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Abstract

The increasing demand for online commerce has led to an increasing demand of au-
tonomous vehicles in the logistics sector. The work in this thesis aims to improve the ob-
stacle detection of autonomous forklifts by using 3D sensor technology. Three different
products were compared based on a number of criteria. These criteria were provided by
Toyota Material Handling, a manufacturer of autonomous forklifts. One of the products
was chosen for developing a prototype. The prototype was used to determine if 3D cam-
era technology could provide sufficient obstacle detection in a warehouse environment.
The determination was based on the prototype’s performance in a series of tests. The tests
ranged from human to pallet detection, and were aimed to fulfill all criteria. The advan-
tages and disadvantages of the chosen camera is presented. The conclusion is that the cho-
sen 3D camera cannot provide sufficient obstacle detection due to certain environmental
factors.





Acknowledgments

We want to thank Adrian Horga for providing useful feedback during the whole thesis. His
comments helped us greatly when writing the report. We would also like to thank Michal
Godymirski and Mattias Arnsby from Toyota Material Handling that gave us a lot of help
and feedback during the construction of the prototype. Without their help, many parts of the
prototype would have been left unfinished. Lastly, we would like to thank Toyota Material
Handling for giving us the opportunity to do this thesis.

v





Contents

Abstract iii

Acknowledgments v

Contents vii

List of Figures ix

List of Tables xi

1 Introduction 1

2 Theory 3
2.1 Different sensor technologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Different 3D camera technologies . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.3 Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3 Related work 7

4 Method 9
4.1 Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
4.2 Evaluation parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
4.3 Evaluated camera models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.4 Scoring the products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.5 Initial testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

5 Prototype 15
5.1 Testing camera capabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
5.2 Detection algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
5.3 Testing the prototype . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

6 Result 23
6.1 Test results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
6.2 Evaluating the prototype . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

7 Discussion 29
7.1 Problems during construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
7.2 Criticism of methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
7.3 Criticism of sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
7.4 The work in a wider context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

8 Conclusion 33

Bibliography 35

vii





List of Figures

1.1 Visualization of current obstacle detection curtain. Image used with permission
from Toyota. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2.1 Image pyramid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

5.1 The three different types of images . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
5.2 Distance image taken during distance error measurements. . . . . . . . . . . . . . . 16
5.3 Graph for standard deviation measurements at different distances. Red line is the

derived function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5.4 Distance image before and after filtering . . . . . . . . . . . . . . . . . . . . . . . . . 18
5.5 Visualization of region intersection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5.6 The different camera reactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
5.7 Proof of Concept rig . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

6.1 Detection range of a person. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
6.2 Detection range of two different pallets; a wooden EUR-pallet and a black plastic

pallet. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
6.3 Detection range of two different fork-sized objects; black forks of a forklift and a

5x8 cm wooden plank. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
6.4 Distance image containing reflective surfaces . . . . . . . . . . . . . . . . . . . . . . 26
6.5 Black forklift with different image types . . . . . . . . . . . . . . . . . . . . . . . . . 26
6.6 Point clouds of the floor with and without a plank. . . . . . . . . . . . . . . . . . . . 27

ix





List of Tables

2.1 All table content taken from Revopoint3D1. . . . . . . . . . . . . . . . . . . . . . . . 5

4.1 Table representing the point-system . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.2 Resulting points for each camera . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

5.1 Accuracy of depth measurements according to SICK. . . . . . . . . . . . . . . . . . 16
5.2 Measured depth accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5.3 Confidence values for objects at different distances. The minimum shows the low-

est value measured for each object. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

6.1 Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
6.2 Desired features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

xi





1 Introduction

The increasing demand in online commerce has led to companies desiring warehouses that
operate without interruption. This has, in turn, led to an increase in the development of
autonomous vehicles such as forklifts. Since the warehouses still have people working in
them, safety is of the highest priority.

The current way of handling logistics, with manual labor and stressful environments,
creates bottlenecks and dangerous work environments. Between 2011 and 2017 in the U.S.
alone, more than 7000 forklift-related injuries resulted in sick leave occurred annually [1].
This is both costly for the employer and unnecessary for the employee, which is a reason to
develop a safer autonomous work environment.

The work in this thesis was done for the Auto Solutions division of Toyota Material Han-
dling1. Auto Solutions focuses on their autonomous forklifts. At the moment, their obstacle
detection uses a number of lasers. These lasers work in two-dimensional planes that could
be described as "curtains" in front of the forklift. These curtains are used to detect objects
that are more than 5 centimeters above the ground (Figure 1.1). This solution has its limi-
tations, such as not detecting an obstacle that appears after the curtain has passed but the
forklift has not (e.g at a junction). Therefore, an upgrade to a more reliable and safe obstacle
detection is required. One possible upgrade is to replace the two-dimensional curtains with
a three-dimensional space. Using a three-dimensional space instead of a two-dimensional
curtain could provide certain benefits. These benefits include an increased detection range,
detection of small objects on the ground, and the ability to focus its obstacle detection in a
certain direction.

This report presents three different technologies that can be used to create a three-
dimensional space in front of the forklift. This three-dimensional space is analyzed in order
to detect obstacles. The most suitable technology for Toyota’s forklifts is then determined.
Aspects that affect the suitability range from the cost of implementation, ease of installation
and maintenance, as well as capability in differently lit environments.

1https://toyota-forklifts.se/
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1. INTRODUCTION

Figure 1.1: Visualization of current obstacle detection curtain. Image used with permission
from Toyota.

There were two research questions for this thesis:

1. Can 3D camera technology be used for reliable obstacle detection in a typical warehouse
environment?

2. What type of 3D camera technology is most suitable for obstacle detection in a typical
warehouse environment?

In Section 2, the relevant theory is presented. Section 3 outlines related work, which was
used as a basis when choosing different 3D cameras, as well as how the solution in this paper
differs from other solutions.

In Section 4 the chosen products are presented and compared. In order to limit the scope, a
number of specifications are presented. The obstacle detection system was considered reliable
if these specifications were fulfilled. There is a large variety of possible solutions. However,
due to time constraints, only two 3D cameras and one 3D sensor were examined to determine
which one was most suitable. They were evaluated based on a number of criteria, which are
presented in Section 4.2.

Section 5 describes the process of creating a prototype with one of the selected products.
It includes testing and measurements for acquiring equations, explanations of the detection
algorithms, and testing how well the product fulfilled the specifications.

Section 6 presents the results from the aforementioned testing. Finally, conclusions and
discussion around the results are presented in Section 7, along with some criticism of the
methodology in the paper.
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2 Theory

In this section, current technologies will be presented along with their respective advantages
and disadvantages. Additionally, common terms in obstacle detection systems are explained.

2.1 Different sensor technologies

This section briefly presents which technologies are commonly used in 3D sensor systems.

2.1.1 Active systems

An active sensor system provides the energy required to visualize an area. The data gathered
is evaluated depending on the reflection of the sent signal. This typically enables the system
to work in poorly lit environments. For example, a still camera could use its flash to light
the surroundings before taking the picture. In this scenario, the still camera is considered an
active system.

