
Linköping University | Department of Computer and Information Science
Bachelor’s Thesis, 16 ECTS| Information Technology

Spring 2020 | LIU-IDA/LITH-EX-G--20/054--SE

Performance of DevOps compared

to DevSecOps
– DevSecOps pipelines benchmarked!

Jimmy Björnholm

Tutor, Rita Kovordanyi
Examinator, Jalal Maleki

Linköpings Universitet
SE-581 83 Linköping

+46 13 28 10 00, www.liu.se

Upphovsrätt
Detta dokument hålls tillgängligt på Internet – eller dess framtida ersättare – under 25 år från
publiceringsdatum under förutsättning att inga extraordinära omständigheter uppstår.

Tillgång till dokumentet innebär tillstånd för var och en att läsa, ladda ner, skriva ut enstaka kopior
för enskilt bruk och att använda det oförändrat för ickekommersiell forskning och för undervisning.
Överföring av upphovsrätten vid en senare tidpunkt kan inte upphäva detta tillstånd. All annan
användning av dokumentet kräver upphovsmannens medgivande. För att garantera äktheten,
säkerheten och tillgängligheten finns lösningar av teknisk och administrativ art.

Upphovsmannens ideella rätt innefattar rätt att bli nämnd som upphovsman i den omfattning som
god sed kräver vid användning av dokumentet på ovan beskrivna sätt samt skydd mot att
dokumentet ändras eller presenteras i sådan form eller i sådant sammanhang som är kränkande för
upphovsmannens litterära eller konstnärliga anseende eller egenart.

För ytterligare information om Linköping University Electronic Press se förlagets hemsida
http://www.ep.liu.se/.

Copyright
The publishers will keep this document online on the Internet – or its possible replacement – for a
period of 25 years starting from the date of publication barring exceptional circumstances.

The online availability of the document implies permanent permission for anyone to read, to
download, or to print out single copies for his/hers own use and to use it unchanged for non-
commercial research and educational purpose. Subsequent transfers of copyright cannot revoke this
permission. All other uses of the document are conditional upon the consent of the copyright owner.
The publisher has taken technical and administrative measures to assure authenticity, security and
accessibility.

According to intellectual property law the author has the right to be mentioned when his/her
work is accessed as described above and to be protected against infringement.

For additional information about the Linköping University Electronic Press and its procedures for
publication and for assurance of document integrity, please refer to its www home page:
http://www.ep.liu.se/.

© Jimmy Björnholm

http://www.ep.liu.se/
http://www.ep.liu.se/

Performance of DevOps compared to DevSecOps
DevSecOps pipelines benchmarked!

Jimmy Björnholm
Jimbj685@student.liu.se

ABSTRACT
This paper examines how adding security tools to a software
pipeline affect the build time. Software development is an
ever-changing field in a world where computers are trusted
with almost everything society does. Meanwhile keeping
build time low is crucial, and some aspects of quality as-
surance have therefore been left on the cutting room floor,
security being one of the most vital and time-consuming.
The time taken to scan for vulnerabilities has been suggested
as a reason for the absence of security tests. By implementing
nine different security tools into a generic DevOps pipeline,
this paper aimed to examine the build times quantitatively.
The tools were selected using the OWASP Top Ten, cou-

pled with an ISO standard, as a guideline. OWASP Juice Shop
was used as the testing environment, and the scans managed
to find most of the vulnerabilities in the Vulnerable Web
Application. The pipeline was set up in Microsoft Azure and
was configured in .yaml files. The resulting scan durations
show that adding security measures to a build pipeline can
add as little as 1/3 of the original build time.

KEYWORDS
CI/CD; DevOps; DevSecOps; Benchmarking; Cybersecurity

1 INTRODUCTION
Computers are all around us; we are very dependent on their
continued operation and society is implicitly trusting that
the developed software is safe and reliable, which requires
widespread stable solutions that can make good on that trust.
This need coupled with an ever-changing landscape means
that DevOps, built on the practices of CI/CD which stands
for Continuous Integration/Continuous Delivery or Contin-
uous Deployment (CInt/CDel/CDep), has taken the industry
by storm. Fast and efficient development that takes care of
maintaining software is a project manager’s ultimate dream,
but what do we leave on the cutting room floor in our quest
to streamline the current software development cycles?

DevOps is a term with many different definitions, the one
used in this paper is; teams of developers working closely
together with the operations team, using automated tools to
streamline the workflow from development to testing and
deployment [2, 16, 17].

In this paper, I will focus on the security measures, or lack
thereof, in DevOps, which is a problem according toMansfield-
Devine [7]. More specifically, when it comes to DevOps
pipelines and how these security tests impact the build time
and then delivery time of the product. This impact on the
build time has been a motivating factor in keeping security
tests out of the DevOps pipeline [7]; from this, the idea for
this paper was born. If it can show the actual gains from the
security tools versus their impact on build time, then maybe
more pipelines will contain the proper security tools in the
future. This will be accomplished by setting up a generic
DevOps pipeline and then measuring its performance while
implementing different security tests.

Objective
The objective of this paper is to examine how increment-
ing levels of security affect build time in DevOps pipelines.
This will be achieved by answering the following research
question:

Research Question.

(1) How can increasing the number of security tests affect
CI/CD pipeline build time?

Delimitations
The Development pipeline was only implemented in Mi-
crosoft Azure which can skew readings for other platforms.

OWASP Top Ten [9] was used as a guideline for picking
the tested security tools, which narrows the application of
this study to web applications.

Background
This thesis was conducted in collaboration with Knowit Se-
cure, which is a consulting company in the cybersecurity
business. I was provided with a separated environment in
Microsoft Azure and contact with security professionals who
have assisted in implementing the CI/CD pipeline, ideas for
tests to run and parsing the results of some tests through
discussing the found flaw and what it pertains as a security
breach.

Figure 1: A simplified DevOps Pipeline showing what is meant with CI/CD. Used with permission1

2 THEORY
The theory section will contain information on how to mea-
sure security in software, what the paradigm CI/CD and its
evolution DevOps entails.

How to Measure Security
Measuring Security levels of a software application has proven
to be an elusive art [12]. It is hard to create universal lev-
els for a very subjective field, where every application has
different security needs and flaws. Therefore I will, instead
of measuring the level of security try to show that the tools
that were tested cover the most common security flaws; this
will be elaborated on in the Method Theory section.

