 35.6 (0.18) 36.3 (0.27)
1.5 : 1 24.0 16.0 1.5 : 1 60 40 32.9 (1.43) 35.3 (0.42) 36.0 (0.37)
2.0 : 1 26.7 13.3 2.0 : 1 67 33 30.7 (0.93) 34.2 (0.30) 35.5 (0.25)
2.5 : 1 28.6 11.4 2.5 : 1 71 29 33.7 (0.65) 36.0 (0.13) 36.3 (0.17)
3.0 : 1 30.0 10.0 3.0 : 1 75 25 32.5 (1.35) 34.6 (0.25) 35.5 (0.22)
3.5 : 1 31.1 8.9 3.5 : 1 78 22 29.0 (0.54) 33.0 (0.29) 34.8 (0.39)
4.0 : 1 32.0 8.0 4.0 : 1 80 20 30.7 (0.86) 34.3 (0.49) 35.0 (0.11)
4.5 : 1 32.7 7.3 4.5 : 1 82 18 28.6 (0.92) 32.5 (0.29) 34.1 (0.27)
5.0 : 1 33.3 6.7 5.0 : 1 83 17 25.0 (2.11) 35.4 (0.32) 36.0 (0.42)

5.2.4 Delay ratio

When varying the delay ratio between the interfaces, similar trends as varying the band-
width ratio can be observed. Figures 5.12a and 5.12b, and Table 5.6 show the results
when varying the delay ratio with a downlink delay sum of 20ms and 200ms, respectively.
The throughput is negatively affected by increasing delays, and a larger difference in link
delay results in a lower throughput. With a delay sum of 20ms, the results are not as
noticeable, as the delay difference is lower and the standard deviation is relatively high.
However, with a delay sum of 200ms, the decrease in throughput is more clear.

The throughput decrease is mostly due to increased packet reordering caused by the
higher delays. In these cases, the PDCP layer will buffer more packets before performing
a batch delivery to the QUIC client, causing packet bursts as well as a higher RTT. QUIC
default has therefore a significantly lower throughput than the other two, as it is more
affected with a smaller buffer size.

Furthermore, after receiving a batch delivery, the client will send a cumulative ACK
for many packets, which will, for a short time, largely decrease the number of packets in
flight when received at the server. The draft for QUIC [21] recommends a pacer, which
helps the QUIC server recover from an ACK-burst by sending new packets at a more

39



5.2. Throughput

Delay	ratio	(sum	20ms)

Th
ro

ug
hp

ut
	(M

bp
s)

TCP
QUIC
QUIC	buffer	modified

1:1 2:1 3:1 4:1 5:1
0

10

20

30

40

(a) Low delay ratio

Delay	ratio	(sum	200ms)

Th
ro

ug
hp

ut
	(M

bp
s) TCP

QUIC
QUIC	buffer	modified

1:1 2:1 3:1 4:1 5:1
0

10

20

30

40

(b) High delay ratio

Figure 5.12: Throughput based on delay ratio. Default values: DC batch size of 100, DC
ratio 1:1, 0% loss, 20Mbps/link

Table 5.6: Values for Figure 5.12 with Std Dev

Delay ratio Delay eno1 Delay eno2 QUIC QUIC bm. TCP
1.0 : 1 10.0 10.0 32.1 (1.22) 35.7 (0.16) 36.2 (0.27)
1.5 : 1 12.0 8.0 33.5 (0.94) 35.7 (0.29) 36.2 (0.30)
2.0 : 1 13.3 6.7 33.5 (1.45) 36.0 (0.28) 36.3 (0.26)
2.5 : 1 14.3 5.7 33.4 (1.15) 35.8 (0.25) 36.2 (0.34)
3.0 : 1 15.0 5.0 32.9 (0.70) 35.3 (0.49) 36.4 (0.18)
3.5 : 1 15.6 4.4 32.9 (1.26) 35.3 (0.58) 36.2 (0.38)
4.0 : 1 16.0 4.0 33.2 (0.62) 35.4 (0.35) 36.4 (0.02)
4.5 : 1 16.4 3.6 32.8 (0.90) 35.4 (0.44) 36.4 (0.35)
5.0 : 1 16.7 3.3 33.1 (0.47) 35.6 (0.47) 36.5 (0.20)
1.0 : 1 100 100 18.2 (1.31) 31.9 (2.13) 23.5 (2.00)
1.5 : 1 120 80 9.3 (0.52) 16.7 (1.08) 20.7 (1.39)
2.0 : 1 133 67 7.9 (0.47) 18.0 (6.01) 19.5 (0.21)
2.5 : 1 143 57 7.0 (0.38) 14.2 (0.79) 18.1 (0.91)
3.0 : 1 150 50 6.5 (0.23) 15.2 (3.97) 17.1 (1.34)
3.5 : 1 156 44 6.3 (0.23) 14.7 (4.99) 17.0 (0.19)
4.0 : 1 160 40 6.3 (0.31) 12.8 (0.65) 15.9 (1.42)
4.5 : 1 164 36 5.9 (0.14) 12.6 (0.80) 15.5 (0.99)
5.0 : 1 167 33 5.8 (0.19) 12.7 (1.51) 14.0 (2.14)

steady pace and reducing the burstiness. Aioquic:s pacer is inspired by the Fair Queue
packet scheduler1, which the RFC presents as an example for a pacer [21].

In Figure 5.12b, a spike in QUIC throughput can be observed with a delay ratio of 1:1.
This is because of the QUIC pacer, which increases the likelihood of in-order-delivery at
the cost of sending the packets at a slightly lower rate. Thus, the cwnd grows slower for
QUIC, but it does not enter fast recovery as often, leading to overall faster speed. For
other delay ratios, the effect of the pacer is more clearly shown when varying the delay
ratio over a bandwidth trace, shown in Figures D.3 to D.4, and Figures E.3 to E.4 in the
appendices.

5.2.5 Random loss

When extra random losses are introduced in the transmission, the throughput will de-
crease. Figure 5.13a and Table 5.7 show the throughput as a function of extra random
loss introduced per link. The introduced losses are evenly distributed and more loss dur-
ing a transmission will naturally lead to lower throughput. The standard deviation is
higher than the other experiments due to the nature of the experiment. The timing of
the random loss affects the results. For example, many early losses would keep a low
ssthresh, which would lead to a slow growth of the congestion window.

1http://man7.org/linux/man-pages/man8/tc-fq.8.html

40



5.2. Throughput

Besides using DC to achieve higher throughput, DC can also be used to increase con-
nection reliability. By duplicating a packet and sending a copy on another link, the prob-
ability that one of the packets will arrive increases. This can useful be useful in very
lossy network environments. Figure 5.13b and Table 5.7 show the throughput for when
using SC, but duplicating each packet and sending it on another link. The QUIC client is
unaware of the duplicate packets, as the PDCP layer will discard a packet if one with the
same sequence number has already been delivered.

The results show that by duplicating each packet, the maximum throughput for one
link can be achieved, even with up to 1% loss per link. When using DC and not duplicating
any packets, this throughput corresponds to about 0.05% loss. Naturally, a combination
of these two cases can also be done, where only some packets are duplicated. When
varying loss with and without duplicating packets over a bandwidth trace, similar trends
are observed as shown in Figures D.5 to D.6, and Figures E.5 to E.6 in the appendices.

Random	loss	per	interface	(%)

Th
ro

ug
hp

ut
	(M

bp
s) TCP

QUIC
QUIC	buffer	modified

0.00 0.04 0.08 0.12 0.16 0.20
0

10

20

30

40

(a) Without packet duplication

Random	loss	per	interface	(%)

Th
ro

ug
hp

ut
	(M

bp
s) TCP

QUIC
QUIC	buffer	modified

0.00 1.00 2.00 3.00 4.00 5.00
0

10

20

30

40

(b) With packet duplication

Figure 5.13: Throughput based on random loss. Default values: DC batch size of 100, DC
ratio 1:1, 10ms delay, 20Mbps/link

Table 5.7: Values for Figure 5.13 with Std Dev

Loss % QUIC QUIC bm. TCP
0.00 32.1 (0.58) 35.6 (0.26) 36.2 (0.42)
0.01 28.8 (1.77) 30.8 (2.19) 32.4 (1.93)
0.02 23.6 (1.36) 28.1 (2.45) 27.1 (1.79)
0.03 21.9 (1.02) 21.3 (1.40) 23.6 (1.60)
0.04 19.4 (1.92) 19.2 (0.95) 20.3 (1.23)
0.05 17.1 (1.20) 17.2 (1.55) 18.6 (0.94)
0.06 15.4 (1.25) 15.2 (0.76) 16.5 (1.24)
0.07 14.5 (1.14) 13.8 (1.13) 15.7 (0.92)
0.08 13.4 (0.93) 13.5 (1.02) 14.8 (0.77)
0.09 12.6 (1.20) 12.4 (0.78) 13.7 (1.18)
0.10 12.3 (0.86) 12.3 (0.75) 12.9 (0.91)
0.11 11.0 (0.75) 11.4 (1.08) 12.4 (1.20)
0.12 10.3 (0.59) 10.8 (0.71) 11.3 (0.28)
0.13 10.0 (0.66) 10.0 (0.50) 11.1 (0.63)
0.14 9.6 (0.27) 9.6 (0.50) 10.9 (0.67)
0.15 8.9 (0.41) 9.2 (0.37) 10.0 (0.49)
0.16 8.8 (0.40) 8.9 (0.39) 9.9 (0.56)
0.17 8.8 (0.32) 8.5 (0.47) 9.1 (0.57)
0.18 8.2 (0.40) 8.3 (0.36) 8.9 (0.32)
0.19 8.1 (0.28) 8.1 (0.50) 8.7 (0.35)
0.20 7.7 (0.48) 7.6 (0.28) 8.7 (0.27)

Loss % QUIC QUIC bm. TCP
0.00 17.2 (0.11) 17.3 (0.12) 17.8 (0.18)
0.20 17.2 (0.12) 17.4 (0.17) 17.7 (0.21)
0.40 17.2 (0.11) 17.4 (0.14) 17.8 (0.21)
0.60 17.3 (0.13) 17.4 (0.11) 17.8 (0.13)
0.80 17.2 (0.14) 17.4 (0.16) 17.8 (0.18)
1.00 17.2 (0.14) 17.3 (0.19) 17.8 (0.23)
1.20 16.9 (0.22) 17.1 (0.19) 17.7 (0.22)
1.40 16.8 (0.19) 16.8 (0.37) 17.4 (0.23)
1.60 16.4 (0.31) 16.7 (0.36) 17.0 (0.21)
1.80 15.9 (0.31) 16.2 (0.47) 16.7 (0.50)
2.00 15.5 (0.74) 15.7 (0.47) 16.2 (0.56)
2.20 14.8 (0.94) 15.1 (0.64) 15.9 (0.33)
2.40 14.4 (0.52) 14.0 (0.97) 15.3 (0.47)
2.60 12.9 (0.52) 13.3 (0.58) 14.1 (0.53)
2.80 13.0 (0.71) 12.6 (0.59) 13.8 (0.42)
3.00 11.7 (0.46) 11.7 (0.62) 13.4 (0.98)
3.20 11.1 (0.49) 11.2 (0.68) 12.3 (0.54)
3.40 10.8 (0.36) 10.6 (0.76) 11.4 (0.45)
3.60 9.9 (0.35) 9.9 (0.57) 11.1 (0.43)
3.80 9.3 (0.50) 9.3 (0.63) 10.3 (0.51)
4.00 8.5 (0.34) 8.9 (0.52) 9.8 (0.46)
4.20 8.5 (0.36) 8.4 (0.39) 9.1 (0.34)
4.40 8.0 (0.29) 8.0 (0.38) 8.6 (0.39)
4.60 7.5 (0.26) 7.3 (0.29) 8.1 (0.48)
4.80 7.1 (0.41) 7.0 (0.39) 7.8 (0.40)
5.00 6.6 (0.21) 6.8 (0.17) 7.3 (0.42)

41



5.3. Fairness

5.3 Fairness

When discussing fairness it is important to note that the relative throughput of the com-
peting clients can vary significantly over time. This is illustrated in Figure 5.14a showing
an example throughput for two simultaneous QUIC connections in a SC environment over
a 3-minute long example experiment. Here, fairness is calculated using Jain’s fairness
index (JFI) to an optimal fairness index of 1.000. Furthermore, QUIC is shown to be fair
when used in parallel with a TCP connection in SC (Figure 5.14b). Using our testbed, TCP
is also confirmed to be fair with itself in SC (Figure 5.14c).

The remaining of this section will focus on the fairness of QUIC in a DC environment
by varying different attribute parameters. An example scenario using one DC client, two
SC clients, and default network attributes is illustrated in Figure 5.14d.

Complementary results are shown in Appendix G (Figures G.1 to G.8) and Appendix H
(Figures H.1 to H.8), where the QUIC implementation ngtcp2 and the congestion control
algorithms NewReno and CUBIC are used, respectively.

Time (s)

Tr
ou

gh
pu

t (
M

bp
s)

0

5

10

15

20

0 30 60 90 120 150 180

QUIC 1 QUIC 2

(a) SC with Avg(QUIC 1, QUIC 2) = (8.11,
7.97), JFI = 1.000

Time (s)

Tr
ou

gh
pu

t (
M

bp
s)

0

5

10

15

20

0 30 60 90 120 150 180

QUIC TCP

(b) SC with Avg(QUIC, TCP) = (7.82, 8.98),
JFI = 0.995

Time (s)

Tr
ou

gh
pu

t (
M

bp
s)

0

5

10

15

20

0 30 60 90 120 150 180

TCP 1 TCP 2

(c) SC with Avg(TCP 1, TCP 2) = (7.91,
8.43), JFI = 0.999

Time (s)

Tr
ou

gh
pu

t (
M

bp
s)

0

5

10

15

20

0 30 60 90 120 150 180

QUIC DC QUIC SC 1 QUIC SC 2

(d) DC with Avg(DC, SC 1, SC 2) = (10.39,
10.49, 10.28), JFI = 1.000

Figure 5.14: Fairness of QUIC/TCP in SC/DC

42



5.3. Fairness

DC	batch	size

Th
ro
ug
hp
ut
	(M

bp
s)

1.0
0

1.0
0
1.0

0
1.0

0
1.0

0
1.0

0
0.9

8
0.9

8
0.9

6
0.9

6
0.9

5
0.9

5
0.9

2
0.9

2
0.9

1
0.9

1
0.9

1
0.9

1
0.9

1
0.9

1
0.9

1
0.9

1

QUIC	SC	1 QUIC	DC
QUIC	SC	2 JFI

0 100 200 300 400 500
0

5

10

15

20

25

Figure 5.15: Fairness based on DC batch
size. Default values: DC ratio 1:1, 10ms de-
lay, 0% loss, 20Mbps/link

Table 5.8: Values for Figure 5.15 with Std Dev

Batch QUIC DC QUIC SC 1 QUIC SC 2 JFI
2 10.6 (0.53) 10.5 (0.23) 10.5 (0.28) 1.0000
10 10.8 (0.47) 10.4 (0.22) 10.4 (0.25) 0.9997
50 9.8 (0.48) 10.8 (0.21) 10.8 (0.24) 0.9980
100 10.2 (0.20) 10.5 (0.10) 10.5 (0.15) 0.9998
150 7.9 (0.48) 11.1 (0.24) 11.1 (0.22) 0.9773
200 6.8 (0.49) 11.4 (0.30) 11.4 (0.27) 0.9552
250 6.5 (0.47) 11.4 (0.28) 11.4 (0.31) 0.9464
300 5.8 (0.23) 11.8 (0.14) 11.7 (0.18) 0.9234
350 5.5 (0.25) 11.9 (0.18) 11.9 (0.19) 0.9133
400 5.5 (0.15) 11.9 (0.12) 11.9 (0.16) 0.9119
450 5.3 (0.26) 12.0 (0.25) 11.9 (0.29) 0.9058
500 5.4 (0.17) 11.9 (0.21) 12.0 (0.24) 0.9092

5.3.1 Dual connectivity batch size

Similar to the throughput, the fairness is negatively affected by large DC batch sizes.
In this test, the attribute batch size has been varied to study how the batch size affects
multiple flows sharing the same links. The results are shown in Figure 5.15 and Table 5.8.
With a batch size up to 100, the fairness index stays at almost 1. For batch sizes of 150 up
to 300, a steady decline in fairness can be seen, albeit it stays above 0.9. For QUIC DC,
there is a decline in throughput with a larger batch size, which was explained through
reduced link utilization previously shown in Figures 5.7 and 5.8. Reduced link utilization
occurs at around batch size of 150, and is more noticeable in fairness experiments than
in single throughput experiments. When running simultaneous connections, SC clients
can monopolize the links during the DC client’s off periods, while DC is always sharing
the link it is currently sending to at every point of time. This allows SC clients to increase
their cwnd further than the DC client and to use a larger bandwidth share.