2.1.2 Passive systems

A passive sensor system works by detecting reflections or emissions from objects. They only
work if there is enough natural energy available to enable reflection or emission. The energy
is either reflected by the object (visible spectrum) or absorbed and then re-emitted (infrared
spectrum). This energy is what becomes the gathered data. Using the still camera as an
example, if there is enough ambient light it will simply capture the reflections from all objects.
In this scenario, the still camera is considered a passive system.

2.1.3 Infrared

According to Discant et al. [3], infrared sensor systems can be either active or passive. An
active infrared system consists of a transmitter and a receiver. The transmitter emits infrared
light, and objects reflect some of the light. This reflection is picked up by the receiver. The
passive systems consist of a receiver which waits until changes in the emitted infrared light
of an object is detected. The infrared spectrum allows for object detection in both light and
dark environments.

3



2. THEORY

Discant et al. [3] mentions that a drawback of an infrared camera is that they are sensitive
to bad weather conditions, such as rain or fog. Another disadvantage presented by Mustapha
et al. [14] is that the infrared reflectivity for black objects is low. This means that they can be
practically invisible to the infrared camera.

2.1.4 Ultrasonic

Ultrasonic waves are soundwaves within a specific frequency that humans are not capable of
hearing. Scalise et al. [8] describes the usual principal of ultrasonic systems as dependant on
pulses of these ultrasonic waves. This means that it is an active system. The soundwaves are
reflected by obstacles and the echo received by the system is used for measurements.

Based on the work of Scalise et al. [8], some generally recognized limitations of ultrasonic
systems are their limited useful range and difficulties with highly reflective surfaces.

2.1.5 Light Detection And Ranging

Light Detection And Ranging (LiDAR) is an active technology. It utilizes the reflection of a
laser light pulse in order to calculate the distance to objects. The distance is calculated by
the time it takes for the light pulse to return. Since the laser travels at the speed of light, the
distance can be derived from the speed multiplied by the round trip time. Some advantages
of LiDARs are their precise range measurements and large field of view.

The disadvantages of LiDAR are mostly the same as infrared. Heavy rain and fog as well
as reflections can distort measurements. As opposed to infrared, the laser light is in the visible
spectrum. This means that it can possibly be harmful to human eyes.

2.1.6 Radio Detection And Ranging

Radio Detection And Ranging (radar) work similarly to LiDAR, but it uses radio waves in-
stead of laser light. A radar detector is comprised of a transmitter and a receiver. Since radio
waves also move at the speed of light, the distance to objects is calculated the same way as
LiDAR. Discant et al. [3] say that the advantages of radar are that they work in all light con-
ditions and are mostly unaffected by weather. Discant et al. [3] do not mention any explicit
disadvantages of radar.

2.1.7 Sensor fusion

Using input values from multiple sensors is called sensor fusion. According to Discant et
al. [3], almost all obstacle detection systems use sensor fusion. Llinas and Hall [11] explain
the utility of sensor fusion by comparing it to mammals: "[...] while one is unable to see
around corners or through vegetation, the sense of hearing can provide advanced warning
of impending danger.". When one sensor is unable to provide reliable information, another
one might be able to. The reason for using sensor fusion is to offset the disadvantages of one
technique by using the advantages of another.

2.2 Different 3D camera technologies

There are currently three main ways for 3D imaging: Time-of-Flight, Stereo Vision, and Struc-
tured Light. They are presented and compared in the following section.

2.2.1 Time-of-flight (ToF)

ToF is an active technique which makes it suitable for low light environments. ToF cameras
such as the Microsoft Kinect have previously been used for obstacle detection and avoidance
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2.2. Different 3D camera technologies

in robotics [4,13]. The distance measurements only require simple algorithms to provide ac-
curate depth data, which enables the cameras to have a compact design. There are multiple
ways to implement ToF. They usually calculate the distance to objects by projecting continu-
ous or pulsating waves of either light or sound.

Pulsating wave cameras can use either sound or light. They calculate the distance based
on the round trip time (RTT) of the wave. The RTT is the total time it takes for the wave
to bounce off objects and return to the camera. A common disadvantage of RTT ToF is that
multiple cameras can interfere with each other’s waves, causing distortions in their measure-
ments.

Phase shift cameras project continuous waves of light and measure the frequency differ-
ence between the projection and the reflection. The camera calculates the distance to objects
based on the difference in frequency. The main disadvantage of phase-shifting ToF cameras
is that they are sensitive to background light and interference. This can cause a significant
amount of noise and errors in the measurements, which may lead to false positives. Since the
measurements are based on the reflection from an object, distinctly reflective surfaces may
lead to distorted measurements.

2.2.2 Stereo vision

According to Turek and Jackson [7], stereo vision cameras work similarly to the human eyes.
Stereo vision cameras usually have two lenses that are placed about the same distance away
from each other as the human eyes. The slightly different images provided from each lens are
used to calculate depth measurements. However, this computation requires a large amount
of processing power. Just like the human eyes, it is a passive technology which means that it
requires some form of light from the environment.

2.2.3 Structured light

Structured light systems typically consist of one or more cameras that track the light projected
by a single light source, or projector. The projector and camera(s) are calibrated so that slight
variations in the angle of the light is detected by the camera. These variations are used to
calculate the depth data of the object that reflected the light. Structured light data systems are
mostly used indoors since sunlight can interfere with the measurements. Since the structured
light system detects variations in its own projections, it is an active system which means that
it works well in poorly lit environments.

2.2.4 Comparing the three technologies

Revopoint3D, a manufacturer of 3D cameras, has written a summary of the different preva-
lent camera technologies. Table 2.1 contains some characteristics of each camera technology.

Technology Stereo Vision Time-of-Flight Struct. Light

Minimum distance <= 2 meters 0.4-0.5 meters 0.2-0.3 meters
Accuracy 5-10% of distance <=0.5% of distance <= 1 mm

Resolution Medium Low High
Power consumption High Medium Medium
Use environments Lit environments Indoor & outdoor Indoor

Frame rate High Variable 30 fps
Hardware cost Low Medium High

Processing required High Low Medium
Applications 3D reconstruction Autonomous vehicle Face recognition

Table 2.1: All table content taken from Revopoint3D1.
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2. THEORY

2.3 Terminology

This section covers common terms in obstacle detection. Knowing the meaning of these terms
is necessary in order to understand the upcoming parts of the thesis.

2.3.1 Image Pyramid

Image pyramids have been used since the 1980s, and are still frequently used for image pro-
cessing. As described by Burt & Adelsen [15], the concept of an image pyramid is to down-
sample an image a set amount of levels. Each level usually downsamples the image by a
factor of two relative to the preceding level. As a result, the amount of pixels in the image is
reduced. Each cycle leads to greater filtering, with fewer pixels and a smaller image. When
the different levels of an image are stacked upon each other, it resembles a pyramid as seen
in Figure 2.1.

Figure 2.1: Visualization of image pyramids.2

2.3.2 Point cloud

Typical 2D cameras express their pixels with an xy-coordinate, while 3D cameras use xyz-
coordinates. The z-coordinate usually represents the depth value. These xyz-coordinates are
typically referred to as data points or voxels. A point cloud is the combination of all registered
voxels within an image. The point cloud allows the user to analyze and visualize what the
camera sees in real-time.