ISO/IEC 25010. The ISO/IEC 25010 [3] defines the level of
security in a software application as the:

"Degree to which a product or system pro-
tects information and data so that persons
or other products or systems have the degree
of data access appropriate to their types and
levels of authorisation." [3].

The ISO standard defines five categories which can be com-
bined into three bigger categories as presented by [19].

• Confidentiality and Integrity, which requires that the
application keeps its data from unauthorised access,
while it is protected from modifications.

• Non-repudiation and Accountability, that requires de-
velopers to create some kind of receipt of actions in
the system, but also provide ways of finding out who
made any action in the application.

• Authenticity, which requires applications to ensure a
way of proving the identity of the subject or resource
that it claims.

OWASP Top Ten. OWASP, a non-profit foundation which
aims to improve security in software, has composed a list of
security threats in web applications called the OWASP Top
Ten (OTT) [9] which is regularly updated and is recognised

by the software industry as the baseline for secure develop-
ment [10].

Many related articles to this paper have used OWASP re-
sources as a guideline for security, and it is used as an almost
scientific source. The authors generally use the Top Tens for
different software fields, such as Mobile or Web, to map the
eventual security flaws that their applications might have.
OWASP is used as guidelines for what security consists of
[1, 4, 13–15], which indicates that OWASP is a trustworthy
source or at least trustworthy enough to use as the basis for
this paper.

Continuous Integration/Continuous
Delivery/Deployment
A CI/CD Pipeline is a paradigm supported by a software con-
nected to a version control software that can be configured
to run a build when something is committed. Continuous
Integration is the practice of continually testing and mak-
ing sure that committed code is workable in an application
[2, 8, 11, 18]. The phase is represented in Figure 1 as the
green square, where a developer commits their code to a ver-
sion control software like git or subversion and the software
automatically runs tests. This can also be achieved through
build tools such as Maven, Gradle or CMake, although they
require more responsibility from the individual developer
and therefore, most tests are now done at build time.

Further right in Figure 1 is Continuous Delivery, which
means the pipeline requires there to be a deliverable, in the
end, a compiled program or a package to set up [2, 11, 18]. In
this phase, of the CI/CD workflow, higher-level tests such as
Selenium and the like can be used, because the application
has to be set up in a proper environment.

Finally, there is Continuous Deployment which encompasses

1A comparative study of implementing the practice of Continuous Delivery.
Wesselman, KWH. 2014. found through [11], permission given by original
creator

all the earlier phases and adds an automated deployment to
the live servers of the application [2, 11, 18]. Load testing and
other tests that require the live application can be performed,
as well as penetration testing or DASTs when it comes to
specific security tests.

Benchmarking a CI/CD Pipeline. From what I have been able
to find in related works, not many scientific papers have been
focused on benchmarking of the actual pipeline. This might
be because most pipelines provide statistics on the configura-
tion such as time, which can then be used for benchmarking.

DevOps
The field of software development is rapidly changing and im-
proving, in trying to progress, there are always new paradigms
emerging. "DevOps", built on the principles of Continuous
Integration/Continuous Development, is one of the latest.
DevOps is a combination of the words’ development’ and
’operations’. The paradigm is focused on automating the
software pipeline to be able to enable standardisation of the
applications [5, 17].
DevSecOps evolved from DevOps when there was a call

for security practices in the automated pipelines. Before 2012
there was a widespread concern that security testing would
hamper the agile parts of DevOps [6]. At this point security
was done after the pipelines, it could take days to finish the
penetration and other kinds of tests that the security teams
required. To appease both sides of the coin, the concept of
shift left was used. Shift left is a concept that essentially
means: automate as much as possible; security was being
automated and put to the left in the pipeline, as in it was
pushed earlier. These tests tools are the focus of this paper.

3 METHOD THEORY
Method Theory will contain an explanation of the tests used
in the experiments, as well as describe themapping - between
OTT and the ISO-categories.

The Test Tools
Table 1 lists the tools that were tested in the experiments. The
tools are divided into three categories from Figure 1, based
on when the tools are run in the pipeline, also provided is a
category name which is explained below.

Dependency Scans (Dep. Scan) scans the application being
tested for plugins, code libraries or other third-party code,
it then checks these against a list implemented by the tool-
maker. These tests can be run anywhere in the pipeline, but I
chose to run them together with unit tests in the Continuous
Integration phase of the pipeline.

SAST stands for Static Application Security Testing, which
contains a Dep. Scan, but goes even further by scanning the
rest of the code for pre-defined bad practices and flaws. As

Table 1: Tests Used in Experiments

Name of Security Tool Description Phase
OWASP Dependency Check Dep. Scan CInt

ShiftLeft Scan (Cred. + Dep Scan) Dep. Scan CInt

Snyk Dep. Scan CInt

Insider SAST CDel

ShiftLeft Scan (SAST) SAST CDel

SonarQube SAST CDel

ShiftLeft Inspect SAST CDel

OWASP ZAP DAST CDep

Detectify DAST CDep

stated above the Dep. Scan can be run at any point in the
pipeline, but SAST tests need all of the code to be present in
the repository. Therefore they need to be running as early as
possible in the Continuous Delivery phase, hence why Dep.
Scans were run in the CInt phase.
Penetration Testing (Pen. Test) is the practice of trying to

breach the security of an application from the outside, in
the interest of shoring up these vulnerabilities instead of
taking advantage of them. In most countries, the methods
used are highly illegal if done against an application that is
somebody else’s, but penetration testing as a practice is only
used against targets that are willing participants. This can
be done automatically, which is what the paper is focused
on, but some of the OWASP Top Ten vulnerabilities can only
be found manually, which has been detailed in the section
on Measuring Security in Software.
DAST stands for Dynamic Application Security Testing

which, just like the previously mentioned Penetration Test-
ing, focuses on attacking software from the outside. DAST
can take on amore hands off approach by only scanning ports
or communicating with applications in the intended way,
but the field of tools also contain Penetration Testers that
directly attack applications. DASTs need a live application
to test on, in the pipeline we do not set up a live application
until the Continuous Deployment phase and therefore the
tests need to be ran at this time.

Measuring Security in Software
As can be seen in Table 2, the OTT has been mapped to
the ISO categories. The mapping was done in collaboration
with security professionals and with the focus on the initial
violation of an ISO-category, which means that if a vulnera-
bility violates further ISO-categories after the initial one, the
vulnerability was only mapped to the original violation.

