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Abstract

Unmanned autonomous vehicles, airborne or terrestrial, can be used to solve
many varying tasks in vastly different environments. This thesis describes a pro-
posed collaboration between two types of such vehicles, namely unmanned aerial
vehicles (UAVs) and unmanned ground vehicles (UGVs). The vehicles’ objective
is to traverse unknown terrain in order to access a target area.

The exploration of the unknown terrain is in this thesis divided into three parts.
These parts are terrain mapping, informative path planning (IPP) for the UAVs
and path planning for the UGV. A Gaussian Process (GP) is used to model the
terrain. The use of a GP map makes it possible to model spatial dependence and
to interpolate data between measurements. Furthermore, sequential update of
the map is achieved with a Kalman filter when new measurements are collected.
In the second part, IPP is used to decide the best locations for the terrain height
measurements. The IPP algorithm will prioritize measurements in locations with
uncertain terrain height estimates in order to lower the overall map uncertainty.
Finally, when the map is complete, the UGV plans an optimal path through the
mapped terrain using A? graph search, while minimizing the total altitude differ-
ence for the path and respecting the map uncertainty.

Collaborative behavior of autonomous vehicles requires highly accurate position
estimates. In this thesis RTK is investigated and its accuracy and precision evalu-
ated for the positioning of autonomous UAVs and UGVs through a series of exper-
iments. The experiments range from stationary and dynamic accuracy to investi-
gation of the consistency of the positioning estimates. The results are promising,
RTK outperforms standard GNSS and can be used for centimeter-level accuracy
when positioning a UAV in-flight.

The proposed exploration algorithms are evaluated in simulations. The results
show that the algorithms successfully solves the task of mapping and travers-
ing unknown terrain. IPP makes the mapping of the unknown terrain efficient,
which enables the possibility to use the resulting map to plan safe paths for the
UGV. Traversing unknown terrain is hard for a single UGV but with the help
from one or more UAVs the process is much more efficient. The use of multiple
cooperating autonomous vehicles makes it possible to solve tasks complicated for
the individual vehicle in an efficient manner.
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1
Introduction

This aim of this thesis is to develop a planning and mapping framework for col-
laborative exploration of unknown terrain. A necessary feature of the framework
is that it should be able to utilize the fact that the involved vehicles has differ-
ent capabilities. Such capabilities are the ability to fly, high battery capacity or
the ability to carry useful payload. The collaborative missions considered in this
thesis require a solution for precise positioning. Therefore, this thesis also in-
vestigates the possibilities of using Real-Time Kinematic (rtk) positioning to be
used in such missions with multiple autonomous vehicles. The thesis work is
conducted at Saab Dynamics in Linköping.

1.1 Background

The use of autonomous vehicles, such as Unmanned Aerial Vehicles (uavs) and
Unmanned Ground Vehicles (ugvs), has increased drastically the last years due
to its many applications. For example it is used for mapping, searching terrain
that is unreachable for humans, surveillance or delivering supplies. [10]

The platforms used in this thesis, a uav and a ugv, are provided by Saab Dynam-
ics. The vehicles are shown in Figure 1.1. During the fall of 2019, these vehi-
cles were used in a student project to perform cooperative search and rescue mis-
sions indoors using an external positioning system. No algorithm for mapping
unknown terrain has previously been implemented for these vehicles.

The uav, ugv and Global Navigation Satellite System (gnss) modules are in-
tended to be used to explore and map unknown areas, which makes it possible

1



2 1 Introduction

Figure 1.1: The ugv and the uav.

for the ugv to access a desired location for some purpose such as delivering of
goods. In order to access its target area, the ugv must traverse unknown terrain
of which it has no prior knowledge of, see Figure 1.2 for an example. This could
be ineffective since the ugv has limited visual range in a complex environment.
In order to make this process efficient, a planner is needed to plan how to use the
vehicles. The uav is equipped with LiDAR sensors and can be used to map the
unknown terrain from the air. However, this requires a planning algorithm that
is capable of utilize the uav in a smart way and that is something this thesis aims
to develop.