2.3.3 Digital noise

A common issue with 3D cameras is that their depth measurements can be affected by their
environment. For example, dust can cause incorrect measurements when using LiDAR Time-
of-Flight cameras since the dust can interfere with the projected light. This is commonly
referred to as digital noise. In this report, digital noise may also be referred to as noise.

1https://www.revopoint3d.com/comparing-three-prevalent-3d-imaging-technologies-tof-structured-light-
and-binocular-stereo-vision/

2Image taken from:
https://commons.wikimedia.org/w/index.php?title=File:Image_pyramid.svg&oldid=368445222
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3 Related work

Stereo vision cameras have been used for decades for obstacle detection in autonomous vehi-
cles. Broggi et al. [10] used a stereo camera as part of their obstacle detection system. In order
to minimize computation cost, the pixels in each image were combined into 3x3 pixel regions.
The results showed that there was potential in the approach, but further improvement was
needed in order to reduce false positives. For the prototype in this paper, image pyramids
were used in a similar fashion. However, this led to difficulties in detecting smaller objects
since they were removed at higher levels of the pyramid.

Stiller et al. [2] mainly relied on a combination of laser scanners and stereo vision sensors
to detect obstacles in a 360° angle around the vehicle. The redundancy of data from their
sensors resulted in a more accurate depiction of their surroundings. Cardarelli et al. [5] and
Ho Gi Jung et al. [6] also used laser scanners and stereo vision for obstacle detection. Ho Gi
Jung et al. [6] collected the range data from the laser scanners to generate potential obstacles.
The stereo vision camera was used to confirm and classify the obstacle as either a pedestrian,
a vehicle, or other. The conclusions showed that sensor fusion can be used to reduce false-
positive readings. In this paper, only one type of 3D camera was used. This resulted in a high
amount of false positives and negatives under certain environmental conditions. For future
work, utilizing sensor fusion could alleviate these issues.

Chavez-Garcia and Aycard [12] used Light Detection And Ranging (LiDAR), Radio De-
tection and Ranging (radar), and a video camera for obstacle detection. The LiDAR identified
regions of interest (ROI). Any region with a cluster of occupied pixels was defined as an ROI.
Using the video camera, the ROIs were further analyzed to determine if the region contained
an object or not. The detection rate of obstacles was 90%-100%, depending on the environ-
ment. Urban environments resulted in the highest rate of false detections. For the prototype
in this paper, ROIs were used in a similar fashion. Additionally, the ROIs were compared
between images in order to determine if an object was approaching.

In recent years, researchers have used Time-of-Flight cameras such as the Microsoft Kinect
for obstacle detection. Zhang [9] outlined the use-cases and showed the possibilities of the
Kinect. Following his article, other works [4,13] have shown that the Kinect can be used to
provide more reliable obstacle detection than stereo imaging.

Choi et al. [13] used both depth and color images from the Kinect to create a combined
image. The combined image was used to detect objects that would not be found using only
one of the images. The combined image also reduced the number of false positives. The

7



3. RELATED WORK

conclusions showed that the Kinect could not be used in outdoor environments due to the
principle of operation for an infrared system.

Hernández-Aceituno et al. [4] used the depth data from the Kinect to create a point cloud.
First, all points that were more than 20 meters away in any direction were filtered out. The
remaining point cloud was then downsampled into 25x25x25mm voxels, and the normal
vector to each voxel was calculated. Based on the value of the normal vector, it could be
determined if the voxel contained an object or not. The results showed that the Kinect was
faster and more accurate than the stereo cameras it was compared to. The results also showed
that it could be used outdoors, contrary to Choi et al. [13]. According to Hernández-Aceituno
et al. [4], this was due to the errors appearing as objects with unlikely physical characteristics.
Because of this, the errors could be filtered out. In this thesis, however, this solution was not
considered safe enough and was not used.

8



4 Method

This chapter will present the list of requirements for the obstacle detection system. These re-
quirements were provided by Toyota Material Handling. Based on these requirements, three
products were selected for evaluation. These products were compared and ranked using a
point system that was derived from the requirements. Using the point system, one product
was chosen for building the prototype.

4.1 Requirements

This section presents Toyota’s requirements for a reliable obstacle detection system.

• The detection works with many different materials

• It should work in many different light conditions

• Request-to-Response time under 100 ms

• The sensors communicate over Ethernet or CANOpen

• A Toyota Employee shall be able to upload an application to the vision system on site
via a single connector on the forklift

• Complete system with sensors and necessary computation units

• Software developed according to ISO 13849(4.6) standard

In order to be considered viable, the solution needed to satisfy the above requirements. In
addition to these requirements, there were a number of desired features for the obstacle de-
tection system. These features were not required for the prototype to be considered viable,
they were just a bonus. They were as follows:

• The detection range should be at least 3 meters, preferably 5 meters

• 360° detection range

• No false positives because of unusual objects/surfaces

• Detection in a 3D space that is dependent on speed and travel direction

9



4. METHOD

• Detect the complete forklift, including the mast if possible

• Obstacle tracking, i.e. "will we hit it?". (Not to react to objects moving away from the
machine)

• Self-calibrated as to where the floor is (do not react to the floor)

• Be able to detect forks on the floor, from other forklifts

4.2 Evaluation parameters

The following parameters were chosen because they are directly correlated to the specific
requirements in Section 4.1. All products received points based on how well they fulfilled
each parameter. The product with the highest points was considered the best option. All
parameters and their respective points are presented in Table 4.1.

4.2.1 Range

A detection range of less than 3 meters provided zero points. A range between 3 and 5
meters should provide adequate response time so it provided 2 points. Anything greater
than 5 meters is simply a bonus, so it provided 3 points.

4.2.2 Field-of-View

In order to minimize the amount of components, the products needed a fairly wide Field-of-
View (FoV). A low FoV would require too many components and would, therefore, provide
fewer points. For the horizontal axis, a FoV less than 60° gave 0 points, between 60° and 90°
gave 1 point, and greater than 90° gave 2 points. For the vertical axis, a FoV less than 50° gave
0 points, between 50° and 80° gave 1 point, and greater than 80° gave 2 points.

4.2.3 Depth accuracy

The depth accuracy is defined as the depth error rate at a given distance. It is usually ex-
pressed as a percentage of the distance.

Depth accuracy is an important attribute in order to reduce false positives and increase
reliability. Thus, a depth error rate of less than 1% gave 3 points, 1%-2% gave 1 point, and
more than 2% gave 0 points.

4.2.4 Different lighting

Since warehouses usually have both dark and light areas, the products need to be unaffected
by these differences. Therefore, a product received 1 point if their measurements were not
affected by different lighting conditions, and 0 points if they were.

4.2.5 Reflective surfaces

In most warehouse environments, there are usually a significant amount of reflective surfaces
such as bare metal. Consequently, it was important that these reflective surfaces are handled
correctly. Therefore 1 point was given if reflective surfaces did not distort the measurements.
A product received 0 points if they could not handle reflective surfaces.