5.3.2 Dual connectivity ratio

Figure 5.16 and Table 5.9 show the fairness results of varying DC ratio. The DC ratio
parameter controls the size of the batch that is sent on the links. As such, the DC connec-
tion should be considered as SC when the ratio reaches 0:1 or 1:0, i.e. 0% or 100% on
interface eno1. A fairness index of 0.8953 was calculated for the tests with SC. However,
this index does not indicate the fairness very well as JFI describes the fairness of a whole
system. In this case, there are two links wherein one link has only one connection, while
in the other link, there are two connections that equally share the link. This scenario
would be considered fair by Max-min fairness and proportional fairness.

The throughputs for the connections show some interesting changes between the
tests. When the ratio is significantly skewed (e.g., below 20% or above 80%), the through-
put of the single connection with the higher throughput is reduced at roughly the same
rate as the DC’s throughput grows. On the other hand, the single connection with the
lower throughput stays roughly the same during these tests, showing that unskewing the
ratio first benefits DC.

This is due to DC’s injection of some of its packets in the other path, which leads to DC
"stealing" some bandwidth for itself. However, the total amount of packets on the primary
path of the DC is not lessened enough to make a difference for the single connection
on that path. The single connection with the lower throughput gains a more considerable
throughput increase compared to DC when the ratio starts to reach a more balanced ratio.
As the links become more balanced, the overall fairness improves, with optimal fairness
and all connections having roughly equal throughput when perfectly balanced.

43



5.3. Fairness

Interface	eno1	(%)

Th
ro
ug
hp
ut
	(M

bp
s)

0.9
0

0.9
0
0.9

3
0.9

3
0.9

5
0.9

5
0.9

8
0.9

8
0.9

9
0.9

9
1.0

0
1.0

0
0.9

9
0.9

9
0.9

8
0.9

8
0.9

5
0.9

5
0.9

2
0.9

2
0.9

0
0.9

0

QUIC	SC	1 QUIC	DC
QUIC	SC	2 JFI

0 20 40 60 80 100
0

5

10

15

20

25

Figure 5.16: Fairness based on DC ratio.
Default values: DC batch size of 100, 10ms
delay, 0% loss, 20Mbps/link

Table 5.9: Values for Figure 5.16 with Std Dev

% Ratio QUIC DC QUIC SC 1 QUIC SC 2 JFI
0 0:1 7.9 (0.23) 15.6 (0.08) 8.1 (0.21) 0.8953
10 1:9 8.9 (0.42) 14.7 (0.14) 7.9 (0.36) 0.9255
20 1:4 9.6 (0.35) 13.6 (0.20) 8.1 (0.29) 0.9527
30 1:2.3 10.0 (0.13) 12.5 (0.09) 8.7 (0.12) 0.9774
40 1:1.5 10.2 (0.31) 11.5 (0.13) 9.6 (0.12) 0.9942
50 1:1 10.1 (0.37) 10.6 (0.18) 10.6 (0.18) 0.9996
60 1.5:1 10.0 (0.46) 9.7 (0.23) 11.6 (0.22) 0.9938
70 2.3:1 9.9 (0.34) 8.8 (0.23) 12.6 (0.17) 0.9769
80 4:1 9.3 (0.27) 8.3 (0.23) 13.7 (0.11) 0.9530
90 9:1 9.0 (0.36) 7.8 (0.31) 14.7 (0.10) 0.9241
100 1:0 7.9 (0.13) 8.0 (0.14) 15.6 (0.10) 0.8953

5.3.3 Bandwidth ratio

In the first experiment for bandwidth fairness, the bandwidth ratio is altered to study
how it affects the fairness for the two links. Interface eno1 will be allowed an increasing
amount of bandwidth throughout the experiment, while eno2 will be allowed a decreasing
amount of bandwidth. Figure 5.17a and Table 5.10 show the fairness results when varying
the bandwidth ratio. With equal bandwidth capabilities on the two links, almost optimal
fairness can be achieved. When the difference in link bandwidth increases, the system
becomes more unfair, with the worst fairness index being 0.59. The DC connection splits
its throughput equally between the two links. As the bandwidth capability lowers for one
link, the throughput for the DC connection will also lower. Meanwhile, the SC on the
link with increasing bandwidth capabilities will gain a higher share of the capacity. This
shows that when sending an equal amount of packets on both links, the throughput of DC
is reliant on the performance of the worst link.

In the second experiment for fairness and bandwidth, both the bandwidth ratio and DC
ratio was altered. Much like the previous experiment, eno1 will be allowed more band-
width over the experiment while eno2 will be allowed less. Here, DC sends more packets
through the interface with higher bandwidth. The results are shown in Figure 5.17b and
Table 5.10. Similar to the throughput results, higher fairness is achieved when the DC
split is selected based on the capacity of the two links. The fairness index starts at 1, but it
decreases throughout the experiment as the ratio increases. However, the worst fairness
index is at 0.6965, which is higher than when varying only the bandwidth ratio. This is
due to a more significant amount of the DC’s throughput is provided by the interface with
higher bandwidth. The single connection on the link with higher bandwidth will be able
to use less bandwidth. In contrast, the single connection on the link with lower capacity
is able to use a capacity closer to the maximum. The DC connection is able to have a
slightly higher throughput compared to when varying only the bandwidth ratio, as more
packets are being sent on the link with higher throughput. The DC connection is thus
still reliant on the worst link but slightly less than in the previous experiment, leading to
slightly better fairness overall.

44



5.3. Fairness

Bandwidth	ratio

Th
ro
ug
hp
ut
	(M

bp
s)

1.001.00 0.960.96 0.880.88 0.810.81 0.750.75 0.700.70 0.650.65 0.620.62 0.590.59

QUIC	SC	1 QUIC	DC
QUIC	SC	2 JFI

1:1 2:1 3:1 4:1 5:1
0

5

10

15

20

25

(a) BW ratio

Bandwidth	and	DC	ratio

Th
ro
ug
hp
ut
	(M

bp
s)

1.001.00 0.980.98 0.940.94 0.900.90 0.850.85 0.810.81 0.760.76 0.720.72 0.700.70

QUIC	SC	1 QUIC	DC
QUIC	SC	2 JFI

1:1 2:1 3:1 4:1 5:1
0

5

10

15

20

25

(b) BW and DC ratio

Figure 5.17: Fairness based on BW ratio. Default values: DC batch size of 100, DC ratio
1:1, 10ms delay, 0% loss

Table 5.10: Values for Figure 5.17 with Std Dev

BW ratio BW 1 BW 2 DC ratio eno1 % eno2 % QUIC DC QUIC SC 1 QUIC SC 2 JFI
1.0 : 1 20.0 20.0 1 : 1 50 50 10.2 (0.32) 10.5 (0.14) 10.5 (0.15) 0.9997
1.5 : 1 24.0 16.0 1 : 1 50 50 9.6 (0.21) 13.3 (0.16) 8.0 (0.09) 0.9552
2.0 : 1 26.7 13.3 1 : 1 50 50 8.6 (0.17) 15.1 (0.71) 6.5 (0.07) 0.8836
2.5 : 1 28.6 11.4 1 : 1 50 50 7.9 (0.27) 16.9 (0.25) 5.4 (0.12) 0.8063
3.0 : 1 30.0 10.0 1 : 1 50 50 7.2 (0.23) 18.2 (0.20) 4.7 (0.12) 0.7452
3.5 : 1 31.1 8.9 1 : 1 50 50 6.7 (0.18) 19.1 (0.20) 4.1 (0.08) 0.6959
4.0 : 1 32.0 8.0 1 : 1 50 50 6.1 (0.15) 20.0 (0.15) 3.6 (0.07) 0.6537
4.5 : 1 32.7 7.3 1 : 1 50 50 5.7 (0.11) 20.5 (0.82) 3.2 (0.05) 0.6242
5.0 : 1 33.3 6.7 1 : 1 50 50 5.2 (0.12) 21.5 (0.18) 3.0 (0.06) 0.5899
1.0 : 1 20.0 20.0 1.0 : 1 50 50 9.9 (0.38) 10.6 (0.17) 10.7 (0.14) 0.9989
1.5 : 1 24.0 16.0 1.5 : 1 60 40 9.6 (0.29) 12.4 (0.16) 8.9 (0.10) 0.9784
2.0 : 1 26.7 13.3 2.0 : 1 67 33 9.2 (0.22) 13.6 (0.28) 7.7 (0.07) 0.9433
2.5 : 1 28.6 11.4 2.5 : 1 71 29 8.5 (0.28) 14.7 (0.30) 6.8 (0.10) 0.8980
3.0 : 1 30.0 10.0 3.0 : 1 75 25 7.8 (0.22) 15.7 (0.26) 6.3 (0.07) 0.8522
3.5 : 1 31.1 8.9 3.5 : 1 78 22 7.1 (0.14) 16.5 (0.30) 5.8 (0.03) 0.8076
4.0 : 1 32.0 8.0 4.0 : 1 80 20 6.6 (0.24) 17.5 (0.27) 5.3 (0.06) 0.7635
4.5 : 1 32.7 7.3 4.5 : 1 82 18 6.0 (0.16) 18.3 (0.22) 5.0 (0.04) 0.7230
5.0 : 1 33.3 6.7 5.0 : 1 83 17 5.8 (0.20) 18.8 (0.28) 4.6 (0.04) 0.6965

5.3.4 Delay ratio

Two experiments were performed to study how varying the delay ratio affects the fairness
of QUIC in a DC environment. The first experiment used a delay downlink sum of 20ms,
while the second experiment used a sum of 200ms. The interface eno1 would get a higher
delay over the course of the experiment, while interface eno2 would get a lower delay.
The results are shown in Figures 5.18a and 5.18b and Table 5.11.

Over the course of the first experiment with a delay sum of 20ms, the fairness index
changes from 0.9996 to 0.9986. The throughput for DC is slowly reduced over the exper-
iment while the SC eno1 and SC eno2 is slightly increasing. This sets a trend of lowering
fairness, which can be clearly seen in the next experiment, where a delay sum of 200ms
is used. Here, the fairness index starts at 0.9903 with a delay ratio at 1:1. This is due
to DC being at a slightly lower throughput, as there is a decent amount of reordering,
which takes longer for PDCP to resolve as the RTT is so high. Over the course of the
experiment, the fairness index drops to 0.8758. With a delay ratio at 5:1, the throughput
is as low as 4.7Mbps for DC, while SC eno1 and SC eno2 has a throughput of 12.0Mbps
and 13.2Mbps, respectively.

Over the course of the experiment, SC eno2 is able to achieve higher throughput than
SC eno1. This is due to SC eno2 have a lower RTT, allowing to faster react when DC has
loss due to timeouts/reordering. As such, the fairness of DC is affected by the RTT ratio.
However, the effect is rather small when the sum of the RTT is small.

45



5.3. Fairness

Delay	ratio	(sum	20ms)

Th
ro

ug
hp

ut
	(M

bp
s)

1.0
0

1.0
0

1.0
0

1.0
0

1.0
0

1.0
0

1.0
0

1.0
0

1.0
0

1.0
0

1.0
0

1.0
0

1.0
0

1.0
0

1.0
0

1.0
0

1.0
0

1.0
0

QUIC	SC	1 QUIC	DC
QUIC	SC	2 JFI

1:1 2:1 3:1 4:1 5:1
0

5

10

15

20

25

(a) Low delay ratio

Delay	ratio	(sum	200ms)

Th
ro

ug
hp

ut
	(M

bp
s)

0.9
9

0.9
9

0.9
5

0.9
5

0.9
2

0.9
2

0.9
1

0.9
1

0.9
0

0.9
0

0.9
1

0.9
1

0.8
9

0.8
9

0.8
8

0.8
8

0.8
8

0.8
8

QUIC	SC	1 QUIC	DC
QUIC	SC	2 JFI

1:1 2:1 3:1 4:1 5:1
0

5

10

15

20

25

(b) High delay ratio

Figure 5.18: Fairness based on delay ratio. Default values: DC batch size of 100, DC ratio
1:1, 0% loss, 20Mbps/link

Table 5.11: Values for Figure 5.18 with Std Dev

Delay ratio Delay eno1 Delay eno2 QUIC DC QUIC SC 1 QUIC SC 2 JFI
1.0 : 1 10.0 10.0 10.1 (0.42) 10.6 (0.16) 10.6 (0.19) 0.9996
1.5 : 1 12.0 8.0 10.2 (0.27) 10.6 (0.17) 10.5 (0.11) 0.9997
2.0 : 1 13.3 6.7 10.2 (0.33) 10.6 (0.14) 10.4 (0.11) 0.9997
2.5 : 1 14.3 5.6 10.0 (0.36) 10.7 (0.15) 10.4 (0.12) 0.9994
3.0 : 1 15.0 5.0 10.0 (0.31) 10.7 (0.14) 10.4 (0.12) 0.9991
3.5 : 1 15.6 4.4 9.9 (0.39) 10.8 (0.16) 10.4 (0.19) 0.9985
4.0 : 1 16.0 4.0 9.7 (0.32) 10.9 (0.19) 10.4 (0.13) 0.9977
4.5 : 1 16.4 3.6 9.5 (0.47) 11.0 (0.18) 10.5 (0.26) 0.9967
5.0 : 1 16.7 3.3 9.9 (0.45) 10.8 (0.24) 10.3 (0.18) 0.9986
1.0 : 1 100 100 8.7 (0.91) 10.8 (0.43) 10.9 (0.56) 0.9903
1.5 : 1 120 80 6.9 (0.59) 11.4 (0.29) 11.6 (0.33) 0.9545
2.0 : 1 133 67 5.9 (0.55) 11.7 (0.32) 12.2 (0.24) 0.9238
2.5 : 1 143 57 5.5 (0.49) 11.8 (0.34) 12.6 (0.28) 0.9087
3.0 : 1 150 50 5.4 (0.34) 11.8 (0.17) 12.7 (0.21) 0.9037
3.5 : 1 156 44 5.6 (0.27) 11.7 (0.17) 12.7 (0.12) 0.9112
4.0 : 1 160 40 5.1 (0.37) 11.9 (0.24) 13.0 (0.18) 0.8923
4.5 : 1 164 36 4.8 (0.43) 11.8 (0.25) 13.1 (0.18) 0.8825
5.0 : 1 167 33 4.7 (0.60) 12.0 (0.26) 13.2 (0.33) 0.8758

5.3.5 Random loss

The effect of random loss is being observed in the final experiments. In the first exper-
iment for random loss, DC uses both links for increased bandwidth capabilities, and the
amount of loss is varied from 0% to 0.2%. The results are shown in Figure 5.19a and
Table 5.12. Here, small packet losses have very limited impact on the fairness index and
the fairness index stays above 0.99 throughout the experiment.