To enable the ugv to traverse the terrain some sort of terrain model that incorpo-
rates the uav’s measurements into a map is required. Consequently, a suitable
algorithm for mapping must be implemented. The algorithm would produce in
a terrain map, which the ugv could use to plan an optimal path through the pre-
viously unknown terrain leading to the target area. The mapping of unknown
terrain and positioning of autonomous vehicles must be very precise to enable
cooperative behavior, meaning there is need for a highly accurate positioning sys-
tem. In this thesis rtk is investigated for such an application.

Unkown terrain Target areaStarting location

Figure 1.2: A scenario where the system could be put into operation. The
ugv starts at the starting location and should move to the target area. By
letting the uav explore the unknown terrain, the ugv can find a way from
start to goal.



1.2 Problem formulation 3

1.2 Problem formulation

The main focus of this thesis is to develop a framework for exploring unknown ter-
rain by implementing multiple algorithms, including an informative path plan-
ning algorithm and a mapping algorithm. Furthermore, to investigate the possi-
bilities of using rtk positioning for precise positioning in such scenarios. One
or multiple uavs will serve as a dynamic sensor for the ugv, taking height mea-
surements of the terrain. Based on the collected measurements, the ugv should
create a map and plan its own route through the mapped terrain. Thus, the aim
of this thesis is to investigate and answer the following questions:

• Is rtk positioning sufficient for collaborative autonomous vehicles to
solve a task? - Using rtk positioning with a static base station is a well
establish method for precise positioning used in systems such as survey-
ing applications [16]. This method often requires expensive hardware and
there is need for a static base reference station. On the other hand, us-
ing low-cost components for precise rtk positioning is a quite unexplored
field. Implementing such low-cost hardware on autonomous vehicles for
mapping and exploration applications is a relatively new subject [18]. rtk
positioning is covered in detail in [16] and the technique is used in many
applications where high accuracy positioning is required; for example, ap-
plications like improving farming efficiency [5] and naval search and rescue
missions with autonomous robots [8].

• What is a suitable representation of the terrainmap? - A two dimensional
occupancy grid can be used to represent mapped terrain, as done in [6].
However, when using a uav for mapping terrain the data is often sparse
and information in between measurements needs to be estimated. For this
a Gaussian Process (gp) regression can be used as proved in [23].

• What path planning algorithms are suitable for collaborative exploration
of unknown terrain? - A path planner must be implemented for both the
uav and ugv. Informative planning can be used to optimize the uav usage
when mapping unknown terrain, as done in [10]. Another algorithm that
can be used is frontier based exploration, as done in [3]. There exist a lot of
algorithms for planning an optimal path based on a map and a standard al-
gorithm can be used by the ugv, for instance A? or Dijkstra’s algorithm [7].
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1.3 Limitations

The thesis was limited by the following limitations:

• The rtk positioning performance is investigated in a simplified environ-
ment compared to the envisaged scenario. In order to obtain a good un-
derstanding of rtk performance the environment is simplified to make it
easier to draw conclusions about rtk and not the environment in which it
is tested.

• The collaborative exploration algorithms developed in this thesis are evalu-
ated in simulation. To implement a real system that functions is very time-
consuming, components may not function properly or unexpected prob-
lems may arise. Therefore, evaluation takes place in a simulated environ-
ment.

• Finding the unknown terrain and locating the mission objective in the tar-
get area are outside the main scope of the thesis. Since that would require
different algorithms and to narrow the focus of the thesis it is not consid-
ered.

1.4 Thesis outline

This thesis contains six chapters:

• In Chapter 2, relevant theoretical preliminaries for the thesis are presented.

• Chapter 3 presents an overview of the system and each component is de-
scribed in detail.

• In Chapter 4, a performance analysis of the rtk positioning is done, where
precision and accuracy are evaluated.