4.2.6 Non-reflective surfaces

With the same motivation as for reflective surfaces, it was important to be able to handle
non-reflective surfaces. A product was given 1 point if non-reflective surfaces did not distort
measurements, and 0 points if they did.

10



4.3. Evaluated camera models

4.2.7 Extensive API

An Application Programming Interface (API) contains premade functions that may be
needed by the developer. This usually leads to less time being spent writing trivial code.
An extensive API is therefore very useful when implementing any kind of application. An
API was considered extensive if it contained more than 50 functions for image processing. If
the product included an extensive API, it received 1 point, and 0 points if it did not.

4.2.8 Supported languages for software development

If the API provided multi-language support, the product received additional points. For each
supported language, 1 point was given, to a maximum of 3 points.

4.2.9 Communication

The product had to be compatible with either Ethernet or CANOpen protocols. If it was
compatible with any of these protocols, it was given 1 point. If it was not, it was given 0
points.

Category Requirements Points

< 3 meters 0
Range Between 3 and 5 meters 2

> 5 meters 3
< 60° 0

Horizontal FoV between 60°and 90° 1
> 90° 2
< 50° 0

Vertical FoV Between 50° and 80° 1
> 80° 2
>2% 0

Depth accuracy between 1% and 2% 1
<1% 3

Different lighting 1/0
Working environment Reflective surfaces 1/0

Non-reflective surfaces 1/0
Usability Extensive API 1/0

Supported languages 3/2/1/0
Communication Compatible with Ethernet or CANOpen 1/0

Table 4.1: Table representing the point-system

4.3 Evaluated camera models

Since previous research indicated that the Time-of-Flight (ToF) technology was faster than
stereo, the decision was made to focus on ToF technology. Three products were selected for
evaluation: SICK Visionary-T AP1, Intel RealSense D4352, and Toposens TS33. They were
chosen because they used different types of ToF to provide 3D coordinate data. Another rea-
son for selecting them was that they all had some prototypes for real-time obstacle detection.
This section will present the products briefly.

1https://www.sick.com/
2https://www.intelrealsense.com/
3https://toposens.com/
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4.3.1 SICK Visionary-T AP

SICK Visionary-T AP is an infrared ToF camera which uses the phase shift technique to calcu-
late distance. It has a depth pixel resolution of 176x144. The Visionary-T AP allows the user
to program their own detection algorithms directly into the camera, i.e it needs no additional
computational unit. It also comes with an extensive API for image processing. They also
have a large repository of code samples. There is no easy access to price information on their
website.

4.3.2 Intel RealSense D435

As seen in Section 3, previous researchers have successfully used the Microsoft Kinect for
obstacle detection. Unfortunately, Microsoft stopped manufacturing the Kinect in late 2017.
The Intel RealSense D435 was considered a viable substitution for the Kinect, due to their
similarities.

The Intel RealSense D435 is a stereo vision camera with an infrared ToF projector. The
camera has a depth pixel resolution of up to 1280x720 and the embedded depth vision pro-
cessor calculates the depth of each pixel using the differences from the left and right images.
The infrared projector can be used to further improve the depth calculations. Intel provides
an extensive API and some code samples. The camera does not need an external computa-
tional unit since it has an onboard processor. The camera is available from $179USD at Intel’s
online store.

4.3.3 Toposens TS3

Toposens TS3 tries to mimic the ultrasonic echolocation that bats use for their vision. It mea-
sures the distance to objects with ultrasonic ToF. In order to provide 3D coordinates, it also
calculates the horizontal and vertical positions of the objects. Thanks to the ultrasonic tech-
nology, this camera has some advantages over infrared ToF. The biggest advantage is that
it is not as susceptible to distortions from reflective surfaces. The product requires an addi-
tional computational unit. Price information of the TS3 camera is not available directly from
Toposens, but third-party retailers sell it for $311USD (converted from £250GBP).

4.4 Scoring the products

The point system presented in Section 4.2 (Table 4.1) was used when comparing the different
products. The product’s specifications were placed into the corresponding cell in Table 4.1.
The specifications for each product were collected from their respective data sheet. If the data
sheet did not explicitly mention an attribute, the functionality of the products was derived
from the theory chapter. The product with the highest score was deemed the most suitable.
The results are presented in Table 4.2.

4.4.1 Working environment

Intel RealSense D435 did not specify if it could handle reflective or dark surfaces. Based on
Section 2.2.1 and Section 2.1.3, the conclusion was that it could not handle these surfaces.
However, it was supposedly not affected negatively by sunlight, so it received 1 point.

SICK Visionary-T AP received 0 points. The data sheet mentioned that it could not handle
either reflective or dark surfaces. Its depth measurements were also distorted by sunlight.

Toposens TS3 received 3 points. According to the data sheet, it could handle both reflec-
tive and dark surfaces, regardless of lighting conditions.

12
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4.4.2 Usability

Both SICK Visionary-T AP and Intel RealSense D435 provided an extensive Application Pro-
gramming Interface (API), so they both got 1 point each. No API was found for the Toposens
TS3, therefore no points were given.

The SICK camera only supported Lua programming language, so 1 point was given. Both
Intel and Toposens supported at least 3 languages. Subsequently, they got 3 points each.

Category Visionary T-AP RealSense D435 TS3

Range 60 m 10 m 5 m
Points 3 3 2

Horizontal FoV 69° 87° 140°
Points 1 1 2

Vertical FoV 56° 58° 140°
Points 1 1 2

Depth accuracy 1% < 2% 4%
Points 3 1 0

Working environment Section 4.4.1 - -
Points 0 1 3

Usability Section 4.4.2 - -
Points 2 4 3

Communication Ethernet Ethernet USB UART
Points 1 1 0

Total score 11 12 12

Table 4.2: Resulting points for each camera

As seen in Table 4.2, none of the products stood out with an exceptional score. Because
of the limited time frame of the thesis, the decision was based on availability. Since the SICK
Visionary-T AP was available from day one, it was chosen for the prototype.

4.5 Initial testing

Before mounting the camera on the forklift, a series of tests were performed. The goal of
these preliminary tests was to ensure that the camera could detect obstacles accurately and
send appropriate signals to the forklift. The testing continued until all points in the checklist
below were satisfied. The points were addressed in descending order, with the most critical
points at the top and the least critical points at the bottom.

• Detect a human at a range of less than 1.5 meters.

• Detect a small object, in our case a 21x13 cm cardboard box, at a range of less than 1.5
meters.

• Detect a human approaching the camera at a range of 1.5 to 3 meters.

• Detect a small object (using the same 21x13 cm cardboard box) approaching the camera
at a range of 1.5 to 3 meters.

• Detect a human approaching the camera at a range of 3 to 5 meters.

• Detect a small object (using the same 21x13 cm cardboard box) approaching the camera
at a range of 3 to 5 meters.

• Optimize the algorithms to ensure request-to-respond time of less than 100 ms

• Reduce false positives in the detection.

13
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The testing was done in a secluded area of the office, where it was certain that there was
no movement. The area contained typical office furniture such as office chairs and desks. An
overview of the tests is given below.

4.5.1 Less than 1.5 meters

If the camera detected any objects at this range, the forklift should not move until the object
moved away. When the camera reliably detected a human standing within a range of 1.5
meters, the detection thresholds were modified so it could detect the smaller cardboard box
within the same range.