In the second experiment, the random loss is varied between 0% and 5%. Here, DC is
providing increased reliability of the connection by duplicating each packet and sending
them on both links. The data was measured at the links, resulting in the the goodput of
DC is around half of what is shown in the results in Figure 5.19b and Table 5.12. DC
with packet duplication is shown to have a negative effect on fairness, with JFI ranging
from 0.3916 to 0.4839. The low fairness stems from DC having a much higher chance of
successfully sending a packet compared to the two SC. This results in DC having less end-
to-end packet losses, and obtaining a larger share of the link bandwidths. These results
show that duplication can provide a much higher degree of reliability but at the cost of
fairness and goodput.

46



5.3. Fairness

Random	loss	per	interface	(%)

Th
ro
ug
hp
ut
	(M

bp
s)

1.0
0

1.0
0

1.0
0

1.0
0

1.0
0

1.0
0

1.0
0

1.0
0

1.0
0

1.0
0

1.0
0

1.0
0

1.0
0

1.0
0

1.0
0

1.0
0

1.0
0

1.0
0

1.0
0

1.0
0

1.0
0

1.0
0

QUIC	SC	1 QUIC	DC
QUIC	SC	2 JFI

0.00 0.05 0.10 0.15 0.20
0

5

10

15

20

25

(a) Without packet duplication

Random	loss	per	interface	(%)
Th
ro
ug
hp
ut
	(M

bp
s)

0.4
8

0.4
8
0.4

2
0.4

2
0.4

0
0.4

0
0.4

0
0.4

0
0.4

0
0.4

0
0.3

9
0.3

9
0.4

0
0.4

0
0.4

0
0.4

0
0.4

0
0.4

0
0.4

0
0.4

0
0.4

0
0.4

0
0.4

1
0.4

1
0.4

1
0.4

1

QUIC	SC	1
QUIC	SC	2
QUIC	DC
JFI

0.00 1.00 2.00 3.00 4.00 5.00
0
5
10
15
20
25
30

(b) With packet duplication

Figure 5.19: Fairness based on random loss. Default values: DC batch size of 100, DC
ratio 1:1, 10ms delay, 20Mbps/link

Table 5.12: Values for Figure 5.19 with Std Dev

Loss % QUIC DC QUIC SC1 QUIC SC2 JFI
0.00 10.0 (0.45) 10.6 (0.15) 10.6 (0.22) 0.9992
0.01 10.0 (0.27) 10.5 (0.13) 10.6 (0.11) 0.9992
0.02 9.7 (0.54) 10.5 (0.24) 10.6 (0.24) 0.9985
0.03 9.7 (0.41) 10.3 (0.27) 10.4 (0.26) 0.9991
0.04 9.6 (0.40) 10.1 (0.24) 10.1 (0.22) 0.9994
0.05 9.1 (0.44) 10.2 (0.25) 10.1 (0.28) 0.9975
0.06 9.2 (0.27) 9.8 (0.10) 9.7 (0.19) 0.9991
0.07 8.7 (0.43) 9.6 (0.23) 9.6 (0.17) 0.9980
0.08 8.5 (0.30) 9.4 (0.24) 9.4 (0.19) 0.9977
0.09 8.2 (0.22) 9.0 (0.21) 9.2 (0.23) 0.9978
0.10 8.0 (0.30) 8.8 (0.33) 8.7 (0.17) 0.9982
0.11 7.7 (0.34) 8.6 (0.20) 8.6 (0.32) 0.9977
0.12 7.6 (0.30) 8.1 (0.33) 8.3 (0.24) 0.9987
0.13 7.5 (0.28) 8.0 (0.19) 7.9 (0.19) 0.9993
0.14 7.3 (0.20) 7.6 (0.22) 7.6 (0.21) 0.9996
0.15 7.0 (0.16) 7.4 (0.32) 7.4 (0.32) 0.9992
0.16 6.8 (0.10) 7.3 (0.21) 7.1 (0.27) 0.9992
0.17 6.7 (0.26) 7.0 (0.22) 7.0 (0.17) 0.9995
0.18 6.5 (0.23) 6.8 (0.22) 6.8 (0.24) 0.9995
0.19 6.4 (0.29) 6.7 (0.29) 6.6 (0.21) 0.9998
0.20 6.1 (0.25) 6.6 (0.17) 6.6 (0.12) 0.9987

Loss % QUIC DC QUIC SC1 QUIC SC2 JFI
0.00 26.2 (0.39) 2.9 (0.23) 2.9 (0.22) 0.4839
0.20 27.7 (0.27) 1.9 (0.13) 1.9 (0.12) 0.4276
0.40 27.9 (0.18) 1.7 (0.06) 1.7 (0.06) 0.4177
0.60 28.0 (0.32) 1.6 (0.05) 1.6 (0.07) 0.4090
0.80 28.0 (0.30) 1.5 (0.07) 1.4 (0.06) 0.4036
1.00 27.8 (0.28) 1.4 (0.06) 1.4 (0.06) 0.4016
1.20 27.8 (0.31) 1.3 (0.05) 1.3 (0.05) 0.3957
1.40 27.2 (0.47) 1.3 (0.05) 1.3 (0.06) 0.3960
1.60 26.5 (0.48) 1.2 (0.04) 1.2 (0.04) 0.3962
1.80 25.7 (0.32) 1.2 (0.05) 1.2 (0.03) 0.3942
2.00 25.1 (0.38) 1.1 (0.05) 1.1 (0.05) 0.3944
2.20 24.5 (0.36) 1.1 (0.03) 1.0 (0.04) 0.3916
2.40 22.6 (0.71) 1.0 (0.06) 1.0 (0.04) 0.3957
2.60 21.8 (0.53) 1.0 (0.04) 1.0 (0.03) 0.3957
2.80 20.6 (0.56) 1.0 (0.05) 1.0 (0.03) 0.3964
3.00 19.4 (0.78) 0.9 (0.02) 0.9 (0.02) 0.3979
3.20 18.6 (0.40) 0.9 (0.02) 0.9 (0.02) 0.3972
3.40 17.1 (0.39) 0.9 (0.03) 0.8 (0.02) 0.4008
3.60 16.4 (0.53) 0.8 (0.04) 0.8 (0.03) 0.4016
3.80 15.3 (0.83) 0.8 (0.03) 0.8 (0.03) 0.4036
4.00 14.5 (0.39) 0.7 (0.04) 0.8 (0.02) 0.4037
4.20 13.9 (0.55) 0.7 (0.02) 0.7 (0.02) 0.4047
4.40 12.9 (0.51) 0.7 (0.02) 0.7 (0.02) 0.4080
4.60 12.3 (0.36) 0.7 (0.03) 0.7 (0.02) 0.4081
4.80 11.8 (0.35) 0.7 (0.02) 0.6 (0.01) 0.4088
5.00 11.2 (0.55) 0.6 (0.02) 0.6 (0.02) 0.4092

47



6 Discussion

In this chapter, the results of this thesis are first discussed. Then, our methodology is
evaluated, discussing alternative tools as well as the replicability of the study. Finally, the
thesis work is put into a wider context where ethical and social aspects are taken into
consideration.

6.1 Results

In this section, the performance results between QUIC and TCP are discussed, followed
by the observed standard deviations and the fairness of QUIC.

6.1.1 QUIC versus TCP

When comparing QUIC default with QUIC buffer modified or TCP, a clear performance
difference can be observed. A general observation is that a larger difference in link
characteristics leads to a considerably lower throughput for QUIC default. This is due
to the amount of reordering and bursts caused by DC, which causes QUIC default with a
smaller buffer size to drop packets. However, one must also note with lower throughput,
less differences can be seen between QUIC default and QUIC buffer modified. As the
throughput is lower, bursts will be smaller, causing very few or no packet drops due tofull
buffer sizes.

QUIC buffer modified and TCP show similar performance over DC, where the largest
difference being observed with worse circumstances, such as high delay ratios. In most
cases, TCP is up to 2% faster than QUIC buffer modified, except for the test with high
delay ratio 1:1, where QUIC clearly outperforms TCP. This was due to the QUIC’s pacer
sending new packets at a more steady pace, leading to overall higher throughput. How-
ever, pacers can cause lower performance with low RTTs, which could explain the lower
throughput of QUIC [65]. As such, some experiments were rerun with a disabled QUIC
pacer. The results showed almost negligible improvements in most cases. However, turn-
ing off the pacer was detrimental for QUIC for the high delay ratio experiment.

It was observed that QUIC without 0-RTT had a slightly longer startup time than TCP.
This could have been an explanation for the performance difference as it was so minus-
cule. However, the file size experiment debunks this theory as the time difference should

48



6.1. Results

then be relatively constant for longer tests. The longer the test run, the more substantial
the difference between TCP and QUIC.

With no explanation for the performance difference being found in the protocols, other
possibilities have to be considered. Aioquic is implemented in Python, while TCP is im-
plemented in C on Linux. A performance difference might be the result of the choice of
the programming language. Another reason for the performance difference might be due
to QUIC being implemented in the userspace, while TCP is in kernel space. QUIC will
thus require more context switches than TCP, requiring additional time. Furthermore,
TCP is more optimized in hardware and on Linux, which was noted by QUIC requiring
more resources when run. An almost constant performance difference of 2% between
QUIC buffer modified and TCP is therefore considered negligible in terms of protocol
performance over DC.

In Appendix F, complementary results for another QUIC implementation, named
ngtcp2 and programmed in C, were shown. The tests were done using the congestion con-
trol algorithms NewReno and CUBIC, and compared to TCP CUBIC. These complementary
results show that QUIC performs very similar to TCP and that the performance difference
of 2% in the case of aioquic is no longer present. Whether QUIC or TCP achieves the
highest throughput depends on the network and DC parameters. These results show that
differences in implementation can give different throughput.

Ngtcp2 results showed similar results with and without having the socket receive
buffer size increased. This can be due to the client’s faster execution, causing no packet
drops even with a smaller buffer size. As no difference was observed when increasing the
buffer size, the results show only the ngtcp2 buffer modified to be consistent with aio-
quic buffer modified. Finally, the complementary throughput results show that QUIC with
NewReno performs similarly to QUIC with CUBIC over DC, except in lossy environments
where CUBIC recovers faster from losses and achieves higher throughput.

QUIC was tested as a general-purpose transport protocol and showed similar perfor-
mance to TCP when not benefiting from its strong points such as 0-RTT and no head of
the line blocking while multiplexing. 0-RTT was not tested to give a fair comparison to
TCP, as it is trivial that 0-RTT gives a faster connection establishment than 1-RTT. QUIC
advantages in multiplexing were not considered as the focus of the study was on QUIC as
a general-purpose transport protocol.

6.1.2 Standard deviation

Throughout the experiments, the standard deviation has been calculated for the tests.
Low standard deviations were achieved as the tests were performed in a closed environ-
ment. However, as packet reordering and the kernel scheduler introduced some varia-
tions between the tests, small standard deviations were still observed. For throughput
tests, the standard deviation was within 1Mbps for more than 85% of the cases and over
95% of the tests were within 1.5Mbps. For fairness tests, the standard deviation was
much smaller, showing a standard deviation within 1Mbps for over 99% of the cases.
Combining both throughput and fairness together, over 93% of all tests had a standard
deviation within 1Mbps.

6.1.3 Fairness

When studying fairness, one might believe that a DC connection would be unfair due to
the increased amount of total bandwidth, resulting in double the throughput compared to
SC. However, as seen in the results, QUIC is able to achieves fairness if the link properties
are similar. This is due to DC performing over two paths, where congestion and loss can
occur both paths. When DC share links with other connections, there are small gains in

49



6.2. Method

throughput in best case scenarios but in all cases the throughput is balanced over two
links.

If the properties of the two links are too different, the DC will follow the properties
of the worse link more strongly than the properties of the better link. This effect can be
mitigated by directing more packets to the better link, as previously shown in Figure 5.11.
If there are large differences in link properties, DC should instead be considered turning
off. During these scenarios, DC can show a more unfair and worse performance than if
the DC connection would have been a SC connection on the better link.

During the fairness experiments, the standard deviation for the DC could be up to 2-4
times higher than the competing single connections. The varying results show that DC is
more unstable than single connections. Figure 5.14d shows that DC sometimes dips well
below a fair rate and stays there for a good while, but also that DC sometimes grows well
over the fair rate. However, when DC grows over the rate, it stays there for a shorter
amount of time compared to when DC is below the fair rate. In contrast, Figure 5.14a
shows two QUIC flows share a link in SC, where the underdog flow keeps alternating.

While the possible throughput for DC is higher than SC, it is also more likely to give
way for the two SC when there is one SC on each of the DC’s links. The increased possible
throughput is due to DC having access to the bandwidth of both links. The increased
probability of being the lowest throughput occurs due to multiple reasons. One reason
is due to the increased amount of packet reordering, as packets number with a higher
sequence number may arrive earlier on the other link. The increased reordering increases
the average RTT and the burstiness of the connection. Higher RTT leads to a slower
change in the cwnd as the congestion control algorithm is reliant on ACKs. Another reason
is that the cwnd of the DC connection is split between two links, where it is susceptible
to losses on both links, while the SC connections are only to one. A congestion and loss
on one link would mean that DC connection reduces its cwnd, resulting in less traffic on
the other link as well, which might not suffer from congestion. When that occurs, the SC
connections would start increasing its cwnd at a faster rate than DC, leaving DC limited
resources.

In Appendices G and H, complementary fairness results using another QUIC imple-
mentation, ngtcp2, together with the congestion control algorithms NewReno and CUBIC
were shown. These results show that ngtcp2 is greedier than aioquic over DC, often lead-
ing to a small degree of unfairness for scenarios that were fair for aioquic. A potential
reason for this could be the differences in pacer implementation, in which the effect is
clearly seen for high delay tests. However, as discussed earlier, removing the pacer of
aioquic showed little difference in the tests, except for the high delay tests. This makes
it unlikely to be the only explanation. With ngtcp2 being slightly faster than aioquic, the
explanation could simply be the faster execution at the endpoints. Similar to the comple-
mentary throughput results, little differences are seen between QUIC with NewReno and
QUIC with CUBIC, except for cases in lossy environments where CUBIC recovers faster
from losses and achieves higher throughput.