Table 2: OTT Mapped to ISO Categories

OTT ISO-12 ISO-23 ISO-34

1. Injection X

2. Broken Authentication X

3. Sensitive Data Exposure X

4. XML External Entities (XXE) X

5. Broken Access Control X

6. Security Misconfiguration X X

7. Cross-Site Scripting XSS X

8. Insecure Deserialization X X

9. Vulnerable Components X X X

10. Insufficient Logging* X X
*Name shortened for lack of space

The mapping might require some motivation and some of
these vulnerabilities are considered hard to find with con-
temporary automatic scans while others can be found by
every category of tools tested. Below are brief explanations
of each OTT point, a motivation of which ISO-category was
violated and which kind of tests should be able to find the
vulnerability while scanning.

1. Injection (OTT-1) is the error of allowing input data to in-
fluence secure data. For example, an SQL injection where the
hacker is allowed to either view or remove a part of the ap-
plication database without proper authentication [9], which
violates the first ISO category initially. This vulnerability can
be found by running SAST or DAST tests.

2. Broken Authentication (OTT-2) covers the actions of au-
thenticating a user and keeping them logged in. The category
covers most flaws in authentication that occurs before or
during the actual authentication process. Good examples are
sending/storing clear text passwords or allowing brute force
attacks. This vulnerability is usually found by manual means
[9].

OTT-2 violates the third ISO-category and is hard to find
automatically and as such I would have disregarded it for
this study, but after reviewing the documentation5 for the
application scanned in this paper, I am confident that some
tools should be able to find the flaw.
3. Sensitive Data Exposure (OTT-3) violates the first ISO-

category initially and is the act of exposing data in the wrong
way. Important crypto keys could be stored in plain text or

2Confidentiality and Integrity abbreviated as ISO-1
3Non-repudiation and Accountability abbreviated as ISO-2
4Authenticity abbreviated as ISO-3
5https://bkimminich.gitbooks.io/pwning-owasp-juice-shop/content/

even be left as the default configuration, but this vulnerability
category also covers data lost through usage of insecure
transport protocols like HTTP, according to OWASP [9].
SASTs should be able to find examples of this in the scanned
code.
4. XML External Entities (XXE) (OTT-4) covers instances

where an XML-parser has been wrongly configured to allow
hackers to gain access to the developed application and its
data. Luckily these are easily found by SASTs and DASTs
with extra configuration, but some instances can be most eas-
ily spotted by manual means [9]. This security flaw violates
the first ISO-category.

5. Broken Access Control (OTT-5), just like OTT-2, pertains
to the authentication of users, althoughmore specifically; the
actions taken after the initial authentication. The verification
that a user that claims to have a privilege has that privilege.
For example, if a user requests a part of an application that
is purely intended for administrators to use, the application
has to verify that the user has admin privileges before giving
access [9].
This security flaw copies the wording of the third ISO-

category almost word for word and can be hard to find by
automated means. A DAST tool can be configured to know
what pages it is supposed to be able to access, but otherwise,
this flaw is only detectable by manual means.

6. Security Misconfiguration (OTT-6) pertains more to the
platform where the developed application is hosted. If some
of the components are misconfigured or not updated to their
latest version, there might be security holes that, in turn,
make the developed application vulnerable. For instance, if
one were to run a simple application on their computer and
the operative system contains a vulnerability, a hacker could
gain control of that application and all that it pertains [9].

These kind of vulnerabilities are hard to detect as Depen-
dency Checks refer only to the software directly connected
to the application and SASTs only handle the source code.
Finally, DASTs can find some of these vulnerabilities through
checking version numbers against lists of known security
flaws and by trying to exploit said security flaws during pen-
etration testing. The flaw can be used to violate all three
categories, but only one and three initially.

7. Cross-Site Scripting (XSS) (OTT-7) as the name suggests
pertains to XSS which is the practice of exploiting either
direct user input or stored user input. This can be achieved
through widely available automated tools and as such is a
concern for every developed application [9]. This flaw can
be found by SASTs and DASTs and violates the first ISO-
category as it is a way to bypass authentication, not a flaw
with the authentication in particular.

8. Insecure Deserialization (OTT-8) combines OTT-3 and
OTT-6 in a mess of a vulnerability. When data is being sent
between the application and other servers; a hacker could

intercept and change data. Therefore a secure application
needs to validate data and not deserialise the package and
move on [9]. Using this vulnerability, a hacker could violate
the first and third ISO-category initially. This, depending on
the language used, is a relatively easy vulnerability to scan
for and most SAST tools should be able to spot the flaw.

9. Vulnerable Components (OTT-9) is essentially the notion
that code the developer has not written him- or herself can be
vulnerable. Third-party components see widespread use by
web applications and if these are left without upgrading or
chosen without care taken to who wrote them; the developed
application can be vulnerable. Therefore most security tools
compile some kind of list of known vulnerable components
and their version number [9]. All tool categories should be
able to pick up on this vulnerability, although not all might
report them as such. As these security flaws are widespread
and can be found at any point in an application, I categorise
this vulnerability as violating all ISO-categories at once.

10. Insufficient Logging (& Monitoring) (OTT-10), the word
insufficient makes this vulnerability incredibly subjective.
There, of course, exists a baseline where an application lacks
logging in general, but it is close to impossible to automati-
cally test for this vulnerability as logging can be implemented
as the developer sees fit [9]. Therefore I am disregarding the
issue of logging and monitoring in this paper.

Summary. With this mapping done, it can be observed that
the categories are covered by at least one of the OTT. There-
fore the tests scanned in this paper can be seen as a compre-
hensive test of security in the scanned application. To clarify
which vulnerabilities can be found by what tool category
here is a quick recap:

• Dep Scan: OTT(9)
• SAST: OTT(1, 2, 3, 4, 7, 8, 9)
• DAST: OTT(1, 4, 5, 6, 7, 9)

4 METHOD
The Method section will contain discussions on how the
pipeline was set up, what application was scanned, how the
selected tools were set up and finally how the benchmarking
was done.

Setting Up the Pipeline
The CI/CD pipeline was setup in Microsoft Azure using the
simple YAML option, and the default options for Node.js
composed the base, which can be found as an appendix:
Listing 1. The files were exported by the pipeline to a self-
hosted agent, set up on a Standard D8as_v4 (8 vcpus, 32 GiB
memory) with a 256 GBHDD, virtual machine (VM) provided
through Azure. The VM was configured to use Ubuntu 18.04,
and the needed packages were installed. The following steps
were executed:

(1) A new project was started
(2) The files were added by cloning the master branch
(3) A new pipeline was added to the project
(4) The .yaml file was configured
(5) The required packages were installed

OWASP Juice Shop
OWASP Juice Shop, which is a Vulnerable Web Application
(VWA), was used as the experiment base. The pipeline was
set up to configure this application and then set it up on a
web server. The application is primarily written in Javascript
using the Node Package Manager for dependency handling
and installation. Juice Shop was installed by cloning the git
repository and installed using npm.