• In Chapter 5, the developed informative planning and mapping algorithms
are described along with the path planning algorithm for the ugv and con-
cluded with a simulation study and performance analysis.

• Finally, Chapter 6 contains the conclusions from the thesis together with
some possible directions for future work.

1.5 Statement of individual contributions

Jennie has developed the informative path planning algorithm for the uav(s), in-
tegrated the simulation environment and written the analysis in Chapter 4.
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Linus has implemented the gp-mapping, the ugv path planner, integrated the
rtk hardware and software on the ugv/uav and written the analysis in Chap-
ter 5.

All experiments were conducted by both of us. We have together formulated the
problem formulation, analysed all the results and made the overall conclusions.
The theory and the descriptions in the report was divided between us, according
to above.





2
Preliminaries

This chapter gives a brief overview of the theory and methods used in the thesis.
The main parts included in this work are navigation, planning, modelling and
sensor fusion.

2.1 Global navigation satellite systems

gnss is a widely used term for satellite navigation systems that provides position-
ing with global coverage. Examples of gnsss, are the United State’s GPS, Russia’s
GLONASS, the European Union’s Galileo and the Chinese system BeiDou. Com-
mon to all gnsss are that they use a constellation of satellites that send position-
ing and timing data to gnss receivers. This data is then used by the receiver to
determine its position. To obtain a position in 3d, defined by its latitude, longi-
tude and altitude, the receiver must receive data from at least four satellites. This
is the case since there are four unknown variables that need to be determined: the
3d position and the clock error between the satellite and the receiver clocks. A
standard gnss receiver can determine its position with approximately 5-10 me-
ters accuracy. [1][25]

There are many aspects to consider when the performance of a gnss receiver is
evaluated. Arguably, the most important performance measure is the position ac-
curacy obtained by the receiver. However, there are other aspects to consider such
as the time from startup until the first position estimate by the receiver is deliv-
ered. The accuracy is measured by comparing the actual position to the estimated
and the error is calculated, which reveals the quality of the estimate. [11]

7



8 2 Preliminaries

In order to improve the accuracy of standard gnsss there exist multiple methods.
Most of them rely on post-processing of the collected data. rtk positioning was
invented in the nineties and utilizes multiple gnss receivers to estimate the er-
ror in the current position estimate. The technique of using multiple receivers
is called Differential gnss (dgnss). rtk extends dgnss by using carrier-phase
measurements to achieve centimeter level of accuracy in real-time [16]. As of
lately rtk positioning has become more easily available due to the availability of
cost-efficient hardware. One such example is the u-blox ZED-F9P [22].

rtk uses measurements of the phase of the signal’s carrier wave (carrier phase
shift) in addition to the pseudorange measurement used in standard dgnss. In
order to determine the distance from the satellite to the receiver, the number of
whole wavelengths or cycles of the carrier wave between antenna and satellite
must be determined. To do so the phase shift, that originates from the satellites
motion, must be approximated and this forms the ambiguity resolution problem
that if solved gives the distance to the satellite, as illustrated in Figure 2.1. The re-
ceivers then share their error estimate with other receivers and the timing errors
can be minimized. Thus the position can be determined with very high accuracy
in the relative frame of the receivers. [16]

Number of
wavelengths

λ

GNSS
Satellite

Receiver

Figure 2.1: In order to calculate the distance from the satellite to the receiver
using the carrier wave, the problem of the integer ambiguity must be solved,
i.e. determine the number of whole wavelengths between the receiver and
the satellite. For most gnss receivers a λ ≈ 20 cm is used.

The Radio Technical Commission for Maritime Services (rtcm) developed a stan-
dard for data communication between gnss receivers specifically for the purpose
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of dgnss and rtk, called the rtcm standard. The data contains unprocessed
measurements of gnss satellite signals as well as error estimates computed by
the receiver. [16]

When using standard gnss there are disturbances in the signal to the receiver,
caused by atmospheric effects, that can give inaccurate position estimates. By
using a static receiver with known position/reference frame that sends rtcm cor-
rection data, which is called base, corrections for the atmospheric disturbances
can be made. This will improve other receiver’s position estimate relative to the
base. The base is configured to be either moving or static. The receiver receiving
rtcm correction data and using it to improve its position estimate in the base
frame, is called rover and is typically moving. Figure 2.2 illustrates the commu-
nication flow when using rtk.