6.2 Method

As this thesis concerns how QUIC is being utilized through the specified network envi-
ronments, it is considered as an empirical case study. Kitchenham et al. [71] presents
preliminary guidelines for empirical research in software engineering. These guidelines
were derived from observing similar problems in software engineering and medical re-
search and drawing parallels from medical research on how to solve these problems.
Some guidelines were deemed to not fit this thesis, but others assisted in raising aware-
ness of problems that could have occurred in the study. Problems such as fishing for
results and making inappropriate use of graphics has been considered when analyzing

50



6.2. Method

and presenting the results. For example, many of the graphs in the thesis use similar y-
axis scale, allowing easier comparison between the graphs. Furthermore, the guidelines
for data collection, analysis and presentation were considered and followed to raise this
thesis level of replicability, validity and reliability.

Williamson [72] show some of the tools and methods that can be used when doing
measurements on the internet. They explain that measurement approaches can be divided
into the following categories:

• Passive or active measurement

• Online or Offline analysis

• LAN or WAN measurement

• Protocol levels analysis, e.g. single-layer or multi-layer in the network stack

As properties of the network have actively been changed and proxies have added com-
plexity to the network, active measurements have been performed. The analysis has
been done offline, as the data have been collected and analyzed afterward. Our measure-
ments have been performed on local machines and have focused on the link, transport
and application layer.

An alternative to our experimental testbed would have been to use ns3, which is a
powerful network simulator for internet systems often used in research. Using ns3 was
considered during the thesis, but was not chosen as real tests with network traffic were
preferred. ns3 also contained an outdated QUIC version, which would have meant much
time going into updating the version.

Aioquic was chosen as it is simple, popular, up to date and follows the IETF drafts.
Another option would have been to use gQUIC or PQUIC. We found that gQUIC was more
complicated and less documented than aioquic. PQUIC, presented in the related work,
was found to very outdated, currently supporting only draft version 14, while the latest
version is currently draft 27.

As discussed by McMillan and Zuck [73], the RFC can be ambiguous and be open for
interpretations. The authors performed a specification testing and showed that differ-
ent QUIC implementations, following the same RFC, can contain differences. As showed
in the complementary results, different QUIC implementations can result in small differ-
ences in throughput and fairness. However, as these differences are small, the conclu-
sions of the thesis is not changed.

The library libnetfilter_queue was chosen as it is simple and proved to contain the
needed features. A more advanced alternative is libtins [74], which supports similar fea-
tures as libnetfilter_queue, but for more protocols. Libtins was considered during the
project but rejected early as libnetfilter_queue was deemed sufficient to simulate the
functionality of the PDCP layer.

Qlog has been used for data logging, as it proved to be more updated with more
features than the other main logging format QUIC Trace. As Qvis is a visualization tool
for the Qlog format, it is natural to use this for data analysis. These tools proved to be
very useful for understanding the behavior of QUIC, as they enabled the visualization of
each packet sent during the connection.

These tools, together with the server specification and configurations mentioned in
Section 4, enables replicability of the found results. As the standardization of QUIC is not
finished, small differences might be noted if, in the future, a later version of QUIC is used.
However, as the code for aioquic is available on github [24], earlier implementations of
the protocol can be used. Furthermore, as the configuration code is shown in Section 4,
and the PDCP proxy code in Appendix B, an exact replication of the study is possible.

By using the same method, the same results, with a minor variation, should be ob-
tained. The minor variation can occur due to kernel scheduling, randomization in extra

51



6.3. The work in a wider context

loss or the normal distribution of the delay. However, we believe that these differences
are small in comparison and that the outcome of the thesis is not affected.

The cited sources have mainly been obtained from related research in the fields of TCP,
QUIC, DC, fairness and multipath. Research has been gathered from top conferences
within this area, including ACM SIGCOMM, ACM CoNext, and other popular RAN and
network measurement conferences. State of the art techniques and discussions have
been considered, such as PQUIC [63] and a formal specification testing of QUIC [73].
Other sources have been found by studying citations of state of the art work or from a
literature search.

When suitable, different RFCs for QUIC as well as for Qlog have been used. If some
information cannot be found in previous research or the RFC, only then have various
online sources been used. In some cases, consultation with Ericsson has been done, e.g.,
when choosing default attributes for the performance testing.

6.3 The work in a wider context

One of the many fallouts of 5G is the Internet of Things (IoT), where almost everything
that can be connected will eventually be connected. This has lead to some challenges,
such as privacy and security issues. In a fully connected world, various companies would,
e.g., be able to track users at any given time, monitor their heart rate or even record their
thoughts. These challenges must be studied from several aspects and levels. QUIC, as a
fully encrypted transport protocol, tries to limit the data monitoring that third parties are
able to do, and can therefore be seen as a contributory at the transport level. Although our
work does not directly contribute to the 5G network specification and standardization, it
can speed up the transitioning to 5G and the IoT world. It is therefore important to study
these transitioning with the privacy and security challenges in mind.

Another societal aspect of this work concerns the internet challenges present in devel-
oping countries. One of the largest limiting factors for expanding the internet infrastruc-
ture is cost. As DC allows users to connect to two nodes simultaneously, this might reduce
the cost and strains of current nodes. Instead of using one expensive node for achieving
a specific throughput, two cheaper nodes, achieving only half of the throughput each, can
be used together to gain the same Quality of Service (QoS). Users might also be able to
replace an expensive network subscription with two cheaper ones.

Many devices are today equipped with multiple network controllers and have hard-
ware support for DC. The devices could potentially connect to multiple nodes, e.g., by
both WiFi and 5G. However, this is often not used due to network complications with the
current network structure. By using DC, hardware that users already have access to will
get utilized and not wasted. Network operators will be able to perform load balancing
between nodes during a single connection session and congested paths can therefore be
reduced. Also, as the total bandwidth increases, the services that were previously un-
available might now be possible to use.

Figure 6.1 shows the number of internet users per 100 inhabitants around the world.
The number of internet users in the developing countries is considerably lower than the
developed countries [75]. As countries are getting more connected over time, this trend
is expected to continue. One example is India, where the number of internet users is
expected to have doubled from the year 2016 to 2021 [76]. With the help of 5G and DC,
it is most likely that the gap between the developed and developing countries will reduce
in the future, and that every country will eventually be fully connected.

However, with the usage of DC, energy consumption might rise. More hardware is
used at the UE and two geographically separated nodes are used instead of one. This
might have a large impact, especially in developing countries. In this thesis, power con-
sumption has not been taken into consideration. The servers used are running with much

52



6.3. The work in a wider context

more power than actually needed to perform DC. A study of power consumption together
with DC was not performed as the machines were Linux servers and not the actual hard-
ware used in production, e.g., a mobile device in a radio access environment. However,
we emphasize that in a real deployment of DC, it is important to study the effects that DC
has on power consumption.

Year

P
er

 1
00

 in
ha

bi
ta

nt
s

0

20

40

60

80

100

2001
2003

2005
2007

2009
2011

2013
2015

2017
2019

Developed countries World Developing countries

Figure 6.1: Internet usage per 100 inhabitants [75]

53



7 Conclusion

In this thesis, we present the first performance study of QUIC over DC. Key insights are
given for network operators to understand how different DC parameters and network
conditions affect QUIC performance. A testbed is set up using two machines connected
via two network interface pairs, and multiple PDCP proxies are used to simulate the re-
ordering and in-order delivery functionality of the PDCP layer. Using this testbed, QUIC’s
performance over DC is studied and compared to TCP under different network conditions
by varying parameters such as bandwidth, delay and loss.

QUIC’s throughput is found to be similar to that of TCP in general cases, provided
that the UDP receive buffer has been increased to a similar size as the corresponding
TCP buffer. The throughput is considerably lower if the UDP receive buffer remains at
default values for Linux, as PDCP introduces packet bursts, causing packet drops due to
full buffers. This occurs especially often in asymmetric link scenarios with high through-
put. Our results show that QUIC can take advantage of DC when the links share similar
properties, and the DC batch size is small. When the properties of the links are too far
apart, QUIC performance suffers to the degree that the performance would be better if
DC was turned off.

The fairness of QUIC has also been evaluated. We show that QUIC is fair towards TCP,
as well as other QUIC connections in SC scenarios. We also show that QUIC can achieve
system-wide fairness in DC, provided that the link properties are similar. When there
are high bandwidth or delay differences between the links, the fairness of the network is
lowered. The DC connection will suffer more than the single connections, showing poor
performance and a high degree of unfairness. Furthermore, we show that packet duplica-
tion allows QUIC to improve throughput for lossy environments at the cost of substantially
increased unfairness.

7.1 Future work

As the work was done on a testbed rather than on a real network, investigating how the
results hold up to real life scenarios with realistic UE and 4G/5G cell towers would be
interesting. Then, experiments like this would allow one to take a detailed look at how
the energy consumption is affected by DC, both at the users’ side and the cell towers.

54



7.1. Future work

As previously discussed, related works have shown QUIC performing better than
TCP [56, 58], while our study shows that QUIC performs similarly to TCP. Our hypothesis
is that the differing results from previous work were due to differences in QUIC versions
and implementations. As such, repeating the same tests with more implementations of
QUIC, as well as when the QUIC standardization has finished, would assist verifying our
hypothesis and results.

Another interesting area would be to repeat the same tests but with BBR as the con-
gestion control algorithm. BBR would be interesting to look at as it tries to estimate the
congestion as the worst bottleneck, which could be more affected by DC.

With QUIC being able to perform over DC, another question arises. Should the traffic
split be done at the transport or link layer? This area has not yet been explored, and there
are arguments for both. One argument for splitting at the transport layer is the existence
of parameters within QUIC that would allow it to handle several paths better [67]. How-
ever, the network operators would have difficulties to access these as they are behind an
encrypted protocol. Network operators have a better view of the traffic in the network
than the endpoints, and allowing them to control the splitting through the link layer could
result in a better performance than splitting at the transport layer.

Finally, as we have shown that QUIC’s performance is heavily affected by the amount
of resources provided by the kernel, we emphasize the importance of studying and opti-
mizing the resources provided by the kernel to QUIC.

55



Bibliography

[1] Mudit Ratana Bhalla and Anand Vardhan Bhalla. “Generations of mobile wire-
less technology: A survey”. In: International Journal of Computer Applications 5.4
(2010), pp. 26–32.

[2] 3GPP. 3rd Generation Partnership Project; Technical Specification Group Radio
Access Network; Study on Scenarios and Requirements for Next Generation Ac-
cess Technologies; (Release 15). Technical Specifications (TS) 38.913. Version
15.0.0. 3rd Generation Partnership Project (3GPP), 2018. URL: https://portal.
3gpp . org / desktopmodules / Specifications / SpecificationDetails . aspx ?
specificationId=2996.

[3] Icaro Da Silva, Gunnar Mildh, Johan Rune, Pontus Wallentin, Jari Vikberg, Paul
Schliwa-Bertling, and Rui Fan. “Tight integration of new 5G air interface and LTE to
fulfill 5G requirements”. In: Proceedings of Vehicular Technology Conference (VTC
Spring). 2015, pp. 1–5.

[4] Roberto Pinto Antonioli, Gabriela Costa Parente, Carlos Filipe Moreira e Silva,
Diego Aguiar Sousa, Emanuel Bezerra Rodrigues, Tarcisio Ferreira Maciel, and
Francisco Rodrigo Porto Cavalcanti. “Dual Connectivity for LTE-NR cellular net-
works: challenges and open issues”. In: Journal of Communication and Information
Systems 33.1 (2018).

[5] Y. Khadraoui, X. Lagrange, and A. Gravey. “TCP Performance for Practical Imple-
mentation of Very Tight Coupling between LTE and WiFi”. In: Proceedings of IEEE
Vehicular Technology Conference (VTC Fall). 2016, pp. 1–6.

[6] B. Jin, S. Kim, D. Yun, H. Lee, W. Kim, and Y. Yi. “Aggregating LTE and Wi-Fi: Toward
Intra-Cell Fairness and High TCP Performance”. In: IEEE Transactions on Wireless
Communications 16.10 (2017), pp. 6295–6308.

[7] N. H. Mahmood, M. Lopez, D. Laselva, K. Pedersen, and G. Berardinelli. “Reliability
Oriented Dual Connectivity for URLLC services in 5G New Radio”. In: Proceedings
of International Symposium on Wireless Communication Systems (ISWCS). 2018,
pp. 1–6.

[8] 3GPP. 3rd Generation Partnership Project; Technical Specification Group Services
and System Aspects; Release 15 Description; Summary of Rel-15 Work Items (Re-
lease 15). Technical Specifications (TS) 21.915. Version 15.0.0. 3rd Generation Part-

56

https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=2996
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=2996
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=2996


Bibliography

nership Project (3GPP), 2019. URL: https://portal.3gpp.org/desktopmodules/
Specifications/SpecificationDetails.aspx?specificationId=3389.

[9] S. Alfredsson, A. Brunstrom, and M. Sternad. “Cross-layer analysis of TCP perfor-
mance in a 4G system”. In: Proceedings of International Conference on Software,
Telecommunications and Computer Networks (SoftCOM). 2007, pp. 1–6.

[10] Adam Langley, Alistair Riddoch, Alyssa Wilk, Antonio Vicente, Charles Krasic, Dan
Zhang, Fan Yang, Fedor Kouranov, Ian Swett, Janardhan Iyengar, Jeff Bailey, Jeremy
Dorfman, Jim Roskind, Joanna Kulik, Patrik Westin, Raman Tenneti, Robbie Shade,
Ryan Hamilton, Victor Vasiliev, Wan-Teh Chang, and Zhongyi Shi. “The QUIC Trans-
port Protocol: Design and Internet-Scale Deployment”. In: Proceedings of Con-
ference of the ACM Special Interest Group on Data Communication (SIGCOMM).
2017, pp. 183–196.

[11] IETF 106 Singapore. Some updates on QUIC deployment numbers. 2019. URL:
https://datatracker.ietf.org/meeting/106/materials/slides-106-maprg-
quic-deployment-update.

[12] Cloudflare. HTTP/3: the past, the present, and the future. 2019. URL: https://
blog.cloudflare.com/http3-the-past-present-and-future/.

[13] IETF QUIC Working Group. Implementations. 2020. URL: https://github.com/
quicwg/base-drafts/wiki/Implementations.

[14] Martin Thomson and Jana Iyengar. QUIC: A UDP-Based Multiplexed and Secure
Transport. Internet-Draft draft-ietf-quic-transport-27. Internet Engineering Task
Force, 2020. URL: https://datatracker.ietf.org/doc/draft- ietf- quic-
transport/27.

[15] Internet Engineering Task Force. Qlog. 2020. URL: https://tools.ietf.org/id/
qlog.

[16] Matthew Mathis and Jamshid Mahdavi. “Forward Acknowledgement: Refining TCP
Congestion Control”. In: Proceedings of Conference on Applications, Technologies,
Architectures, and Protocols for Computer Communications (SIGCOMM). 1996,
pp. 281–291.

[17] Matthew Mathis, Jamshid Mahdavi, Sally Floyd, and Allyn Romanow. TCP selective
acknowledgment options. RFC 2018. RFC Editor, 1996. URL: https://www.hjp.
at/doc/rfc/rfc2018.html.

[18] Internet Engineering Task Force. RACK: a time-based fast loss detection algorithm
for TCP, draft-ietf-tcpm-rack-05. 2019.

[19] M. Allman, V. Paxson, and E. Blanton. TCP Congestion Control. RFC 5681. http:
//www.rfc-editor.org/rfc/rfc5681.txt. RFC Editor, 2009. URL: http://www.
rfc-editor.org/rfc/rfc5681.txt.