Configuring the Test Tools
The tools were set up using the documentation for each spe-
cific tool, which was done to get an understanding of what
the tool did. As the tests were set up and had succeeded
in running a manual scan, the configuring of the pipeline
started. Some of the tests were set up using already created
docker images, downloaded to the agent. However, most of
the selected tools used extensions from the Azure market-
place. The tests were run using the base configuration of
the tools to test the out-of-the-box performance. No opti-
misation was done. Below is every tool presented with the
version used and a quick installation guide.

OWASP Dependency Check. The test was implemented using
an extension available in the Azure marketplace. The version
number of the extension was: 0.0.7.

As OWASP Dependency Check was only used as a Depen-
dency Scanner, no mapping was needed.

ShiftLeft Scan(credscan + depscan). The test was implemented
using an extension available in the Azure marketplace. The
version number of the extension was: 1.0.8.

ShiftLeft Scan ran into a bug while running on the VWA.
After a bug report, the developer confirmed that there was
a bug when running the SAST part of the test on the VWA,
the codebase was too long. Therefore I changed the config
to run a credential and a dependency scan. This change is
reflected in the final .yaml file part 1: Listing 2 on line 30.
As ShiftLeft Scan, because of the bug, was only used as a
Dependency Scanner, no mapping was needed.

Snyk. The test was implemented using an extension avail-
able in the Azure marketplace. The version number of the
extension was: 0.2.8.

Snyk required a Service Connection, added under project
settings in Azure, with an API key provided by the Snyk
website. As Snyk was used only as a Dependency Scanner,
no mapping was needed.

Insider. The test was installed on the agent manually using
the precompiled6 version. The version number was: 1.0.1.
The scan was then conducted using the provided com-

mands. The results needed to be parsed to OTT, which was
done in collaborationwith Security Professionals fromKnowit
Secure.

ShiftLeft Scan (SAST). The test was implemented using an
extension available in the Azure marketplace. The version
number of the extension was: 1.0.8.

As stated above, therewas a bugwhile running the ShiftLeft
Scan SAST, and the scan was never finished; however, the
result was kept in the paper to reflect the work done.

SonarQube. The test was implemented using an extension
available in the Azure marketplace. The version number of
the extension was: 4.10.0.
SonarQube required a service connection just like Snyk,

but in this case, the endpoint had to be created. Therefore I
used OWASPs docker image for SonarQube7 and accessed
the admin dashboard to generate an authentication token.
The agent ran the docker beforehand and waited for con-
nection from the pipeline to run the scan. The results were
pre-parsed by SonarQube, and this parsing is the one re-
flected in the results below.

ShiftLeft Inspect. The tool lacked an extension in the mar-
ketplace, and there was no docker image that I could find,
but the documentation explained how to install the test tool.
This was followed without modifications, and the tool was
then run by the pipeline using the provided commands.
ShiftLeft Inspect did not parse the findings, and there-

fore this was done by hand, in collaboration with Security
Professionals from Knowit Secure.

OWASP ZAP. There exist extensions for this test in the mar-
ketplace, but I was unable to get them working. Therefore I
followed a guide from the UK Hydrographic Office8 and used
their docker image to run these tests. As the version 9 I used
was flawed some changes were made to the directory refer-
ences in the script. Running OWASP ZAP in this way made
it so that the results needed to be parsed to OTT by hand,
which was done in collaboration with Security Professionals
from Knowit Secure.

Detectify. Detectify lacked an extension in the marketplace,
and there was no docker image to use. The company has
no intended way of implementing their scans with Azure
pipelines as of writing. Therefore I created a python script

6https://github.com/insidersec/insider/releases
7https://hub.docker.com/r/owasp/sonarqube
8https://github.com/UKHO/owasp-zap-scan/
9Commit: 62de0d56a6279801e93541082608ad2b498d690b

and ran that in the pipeline. The script can be found in: List-
ing 4. Detectify parsed their results directly to OTT. Their
interpretation of the findings is the one provided in the re-
sults.

Benchmarking in Azure and Running the Tests
Benchmarking pipelines, as described in the theory section,
is quite easy as the service provider used, Microsoft Azure
gives an elapsed time for every phase of the build. This time
was then used as the benchmark for each test.

The tests were run individually to ensure no interference
between tests. Each test was run ten times; the average of
these times is the data provided in results. This was done
to minimise outliers in the test data because of high load
or other factors that cannot be controlled for in the testing
environment. The final .yaml file for the pipeline can be
found in the appendix: Listing 2. The results of the tools
were then either parsed to OTT or taken, as stated by the
tools. False positives were disregarded as this was out of the
scope of the study. The parsing was done through discussions
with security professionals.

5 RESULTS
This paper set out to examine how much increasing amounts
of security tests would affect the build time of a DevOps
pipeline, which was done through testing contemporary se-
curity tools and running scans, with the tools, on a Vulnera-
ble Web Application. In the study, I set up, ran and evaluated
nine different tests tools, divided into three categories based
on the CI/CD workflow.

Figure 2: Bar chart showing results

Table 3: Table with testdata

Name OTT-1 OTT-2 OTT-3 OTT-4 OTT-5 OTT-6 OTT-7 OTT-8 OTT-9 Result [s]
VWA Reference 625

OWASP Dep. Check ✓ 434

ShiftLeft Scan (cred+dep) ✓ 99

Snyk ✓ 47

Insider ✓ ✓ ✓ 441

ShiftLeft Scan* >21600

SonarQube ✓ ✓ ✓ ✓ ✓ 96

ShiftLeft Inspect ✓ ✓ ✓ ✓ ✓ ✓ 1697

OWASP ZAP ✓ ✓ ✓ ✓ ✓ 686

Detectify ✓ ✓ 504
*Bug during runtime

The results of these experiments can be seen in Figure 2
where the VWA Reference, the time taken to run the pipeline
without tests, is coloured orange and the other results use
the colour for their respective CI/CD phase, IE. green for
Continuous Integration. The y-axis represents the duration
of a single tool run, on average, and on the x-axis the names
of the different tools can be found in their respective phase
colour. Worth noting is the outlier in ShiftLeft Inspect that
took almost as long as the other tests combined to finish a
scan on average. ShiftLeft Scan on the other hand has a zero
as result as the tool never finished scanning, the same is true
in the next figure.