Base Station

RTCM
Correction

data

Rover

GNSS
satellites

Figure 2.2: The rover and the static base with known position. The rtcm
correction data is typically sent by radio or over a network. The rover uses
the rtcm data to correct its position and thus achieve up to centimeter ac-
curacy of the position estimate in the base station reference frame.
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2.2 Gaussian process

A gp is a probabilistic model with many applications such as regression, clas-
sification or modelling. The gp is a non-parametric model that defines a prior
over functions. The prior can be updated as new data is observed to form a
posterior over functions. This can be achieved by defining a distribution over
the function values for any arbitrary set of points xi , i = {1, . . . , N }. In this
thesis the approximation that xi belongs to a finite set of points of interest, is as-
sumed. It is assumed that the probability p(f (x1), . . . , f (xN )) is jointly Gaussian.
Furthermore, this distribution can be described by a mean µ(x) and covariance
P (x) where Pi,j = K(xi , xj ), for some positive definite kernel function K. This
makes it possible to model the correlation between data points, such that similar
points will yield similar function output values. [9] This can be written as:

f (x) ∼ GP (µ(x),K(x, x′)), (2.1)

where f (x) is the modelled function of x. Since the gp is a probabilistic model it
can be used to predict values in between the data points, and to model the correla-
tion between neighboring points according to the kernel function K. [13]

The kernel or covariance function governs the spatial behavior of the model. A
kernel has a set of hyperparameters that determines its behavior. Two common
kernels used to initialize gps are the Squared-exponential kernel

KSE(x, x′) = σ2
f exp

(
− d

2

2`2

)
(2.2)

and the Matérn kernel, in this case the Matérn 3/2 kernel

KMa(x, x′) = σ2
f

(
1 +

√
3d
`

)
exp

(
−
√

3d
`

)
. (2.3)

In the above equations, d is the distance between point x and x′ , where x has di-
mension n×2 and n is the length of data vector x. The hyperparameters are ` and
σf , where ` is the characteristic length-scale and σf is Gaussian noise [10]. The
influence of the hyperparameters can be seen in Figure 2.3b and 2.3c [13].

When more information about f (x) is gained (e.g. when measurements are made)
it can be fused with an existing gp using a Kalman Filter (kf) [10]. The initial data
is used to form a prior of the function in the grid points xi and can, if no data or
knowledge about the function is available, be chosen as a constant mean function
and a correlation based on the kernel function of choice [14]. A prior gp model
described by mean and covariance for all grid points xi , i = {1, . . . , N }, is given
by:
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µk|k−1 =


f (x1)
...

f (xN )

 , (2.4)

Pk|k−1 =


P1,1 . . . P1,N
...

. . .
...

PN,1 . . . PN,N

 , (2.5)

where the mean vector µk|k−1 of dimensionN ×1 describes the mean value of f (xi)
and the covariance matrix Pk|k−1 of dimension N × N describes the correlation
between all points xi . The covariance matrix is obtained by evaluating the covari-
ance function for all elements, Pi,j = K(xi , xj ) for i = 1, . . . , N , j = 1, . . . , N ,
that corresponds to the points xi . See Figure 2.3a for an example of a prior
gp.