[20] Wright Stevens et al. TCP slow start, congestion avoidance, fast retransmit, and
fast recovery algorithms. RFC 2001. Internet Engineering Task Force, 1997. URL:
https://www.hjp.at/doc/rfc/rfc2001.html.

[21] Ian Swett and Jana Iyengar. QUIC Loss Detection and Congestion Control. Internet-
Draft draft-ietf-quic-recovery-27. Internet Engineering Task Force, 2020. URL:
https://datatracker.ietf.org/doc/draft-ietf-quic-recovery/.

[22] Pasi Sarolahti, Markku Kojo, and Kimmo Raatikainen. “F-RTO: an enhanced re-
covery algorithm for TCP retransmission timeouts”. In: ACM SIGCOMM Computer
Communication Review 33.2 (2003), pp. 51–63.

[23] D Wei, Pei Cao, S Low, and Caltech EAS. “TCP pacing revisited”. In: Proceedings of
IEEE INFOCOM. 2006.

57

https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3389
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3389
https://datatracker.ietf.org/meeting/106/materials/slides-106-maprg-quic-deployment-update
https://datatracker.ietf.org/meeting/106/materials/slides-106-maprg-quic-deployment-update
https://blog.cloudflare.com/http3-the-past-present-and-future/
https://blog.cloudflare.com/http3-the-past-present-and-future/
https://github.com/quicwg/base-drafts/wiki/Implementations
https://github.com/quicwg/base-drafts/wiki/Implementations
https://datatracker.ietf.org/doc/draft-ietf-quic-transport/27
https://datatracker.ietf.org/doc/draft-ietf-quic-transport/27
https://tools.ietf.org/id/qlog
https://tools.ietf.org/id/qlog
https://www.hjp.at/doc/rfc/rfc2018.html
https://www.hjp.at/doc/rfc/rfc2018.html
http://www.rfc-editor.org/rfc/rfc5681.txt
http://www.rfc-editor.org/rfc/rfc5681.txt
http://www.rfc-editor.org/rfc/rfc5681.txt
http://www.rfc-editor.org/rfc/rfc5681.txt
https://www.hjp.at/doc/rfc/rfc2001.html
https://datatracker.ietf.org/doc/draft-ietf-quic-recovery/


Bibliography

[24] aioquic. aioquic. 2020. URL: https://github.com/aiortc/aioquic.

[25] ngtcp2. ngtcp2. 2020. URL: https://github.com/ngtcp2/ngtcp2.

[26] 3GPP. 3rd Generation Partnership Project; Technical Specification Group Radio
Access Network; Study on Small Cell enhancements for E-UTRA and E-UTRAN;
Higher layer aspects (Release 12). Technical Specifications (TS) 36.842. Version
12.0.0. 3rd Generation Partnership Project (3GPP), 2018. URL: https://portal.
3gpp . org / desktopmodules / Specifications / SpecificationDetails . aspx ?
specificationId=2543.

[27] A. Zakrzewska, D. López-Pérez, S. Kucera, and H. Claussen. “Dual connectivity in
LTE HetNets with split control- and user-plane”. In: Proceedings of IEEE Globecom
Workshops (GC Wkshps). 2013, pp. 391–396.

[28] 3GPP. 3rd Generation Partnership Project; Technical Specification Group Services
and System Aspects; Release 15 Description; Summary of Rel-15 Work Items (Re-
lease 15). Technical Specifications (TS) 21.915. Version 15.0.0. 3rd Generation Part-
nership Project (3GPP), 2019. URL: https://portal.3gpp.org/desktopmodules/
Specifications/SpecificationDetails.aspx?specificationId=3389.

[29] A. Ravanshid, P. Rost, D. S. Michalopoulos, V. V. Phan, H. Bakker, D. Aziz, S. Tayade,
H. D. Schotten, S. Wong, and O. Holland. “Multi-connectivity functional architec-
tures in 5G”. In: Proceedings of IEEE International Conference on Communications
Workshops (ICC). 2016, pp. 187–192.

[30] 3GPP. 3rd Generation Partnership Project; Technical Specification Group Ra-
dio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA) and
Evolved Universal Terrestrial Radio Access Network (E-UTRAN); Overall descrip-
tion; Stage 2 (Release 16). Technical Specifications (TS) 36.300. Version 16.0.0.
3rd Generation Partnership Project (3GPP), 2019. URL: https : / / portal .
3gpp . org / desktopmodules / Specifications / SpecificationDetails . aspx ?
specificationId=2430.

[31] Janardhan R Iyengar, Paul D Amer, and Randall Stewart. “Concurrent multi-
path transfer using SCTP multihoming over independent end-to-end paths”. In:
IEEE/ACM Transactions on Networking 14.5 (2006), pp. 951–964.

[32] Quentin De Coninck and Olivier Bonaventure. “Multipath QUIC: Design and Evalu-
ation”. In: Proceedings of ACM International Conference on Emerging Networking
EXperiments and Technologies (CoNEXT). 2017, pp. 160–166.

[33] Andrei Gurtov and Tatiana Polishchuk. “Secure multipath transport for legacy Inter-
net applications”. In: Proceedings of IEEE International Conference on Broadband
Communications, Networks, and Systems (Broadnets). 2009, pp. 1–8.

[34] P. K. Taksande, P. Jha, and A. Karandikar. “Dual Connectivity Support in 5G Net-
works: An SDN based approach”. In: Proceedings of IEEE Wireless Communications
and Networking Conference (WCNC). 2019, pp. 1–6.

[35] ETSI. LTE;Evolved Universal Terrestrial Radio Access (E-UTRA); Packet Data Con-
vergence Protocol (PDCP) specification (3GPP TS 36.323 version 15.5.0 Release
15). Technical Specifications (TS) 136 323. Version 15.5.0. European Telecommuni-
cations Standards Institute (ETSI), 2020. URL: https://www.etsi.org/deliver/
etsi_ts/136300_136399/136323/15.05.00_60/ts_136323v150500p.pdf.

[36] ETSI. ETSI TS 138 323 V15.2.0 (2018-09)5G;NR; Packet Data Convergence Pro-
tocol (PDCP) specification (3GPP TS 38.323 version 15.2.0 Release 15). Technical
Specifications (TS) 138 323. Version 15.2.0. European Telecommunications Stan-
dards Institute (ETSI), 2018. URL: https://www.etsi.org/deliver/etsi_ts/
138300_138399/138323/15.06.00_60/ts_138323v150600p.pdf.

58

https://github.com/aiortc/aioquic
https://github.com/ngtcp2/ngtcp2
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=2543
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=2543
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=2543
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3389
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3389
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=2430
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=2430
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=2430
https://www.etsi.org/deliver/etsi_ts/136300_136399/136323/15.05.00_60/ts_136323v150500p.pdf
https://www.etsi.org/deliver/etsi_ts/136300_136399/136323/15.05.00_60/ts_136323v150500p.pdf
https://www.etsi.org/deliver/etsi_ts/138300_138399/138323/15.06.00_60/ts_138323v150600p.pdf
https://www.etsi.org/deliver/etsi_ts/138300_138399/138323/15.06.00_60/ts_138323v150600p.pdf


Bibliography

[37] Victor Vasiliev. QUIC trace utilities. 2018. URL: https://github.com/google/
quic-trace.

[38] Robin Marx, Wim Lamotte, Jonas Reynders, Kevin Pittevils, and Peter Quax. “To-
wards QUIC Debuggability”. In: Proceedings of ACM SIGCOMM workshop on the
Evolution, Performance, and Interoperability of QUIC (EPIQ). 2018, pp. 1–7.

[39] Internet Engineering Task Force. QUIC and HTTP/3 event definitions for qlog. 2020.
URL: https://tools.ietf.org/html/draft-marx-qlog-event-definitions-
quic-h3-01.

[40] Werner Almesberger. Linux network traffic control—implementation overview.
1999.

[41] Joseph D Beshay, Andrea Francini, and Ravi Prakash. “On the fidelity of single-
machine network emulation in Linux”. In: Proceedings of IEEE International Sym-
posium on Modeling, Analysis, and Simulation of Computer and Telecommunication
Systems (MASCOTS). 2015, pp. 19–22.

[42] Gregor N Purdy. Linux iptables Pocket Reference: Firewalls, NAT & Accounting.
O’Reilly Media, Inc., 2004.

[43] Lars Eggert, Godred Fairhurst, and Greg Shepherd. UDP Usage Guidelines. RFC
8085. Internet Engineering Task Force, 2017. URL: https://tools.ietf.org/
html/rfc8085.

[44] Sally Floyd, Tom Henderson, and Andrei Gurtov. The NewReno Modification to
TCP’s Fast Recovery Algorithm. RFC 3782. RFC Editor, 2004. URL: http://www.
hjp.at/doc/rfc/rfc3782.html.

[45] Sangtae Ha, Injong Rhee, and Lisong Xu. “CUBIC: a new TCP-friendly high-speed
TCP variant”. In: ACM SIGOPS operating systems review 42.5 (2008), pp. 64–74.

[46] Neal Cardwell, Yuchung Cheng, C Stephen Gunn, Soheil Hassas Yeganeh, and Van
Jacobson. “BBR: congestion-based congestion control”. In: Communications of the
ACM 60.2 (2017), pp. 58–66.

[47] Sally Floyd and Kevin Fall. “Promoting the use of end-to-end congestion control in
the Internet”. In: IEEE/ACM Transactions on networking 7.4 (1999), pp. 458–472.

[48] Damon Wischik, Costin Raiciu, Adam Greenhalgh, and Mark Handley. “Design, Im-
plementation and Evaluation of Congestion Control for Multipath TCP”. In: Pro-
ceedings of USENIX Symposium on Networked Systems Design and Implementa-
tion (NSDI). 2011, pp. 99–112.

[49] Dimitri P Bertsekas, Robert G Gallager, and Pierre Humblet. Data networks. Vol. 2.
Prentice-Hall International New Jersey, 1992.

[50] Ravi Mazumdar, Lorne G Mason, and Christos Douligeris. “Fairness in network op-
timal flow control: Optimality of product forms”. In: IEEE Transactions on commu-
nications 39.5 (1991), pp. 775–782.

[51] Frank Kelly. “Charging and rate control for elastic traffic”. In: European transac-
tions on Telecommunications 8.1 (1997), pp. 33–37.

[52] Bob Briscoe. “Flow rate fairness: Dismantling a religion”. In: ACM SIGCOMM Com-
puter Communication Review 37.2 (2007), pp. 63–74.

[53] Rajendra K Jain, Dah-Ming W Chiu, and William R Hawe. “A quantitative measure of
fairness and discrimination”. In: Eastern Research Laboratory, Digital Equipment
Corporation, Hudson, MA (1984).

[54] Xinyu Zhang and Baochun Li. “Dice: A Game Theoretic Framework for Wireless
Multipath Network Coding”. In: Proceedings of ACM International Symposium on
Mobile Ad Hoc Networking and Computing (MobiHoc). 2008, pp. 293–302.

59

https://github.com/google/quic-trace
https://github.com/google/quic-trace
https://tools.ietf.org/html/draft-marx-qlog-event-definitions-quic-h3-01
https://tools.ietf.org/html/draft-marx-qlog-event-definitions-quic-h3-01
https://tools.ietf.org/html/rfc8085
https://tools.ietf.org/html/rfc8085
http://www.hjp.at/doc/rfc/rfc3782.html
http://www.hjp.at/doc/rfc/rfc3782.html


Bibliography

[55] Costin Raiciu, Christopher Pluntke, Sebastien Barre, Adam Greenhalgh, Damon
Wischik, and Mark Handley. “Data center networking with multipath TCP”. In: Pro-
ceedings of ACM SIGCOMM workshop on Hot Topics in Networks (HotNets). 2010,
pp. 1–6.

[56] S. Cook, B. Mathieu, P. Truong, and I. Hamchaoui. “QUIC: Better for what and
for whom?” In: Proceedings of IEEE International Conference on Communications
(ICC). 2017, pp. 1–6.

[57] Jan Rüth, Ingmar Poese, Christoph Dietzel, and Oliver Hohlfeld. “A First Look at
QUIC in the Wild”. In: Proceedings of Passive and Active Measurement (PAM). 2018,
pp. 255–268.

[58] Arash Molavi Kakhki, Samuel Jero, David Choffnes, Cristina Nita-Rotaru, and Alan
Mislove. “Taking a Long Look at QUIC: An Approach for Rigorous Evaluation of
Rapidly Evolving Transport Protocols”. In: Proceedings of Internet Measurement
Conference (IMC). 2017, pp. 290–303.

[59] Michele Polese, Marco Mezzavilla, Sundeep Rangan, and Michele Zorzi. “Mobility
Management for TCP in MmWave Networks”. In: Proceedings of ACM Workshop on
Millimeter-Wave Networks and Sensing Systems (mmNets). 2017, pp. 11–16.

[60] P. Legg, P. Fotiadis, and P. Soldati. “Load Balancing and Aggregation Algorithms for
LTE Dual Connectivity”. In: Proceedings of IEEE Vehicular Technology Conference
(VTC Spring). 2016, pp. 1–5.

[61] M. Polese, R. Jana, and M. Zorzi. “TCP and MP-TCP in 5G mmWave Networks”. In:
IEEE Internet Computing 21.5 (2017), pp. 12–19.

[62] J. R. Lane and A. Nakao. “Best-Effort Network Layer Packet Reordering in Support
of Multipath Overlay Packet Dispersion”. In: Proceedings of IEEE Global Telecom-
munications Conference (GLOBECOM). 2008, pp. 1–6.

[63] Quentin De Coninck, François Michel, Maxime Piraux, Florentin Rochet, Thomas
Given-Wilson, Axel Legay, Olivier Pereira, and Olivier Bonaventure. “Pluginizing
QUIC”. In: Proceedings of Conference of the ACM Special Interest Group on Data
Communication (SIGCOMM). 2019, pp. 59–74.

[64] Rasmus S Mogensen, Christian Markmoller, Tatiana K Madsen, Troels Kolding,
Guillermo Pocovi, and Mads Lauridsen. “Selective Redundant MP-QUIC for 5G Mis-
sion Critical Wireless Applications”. In: Proceedings of IEEE Vehicular Technology
Conference (VTC Spring). 2019, pp. 1–5.

[65] Yajun Yu, Mingwei Xu, and Yuan Yang. “When QUIC meets TCP: An experimental
study”. In: Proceedings of IEEE International Performance Computing and Commu-
nications Conference (IPCCC). 2017, pp. 1–8.

[66] Martin Becke, Thomas Dreibholz, Hakim Adhari, and Erwin Paul Rathgeb. “On the
fairness of transport protocols in a multi-path environment”. In: Proceedings of
IEEE International Conference on Communications (ICC). 2012, pp. 2666–2672.

[67] Alexander Rabitsch, Per Hurtig, and Anna Brunstrom. “A Stream-Aware Multipath
QUIC Scheduler for Heterogeneous Paths”. In: Proceedings of ACM SIGCOMM
workshop on the Workshop on the Evolution, Performance, and Interoperability of
QUIC (EPIQ). 2018, pp. 29–35.

[68] Thomas Dreibholz, Martin Becke, Hakim Adhari, and Erwin P Rathgeb. “On the
impact of congestion control for concurrent multipath transfer on the transport
layer”. In: Proceedings of IEEE International Conference on Telecommunications
(ICT). 2011, pp. 397–404.