4.5.2 Objects at 1.5 to 3 meters

The testing was done by pointing the camera toward an empty space and having a person
walk towards it. The person kept walking towards the camera until the blue LED turned red,
meaning that the person was within the stop range. The detection was considered reliable
when the camera passed this test 5 times in a row. If the camera did not pass the test 5 times
in a row, detection thresholds were tweaked and the testing restarted. The most commonly
tweaked threshold was the difference in distance value.

When testing with the 21x13 cm cardboard box started, it was necessary to separate the
box from the person moving it. The box was mounted on a transparent pole. The person
moved the box towards the camera until it was within the stop range. As with the previous
tests, detection thresholds were modified until the cardboard box was detected 5 times in a
row.

4.5.3 Objects at 3 to 5 meters

The testing was done in the same way as for 1.5 to 3 meters. The camera passed the test when
the camera went from green to blue to red (at the right distances) 5 times in a row. If it did
not pass the test 5 times in a row, thresholds were tweaked and the testing restarted.

4.5.4 Request-to-response time

The testing for response time was performed by a person walking towards the camera from a
distance of 6 meters. Another person was looking at the camera output. The camera stopped
capturing images when it detected the movement, and the distance to the person was printed
out to the screen. If the distance was consistently more than 4 meters, the response time was
considered adequate for mounting.

4.5.5 False positives

In order to test for false positives, the camera was observed for periods of 30 seconds. If the
camera detected any movement in this area, it was a false positive and thus it failed the test.
This test was performed until it detected no false positives.
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5 Prototype

This section describes how the prototype was built and how it was tested. The forklift used
was a BT Reflex Autopilot RAE250.

5.1 Testing camera capabilities

In order to write obstacle detection algorithms, it was necessary to know how real-world data
was represented in the camera. Each time the camera captured a new image, it divided it into
three sub-images (Figure 5.1). These images are: a confidence image, a distance image, and
an intensity image. The confidence image provided a value for how confident the camera was
that an object was located at that pixel. The distance image contained the distance values of
every pixel, with the value corresponding to millimeters. Lastly, the intensity image provided
a value for the intensity of the infrared light that was returned from every pixel. A wide
variety of operations were made on these three images to detect obstacles in the path of the
forklift. These operations will be described in more detail in Section 5.2.

(a) Confidence image (b) Distance image
(c) Intensity image

Figure 5.1: The three different types of images

5.1.1 Measurement errors

The depth accuracy of the camera decreased as the measured distance increased. The accu-
racy without background light was given in the camera’s data sheet (Table 5.1).
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Distance Accuracy

0.5 m +/- 15 mm
1 m +/- 15 mm
2 m +/- 20 mm
3 m +/- 35 mm
4 m +/- 50 mm
5 m +/- 50 mm

Table 5.1: Accuracy of depth measurements according to SICK.

Since the data sheet only provided the accuracy without background light, more mea-
surements with different lightning conditions were necessary. The data sheet was seen as a
baseline in order to determine whether the results of the accuracy tests were plausible.

The accuracy tests were done by logging the average distance measurements from a 6x5
pixel region directly in front of the camera over a period of 2.5 minutes. The blue square in
Figure 5.2 is the 6x5 pixel region where measurements were taken.

Figure 5.2: Distance image taken during distance error measurements.

The measurements were taken at distances from 0.5 meters up to 5 meters, increasing by
0.5 meters between each test. The results from these measurements can be seen in Table 5.2.

Distance Accuracy

0.5 m +/- 2.31 mm
1 m +/- 2.46 mm

1.5 m +/- 7.59 mm
2 m +/- 9.45 mm

2.5 m +/- 6.93 mm
3 m +/- 10.85 mm

3.5 m +/- 10.75 mm
4 m +/- 14.97 mm

4.5 m +/- 25.95 mm
5 m +/- 30.09 mm

Table 5.2: Measured depth accuracy

After plotting these numbers in a graph (Figure 5.3) using Microsoft Excel, the function
for standard deviation can be seen in Equation 5.1:

σ = 0.8557x3 ´ 5.6697x2 + 14.259x ´ 4.8943 (5.1)
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5.1. Testing camera capabilities

where x is the distance in meters. This equation was used as a threshold to determine whether
an object was stationary or not. If the object was moving less than the error rate, then it was
considered stationary.

Figure 5.3: Graph for standard deviation measurements at different distances. Red line is the
derived function.

5.1.2 Confidence values

The confidence image contained a confidence value for every pixel. This value depicted how
certain the camera was that an object was at the given pixel. Exactly how the confidence
value was calculated was unclear, but a pattern could be seen and thresholds could be imple-
mented. In order to determine a lower bound for the confidence value, a number of measure-
ments with differently sized objects were taken. The measurements were taken at a distance
of 1 to 5 meters, increasing by 1 meter between each test. The objects used in these mea-
surements were an 8x5 cm cardboard box, a 20.5x6.5 cm cardboard box, and a 178x50 cm
person.

The measurements showed no significant difference in confidence value between the ob-
jects. Therefore the confidence value of an object depended on its distance from the camera.
An object at a larger distance provided the smallest confidence value. These measurements
were compared to pixels that did not contain any objects, such as the floor. The confidence
values for objects were distinctly larger than the floor. This made it possible to filter out the
floor by using a confidence threshold. Table 5.3 contains the values from the testing. The ta-
ble contains the average values of the objects at every distance, as well as the minimum value
from all measurements. Since the smallest value was 31 891, the threshold was set to 30 000.

Range 6x5 cm box 20.5x6.5 cm box 178x50 cm person

5 m 47 461 39 307 39 099
4 m 43 783 43 783 40 019
3 m 57 881 52 387 54 994
2 m 61 887 59 675 61 667
1 m 64 391 64 277 64 174

Minimum 37 843 33 677 31 891

Table 5.3: Confidence values for objects at different distances. The minimum shows the low-
est value measured for each object.
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5.2 Detection algorithms

Each time the camera captured a new image, it triggered an event. When this event was
detected, an event handling function was called. This function was divided into three steps:
image filtering, object detection, and response. This section will present the three steps in
more detail. After all steps were completed, the captured image was saved to be used for the
next iteration.

5.2.1 Image filtering

There were two main reasons to filter the images: reducing digital noise and reducing com-
putation.

The desired detection range of the obstacle detection system was up to 5 meters. In order
to ensure an adequate response time, a distance threshold was set to 6 000 mm. This meant
that any pixel with a distance value of more than 6 000 was redundant and could be filtered
out from the distance image.

The intensity image was not used in any of the detection algorithms. Therefore, no filtra-
tion was necessary for the intensity image.

As seen in Table 5.3, a pixel that contained an object usually had a confidence value of at
least 35 000, with an absolute minimum of 31 891. Pixels that did not contain an object had a
confidence value of well under 30 000. This meant that any pixel with a confidence value of
less than 30 000 could be filtered out from the confidence image. After all images were filtered,
they were combined into a single distance image. This new distance image contained some
pixels that were surrounded by "nothing". In order to filter most of these outliers, only pixels
that had neighboring pixels with a distance value of within 75 mm were kept. For example, if
a pixel had a distance value of 3 000, and all of its neighbors had a distance value of 0, it was
filtered out. The images before and after filtration can be seen in Figure 5.4.