The gp is fused with a measurement z = Hx + e, where H is the measurement
model and Cov(e) = R is the measurement noise. H describes which grid points
in xi that is affected by each measurement and must be updated for each iteration
of new data added to the model. It is assumed that it is only possible to collect
measurements at points in the grid. The updated gpmodel described by µk|k and
Pk|k are called posterior and are given by the kf update [10]:

Pk|k = Pk|k−1 − KHPk|k−1, (2.6)

µk|k = µk|k−1 − Kv. (2.7)

for

v = z − Hµk|k−1, (2.8)

K = Pk|k−1H
T S−1, (2.9)

S = HPk|k−1H
T + R. (2.10)

Note that the posterior gp reflects the same points xi as the prior model.
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(a) An example of a prior gp
used before the measurements
are fused.
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(b) An example of a gp used
to fit the measurements (blue
+) resulting in a mean function
(red solid) and uncertainty (grey
area).

-3 -2 -1 0 1 2 3

-2.5
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-0.5

0
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1
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2.5

(c) An increase in the character-
istic length-scale `, resulting in
that the data points has more in-
fluence over their distant neigh-
bors and demonstrates the influ-
ence of the hyperparameters.

Figure 2.3: Illustrative example of a gp. All examples use the Squared-
exponential kernel and have been created using the example code from [12].
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2.3 Path planning

The path planning problem is the task of finding a path form an initial state to
a goal state while respecting some constraints. For instance, the vehicle should
avoid colliding with objects and/or other vehicles. It is assumed that the vehicles
can be fully controlled. It can be described by the discrete optimization prob-
lem:

min
N,{uk }N−1

k=0

N−1∑
k=0

L(xk , uk)

s.t. x0 = xstart

xN ∈ Xgoal

xk+1 = f (xk , uk)

xk ∈ Xfree.

(2.11)

Here L is the cost function, xk the state and uk the input at step k. Xgoal is the
set of one or more goal positions, Xfree is the set of obstacle free states and N is
the planning horizon. f (xk , uk) is a motion model describing how state x changes
given an input uk . In this thesis a simple geometrical model is used, but a more
advanced model that considers dynamics could be used [7]. The motion model
for a state x = (x1, x2) used in this thesis is:

f (x) = x + u, u ∈ U, (2.12)

for the set of possible inputs:

U = {(0, 1), (1, 0), (1, 1), (0,−1), (−1, 0), (1,−1), (−1, 1), (−1,−1)}. (2.13)

Two types of path planning algorithms, which use different cost functions, are
introduced in the two following sections.

2.3.1 Standard path planning

A widely used algorithm for solving path planning problems is A? graph search.
As in most standard algorithms, the cost function L in (2.11), is called cost-to-
come and represents the cost of bringing the system from the initial state to the
current state,

f (x0, xk , {uj }kj=0) =
k∑
j=0

L(xj , uj ). (2.14)

A? finds the optimal path from one state to another by introducing an additional
cost when calculating the cost for a state by adding an estimate of the cost-to-
go for each state, this is a heuristic [7]. The heuristic makes it possible to guide
the algorithm towards expanding states in more promising directions. Thus, the
next state for expansion in the graph is the one where the following cost is mini-
mized:

f (xstart, xk , {uk}) + g(xk , xgoal), (2.15)
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here f is the cost-to-come and g is the cost-to-go. When the goal is found the cost
function L is used to find the optimal path. For the graph search to return the
optimal path, the heuristic must be an admissible and consistent function, which
essentially means that the heuristic never overestimates the true cost-to-go [7].
An example of what an optimal path may look like is shown in Figure 2.4.

1 2 3 4 5 6 7 8 9 10

x
1
 [m]

1 

2 

3 

4 

5 

6 
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8 

9 

10

x
2
 [

m
]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 2.4: An example of path (red) computed by A? . The colors represent
a normalized cost (0-1) that is used together with the Euclidean distance in
the cost function.