60



Bibliography

[69] Christoph Paasch, Ramin Khalili, and Olivier Bonaventure. “On the Benefits of Ap-
plying Experimental Design to Improve Multipath TCP”. In: Proceedings of ACM
Conference on Emerging Networking EXperiments and Technologies (CoNEXT).
2013, pp. 393–398.

[70] Darijo Raca, Jason J. Quinlan, Ahmed H. Zahran, and Cormac J. Sreenan. “Beyond
Throughput: A 4G LTE Dataset with Channel and Context Metrics”. In: Proceedings
of ACM Multimedia Systems Conference (MMSys). 2018, pp. 460–465.

[71] Barbara A Kitchenham, Shari Lawrence Pfleeger, Lesley M Pickard, Peter W Jones,
David C. Hoaglin, Khaled El Emam, and Jarrett Rosenberg. “Preliminary guidelines
for empirical research in software engineering”. In: IEEE Transactions on software
engineering 28.8 (2002), pp. 721–734.

[72] Carey Williamson. “Internet traffic measurement”. In: IEEE Internet Computing 5.6
(2001), pp. 70–74.

[73] Kenneth L. McMillan and Lenore D. Zuck. “Formal Specification and Testing of
QUIC”. In: Proceedings of Conference of the ACM Special Interest Group on Data
Communication (SIGCOMM). 2019, pp. 227–240.

[74] Matias Fontanini. C++ packet sniffing and crafting library. 2020. URL: http://
libtins.github.io/.

[75] International Telecommunication Union (ITU). Statistics. 2019. URL: https://www.
itu.int/en/ITU-D/Statistics/Pages/stat/default.aspx.

[76] Statista. Number of internet users in India from 2015 to 2023. 2020. URL: https:
//www.statista.com/statistics/255146/number- of- internet- users- in-
india/.

61

http://libtins.github.io/
http://libtins.github.io/
https://www.itu.int/en/ITU-D/Statistics/Pages/stat/default.aspx
https://www.itu.int/en/ITU-D/Statistics/Pages/stat/default.aspx
https://www.statista.com/statistics/255146/number-of-internet-users-in-india/
https://www.statista.com/statistics/255146/number-of-internet-users-in-india/
https://www.statista.com/statistics/255146/number-of-internet-users-in-india/


A Example Qlog file

1 {
2 "qlog_version" : "draft´01",
3 " traces" : [
4 {
5 "configuration" : {
6 " time_units" : "us"
7 },
8 "common_fields" : {
9 "ODCID" : "b26b216d60186d86" ,

10 "reference_time" : "1584382317465306"
11 },
12 " event_fields " : [
13 " relative_time" ,
14 "category" ,
15 "event_type" ,
16 "data"
17 ] ,
18 "events" : [
19 [
20 "0" ,
21 " transport" ,
22 "datagrams_received" ,
23 {
24 "byte_length" : 1252 ,
25 "count" : 1
26 }
27 ] ,
28 [
29 "298" ,
30 " transport" ,
31 "parameters_set" ,
32 {
33 "owner" : " local " ,
34 " idle_timeout" : 60000 ,
35 " initial_max_data" : 1048576 ,
36 " initial_max_stream_data_bidi_local " : 1048576 ,
37 " initial_max_stream_data_bidi_remote" : 1048576 ,
38 " initial_max_stream_data_uni" : 1048576 ,
39 " initial_max_streams_bidi " : 128 ,
40 " initial_max_streams_uni" : 128 ,
41 "ack_delay_exponent" : 3 ,
42 "max_ack_delay" : 25 ,
43 "disable_active_migration" : false ,
44 "active_connection_id_limit " : 8 ,
45 "max_datagram_frame_size" : 65536
46 }
47 ] ,

62



48 [
49 "818" ,
50 " transport" ,
51 "packet_received" ,
52 {
53 "packet_type" : " i n i t i a l " ,
54 "header" : {
55 "packet_number" : "0" ,
56 "packet_size" : 1252 ,
57 "dcid" : "b26b216d60186d86" ,
58 "scid" : "fec87b7a98c9776c"
59 },
60 "frames" : [
61 {
62 "frame_type" : "crypto " ,
63 " length" : 271 ,
64 " offset " : "0"
65 }
66 ]
67 }
68 ] ,
69 [
70 "1358" ,
71 " transport" ,
72 "packet_sent" ,
73 {
74 "packet_type" : " i n i t i a l " ,
75 "header" : {
76 "packet_number" : "0" ,
77 "packet_size" : 78 ,
78 "scid" : "4968ea78d333dd70" ,
79 "dcid" : "fec87b7a98c9776c"
80 },
81 "frames" : [
82 {
83 "error_code" : 326 ,
84 "error_space" : " transport " ,
85 "frame_type" : "connection_close " ,
86 "raw_error_code" : 326 ,
87 "reason" : "No supported protocol version " ,
88 "trigger_frame_type" : 6
89 }
90 ]
91 }
92 ] ,
93 [
94 "1361" ,
95 " transport" ,
96 "datagrams_sent" ,
97 {
98 "byte_length" : 78 ,
99 "count" : 1

100 }
101 ] ,
102 [
103 "1400" ,
104 "recovery" ,
105 "metrics_updated" ,
106 {
107 " bytes_in_flight " : 0 ,
108 "cwnd" : 12800
109 }
110 ]
111 ] ,
112 "vantage_point" : {
113 "name" : "aioquic " ,
114 "type" : "server"
115 }
116 }
117 ]
118 }

Listing A.1: Example Qlog file

63



B Proxy code

B.1 Client

1 #include <algorithm>
2 #include <arpa / inet .h>
3 #include <array>
4 #include <atomic>
5 #include <chrono>
6 #include <cmath>
7 #include <functional>
8 #include <iostream>
9 #include <linux / netf i l ter .h>

10 #include <memory>
11 #include <mutex>
12 #include <netinet / in .h>
13 #include <netinet / ip .h>
14 #include <netinet / tcp .h>
15 #include <netinet /udp.h>
16 #include <sys / socket .h>
17 #include <thread>
18 #include <tuple>
19 #include <unistd .h>
20 #include <vector>
21

22 extern "C" {
23 #include <libnetfilter_queue / libnetfilter_queue .h>
24 #include <libnetfilter_queue / libnetfilter_queue_ipv4 .h>
25 #include <libnetfilter_queue / libnetfilter_queue_tcp .h>
26 #include <libnetfilter_queue / libnetfilter_queue_udp .h>
27 #include <libnetfilter_queue / pktbuff .h>
28 }
29

30 using std : : begin , std : : end, std : : sort , std : : remove_if , std : : count_if ;
31 using std : : cout , std : : endl ;
32 using std : : get , std : :pow;
33 using std : : chrono : : steady_clock , std : : chrono : : milliseconds ;
34

35 #define THROW_IF_TRUE(x , m) \
36 do { \
37 i f ( ( x) ) { \
38 throw std : : runtime_error (m) ; \
39 } \
40 } while ( false )
41

42 #define CONCAT_0(pre , post ) pre##post
43 #define CONCAT_1(pre , post ) CONCAT_0(pre , post )
44 #define GENERATE_IDENTIFICATOR(pre) CONCAT_1(pre , __LINE__)

64



B.1. Client

45

46 using ScopedGuard = std : : unique_ptr<void , std : : function<void ( void *)>>;
47 #define SCOPED_GUARD_NAMED(name, code) \
48 ScopedGuard name( reinterpret_cast<void *>(´1) , [&](void *) >́ void { code }) ; \
49 ( void )name
50

51 #define SCOPED_GUARD(code) \
52 SCOPED_GUARD_NAMED(GENERATE_IDENTIFICATOR(genScopedGuard) , code)
53

54 #define PDCP
55

56 unsigned int const LEN_SEQ = 2;
57 uint32_t RX_REORD = 0;
58 uint32_t RX_NEXT = 0;
59 uint32_t RX_DELIV = 0;
60 uint32_t RCVD_COUNT = 0;
61

62 std : : atomic<bool> t_reordering{false };
63 int timeout{200};
64 std : :mutex buffer_mtx ;
65 std : :mutex time_mtx ;
66 steady_clock : : time_point end_time ;
67

68 / / Tuple < COUNT, NF_QUEUE ID, Packet data >
69 using tuple_type = std : : tuple<uint32_t , uint32_t , pkt_buff *>;
70 std : : vector<tuple_type> rbuffer ;
71

72 void deliverBuffer (nfq_q_handle *queue) {
73 sort (begin( rbuffer ) , end( rbuffer ) ) ;
74 auto i t = remove_if (begin( rbuffer ) , end( rbuffer ) , [&queue] ( tuple_type t ) {
75 i f (get<0>(t ) == RX_DELIV) {
76 pkt_buff *pb = get<2>(t ) ;
77 int status =
78 nfq_set_verdict (queue, get<1>(t ) , NF_ACCEPT, pktb_len (pb) , pktb_data (pb) ) ;
79 THROW_IF_TRUE( status < 0, "VERDICT ACCEPT bad (PDCP reordering ) " ) ;
80 pktb_free (pb) ;
81 RX_DELIV++;
82 return true ;
83 }
84 return false ;
85 }) ;
86 rbuffer . erase ( i t , end( rbuffer ) ) ;
87 }
88

89 void timerThread(nfq_q_handle *queue) {
90 for ( ; ; ) {
91 i f ( t_reordering ) {
92 bool timeout_bool ;
93 {
94 std : : lock_guard<std : :mutex> time_lock (time_mtx) ;
95 timeout_bool = ( steady_clock : :now() >= end_time) ;
96 }
97 i f ( timeout_bool ) {
98 std : : lock_guard<std : :mutex> buffer_lock (buffer_mtx ) ;
99 sort (begin( rbuffer ) , end( rbuffer ) ) ;

100 uint32_t last = RX_REORD;
101 auto i t = remove_if (
102 begin( rbuffer ) , end( rbuffer ) , [&queue, &last ] ( tuple_type t ) {
103 pkt_buff *pb = get<2>(t ) ;
104

105 i f (get<0>(t ) < RX_REORD) {
106 int status = nfq_set_verdict (queue, get<1>(t ) , NF_ACCEPT,
107 pktb_len (pb) , pktb_data (pb) ) ;
108 THROW_IF_TRUE( status < 0, "VERDICT ACCEPT bad (PDCP timer ) " ) ;
109 pktb_free (pb) ;
110 return true ;
111 } else i f (get<0>(t ) >= RX_REORD && (( get<0>(t ) ´ last ) < 2) ) {
112 int status = nfq_set_verdict (queue, get<1>(t ) , NF_ACCEPT,
113 pktb_len (pb) , pktb_data (pb) ) ;
114 THROW_IF_TRUE( status < 0, "VERDICT Accept bad" ) ;
115 last = get<0>(t ) ;
116 pktb_free (pb) ;
117 return true ;
118 }
119 return false ;
120 }) ;
121 rbuffer . erase ( i t , end( rbuffer ) ) ;
122

123 RX_DELIV = last + 1;

65



B.1. Client

124 i f (RX_DELIV < RX_NEXT) {
125 RX_REORD = RX_NEXT;
126 std : : lock_guard<std : :mutex> time_lock (time_mtx) ;
127 end_time = steady_clock : :now() + milliseconds ( timeout ) ;
128 } else {
129 t_reordering = false ;
130 }
131 }
132 }
133 }
134 }
135

136 int netfilterCallback (nfq_q_handle *queue, nfgenmsg *nfmsg, nfq_data *nfad , void *data) {
137 nfqnl_msg_packet_hdr *ph = nfq_get_msg_packet_hdr(nfad) ;
138 THROW_IF_TRUE(ph == nullptr , " Issue while packet header" ) ;
139

140 unsigned char *rawData = nullptr ;
141 int len = nfq_get_payload (nfad , &rawData) ;
142 THROW_IF_TRUE( len < 0, "Can’ t get payload data" ) ;
143

144 pkt_buff *pkBuff = pktb_alloc (AF_INET, rawData, len , 0x1000) ;
145 THROW_IF_TRUE(pkBuff == nullptr , " Issue while pktb allocate " ) ;
146 SCOPED_GUARD( pktb_free (pkBuff ) ; ) ;
147

148 iphdr * ip = nfq_ip_get_hdr (pkBuff ) ;
149 THROW_IF_TRUE( ip == nullptr , " Issue while ipv4 header parse . " ) ;
150 THROW_IF_TRUE( ! ( ip >́protocol == IPPROTO_UDP | | ip >́protocol == IPPROTO_TCP) ,
151 "Packet not UDP or TCP" ) ;
152

153 int th_status = nfq_ip_set_transport_header (pkBuff , ip ) ;
154 THROW_IF_TRUE( th_status < 0, "Can’ t set transport header . " ) ;
155 uint16_t seq ;
156

157 i f ( ip >́protocol == IPPROTO_UDP) {
158 udphdr *udp = nfq_udp_get_hdr(pkBuff ) ;
159 THROW_IF_TRUE(udp == nullptr , " Issue while UDP header . " ) ;
160

161 void *payload = nfq_udp_get_payload(udp, pkBuff ) ;
162 THROW_IF_TRUE(payload == nullptr , " Issue while payload . " ) ;
163 unsigned int payload_len = nfq_udp_get_payload_len (udp, pkBuff ) ;
164

165 char *cpayload = (char *)payload ;
166 seq = *reinterpret_cast<uint16_t *>(cpayload + payload_len ´ LEN_SEQ) ;
167

168 in_addr dst_addr = {ip >́daddr};
169 inet_aton ( "10.0.0.2" , &dst_addr ) ;
170 ip >́daddr = dst_addr . s_addr ;
171 udṕ >check = 0;
172 udṕ >len = htons(ntohs(udṕ >len ) ´ LEN_SEQ) ;
173 nfq_ip_set_checksum( ip ) ;
174

175 } else i f ( ip >́protocol == IPPROTO_TCP) {
176 tcphdr *tcp = nfq_tcp_get_hdr (pkBuff ) ;
177 THROW_IF_TRUE( tcp == nullptr , " Issue while TCP header . " ) ;
178 void *payload = nfq_tcp_get_payload ( tcp , pkBuff ) ;
179 THROW_IF_TRUE(payload == nullptr , " Issue while payload . " ) ;
180 unsigned int payload_len = nfq_tcp_get_payload_len ( tcp , pkBuff ) ;
181

182 char *cpayload = (char *)payload ;
183 seq = *reinterpret_cast<uint16_t *>(cpayload + payload_len ´ LEN_SEQ) ;
184 in_addr dst_addr = {ip >́daddr};
185 inet_aton ( "10.0.0.2" , &dst_addr ) ;
186 ip >́daddr = dst_addr . s_addr ;
187 tcp >́check = 0;
188 ip >́tot_len = htons(ntohs( ip >́tot_len ) ´ LEN_SEQ) ;
189 nfq_tcp_compute_checksum_ipv4( tcp , ip ) ;
190 nfq_ip_set_checksum( ip ) ;
191 }
192

193 / / clanǵ format off
194 #ifndef PDCP
195 int status = nfq_set_verdict (queue, ntohl (ph́ >packet_id ) , NF_ACCEPT,
196 pktb_len (pkBuff ) , pktb_data (pkBuff ) ) ;
197 THROW_IF_TRUE( status < 0, "VERDICT ACCEPT bad (no PDCP) " ) ;
198 return 0;
199 #endif
200 / / clanǵ format on
201

202 uint16_t RCVD_HFN;