(a) Unfiltered (b) Filtered

Figure 5.4: Distance image before and after filtering

5.2.2 Object detection

After the image was filtered, the object detection algorithms were run. The detection was
divided into three steps: flat regions, approaching regions, and path filtering. They will be
presented in this section.

Flat regions
Since the filtering removed most isolated pixels, the resulting image consisted of larger pixel
regions (Figure 5.4b). In order to distinguish objects from noise, the image was divided
into an array of flat regions. The flat regions were created by comparing each pixel to its
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neighboring pixels. A region was considered flat if the difference in distance value of three
or more neighboring pixels was less than 200 mm.

Approaching regions
In order to determine if any of the flat regions were moving towards the forklift, the distance
values from the previous image were subtracted with the distance values in the new image.
If the difference in distance values between the previous and new images was greater than 0,
the region was theoretically approaching the forklift. However, as mentioned in Section 5.1.1,
the distance measurements had a certain error rate. In order to reduce false positives, the
regions had to be approaching faster than this error rate. The error rate for each region was
calculated using Equation 5.1. All regions that were approaching faster than their respective
error rate were considered obstacles.

Removing obstacles outside path
The detected obstacles were not necessarily inside the direct path of the forklift. Since the
forklift’s width and the distance to the obstacle were known, it was possible to calculate if
the obstacle was in the forklift’s path. For each obstacle, boundaries on the x-axis were estab-
lished. These boundaries created a region that represented the estimated width of the forklift
at the given distance. If the obstacle intersected with the previously mentioned region, it was
in the forklift’s path. Thus, it was considered an obstacle.

Pseudo-code for the operations can be seen in Listing 5.1. The first operation calculated
how many millimeters each pixel represented. The second operation calculated how many
pixels were in the forklift’s path. The third operation created a region that spanned across the
forklift’s path. In order to avoid approximation errors, the second operation was rounded
down. If the value was rounded up, the approximation would result in the region being one
pixel smaller than in reality. This could lead to the forklift not registering objects on the edge
of the path. Rounding down removed this issue. The variable "TRUCK_WIDTH" was set to
200 mm wider than in reality for similar reasons as a safety margin.

m i l l i m e t e r s P e r P i x e l = dis tanceOfObjec t / r e s o l u t i o n [ " X " ]
pixelsOutOfBounds = f l o o r ( ( d is tanceOfObjec t ´ TRUCK_WIDTH) /

m i l l i m e t e r s P e r P i x e l )
region = ( pixelsOutOfBounds/2 . . . r e s o l u t i o n [ " X"]´ pixelsOutOfBounds /2)

Listing 5.1: Pseudo-code for the x-axis filtering

Figure 5.5 illustrates the region that the forklift occupied at the distance of an obstacle. The
blue region represents an obstacle that the camera has detected. The red region represents
the width of the truck at the distance of the obstacle. Since the regions do not intersect, the
obstacle is not in the path of the forklift, and it can be ignored.

Figure 5.5: Visualization of region intersection.
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5.2.3 Response

The last step was to respond to the return values from the obstacle detection in the previous
section. The response depended on both the current return value along with return values
from previous images.

Comparing previous regions
Even though most digital noise was filtered out in the previous steps, some noise could still
occur. It was possible that these noisy regions resulted in false positives. In order to reduce
the amount of these false positives, the positions of all approaching regions were saved in a
table. The regions were expanded by 5 pixels in all directions to allow the regions to move
between images. If a region from the table intersected with a region in the new image, it was
confirmed as an approaching obstacle. Otherwise, it was ignored as noise.

False positive filter
The last false-positive filter was by using a counter. If an obstacle was confirmed in the
previous step, the counter was incremented. If no obstacles were confirmed, the counter was
decremented. The counter was kept at a minimum value of 0. If the value of the counter was
2 or more, the system reacted.

Reactions
Communication between the camera and the forklift was not implemented due to time con-
straints. Instead, an LED light on the camera was used to show which signal would be sent
to the forklift. Figure 5.6 demonstrates the different signals.

(a) Green LED flash (b) Blue LED flash (c) Red LED flash

Figure 5.6: The different camera reactions

The reactions were dependant on the distance to the confirmed obstacles. If the obstacle
was within 1.5m, the camera flashed a red light. As a safety measure, any obstacle within 1.5
meters did not need to be approaching the camera in order to trigger a response. If an obstacle
was between 1.5m and 3m away, the camera flashed a blue light. If an obstacle was between
3m and 5m away, it flashed a green light. The red light meant that the camera sent a stop
signal. The blue light meant that the camera signaled the forklift to slow down significantly.
The green light meant that the camera signaled the forklift to slow down slightly.

5.3 Testing the prototype

As mentioned in Section 5.2.3, there was no time to implement communication between the
camera and the forklift. Therefore, the camera was mounted on temporary fittings for the
Proof of Concept (Figure 5.7). This also meant that autonomous testing was not a possibility,
so the forklift was driven manually. The camera’s LED light was used to illustrate when
the camera sent different signals to the forklift. The driver looked at the camera’s LED light
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while driving and tried to react to the signals as described in Section 5.2.3. For example, if
the camera flashed a consistent red light, the driver stopped.

Figure 5.7: Proof of Concept rig

The testing environment emulated the surroundings of a typical warehouse, with obsta-
cles such as humans, other forklifts, and pallet racks. During all tests, the forklift was driven
down a 10-meter long runway. The object being tested was placed at the end of the runway.
The tests performed are presented below. As with the office tests, they were performed in de-
scending order based on importance. The tests were performed a varying amount of times,
depending on how well the camera reacted to each object. However, when all tests were
passed, each test was repeated 10 times. The 10 last tests were used as a basis for the results
in Section 6.

5.3.1 Human-sized objects

This was tested by a person standing at the end of the runway. The person wore different
clothing on their upper body, ranging from reflective vests to dark shirts. The different cloth-
ing was used to determine if it affected the camera’s ability to detect the person.

5.3.2 Pallet-sized objects

The testing included a regular wooden EUR-pallet and a black plastic pallet. The pallets
were both placed on their edges and flat on the floor, in order to test different angles and
object sizes.

5.3.3 Fork-sized objects

This was done by using the forks of the other forklifts. The forks were black and gray. The
testing was done with the forks both on the ground and in the air. A 5x8 cm wooden pole
was also used, both laying flat on the floor and standing on its edges.

5.3.4 "Will we hit it?"

In order to test the x-axis filtration, all previously mentioned objects were placed outside the
path of the forklift. Again, the objects were tested in descending order. The camera was also
connected to a laptop, allowing the person driving the forklift to see the x-axis boundary
region.
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6 Result

In this section, the results from each test in Section 5.4 will first be presented. The prototype
will then be evaluated based on how well it met the requirements in Section 4.1.

6.1 Test results

The results from each test are presented in this section. As said before, each test was done a
varying number of times depending on the camera’s performance. However, the results in
this section are derived from the last 10 tests of each obstacle.