Figure 3: Test results grouped by CI/CD phase

Furthermore, I found it interesting to look at how the
different categories of tests, as a whole, would impact the
build time. Speaking of, Figure 3 contains a variation on the
results from Figure 2 where they are grouped by CI/CD phase,
which is represented as boxes of the colour representing each
category. Also added is the average time taken for each phase.
The x and y-axis represent the same as above; however, there
are two graphs plotted through the fastest test times and the
average time, respectively. These graphs do not match in k-
value as the dotted average line slumps after the Continuous
Delivery phase, unlike the graph for the fastest times.

Finally, Table 3 contains the names of the tools, including
the VWA Reference, the security flaws reported back by the
tests and the average duration of the reference and tools. The
security flaws are interesting as this study would not hold
much water if the tests ran did not cover most of the com-
mon security flaws. Therefore the selection of tools was, as
previously stated, guided by a combination of 3 ISO-defined
categories of security flaws and the OWASP Top Ten. As can
be observed, in the table, no test found OTT-4 and only one
SAST test managed to find the OTT-8 instance. There also
seems to be a correlation between the later a tool is run in the
pipeline; the more vulnerabilities are found. These findings
and the validity of this study is discussed more below.

6 DISCUSSION
This section will contain discussions on the method and
results detailed in this paper.

Method
A point of limitation for the study was the fact that there
were only ten runs of each tool done. As can be observed
in the appendices: Table 4, the raw duration is spread out
for some tools while others are quite stable in duration. This
would suggest that a more comprehensive study would be
needed to make sure that the data is truly representative of
reality, but this paper could function as a proof-of-concept
for said study. The number ten was picked because of the
time constraints on the study and that anything less than
that could be criticised not to represent that tools actual
duration.

Another point of limitation was alluded to above: the com-
prehensiveness of the selected tools. If the tools selected do
not cover a big enough field of security flaws, then they are
not representative of a bigger group of tools. Therefore Ta-
ble 3 was created which, as said earlier, chronicles the found
vulnerabilities of each security tool. Surprisingly OTT-4 was
not found by any of the tests selected. This is explained by
the way the vulnerability was implemented in Juice Shop.
According to the developer10, the flaw that OTT-4 chronicles
is XXE or XML External Entities, is implemented through a
file upload, that means the vulnerability is introduced by the
hacker and not part of the actual source code, which means
that the lack of findings of OTT-4 does not invalidate the
study. Other than OTT-4 and OTT-10, which was disregarded
entirely because of inherent subjectivity, every security flaw
was found by at least one tool.

Furthermore, a discussion on Detectify and the lack of
implementation in Azure is warranted. As Detectify works
through a REST API; the python script that was created add
a negligible amount of time to their result. The API calls
made every second means that the added time would be at
worst 1 second + 3*latency (usually counted in milliseconds),
3*latency because there are 2 API-calls made in the script
before looping until the scan is over. The 1 second comes
from the waiting for 1 second between status API-calls, and
the third latency is because of the last package’s latency.
Therefore the added time from the script is negligible and
does not affect the results in any meaningful way.

Microsoft Azure and the Pipeline
Azure was chosen as the platform for the pipeline as Knowit
Secure was accustomed to that platform and use it in their
daily operations. This should be an entirely uncontroversial

10https://bkimminich.gitbooks.io/pwning-owasp-juice-shop/content/

choice as the service is one of the market leaders. Other plat-
forms that were considered was Amazon Web Services and
creating an in-house solution. This study’s choice of platform
should not affect the results apart from changing numbers;
the ratio between the numbers being the vital part in the
case of this study means that the conclusions drawn should
be quite generalisable. The method of implementing the se-
curity tools would change of course because there might not
be specific implementations for the chosen tools but apart
from that, barring any platform-specific bugs, the platform
selected for the experiments should be inconsequential.
The penultimate subject in this section is how close to

an actual pipeline the experiment pipeline was. As most
pipelines are implemented differently, the experimental one
was made to be as barebone as possible. Therefore it lacks
some parts of what a "real" pipeline would have. For example,
the testing environment, where the code repository was
uploaded and installed, was the same as the environment
used for testing done on live applications, such as DASTs.
This should never be the case in a lifelike setting but was
made this way to preserve time running the experiments.
The reference point is not created this way and uses a more
lifelike approach. Also, the aforementioned pushing of all
the code to a testing environment/live environment is a bit of
an extreme example of a pipeline as most pipelines instead
only calculate the differences and upload what is needed.
To make sure that every test had the same application to
work on and to avoid having to modify the code from Juice
Shop it was decided that this extreme example of the time
taken was preferable to the alternative. Finally, the pipeline
lacked unit tests or something similar, which is the concept
of implementing tests for a specific application based on the
product specification. These tests exist in the source code, but
because of time constraints, those tests was ignored. They
would increase the reference point time as unit tests are
usually part of the pipeline in the CInt phase, but would not
have constituted tools that were tested as described by the
method. The pipeline is as close to lifelike as it was possible
apart from the above points.

Common Vulnerabilities and Exposures
Common Vulnerabilities and Exposures (CVE)11 is the name
of a list that contains, as the name suggests, vulnerabilities
and exposures in software. It is sponsored by the United
States government and maintained by select "numbering
authorities" in 28 different countries at the time of writing.
Sane [13] used the CVE or its extension the National Vul-
nerability Database to criticise the OWASP Top Ten for not
covering enough common vulnerabilities. The CVE contains
about 140 thousand entries, complete and trial, at the time

11https://cve.mitre.org/

of writing this report. This would mean that using this list
as the guideline for determining which tools to test would
be incredibly time-consuming and as such out of the scope
of this paper. I do acknowledge that OWASP Top Ten might
not be comprehensive enough and would like to see future
studies done in the same format as this one using the more
complete database of vulnerabilities instead. However, those
experiments would focus less on the scan duration and more
on the comprehensiveness of security tools which is not
what this paper studied.