2.3.2 Informative path planning

The main difference between standard path planning and informative path plan-
ning (ipp) is that some kind of information measure is added in the cost func-
tion. The information usually depends on measurements collected by the vehicle,
which means that the decisions in ipp are based on predictions. In ipp the cost
function in (2.11) is extended to:

L = L(xk , uk , Ik), (2.16)

where Ik is a representation of the information at stage k, given by:

Ik+1 = h(xk , uk , Ik), (2.17)

I0 = Istart, (2.18)

where h is the measurement model. In standard path planning, only path length
or energy is minimized, but in ipp it is also desired to maximize the information.
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This is possible by adding I , (2.17) and (2.18) in the optimization problem. By
solving the problem in (2.11), the path from an initial state to a goal state that
is most informative should be found. [17] In an ipp problem, assumptions are
made about stochastic behaviors and because of this the problem in (2.11) is often
solved in receding horizon. Consequently, it is beneficial to continuously revise
the planning.





3
System overview

In this chapter the different components in the developed system are described
in detail. The studied system consists of four major components, the ugv, uav,
gnssmodules and the software.

3.1 UGV

The ugv is a tracked vehicle with a landing and starting pad for the uav. It is
sturdy, can move through relatively difficult terrain and has considerably longer
operational range than the uav. The ugv can be seen in Figure 3.1.

The ugv serves as a carrier platform for the uav and is responsible for the explo-
ration. It can send the uav on missions to gather data for mapping an unknown
area. The ugv is responsible for this functionality due to the limited computa-
tional ability of the uav. The main computer is a Raspberry Pi 4 and the ugv has
a platform on which the uav is positioned while not on a flight mission.

3.2 UAV

The main task of the uav is to act as dynamic sensor for the ugv, since it is more
agile and can cover more ground faster than the ugv. It is limited by its low
battery capacity, by certain weather types like strong wind or rain and its low
computational capacity.

The uav is a quadcopter platform developed by Saab Dynamics, shown in Fig-

17
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ure 3.2. The uav is capable of outdoor flights and is equipped with a flight
controller and position controller for autonomous operations. The uav is also
equipped with two u-blox ZED-F9P gnss receivers to provide positioning and
heading measurements based on rtk techniques, and a TfMini LiDAR sensor
for height measurements. As main computer a BeagleBone Blue is used to han-
dle calculations and communications between the components and the ugv. An
overview of the hardware components of the uav can be found in Figure 3.3.

Figure 3.1: The tracked ugv, with the uav on the starting and landing pad.

Figure 3.2: The quadcopter uav, with two Helix gnss antennas.
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Figure 3.3: Overview of quadcopter hardware components. The solid lines
represents wires and the dashed line is communication over a network.

(a) The Helix antenna as
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that is mounted on the
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base.

Figure 3.4: The ublox ZED-F9P modules.
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Figure 3.5: Overview of the basic layout of the gnss hardware used in the
system. All cylinders represents a ZED-F9P module and corresponding an-
tenna.

3.3 GNSS receivers

The gnss receivers used are the low-cost rtk enabled ZED-F9P receiver modules
from u-blox, shown in Figure 3.4 [22]. An overview of the gnss infrastructure
for the complete system can be seen in Figure 3.5. The uav and the ugv re-
ceive rtcm correction data from the static base with known position. Thus, the
two vehicles can adjust their position estimates and achieve a high accuracy in
the frame of the base. The baseline is the distance between the rover and mov-
ing/static base and its length is crucial for the accuracy of the heading estimate.
The accuracy of the heading estimate is proportional to the inverse of the base-
line length. [22] One of the uav receivers sends rtcm data to the other to enable
heading estimation, by an internal estimator on the receivers, of the baseline be-
tween the two uav antennas. The internal algorithm is not publicly available but
gps-based attitude determination is covered in detail by [4].

The ZED-F9P receivers use the u-blox UBX -protocol for serial communication.
A description of the protocol and the types of information that can be extracted
from the ZED-F9P is found in the ZED-F9P interaction manual [20].
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3.4 Software

To enable communication and structure in the software, the Robot Operating
System (ros) is used. ros is an open-source framework for robot software. All
programs running in ros must be attached to a ros node. All nodes may com-
municate by sending rosmessages to one another. The central node or ros core
governs the message exchange between nodes and must be connected to all nodes
through the same network. If one node wants to share data, it makes it available
to the other nodes by publishing a message containing the data on a ros topic. By
subscribing to the topic a node can read the published message. ros provides a
visualization tool called rviz, that is used to visualize the data and maps produced
by the algorithms. In Figure 3.6 an example is shown of what the visualization
looks like. [24]

In order to implement the gp used to model the unknown terrain, the Matlab
GPML Toolbox [12] is used. The toolbox provides a lot of useful tools for imple-
menting and working with gps.