6.1.1 Human-sized objects

As seen in Figure 6.1, the detection range varied greatly depending on the clothing of the
person. The value seen over each bar represents the average detection range expressed in
millimeters. Based on the results, it was clear that the clothing has a large impact on the
measurements. According to the camera’s measurements, the person with the reflective vest
was on average 4 429 mm away. However, the person was in fact on average more than 23
meters away.

Figure 6.1: Detection range of a person.
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6.1.2 Pallet-sized objects

Similar to the previous test, different colors and materials had a substantial effect on the
detection range. As seen in Figure 6.2, the wooden EUR-pallet was detected at an average of
4 481 mm while the black plastic pallet was detected at 1 243 mm. The black pallet was also
prone to measurement errors since it had a glossy paint finish. The paint finish caused strong
ambient light to increase the pallet’s reflectance. This meant that it was either detected too
late due to the black color (as seen in Figure 6.2) or too early due to its reflectance (as with the
reflective vest).

Figure 6.2: Detection range of two different pallets; a wooden EUR-pallet and a black plastic
pallet.

6.1.3 Fork-sized objects

In 4 out of 10 tests, the forklift forks were never detected by the camera. This meant that the
average detection range would yield misleading results. The results of each test can be seen
in Figure 6.3. There was no significant difference in the detection range between gray and
black forks. It was clear that the dark colors caused the detection issues, and not the small
size of the forks since the similar-sized wooden plank was detected at an average of 3 586,1
mm.

Figure 6.3: Detection range of two different fork-sized objects; black forks of a forklift and a
5x8 cm wooden plank.
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6.1.4 "Will we hit it?"

The results for these tests were dependant on the type of object in the path more than anything
else. For objects that did not have issues with distance measurements in the first place, such
as humans and EUR-pallets, the results were positive. As in previous tests, dark objects were
not detected at all. Since the distance measurements for reflective surfaces were incorrect,
the estimated width of the forklift was also incorrect. The region for the reflective surface
intersected with the boundary-region and caused false positives to occur regularly.

6.2 Evaluating the prototype

Based on the specifications provided in Section 4.1, the prototype was evaluated. The eval-
uation results can be seen in Table 6.1 and Table 6.2 below. Table 6.1 contains the required
features and Table 6.2 contains the desired features. An X means that the feature was not ful-
filled and a checkmark (X) means that it was fulfilled. For all features that were not fulfilled,
a brief explanation is presented in the subsections below.

Requirement Fulfilled
Works with different materials X

Works with different light conditions X
Request-to-Response under 1 second X

Communication over Ethernet or CANOpen X
Application is downloadable via one connector X
Complete system including computational units X
Software developed according to ISO 13849(4.6)1 X

Table 6.1: Requirements

Feature Fulfilled
Detection range of at least 3 meters X

360° detection X
3D volume depends on speed and direction X
Detect the complete volume of the forklift X

Obstacle tracking "will we hit it?" X
Self-calibrated to the floor X

Be able to detect forks on floor X

Table 6.2: Desired features

6.2.1 Works with different materials

Because the Visionary-T AP used phase-shifting infrared Time-of-Flight (ToF), some materials
caused issues. As mentioned in Section 2.2.1, reflective surfaces can cause measurement er-
rors. Figure 6.4 shows a distance image taken during the mounted testing. The pixel regions
seen in the picture are reflective surfaces ranging from 5-25 meters away from the camera, so
most of them should theoretically be filtered out. The region with a red square is around 20
meters away, but the camera measured it to be only 1 473 mm away.

On the other end of the spectrum, light-absorbent materials such as matte black surfaces
were invisible to the camera. Figure 6.5 shows the different types of an image containing a
black forklift. The black surfaces of the forklift are the black parts in every image. The pixel
values for the black surfaces are 0 for every image, meaning that they are practically invisible
to the camera.
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Figure 6.4: Distance image containing reflective surfaces

(a) Confidence image (b) Distance image (c) Intensity image

Figure 6.5: Black forklift with different image types

6.2.2 Works with different light conditions

According to the data sheet of the Visionary-T, the camera is supposed so handle light up to
50 kilolux (klx). Since the Sun provides between 30-100klx, this result is varied depending on
the amount of sunlight in the environment. The prototype showed no deviant results while
testing in the office environment since the sunlight was not strong enough. However, the
results varied depending on the location of the Sun when testing in the lab.

6.2.3 360° detection

Since the horizontal Field-of-View of the camera was 69°, fulfilling this requirement would
require at least 5 additional cameras. Given this fact, along with the limited amount of time
and resources, this feature was ignored for the Proof of Concept.

6.2.4 3D volume depends on speed and direction

Since communication between the forklift and the camera was never implemented, infor-
mation about speed and direction was not available. Subsequently, it was not possible to
implement this feature, and the feature was never tested.

6.2.5 Detect the complete volume of the forklift

For similar reasons as with 360° detection, this feature would require too many cameras and
was subsequently ignored for the Proof of Concept.
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6.2.6 Self-calibrated to the floor

Functionality for this feature was attempted but never achieved. Testing showed that the
error rate on the floor caused small objects to "blend in" with the floor. This meant that in
order to filter out the floor, there was also the risk to filter out smaller objects. In Figure 6.6,
the marked areas are the point clouds of the floor. The point cloud is rotated so any objects
on top of the floor would be visible at the top of the cloud. The image for Figure 6.6a only
contains the floor, while a fork-sized plank was added on top of the floor in Figure 6.6b. Since
there are no distinct differences when comparing the point clouds, small objects were not
distinguishable from the floor.

(a) Point cloud without plank (b) Point cloud with plank

Figure 6.6: Point clouds of the floor with and without a plank.

6.2.7 Be able to detect forks on the floor

This was not fulfilled for the same reason as for "Working with different materials". The forks
are commonly painted matte black. Since the matte black color simply absorbed the infrared
light, the forks were practically invisible to the camera. As seen in Section 6.1.3, the forks
were not detected in 4 out of 10 tests. When it was detected, the distance measurement was
well below the required 3 meters. Therefore this feature was not fulfilled.
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7 Discussion

In this section, problems that arose during construction will be presented. Criticism about
our methodology and our chosen sources is also presented. Finally, some thoughts regarding
the work in a wider context are presented.

7.1 Problems during construction

The software development of the prototype went through three main iterations. Each itera-
tion solved some problems while introducing new ones. In this section, the three iterations
and their respective problems are presented.

7.1.1 The first iteration

During the first iteration, the cameras’ point cloud was used for the obstacle detection. The
point cloud was easy to understand and the functions were intuitive. However, it required
too much processing power, which caused a significant delay in the images. This meant that
the request-to-response time was too long, so we decided to restart development without
using point clouds.

7.1.2 The second iteration

In the second iteration, the images were converted to matrices. This allowed us to use built-
in matrix functions for the obstacle detection. The matrix functions required less processing
power than our point cloud solution, but there was still some delay between images. At this
stage, we started using image pyramids to reduce computation.