66



B.1. Client

203 i f (seq < ((RX_DELIV & 0X0000FFFF) ´ std : :pow(2 , 15) ) ) {
204 RCVD_HFN = ((RX_DELIV & 0XFFFF0000) >> 16) + 1;
205 } else i f (seq >= ((RX_DELIV & 0X0000FFFF) + std : :pow(2 , 15) ) ) {
206 RCVD_HFN = ((RX_DELIV & 0XFFFF0000) >> 16) ´ 1;
207 } else {
208 RCVD_HFN = (RX_DELIV & 0XFFFF0000) >> 16;
209 }
210

211 std : : lock_guard<std : :mutex> buffer_lock (buffer_mtx ) ;
212 RCVD_COUNT = (RCVD_HFN << 16) | seq ;
213 i f (RCVD_COUNT >= RX_DELIV &&
214 count_if (begin( rbuffer ) , end( rbuffer ) ,
215 [ ] ( tuple_type const &t ) { return get<0>(t ) == RCVD_COUNT; }) == 0) {
216 rbuffer .push_back( std : : make_tuple(RCVD_COUNT, ntohl (ph́ >packet_id ) , pkBuff ) ) ;
217 pkBuff = nullptr ;
218

219 i f (RCVD_COUNT >= RX_NEXT) {
220 RX_NEXT = RCVD_COUNT + 1;
221 }
222

223 i f (RCVD_COUNT == RX_DELIV) {
224 deliverBuffer (queue) ; / / updates RX_DELIV
225 }
226

227 i f ( t_reordering && RX_DELIV >= RX_REORD) {
228 t_reordering = false ;
229 }
230

231 i f ( ! t_reordering && RX_DELIV < RX_NEXT) {
232 RX_REORD = RX_NEXT;
233 std : : lock_guard<std : :mutex> time_lock (time_mtx) ;
234 end_time = steady_clock : :now() + milliseconds ( timeout ) ;
235 t_reordering = true ; / / start reordering
236 }
237

238 } else {
239 int status = nfq_set_verdict (queue, ntohl (ph́ >packet_id ) , NF_DROP, 0, nullptr ) ;
240 THROW_IF_TRUE( status < 0, "VERDICT DROP bad" ) ;
241 }
242

243 return 0;
244 }
245

246 int main( int argc , char *argv [ ] ) {
247 int q_number = 0;
248 i f (argc == 2) {
249 q_number = atoi (argv[1]) ;
250 }
251

252 nfq_handle *handler = nfq_open ( ) ;
253 THROW_IF_TRUE(handler == nullptr , "Can’ t open hfqueue handler . " ) ;
254 SCOPED_GUARD( nfq_close (handler ) ; ) ;
255

256 nfq_q_handle *queue = nfq_create_queue(handler , q_number, netfilterCallback , nullptr ) ;
257 THROW_IF_TRUE(queue == nullptr , "Can’ t create queue handler . " ) ;
258 SCOPED_GUARD(nfq_destroy_queue(queue) ; ) ;
259

260 THROW_IF_TRUE(nfq_set_mode(queue, NFQNL_COPY_PACKET, 0x f f f f ) < 0,
261 "Can’ t set queue copy mode. " ) ;
262

263 int fd = nfq_fd (handler ) ;
264 std : : array<char , 0x10000> buffer ;
265

266 std : : thread timer_reordering (timerThread , queue) ;
267

268 for ( ; ; ) {
269 int len = read( fd , buffer . data ( ) , buffer . size ( ) ) ;
270 THROW_IF_TRUE( len < 0, "Issue while read" ) ;
271 nfq_handle_packet (handler , buffer . data ( ) , len ) ;
272 }
273 return 0;
274 }

Listing B.1: Client proxy code

67



B.2. Server

B.2 Server

1 #include <arpa / inet .h>
2 #include <array>
3 #include <functional>
4 #include <iostream>
5 #include <linux / netf i l ter .h>
6 #include <memory>
7 #include <netinet / in .h>
8 #include <netinet / ip .h>
9 #include <netinet / tcp .h>

10 #include <netinet /udp.h>
11 #include <sys / socket .h>
12 #include <unistd .h>
13

14 extern "C" {
15 #include <libnetfilter_queue / libnetfilter_queue .h>
16 #include <libnetfilter_queue / libnetfilter_queue_ipv4 .h>
17 #include <libnetfilter_queue / libnetfilter_queue_tcp .h>
18 #include <libnetfilter_queue / libnetfilter_queue_udp .h>
19 #include <libnetfilter_queue / pktbuff .h>
20 }
21

22 using std : : cout , std : : endl ;
23

24 #define THROW_IF_TRUE(x , m) \
25 do { \
26 i f ( ( x) ) { \
27 throw std : : runtime_error (m) ; \
28 } \
29 } while ( false )
30

31 #define CONCAT_0(pre , post ) pre##post
32 #define CONCAT_1(pre , post ) CONCAT_0(pre , post )
33 #define GENERATE_IDENTIFICATOR(pre) CONCAT_1(pre , __LINE__)
34

35 using ScopedGuard = std : : unique_ptr<void , std : : function<void ( void *)>>;
36 #define SCOPED_GUARD_NAMED(name, code) \
37 ScopedGuard name( reinterpret_cast<void *>(´1) , [&](void *) >́ void { code }) ; \
38 ( void )name
39

40 #define SCOPED_GUARD(code) \
41 SCOPED_GUARD_NAMED(GENERATE_IDENTIFICATOR(genScopedGuard) , code)
42

43 #define DC
44

45 unsigned int const BATCH = 100;
46 unsigned int const LEN_SEQ = 2;
47 double const RATIO_ENO1 = 0.5;
48

49 unsigned int batch_counter = 0;
50 uint16_t seq = 0;
51

52 int netfilterCallback (nfq_q_handle *queue, nfgenmsg *nfmsg, nfq_data *nfad , void *data) {
53 nfqnl_msg_packet_hdr *ph = nfq_get_msg_packet_hdr(nfad) ;
54 THROW_IF_TRUE(ph == nullptr , " Issue while packet header" ) ;
55

56 unsigned char *rawData = nullptr ;
57 int len = nfq_get_payload (nfad , &rawData) + LEN_SEQ;
58 THROW_IF_TRUE( len ´ LEN_SEQ < 0, "Can’ t get payload data" ) ;
59

60 pkt_buff *pkBuff = pktb_alloc (AF_INET, rawData, len , 0x1000) ;
61 THROW_IF_TRUE(pkBuff == nullptr , " Issue while pktb allocate " ) ;
62 SCOPED_GUARD( pktb_free (pkBuff ) ; ) ;
63

64 iphdr * ip = nfq_ip_get_hdr (pkBuff ) ;
65 THROW_IF_TRUE( ip == nullptr , " Issue while ipv4 header parse . " ) ;
66 THROW_IF_TRUE( ! ( ip >́protocol == IPPROTO_UDP | | ip >́protocol == IPPROTO_TCP) ,
67 "Packet not UDP or TCP" ) ;
68

69 int th_status = nfq_ip_set_transport_header (pkBuff , ip ) ;
70 THROW_IF_TRUE( th_status < 0, "Can’ t set transport header . " ) ;
71

72 i f ( ip >́protocol == IPPROTO_UDP) {
73 udphdr *udp = nfq_udp_get_hdr(pkBuff ) ;
74 THROW_IF_TRUE(udp == nullptr , " Issue while UDP header . " ) ;
75

76 void *payload = nfq_udp_get_payload(udp, pkBuff ) ;

68



B.2. Server

77 THROW_IF_TRUE(payload == nullptr , " Issue while payload . " ) ;
78 unsigned int payload_len = nfq_udp_get_payload_len (udp, pkBuff ) ;
79

80 nfq_udp_mangle_ipv4(pkBuff , payload_len ´ LEN_SEQ, LEN_SEQ, (char *)(&seq) ,
81 LEN_SEQ) ;
82 seq++;
83 udṕ >check = 0;
84 udṕ >len = htons(ntohs(udṕ >len ) + LEN_SEQ) ;
85

86 } else i f ( ip >́protocol == IPPROTO_TCP) {
87 tcphdr *tcp = nfq_tcp_get_hdr (pkBuff ) ;
88 THROW_IF_TRUE( tcp == nullptr , " Issue while TCP header . " ) ;
89 void *payload = nfq_tcp_get_payload ( tcp , pkBuff ) ;
90

91 THROW_IF_TRUE(payload == nullptr , " Issue while payload . " ) ;
92 unsigned int payload_len = nfq_tcp_get_payload_len ( tcp , pkBuff ) ;
93 nfq_tcp_mangle_ipv4(pkBuff , payload_len ´ LEN_SEQ, LEN_SEQ, (char *)(&seq) ,
94 LEN_SEQ) ;
95 seq++;
96 tcp >́check = 0;
97 }
98

99 in_addr dst_addr = {ip >́daddr};
100 i f (batch_counter < RATIO_ENO1 * BATCH) {
101 inet_aton ( "10.255.201.50" , &dst_addr ) ;
102

103 } else { / / clanǵ format off
104 #ifdef DC
105 inet_aton ( "10.255.200.2" , &dst_addr ) ;
106 #else
107 inet_aton ( "10.255.201.50" , &dst_addr ) ;
108 #endif / / clanǵ format on
109 }
110

111 ip >́daddr = dst_addr . s_addr ;
112

113 i f (++batch_counter >= BATCH) {
114 batch_counter = 0;
115 }
116

117 nfq_ip_set_checksum( ip ) ;
118 int status = nfq_set_verdict (queue, ntohl (ph́ >packet_id ) , NF_ACCEPT, pktb_len (pkBuff ) ,
119 pktb_data (pkBuff ) ) ;
120 THROW_IF_TRUE( status < 0, "Status VERDICT ACCEPT bad" ) ;
121

122 return 0;
123 }
124

125 int main( int argc , char *argv [ ] ) {
126 int q_number = 0;
127 i f (argc == 2) {
128 q_number = atoi (argv[1]) ;
129 }
130

131 nfq_handle *handler = nfq_open ( ) ;
132 THROW_IF_TRUE(handler == nullptr , "Can’ t open hfqueue handler . " ) ;
133 SCOPED_GUARD( nfq_close (handler ) ; ) ;
134

135 nfq_q_handle *queue = nfq_create_queue(handler , q_number, netfilterCallback , nullptr ) ;
136 THROW_IF_TRUE(queue == nullptr , "Can’ t create queue handler . " ) ;
137 SCOPED_GUARD(nfq_destroy_queue(queue) ; ) ;
138

139 THROW_IF_TRUE(nfq_set_mode(queue, NFQNL_COPY_PACKET, 0x f f f f ) < 0,
140 "Can’ t set queue copy mode. " ) ;
141 int fd = nfq_fd (handler ) ;
142 std : : array<char , 0x10000> buffer ;
143 for ( ; ; ) {
144 int len = read( fd , buffer . data ( ) , buffer . size ( ) ) ;
145 THROW_IF_TRUE( len < 0, "Issue while read" ) ;
146 nfq_handle_packet (handler , buffer . data ( ) , len ) ;
147 }
148 return 0;
149 }

Listing B.2: Server proxy code

69



C Qvis PDCP reordering

70



Figure C.1: Qvis PDCP reordering

71



D Throughput with bandwidth
trace

DC	batch	size

Th
ro
ug
hp
ut
	(M

bp
s)

TCP
QUIC
QUIC	buffer	modified

0 100 200 300 400 500
0

5

10

15

20

Figure D.1: Throughput based on DC batch
size (repeated Figure 5.5 with BW trace)

Interface	eno1	(%)

Th
ro
ug
hp
ut
	(M

bp
s) TCP QUIC QUIC	buffer	modified

0 20 40 60 80 100
0

5

10

15

20

Figure D.2: Throughput based on DC ratio
(repeated Figure 5.9 with BW trace)

Delay	ratio	(sum	20ms)

Th
ro

ug
hp

ut
	(M

bp
s)

TCP
QUIC
QUIC	buffer	modified

1:1 2:1 3:1 4:1 5:1
0

5

10

15

20

Figure D.3: Throughput based on low delay
ratio (repeated Figure 5.12a with BW trace)

Delay	ratio	(sum	200ms)

Th
ro

ug
hp

ut
	(M

bp
s) TCP

QUIC
QUIC	buffer	modified

1:1 2:1 3:1 4:1 5:1
0

5

10

15

20

Figure D.4: Throughput based on high delay
ratio (repeated Figure 5.12b with BW trace)

72



Random	loss	per	interface	(%)

Th
ro

ug
hp

ut
	(M

bp
s) TCP

QUIC
QUIC	buffer	modified

0.00 0.04 0.08 0.12 0.16 0.20
0

5

10

15

20

Figure D.5: Throughput based on random
loss without packet duplication (repeated
Figure 5.13a with BW trace)

Random	loss	per	interface	(%)

Th
ro

ug
hp

ut
	(M

bp
s) TCP

QUIC
QUIC	buffer	modified

0.00 1.00 2.00 3.00 4.00 5.00
0

5

10

15

20

Figure D.6: Throughput based on random
loss with packet duplication (repeated Fig-
ure 5.13b with BW trace)

73



E Throughput with bandwidth
trace over ngtcp2 and CUBIC

DC	batch	size

Th
ro
ug
hp
ut
	(M

bp
s)

TCP	CUBIC
ngtcp2	Reno
ngtcp2	CUBIC

0 100 200 300 400 500
0

5

10

15

20

Figure E.1: Throughput based on DC batch
size (repeated Figure 5.5 with BW trace
over ngtcp2 and CUBIC)

Interface	eno1	(%)

Th
ro
ug
hp
ut
	(M

bp
s) TCP	CUBIC ngtcp2	Reno

ngtcp2	CUBIC

0 20 40 60 80 100
0

5

10

15

20

Figure E.2: Throughput based on DC ra-
tio (repeated Figure 5.9 with BW trace over
ngtcp2 and CUBIC)

Delay	ratio	(sum	20ms)

Th
ro
ug
hp
ut
	(M

bp
s)

TCP	CUBIC
ngtcp2	Reno
ngtcp2	CUBIC

1:1 2:1 3:1 4:1 5:1
0

5

10

15

20

Figure E.3: Throughput based on low delay
ratio (repeated Figure 5.12a with BW trace
over ngtcp2 and CUBIC)

Delay	ratio	(sum	200ms)

Th
ro
ug
hp
ut
	(M

bp
s) TCP	CUBIC

ngtcp2	Reno
ngtcp2	CUBIC

1:1 2:1 3:1 4:1 5:1
0

5

10

15

20

Figure E.4: Throughput based on high delay
ratio (repeated Figure 5.12b with BW trace
over ngtcp2 and CUBIC)

74



Random	loss	per	interface	(%)

Th
ro
ug
hp
ut
	(M

bp
s) TCP	CUBIC

ngtcp2	Reno
ngtcp2	CUBIC

0.00 0.04 0.08 0.12 0.16 0.20
0

5

10

15

20

Figure E.5: Throughput based on random
loss without packet duplication (repeated
Figure 5.13a with BW trace over ngtcp2 and
CUBIC)

Random	loss	per	interface	(%)

Th
ro
ug
hp
ut
	(M

bp
s) TCP	CUBIC

ngtcp2	Reno
ngtcp2	CUBIC

0.00 1.00 2.00 3.00 4.00 5.00
0

5

10

15

20

Figure E.6: Throughput based on random
loss with packet duplication (repeated Fig-
ure 5.13b with BW trace over ngtcp2 and
CUBIC)