Figure 3.6: Rviz when used to visualize information on ros topics. In this
case the red dot is the position of the uav and the green dot its current target
position. The ground layer represents a map and the blue dots are the set of
free states possible to visit for the path planner.





4
RTK performance analysis

This chapter contains the rtk performance analysis. The rtk performance is
evaluated in a number of experiments and compared to standard gnss. The ex-
periment setups, results and conclusions are presented. Finally, a summary of
the results from the experiments is given.

4.1 Hardware and software configuration

In the evaluation of the rtk performance, all the gnss receivers are configured
as either static base, moving base or rover.

• The static base is a static receiver with known position, which transmits
rtcm correction data to the other receivers.

• The moving base receives rtcm correction data from the static base and
determines its position relative to the base. The moving base is also able
to operate without support from the base, but then the accuracy in the esti-
mated position is at the same level as using standard gnss [22]. The moving
base transmits rtcm correction data to rover receivers. The moving base is
able to operate both as base and as rover.

• The rover receives rtcm correction data from the moving base or the static
base and thus knows its position relative the moving base or static base at
centimeter level. [16]

The layout of the hardware configuration is analogous to the rtk system config-
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uration shown in Figure 3.5. The rtcm correction data is communicated either
over a local network provided by a router close to the area of operation or in
some cases transmitted by wire. Unless otherwise stated, the baseline for the
uav antennas is 22 cm in all experiments. For explanation of baseline see Sec-
tion 3.3.

The software for the ZED-F9P modules is configured using u-blox u-center, a
software for configuration and evaluation of u-blox gnss receivers. The gnss
receiver configuration is described in Section 8.4 in the user manual [19] and the
files used can be found on the u-blox GitHub [21].

4.2 RTK performance

In this section, the experiments for analyzing the rtk performance are presented
in detail. For trustworthy results, all experiments are conducted with similar
hardware configurations and with clear view of the sky. To avoid interference
from objects in the vicinity of the receivers, such as buildings and trees, the re-
ceivers are placed higher than all nearby objects. The experiments are divided
into stationary and in-flight experiments. The in-flight experiments are con-
ducted in a flat area without obstructions with clear view of the sky and with
a hardware configuration identical to the stationary experiments.

4.2.1 Noise level

In order to determine the noise level and the accuracy of the rtk positioning,
two receivers are used. The first receiver is configured as rover and the second is
configured as moving base. The rover and the moving base are placed stationary
on top of a roof with clear view of the sky in all directions. By observing the
measured position of the receivers for about ten minutes, any anomalies in the
signal could be detected. This is done with both standard gnss and rtk simulta-
neously, which means that the positions of the receivers are identical during the
two observations. The experiment can be performed for a longer time but based
on a typical mission duration time ten minutes is assessed to be enough.

The measured position is given in the reference coordinate system WGS84, where
a position is represented by a latitude φ, and a longitude λ. The mean value of
the position during the experiment is calculated and likewise the deviation from
the mean value at each time stamp. These coordinates, in latitude and longitude,
are transformed to meter by

M = 111132.92 − 559.82 cos (2φ) + 1.175 cos (4φ) − 0.0023 cos (6φ), (4.1)

P = 111412.84 cos (λ) − 93.5 cos (3λ) + 0.118 cos (5λ), (4.2)
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Figure 4.1: The drift in the position of the rover receiver when using stan-
dard gnss (blue) and rtk (red). The axis represent how much the measured
position differs from the mean value of latitude and longitude. The maxi-
mum difference is 0.90 m when using standard gnss and 0.1321 m when
using rtk.