Results
Apart from the above discussion on OTT-4, the tools found
most of the vulnerabilities that they were supposed to, ac-
cording to the theory section of this paper. The Dependency
Scan tools (The first three after VWA reference in Table 3)
can be observed to all have found an instance of OTT-9, the
study ignored whether they found all instances or not. The
SAST tests (the next 4 in the table) have all failed to find some
vulnerability they were supposed to find. This all depends on
what patterns they are configured to flag as flawed. Some can
be easily explained such as SonarQube missing OTT-8 as the
implementation of OTT-8 in Juice Shop was written in .yml
code which SonarQube is not built to handle. While others,
such as Insider missing two security flaws apart from OTT-8,
which has the same explanation, are harder to explain and
could be viewed as a failure of that tool. Lastly, we have
DAST tests (The last 2) which have all missed OTT-1 and
found OTT-3, which was not part of the analysis presented
in the theory section. The considerable difference between
OWASP ZAP and Detectify stems from the fact that Detectify
does not directly attack the application. ZAP tries to breach
the application which constitutes Penetration Testing while
Detectify merely scans the endpoints of the application.
All of this serves to prove that running only the base im-

plementation of these tools are not adequate to find all the
security flaws that an application could contain. This study
does not focus on which tools found or missed any vulnera-
bilities as long as they were found by at least one, but some
tools found more vulnerabilities than others and the time
taken was different for each tool. This could, of course, be
used to rank the security tools, but that was not the intention
while writing this paper.

The time taken or the scan duration for each tool are less
interesting than the CI/CD phase average when it comes
to answering the research question, but some of the times
are worth discussing before heading into the discussion on
phase averages. As mentioned earlier, ShiftLeft Inspect is an
outlier in the data set as it took almost as long as every other
tool put together. This might mean that the tool is just worse
than the others, but there is a technical explanation for the

scan duration. ShiftLeft Inspect creates a code graph when
scanning the source code. This means that the tool creates
an abstraction of the code that is easily traversable. This
technique is meant to create the whole graph once and then
modify it based on the changes in the source code. Therefore
the experiments do not favour ShiftLeft Inspect. This does
not invalidate the results, but while analysing the phase aver-
age, this fact will be taken account of, another fact that will
influence the analysis is that the VWA Reference point is on
the lower end of what it should be, because of the parts that
are missing to make the pipeline a more "lifelike" instance,
as was discussed above.

Phase Averages VS Phase Minimum
The phase minimum is compelling to look at, but the average
is more generalisable. RQ1 ponders how the added security
tools impact the build time. This has been answered in a
way by the charts above. If one observes the two graphs in
Figure 3; one can deduce that there is a correlation between
the further into the pipeline the tool is run the more time it
takes to finish a scan. This can be observed while looking at
the line graph, while the dotted graph hides this fact because
of the outlier in ShiftLeft Inspect. If one were to ignore that
data point with the reasoning provided above; the average
for CDel would be 269 seconds instead. This would make the
dotted graph look a lot more like the line graph. Therefore I
can infer the correlation above.
The VWA reference is 625 seconds for a clean run of the

pipeline, which is above three times the CInt phase average,
a bit less than three times the CDel average and a bit higher
than the CDep average. Thus RQ1 is answered: Security tools
added at worst 100% of the build time on a close to a lifelike
pipeline, but at best they add just a third of the base duration.
Therefore I would conclude that the time added is at best
negligible and at worst manageable. The gains in confidence
in the security levels of an application can not be understated
and the duration added is a couple of minutes to scan for the
most common vulnerabilities found in web applications. The
added couple of minutes should be seen as an investment in
all cases as a more secure application is never a bad thing.

7 CONCLUSIONS
This study set out to answer how much time was added to
the build time of a DevOps Pipeline. Additional build time
from security tools has been a deterrent to most developers
according to, and therefore, this study was created to quan-
tify how much time is added. In the end, I found that the
time added was far from the hours or days feared by some
developers and closer to 1/3 of the clean build time, which is
a significant result. The time added is quite manageable, and
the gains in security can not be understated.

ACKNOWLEDGMENTS
I would like to thank my tutor Rita Kovordanyi for helpful
advice, support and interesting discussions, I would also like
to thank Knowit Secure and in particular Daniel B Nilsson
and Mikael Hermansson for support, discussions and many
laughs during the experiments. Lastly, I would like to thank
the wonderful and supportive Natalie Söderpil Jakauby, who
somehow managed to stand me while I was writing this
thesis.

REFERENCES
[1] Elisa Burato, Pietro Ferrara, and Fausto Spoto. 2017. Security Analysis

of the OWASP Benchmark with Julia. In In Proceedings of ITASEC ’17.
ITASEC, Italy, 6.

[2] Jez Humble and David Farley. 2010. Continuous delivery: reliable soft-
ware releases through build, test, and deployment automation. Addison-
Wesley, Upper Saddle River, NJ.

[3] ISO. 2011. Software Product Quality. ISO 25010. https://iso25000.com/
index.php/en/iso-25000-standards/iso-25010

[4] Jinfeng Li. 2020. Vulnerabilities Mapping based on OWASP-SANS: a
Survey for Static Application Security Testing (SAST). arXiv:2004.03216
[cs] (April 2020). https://doi.org/10.33166/AETiC.2020.03.001 arXiv:
2004.03216.

[5] Lucy Ellen Lwakatare, Pasi Kuvaja, and Markku Oivo. 2016. Re-
lationship of DevOps to Agile, Lean and Continuous Deployment.
In Product-Focused Software Process Improvement (Lecture Notes in
Computer Science), Pekka Abrahamsson, Andreas Jedlitschka, Anh
Nguyen Duc, Michael Felderer, Sousuke Amasaki, and Tommi Mikko-
nen (Eds.). Springer International Publishing, Cham, 399–415. https:
//doi.org/10.1007/978-3-319-49094-6_27

[6] Neil MacDonald and Ian Head. 2016. DevSecOps: How to Seamlessly
Integrate Security Into DevOps. (Sept. 2016), 15.

[7] Steve Mansfield-Devine. 2018. DevOps: finding room for security.
Network Security 2018, 7 (July 2018), 15–20. https://doi.org/10.1016/
S1353-4858(18)30070-9

[8] Mathias Meyer. 2014. Continuous Integration and Its Tools. IEEE
Software 31, 3 (May 2014), 14–16. https://doi.org/10.1109/MS.2014.58

[9] OWASP Foundation. 2017. OWASP Top Ten Web Application Security
Risks | OWASP. https://owasp.org/www-project-top-ten/

[10] OWASP Foundation. 2020. OWASP Foundation | Open Source Foun-
dation for Application Security. https://owasp.org/

[11] Jesse Pai and Robert Monical. 2015. DevOps. Jesse Pai Robert Moni-
cal. https://docplayer.net/7657294-Devops-jesse-pai-robert-monical-
8-14-2015.html Library Catalog: docplayer.net.