After each image was filtered, it was downsampled one level in the pyramid. If an obsta-
cle was found in the downsampled level, its position was marked as a region of interest. The
image was then reverted to the original format and each region of interest was looked at. This
resulted in far less delay since most pixels were stationary between images. The main draw-
back was that small objects were not visible on the downsampled images, even when using
only one pyramid level. It became clear that the computational gain from these operations
was not worth the drawbacks in precision that came with it.
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7. DISCUSSION

In addition to the loss in precision, the conversion from image to matrix caused some
problems when calculating the distance to obstacles. With these two factors in mind, we
decided to yet again restart development.

7.1.3 The third iteration

Using what we learned from the first two attempts, the development of the third and final
iteration was done in a matter of days. The final iteration is described in detail in Section 5.
The main problems during this stage came down to the hardware. Some attempts to alleviate
the problems with reflective surfaces was done by tilting the camera and altering the exposure
time of the camera. However, these measures were either ineffective or introduced more
problems than they solved. For example, tilting the camera caused small objects to "blend in"
to the floor, as mentioned in Section 6.2.

7.1.4 Reflective surfaces and sunlight

The camera could not handle reflective surfaces or strong sunlight. For reflective surfaces,
the objects were interpreted as closer than they actually were. This was the case for obstacles
both at short and long distances. For short distances, the interpretation error can be seen in
the glossy paint finish of the black pallet in Section 6.1.2. Long distance errors can be seen in
the reflective vest testing in Section 6.1.1. With the current functionality, the result of this issue
is that the forklift would have to slow down and stop sooner than needed. Some attempts
were made to alleviate this, such as altering the camera’s exposure time, but nothing solved
the issue. In the case of sunlight, the infrared light of the Sun interfered with the infrared
light of the camera, causing measurement errors. These measurement errors resulted in both
false positives and false negatives.

During the prototype testing, there was an abundance of sunlight and reflective surfaces
in the testing environment. This made it difficult to determine whether the detection issues
were caused by faulty algorithms or too much interference for the camera. A folding wall
was used to block most reflective surfaces in the camera’s Field-of-View. However, since
there were windows in the roof, the high amount of sunlight was a bigger issue. In order to
alleviate this, most testing had to be done early in the morning or late in the afternoon.

7.1.5 Dark surfaces

The camera could not handle matte dark surfaces. The dark surfaces absorbed too much of
the projected infrared light, meaning that the camera received no reflections. This resulted in
the object being practically invisible to the camera.

An attempt to solve this issue was to handle large regions of zero-valued pixels as an ob-
ject in itself. One problem with this solution was that there was no possible way to determine
the distance of said object. Another problem was that the image filtering produced large re-
gions of zero-valued pixels. As a result, it was not possible to identify which regions were
objects. Combining these two problems meant that obstacle detection was not possible for
matte black objects.

7.2 Criticism of methodology

According to their website, SICK suggests obstacle avoidance in automated guided vehicles
(AGV) as a use-case for the Visionary-T AP1. In their example, the camera is tilted camera
towards the floor. The concept art also shows that the AGV detects a black box, implying
that they may have solved the issue with black surfaces. We did not reach out to them about

1https://www.sick.com/us/en/industries/food-and-beverage/end-of-line-packaging/automated-guided-
vehicle-agv/collision-avoidance-on-an-automated-guided-vehicle-agv/c/p514346
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their solution since we noticed this too late. It would be interesting to compare our solution
to theirs, in order to get a more fair assessment of the camera.

7.3 Criticism of sources

There is only one source in this paper that is not a peer-reviewed article: Occupational Injuries,
Illnesses, and Fatalities Involving Forklifts, written by the U.S Bureau of Labor Statistics [1]. This
source is directly affiliated with the Federal government of the United States, and should,
therefore, be considered a trustworthy source.

All remaining sources used for this paper are peer-reviewed publications, which makes
them trustworthy. However, the publishing dates can be critiqued. For example Stiller et
al. [2] published their article about obstacle detection in 2000. The field is still quite young,
and during these last 19 years, a lot has happened. This could mean that the conclusions
made in these kinds of papers no longer portrays reality. Regarding the time of publishing,
the paper by Burt & Adelsen [15] which was published in 1983 is the least trustworthy. This
is compensated by the number of citations the paper has. According to Google Scholar, the
paper has 8 212 citations. Since a larger amount of citations usually goes hand in hand with
credibility, this paper can be trusted. It could also be argued that since the paper introduces
a concept, it does not matter that it was published a long time ago. The concept still remains
the same.

In addition to the bibliography, footnotes were used for some figures and tables. Most of
these footnotes only provide links to the manufacturers of a specific product or for simple
illustrations, with the exception of the footnote in Table 2.1. The footnote for Table 2.1 ref-
erences a manufacturer of several types of 3D cameras, so the information was considered
reliable.

7.4 The work in a wider context

During the past decade, the development of autonomous guided vehicles (AGV’s) has come
a long way. The most obvious example of this is the Tesla Autopilot2, which is perfectly able
to drive on public roads. The technology is of course fascinating, but it does not come without
problems. Since computers are cheaper than people over time, employers are likely to replace
people when given the chance. It is possible that this happens within just a few years.

Many of these people rely on the transportation sector for their livelihood, such as ware-
house personnel and truck drivers. This introduces problems for both the employer and the
employee. The problems for the employees are rather obvious: they would need to find a
new job. For the employer, more nuanced ethical dilemmas such as "Who is to blame if an
AGV causes an accident?" are introduced. Are the programmers to blame if an AGV causes
an accident, or is the employer to blame for using it? Given the fact that the code will proba-
bly never be completely free of bugs, accidents are bound to happen. This raises the question,
are they more likely to happen with AGVs or with people?

2https://www.tesla.com/autopilot
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8 Conclusion

The SICK Visionary-T AP alone cannot be used for obstacle detection in a typical warehouse.
The problems with sunlight and different surfaces cannot be overlooked. These issues come
from the limitations of Time-of-Flight and infrared technology. Therefore these issues could
theoretically be solved by sensor fusion. For example, using ultrasound would alleviate the
issue regarding black objects. Sensor fusion could also be used to confirm the distance to
objects, which would solve the problems regarding sunlight and reflective surfaces.

However, the fact that it was possible to build, test, and evaluate a prototype within such
a limited time frame with no previous experience shows that the Visionary-T AP has good
potential. If the problems with extreme surfaces and sunlight are resolved, the easy-to-use
API would allow developers to quickly integrate the Visionary-T AP into their products.

With the rapid development of affordable 3D cameras, we believe that 3D camera tech-
nology is likely to replace 2D solutions for obstacle detection. Even though 2D solutions can
provide a certain level of safety in autonomous vehicles, the potential benefits of 3D technol-
ogy cannot be overstated. For example, 3D offers a larger field-of-view than 2D. 3D cameras
can cover a far greater area than any single 2D solution since the 2D solution only focuses
in a narrow angle. 3D cameras can also be more intuitive for us developers since humans
typically rely on 3D vision for our navigation.

Even though our prototype did not meet all requirements, we still think that 3D cameras
are here to stay. Given the limited time frame of the thesis, we would likely not meet all
requirements with a 2D solution either. For future work, we will focus on implementing
sensor fusion by using another 3D camera together with the SICK Visionary-T AP.
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