75



F Throughput results with
ngtcp2 and CUBIC

DC	batch	size

Th
ro
ug
hp
ut
	(M

bp
s)

TCP	CUBIC
ngtcp2	Reno
ngtcp2	CUBIC

0 100 200 300 400 500
0

10

20

30

40

Figure F.1: Throughput based on DC batch
size (repeated Figure 5.5 with ngtcp2 and
CUBIC)

Interface	eno1	(%)

Th
ro
ug
hp
ut
	(M

bp
s)

TCP	CUBIC ngtcp2	Reno
ngtcp2	CUBIC

0 20 40 60 80 100
0

10

20

30

40

Figure F.2: Throughput based on DC ra-
tio (repeated Figure 5.9 with ngtcp2 and
CUBIC)

Bandwidth	ratio

Th
ro
ug
hp
ut
	(M

bp
s)

TCP	CUBIC
ngtcp2	Reno
ngtcp2	CUBIC

1:1 2:1 3:1 4:1 5:1
0

10

20

30

40

Figure F.3: Throughput based on BW ra-
tio (repeated Figure 5.11a with ngtcp2 and
CUBIC)

Bandwidth	ratio	and	DC	ratio

Th
ro
ug
hp
ut
	(M

bp
s)

TCP	CUBIC
ngtcp2	Reno
ngtcp2	CUBIC

1:1 2:1 3:1 4:1 5:1
0

10

20

30

40

Figure F.4: Throughput based on BW
and DC ratio (repeated Figure 5.11b with
ngtcp2 and CUBIC)

76



Delay	ratio	(sum	20ms)

Th
ro
ug
hp
ut
	(M

bp
s)

TCP	CUBIC
ngtcp2	Reno
ngtcp2	CUBIC

1:1 2:1 3:1 4:1 5:1
0

10

20

30

40

Figure F.5: Throughput based on low de-
lay ratio (repeated Figure 5.12a with ngtcp2
and CUBIC)

Delay	ratio	(sum	200ms)

Th
ro
ug
hp
ut
	(M

bp
s) TCP	CUBIC

ngtcp2	Reno
ngtcp2	CUBIC

1:1 2:1 3:1 4:1 5:1
0

10

20

30

40

Figure F.6: Throughput based on high delay
ratio (repeated Figure 5.12b with ngtcp2
and CUBIC)

Random	loss	per	interface	(%)

Th
ro
ug
hp
ut
	(M

bp
s) TCP	CUBIC

ngtcp2	Reno
ngtcp2	CUBIC

0.00 0.04 0.08 0.12 0.16 0.20
0

10

20

30

40

Figure F.7: Throughput based on random
loss without packet duplication (repeated
Figure 5.13a with ngtcp2 and CUBIC)

Random	loss	per	interface	(%)

Th
ro
ug
hp
ut
	(M

bp
s) TCP	CUBIC

ngtcp2	Reno
ngtcp2	CUBIC

0.00 1.00 2.00 3.00 4.00 5.00
0

10

20

30

40

Figure F.8: Throughput based on random
loss with packet duplication (repeated Fig-
ure 5.13b with ngtcp2 and CUBIC)

77



G Fairness results with ngtcp2
and NewReno

DC	batch	size

Th
ro
ug
hp
ut
	(M

bp
s)

1.0
0

1.0
0
1.0

0
1.0

0
0.9

9
0.9

9
0.9

9
0.9

9
0.9

4
0.9

4
0.9

2
0.9

2
0.9

0
0.9

0
0.9

0
0.9

0
0.9

0
0.9

0
0.8

9
0.8

9
0.8

9
0.8

9

ngtcp2	SC	1 ngtcp2	DC
ngtcp2	SC	2 JFI

0 100 200 300 400 500
0

5

10

15

20

25

Figure G.1: Fairness based on DC batch
size (repeated Figure 5.15 with ngtcp2 and
NewReno)

Interface	eno1	(%)

Th
ro
ug
hp
ut
	(M

bp
s)

0.8
9

0.8
9
0.9

2
0.9

2
0.9

5
0.9

5
0.9

7
0.9

7
0.9

9
0.9

9
0.9

9
0.9

9
0.9

9
0.9

9
0.9

7
0.9

7
0.9

5
0.9

5
0.9

2
0.9

2
0.8

9
0.8

9

ngtcp2	SC	1 ngtcp2	DC
ngtcp2	SC	2 JFI

0 20 40 60 80 100
0

5

10

15

20

25

Figure G.2: Fairness based on DC ra-
tio (repeated Figure 5.16 with ngtcp2 and
NewReno)

Bandwidth	ratio

Th
ro
ug
hp
ut
	(M

bp
s)

0.990.99 0.950.95 0.880.88 0.800.80 0.740.74 0.690.69 0.640.64 0.610.61 0.590.59

ngtcp2	SC	1 ngtcp2	DC
ngtcp2	SC	2 JFI

1:1 2:1 3:1 4:1 5:1
0

5

10

15

20

25

Figure G.3: Fairness based on BW ratio
(repeated Figure 5.17a with ngtcp2 and
NewReno)

Bandwidth	and	DC	ratio

Th
ro
ug
hp
ut
	(M

bp
s)

0.990.99 0.980.98 0.950.95 0.910.91 0.870.87 0.850.85 0.830.83 0.790.79 0.780.78

ngtcp2	SC	1 ngtcp2	DC
ngtcp2	SC	2 JFI

1:1 2:1 3:1 4:1 5:1
0

5

10

15

20

25

Figure G.4: Fairness based on BW and DC
ratio (repeated Figure 5.17b with ngtcp2
and NewReno)

78



Delay	ratio	(sum	20ms)

Th
ro

ug
hp

ut
	(M

bp
s)

0.9
9

0.9
9

0.9
9

0.9
9

0.9
9

0.9
9

0.9
9

0.9
9

0.9
9

0.9
9

0.9
9

0.9
9

0.9
9

0.9
9

1.0
0

1.0
0

1.0
0

1.0
0

ngtcp2	SC	1 ngtcp2	DC
ngtcp2	SC	2 JFI

1:1 2:1 3:1 4:1 5:1
0

5

10

15

20

25

Figure G.5: Fairness based on low delay ra-
tio (repeated Figure 5.18a with ngtcp2 and
NewReno)

Delay	ratio	(sum	200ms)

Th
ro

ug
hp

ut
	(M

bp
s)

1.0
0

1.0
0

0.9
9

0.9
9

0.9
6

0.9
6

0.9
1

0.9
1

0.8
9

0.8
9

0.8
8

0.8
8

0.8
6

0.8
6

0.8
6

0.8
6

0.8
5

0.8
5

ngtcp2	SC	1 ngtcp2	DC
ngtcp2	SC	2 JFI

1:1 2:1 3:1 4:1 5:1
0

5

10

15

20

25

Figure G.6: Fairness based on high delay ra-
tio (repeated Figure 5.18b with ngtcp2 and
NewReno)

Random	loss	per	interface	(%)

Th
ro
ug

hp
ut
	(M

bp
s)

0.9
9

0.9
9

1.0
0

1.0
0

1.0
0

1.0
0

1.0
0

1.0
0

1.0
0

1.0
0

1.0
0

1.0
0

1.0
0

1.0
0

1.0
0

1.0
0

1.0
0

1.0
0

1.0
0

1.0
0

1.0
0

1.0
0

ngtcp2	SC	1 ngtcp2	DC
ngtcp2	SC	2 JFI

0.00 0.05 0.10 0.15 0.20
0

5

10

15

20

25

Figure G.7: Fairness based on random loss
without packet duplication (repeated Fig-
ure 5.19a with ngtcp2 and NewReno)

Random	loss	per	interface	(%)

Th
ro
ug

hp
ut
	(M

bp
s)

0.4
5

0.4
5
0.4

1
0.4

1
0.4

0
0.4

0
0.4

0
0.4

0
0.3

9
0.3

9
0.3

9
0.3

9
0.3

9
0.3

9
0.3

9
0.3

9
0.4

0
0.4

0
0.4

0
0.4

0
0.4

0
0.4

0
0.4

0
0.4

0
0.4

1
0.4

1

ngtcp2	SC	1
ngtcp2	SC	2
ngtcp2	DC
JFI

0.00 1.00 2.00 3.00 4.00 5.00
0
5

10
15
20
25
30

Figure G.8: Fairness based on random
loss with packet duplication (repeated Fig-
ure 5.19b with ngtcp2 and NewReno)

79



H Fairness results with ngtcp2
and CUBIC

DC	batch	size

Th
ro
ug
hp
ut
	(M

bp
s)

1.0
0

1.0
0
1.0

0
1.0

0
0.9

9
0.9

9
1.0

0
1.0

0
0.9

5
0.9

5
0.9

2
0.9

2
0.9

1
0.9

1
0.9

0
0.9

0
0.9

0
0.9

0
0.9

0
0.9

0
0.9

1
0.9

1

ngtcp2	SC	1 ngtcp2	DC
ngtcp2	SC	2 JFI

0 100 200 300 400 500
0

5

10

15

20

25

Figure H.1: Fairness based on DC batch
size (repeated Figure 5.15 with ngtcp2 and
CUBIC)

Interface	eno1	(%)

Th
ro
ug
hp
ut
	(M

bp
s)

0.8
9

0.8
9
0.9

2
0.9

2
0.9

5
0.9

5
0.9

7
0.9

7
0.9

8
0.9

8
0.9

9
0.9

9
0.9

9
0.9

9
0.9

7
0.9

7
0.9

5
0.9

5
0.9

2
0.9

2
0.8

9
0.8

9

ngtcp2	SC	1 ngtcp2	DC
ngtcp2	SC	2 JFI

0 20 40 60 80 100
0

5

10

15

20

25

Figure H.2: Fairness based on DC ra-
tio (repeated Figure 5.16 with ngtcp2 and
CUBIC)

Bandwidth	ratio

Th
ro
ug
hp
ut
	(M

bp
s)

0.990.99 0.950.95 0.890.89 0.820.82 0.760.76 0.700.70 0.660.66 0.630.63 0.610.61

ngtcp2	SC	1 ngtcp2	DC
ngtcp2	SC	2 JFI

1:1 2:1 3:1 4:1 5:1
0

5

10

15

20

25

Figure H.3: Fairness based on BW ratio
(repeated Figure 5.17a with ngtcp2 and
CUBIC)

Bandwidth	and	DC	ratio

Th
ro
ug
hp
ut
	(M

bp
s)

0.990.99 0.980.98 0.950.95 0.920.92 0.880.88 0.850.85 0.830.83 0.810.81 0.790.79

ngtcp2	SC	1 ngtcp2	DC
ngtcp2	SC	2 JFI

1:1 2:1 3:1 4:1 5:1
0

5

10

15

20

25

Figure H.4: Fairness based on BW and DC
ratio (repeated Figure 5.17b with ngtcp2
and CUBIC)

80



Delay	ratio	(sum	20ms)

Th
ro

ug
hp

ut
	(M

bp
s)

0.9
9

0.9
9

0.9
9

0.9
9

0.9
9

0.9
9

0.9
9

0.9
9

0.9
9

0.9
9

0.9
9

0.9
9

0.9
9

0.9
9

0.9
9

0.9
9

0.9
9

0.9
9

ngtcp2	SC	1 ngtcp2	DC
ngtcp2	SC	2 JFI

1:1 2:1 3:1 4:1 5:1
0

5

10

15

20

25

Figure H.5: Fairness based on low delay ra-
tio (repeated Figure 5.18a with ngtcp2 and
CUBIC)

Delay	ratio	(sum	200ms)

Th
ro

ug
hp

ut
	(M

bp
s)

1.0
0

1.0
0

1.0
0

1.0
0

0.9
7

0.9
7

0.9
4

0.9
4

0.9
1

0.9
1

0.8
9

0.8
9

0.8
8

0.8
8

0.8
5

0.8
5

0.8
5

0.8
5

ngtcp2	SC	1 ngtcp2	DC
ngtcp2	SC	2 JFI

1:1 2:1 3:1 4:1 5:1
0

5

10

15

20

25

Figure H.6: Fairness based on high delay
ratio (repeated Figure 5.18b with ngtcp2
and CUBIC)

Random	loss	per	interface	(%)

Th
ro
ug

hp
ut
	(M

bp
s)

0.9
9

0.9
9

0.9
9

0.9
9

1.0
0

1.0
0

1.0
0

1.0
0

1.0
0

1.0
0

1.0
0

1.0
0

1.0
0

1.0
0

1.0
0

1.0
0

1.0
0

1.0
0

1.0
0

1.0
0

1.0
0

1.0
0

ngtcp2	SC	1 ngtcp2	DC
ngtcp2	SC	2 JFI

0.00 0.05 0.10 0.15 0.20
0

5

10

15

20

25

Figure H.7: Fairness based on random loss
without packet duplication (repeated Fig-
ure 5.19a with ngtcp2 and CUBIC)

Random	loss	per	interface	(%)

Th
ro
ug

hp
ut
	(M

bp
s)

0.4
3

0.4
3
0.4

1
0.4

1
0.4

0
0.4

0
0.4

0
0.4

0
0.4

0
0.4

0
0.4

0
0.4

0
0.4

0
0.4

0
0.3

9
0.3

9
0.3

9
0.3

9
0.4

0
0.4

0
0.4

0
0.4

0
0.4

0
0.4

0
0.4

0
0.4

0

ngtcp2	SC	1
ngtcp2	SC	2
ngtcp2	DC
JFI

0.00 1.00 2.00 3.00 4.00 5.00
0
5

10
15
20
25
30

Figure H.8: Fairness based on random
loss with packet duplication (repeated Fig-
ure 5.19b with ngtcp2 and CUBIC)

81


	Abstract
	Acknowledgments
	Contents
	List of Figures
	List of Tables
	List of Algorithms and Code
	Introduction
	Motivation
	Aim
	Research questions
	Contributions
	Delimitations
	Thesis outline

	Background
	QUIC
	QUIC specifications
	Aioquic
	Ngtcp2

	QUIC packet structure
	Long header packets
	Short header packets

	Dual connectivity
	Packet Data Convergence Protocol
	Logging, visualizing and analyzing QUIC
	QUIC trace
	Qlog
	Qvis

	Controlling data traffic
	TC, NetEm and qdisc
	Iptables
	Netfilter queue

	Congestion control
	NewReno
	CUBIC
	BBR

	Fairness

	Related Work
	QUIC versus TCP
	Dual connectivity
	Multipath
	Fairness

	Method
	Experimental setup
	Server proxy
	Client proxy
	Performance testing

	Results
	PDCP reordering
	Throughput
	Dual connectivity batch size
	Dual connectivity ratio
	Bandwidth ratio
	Delay ratio
	Random loss

	Fairness
	Dual connectivity batch size
	Dual connectivity ratio
	Bandwidth ratio
	Delay ratio
	Random loss


	Discussion
	Results
	QUIC versus TCP
	Standard deviation
	Fairness

	Method
	The work in a wider context

	Conclusion
	Future work

	Bibliography
	Example Qlog file
	Proxy code
	Client
	Server

	Qvis PDCP reordering
	Throughput with bandwidth trace
	Throughput with bandwidth trace over ngtcp2 and CUBIC
	Throughput results with ngtcp2 and CUBIC
	Fairness results with ngtcp2 and NewReno
	Fairness results with ngtcp2 and CUBIC