[12] B. Potter and G. McGraw. 2004. Software security testing. IEEE Security
Privacy 2, 5 (Sept. 2004), 81–85. https://doi.org/10.1109/MSP.2004.84
Conference Name: IEEE Security Privacy.

[13] Parth Sane. 2020. Is the OWASP Top 10 list comprehensive enough
for writing secure code? arXiv:2002.11269 [cs] (Feb. 2020). http:
//arxiv.org/abs/2002.11269 arXiv: 2002.11269.

[14] Khairul Anwar Sedek, Norlis Osman, Mohd Nizam Osman, and Hj. Ka-
maruzaman Jusoff. 2009. Developing a Secure Web Application Using
OWASP Guidelines. Computer and Information Science 2, 4 (Oct. 2009),
p137. https://doi.org/10.5539/cis.v2n4p137

[15] K. Tsipenyuk, B. Chess, and G. McGraw. 2005. Seven pernicious king-
doms: a taxonomy of software security errors. IEEE Security Privacy 3, 6
(Nov. 2005), 81–84. https://doi.org/10.1109/MSP.2005.159 Conference
Name: IEEE Security Privacy.

[16] Akond Ashfaque Ur Rahman and Laurie Williams. 2016. Security prac-
tices in DevOps. In Proceedings of the Symposium and Bootcamp on the
Science of Security - HotSos ’16. ACM Press, Pittsburgh, Pennsylvania,
109–111. https://doi.org/10.1145/2898375.2898383

[17] Jan Waller, Nils C. Ehmke, and Wilhelm Hasselbring. 2015. Including
Performance Benchmarks into Continuous Integration to Enable De-
vOps. ACM SIGSOFT Software Engineering Notes 40, 2 (April 2015), 1–4.
https://doi.org/10.1145/2735399.2735416

[18] Koen Wesselman. 2015. Continuous Integration, Continuous Delivery,
Continuous Deployment. https://blueyikim.tistory.com/1 Library
Catalog: blueyikim.tistory.com.

[19] Haiyun Xu, Jeroen Heijmans, and Joost Visser. 2013. A Practical
Model for Rating Software Security. In 2013 IEEE Seventh International
Conference on Software Security and Reliability Companion. IEEE, New
Jersey, United States, 231–232. https://doi.org/10.1109/SERE-C.2013.11

https://iso25000.com/index.php/en/iso-25000-standards/iso-25010
https://iso25000.com/index.php/en/iso-25000-standards/iso-25010
https://doi.org/10.33166/AETiC.2020.03.001
https://doi.org/10.1007/978-3-319-49094-6_27
https://doi.org/10.1007/978-3-319-49094-6_27
https://doi.org/10.1016/S1353-4858(18)30070-9
https://doi.org/10.1016/S1353-4858(18)30070-9
https://doi.org/10.1109/MS.2014.58
https://owasp.org/www-project-top-ten/
https://owasp.org/
https://docplayer.net/7657294-Devops-jesse-pai-robert-monical-8-14-2015.html
https://docplayer.net/7657294-Devops-jesse-pai-robert-monical-8-14-2015.html
https://doi.org/10.1109/MSP.2004.84
http://arxiv.org/abs/2002.11269
http://arxiv.org/abs/2002.11269
https://doi.org/10.5539/cis.v2n4p137
https://doi.org/10.1109/MSP.2005.159
https://doi.org/10.1145/2898375.2898383
https://doi.org/10.1145/2735399.2735416
https://blueyikim.tistory.com/1
https://doi.org/10.1109/SERE-C.2013.11

Table 4: Appendix - Raw Testdata

Tool Results [s] Notes
VWA Reference 622, 619, 616, 655, 657, 621, 615, 611, 613, 619 Ran without tests

OWASP Dependency Check 451, 422, 422, 435, 425, 441, 440, 435, 437, 432

ShiftLeft Scan(credscan + depscan) 112, 93, 93, 92, 99, 98, 97, 97, 108, 97

Snyk 81, 10, 95, 61, 34, 12, 50, 52, 15, 59

Insider 662, 415, 417, 415, 417, 415, 415, 414, 416, 417

ShiftLeft Scan (SAST) >21600 Bug reported

SonarQube 97, 95, 93, 96, 96, 97, 97, 95, 96, 95

ShiftLeft Inspect 1733, 1900, 1680, 1348, 1677, 1698, 1916, 1676, 1667, 1675

OWASP ZAP 688, 680, 687, 685, 683, 691, 687, 682, 688, 688

Detectify 619, 542, 428, 469, 474, 514, 580, 479, 471, 463

CInt Average 194

CDel Average 745

CDep Average 595

1 trigger:

2 - master

3 pool:

4 vmImage: 'Default '

5 steps:

6 - task: NodeTool@0

7 inputs:

8 versionSpec: '10.x'

9 displayName: 'Install Node.js'

10 - script: |

11 npm install

12 npm run build

13 displayName: 'npm install and build'

Listing 1: Appendix - A .yaml-file for pipeline

1 jobs:

2 - job: PreDeployment

3 timeoutInMinutes: 360

4 displayName: "Pre Deployment"

5 pool:

6 name: 'Default '

7 steps:

8 - checkout: self

9 - script: |

10 npm install @angular/cli

11 npm install

12 displayName: "Test Build"

13 - task: CmdLine@2

14 inputs:

15 script: |

16 echo Starting Post -Build Tests

17 displayName: "Post -Build Tests"

18 # - task: OWASPDependencyCheck@0

19 # inputs:

20 # outputDirectory: '$(Agent.TempDirectory)/dependency -scan -results '

21 # scanDirectory: '$(Build.SourcesDirectory)'

22 # outputFormat: 'ALL'

23 # useSonarQubeIntegration: false

24 # - script: |

25 # docker run \

26 # -v "$(Build.SourcesDirectory):/app:cached" \

27 # -v "$(Build.ArtifactStagingDirectory):/ reports:cached" \

28 # shiftleft/sast -scan scan --src /app \

29 # --type credscan ,depscan \

30 # --out_dir $(Agent.TempDirectory)/CodeAnalysisLogs

31 # displayName: "Perform ShiftLeft Scan"

32 # continueOnError: "false"

33 # - task: SnykSecurityScan@0

34 # inputs:

35 # serviceConnectionEndpoint: 'Snyk Trial'

36 # testType: 'app'

37 # monitorOnBuild: false

38 # failOnIssues: false

39 # projectName: 'Build Thesis '

40 # organization: 'karhusaari.jimmy'

41 # - task: CmdLine@2

42 # inputs:

43 # script: |

44 # insider -tech javascript -target $(Build.SourcesDirectory) -force

45 # displayName: "InsiderSec"

46 # - task: SonarQubePrepare@4

47 # inputs:

48 # SonarQube: 'SonarQube @ DevSecOpsLab2 '

49 # scannerMode: 'CLI'

50 # configMode: 'file'

51 # - task: SonarQubeAnalyze@4

52 # - task: SonarQubePublish@4

53 # inputs:

54 # pollingTimeoutSec: '30000'

55 # - task: CmdLine@2

56 # inputs:

57 # script: |

58 # sl analyze --app Juice -Shop --cpg --js $(Build.SourcesDirectory)

59 # displayName: "ShiftLeft Inspect"

Listing 2: Appendix - Final .yaml-file for pipeline - Part 1

1 - job: PostDeployment

2 timeoutInMinutes: 360

3 displayName: "Post Deployment"

4 dependsOn: PreDeployment

5 pool:

6 name: 'Default '

7 steps:

8 - checkout: none

9 - task: CmdLine@2

10 inputs:

11 script: |

12 npm start &

13 displayName: Deployment Script

14 - task: CmdLine@2

15 inputs:

16 script: |

17 wget http :// localhost :3000

18 rm index.html

19 displayName: Testing if server is up

20 # - task: PythonScript@0

21 # inputs:

22 # scriptSource: 'filePath '

23 # scriptPath: '$(Agent.ToolsDirectory)/detectify.py'

24 # displayName: Run Detectify Script

25 # - script: |

26 # wget -O $(Build.SourcesDirectory)/src/ZapTransform.ps1 "https ://raw.githubusercontent.com/UKHO

/owasp -zap -ui-scan/master/src/ZapTransform.ps1"

27 # displayName: "Download ZapTransform.ps1 to ArtifactStagingDirectory"

28 # - script: |

29 # wget -O $(Build.SourcesDirectory)/src/ZapTransformTemplate.xslt "https ://raw.githubusercontent

.com/UKHO/owasp -zap -ui-scan/master/src/ZapTransformTemplate.xslt"

30 # displayName: "Download ZapTransformTemplate.xslt to ArtifactStagingDirectory"

31 # - task: CmdLine@2

32 # inputs:

33 # script: 'chmod 777 -R $(Build.SourcesDirectory)/src'

34 # displayName: "Set chmod permissions (ArtifactStagingDirectory)"

35 # - task: CmdLine@2

36 # inputs:

37 # script: 'docker run --rm --mount type=bind ,source=$(Build.ArtifactStagingDirectory),target =/

zap/wrk/ -t owasp/zap2docker -stable zap -full -scan.py -t http :// localhost :3000/ -g gen.conf -r OWASP -

Zap -Report.html -x Report.xml || true'

38 # displayName: "Run OWASP ZAP Full Scan"

39 # - task: CmdLine@2

40 # inputs:

41 # script: docker run --rm --mount type=bind ,source=$(Build.SourcesDirectory)/src ,target =/tmp/

nunit/ --mount type=bind ,source=$(Build.ArtifactStagingDirectory),target =/tmp/report/ mcr.microsoft.

com/powershell:ubuntu -18.04 pwsh -File '/tmp/nunit/ZapTransform.ps1'

42 # displayName: "Create Nunit Test Report"

43 # - task: PublishTestResults@2

44 # inputs:

45 # testResultsFormat: 'NUnit '

46 # testResultsFiles: 'Converted -OWASP -ZAP -Report.xml'

47 # searchFolder: '$(Build.ArtifactStagingDirectory)'

48 # displayName: "Publish OWASP ZAP Test Report"

49 # - task: PublishBuildArtifacts@1

50 # inputs:

51 # PathtoPublish: '$(Build.ArtifactStagingDirectory)'

52 # ArtifactName: 'Owasp Zap HTML Report '

53 # publishLocation: 'Container '

54 # displayName: "Publish OWASP ZAP Report"

Listing 3: Appendix - Final .yaml-file for pipeline - Part 2

1 #!/usr/bin/env python3

2 import requests

3 import time

4 import sys

5

6 def main():

7 #Requests Scan token from Detectify , then starts a scan and finally loops till the scan is over

8 prefix_protocol = "https ://"

9 base_url = "api.detectify.com/"

10 api_token = <insert_API_token >

11 suffix_get_profiles = "rest/v2/profiles/"

12 suffix_start_scan = "rest/v2/scans/"

13

14 headers = {'X-Detectify -Key': api_token}

15

16 #Request Scan Token

17 built_url = prefix_protocol+base_url+suffix_get_profiles

18 token_resp = requests.get(built_url , headers = headers)

19 scan_token = token_resp.json()[0]['token ']

20 print("Scan Token found!")

21

22 #Request Start Scan

23 built_url = prefix_protocol+base_url+suffix_start_scan+scan_token+"/"

24 start_resp = requests.post(url = built_url , headers = headers)

25

26 if start_resp.status_code == 202:

27 #Wait for scan to be done , request an update every second or so

28 print("Start call succeded!")

29 count = 0

30 built_url = prefix_protocol+base_url+suffix_start_scan+scan_token+"/"

31 status_resp = requests.get(url = built_url , headers = headers)

32 while(status_resp.json()['state '] != "stopped"):

33 built_url = prefix_protocol+base_url+suffix_start_scan+scan_token+"/"

34 status_resp = requests.get(url = built_url , headers = headers)

35 time.sleep (1)

36 count = waitingAnimation(count)

37 print("")

38 print("Scan Finished !\ nCheck the Detectify Dashboard for results.")

39 elif start_resp.status_code == 409:

40 print("A scan is already running!")

41 else:

42 print("Something went wrong. Please check Detectify documentation for response code: " +

start_resp.status_code)

43

44 def waitingAnimation(count):

45 #Shows a waiting animation , returns a counting variable

46 count , dots = count %4+1, list(' ...')

47 dots[count -1]=' '

48 sys.stdout.write('\rWaiting for scan'+ ''.join(dots))

49 sys.stdout.flush()

50 return count

51

52 if __name__ == "__main__":

53 main()

Listing 4: Appendix - Detectify Python Script