where M and P are the length (in meter) of 1° of the meridian (latitude) and the
parallel (longitude), respectively [2]. M and P are in the local coordinate system
with origin in the mean value of the position using standard gnss. The devia-
tion from the mean value, in meter, is shown in Figure 4.1. When using standard
gnss the maximum offset in longitude is 0.90 m and in latitude it is 0.367 m.
Corresponding values when using rtk are 0.1321 m in longitude and 0.019 m
in latitude. There is one outlier in the measured position when using rtk and
this could be explained by a temporary loss of precision for one sample. In other
words, the rover operation mode changes from rtk fixed (accuracy < 2 cm) to
rtk float (accuracy < 20 cm) [22]. If the outlier is removed the maximum de-
viation from the mean is 0.0394 m in longitude and 0.019 m in latitude, when
using rtk. There is a difference in the error for latitude and longitude, the er-
ror is larger in longitude. This can be caused by the distribution of the satellites
at the time of the experiment. Another possible reason for this can be the influ-
ence of surrounding objects, which can disturb the signal from the satellite to the
receiver.

One observation made is the low accuracy of the position when using standard
gnss. Even though the conditions during the experiment were close to ideal,
with clear view of the sky and no objects in the surroundings of the receivers, the
position drifts a lot. As seen in Figure 4.1, the measured position does not drift
considerably when using rtk. An important part in a collaboration between un-
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manned vehicles is the accuracy in the measured position. A measured position
that is drifting up to a meter would not be good enough in many applications,
such as a uav functioning as a dynamic sensor or doing high precision landings
autonomously. A large uncertainty in the position could lead to misinterpreted
measurements and/or collisions. However, since the absolute error is directly
proportional to the error in position of the base, a large absolute error does not
necessarily mean that the relative error is large as well. The strength of rtk lies
in the relative positioning and the absolute error depends on the accuracy of esti-
mated position of the base’s antenna. Thus, the relative position estimate can be
very accurate even if the absolute position is not.

4.2.2 Heading estimation

The ZED-F9P gnss receivers are equipped with an internal gps-compass heading
estimator. This allows for accurate estimates of the heading between a rover and
a static/moving base. If the heading estimate from the two receivers mounted
on the uav is accurate enough it could be used for improved control of the uav.
Since the accuracy of the estimate depends on the baseline length, see Section 3.3,
this experiment will investigate if the configured baseline length of 22 cm gives
a sufficient accuracy or if a longer baseline is needed for accurate heading esti-
mates.

In order to determine the accuracy of the estimated heading from the ZED-F9P’s
internal heading estimator, see Section 3.3, a heading experiment is performed.
The same data as collected during the noise level experiment in Section 4.2.1
is used for this experiment. Thus, two receivers are used, the first configured
as rover and the second configured as moving base. During this experiment the
baseline length between the rover and the moving base is 16.5 cm, to have a safety
margin to the length when the receivers are mounted on the uav (22 cm).

To evaluate the ZED-F9P receiver heading estimator, the result from the internal
estimator will be compared to a simple estimate of the heading based on the
position estimates calculated as

ψ = arctan
dE

dN
, (4.3)

where dE is the relative distance between the two receivers, of which the heading
is calculated, in the east direction. Analogously, dN is the relative distance in
north direction.

Figure 4.2 shows the resulting error between the heading from the internal so-
lution on the two ZED-F9P gnss receivers and the simple estimate calculated
by (4.3). As seen in the figure, these values only differ with an average value of
7.3 · 10−5 degrees with a standard deviation of 6.34 · 10−4 degrees. From the ob-
tained results, it can be concluded that the internal estimator is reliable and can
hence be used as input to a closed-loop uav controller. The estimated heading
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Figure 4.2: The difference between the heading estimated by the internal
heading estimator on the receiver and the one calculated according to (4.3).
The mean value of the difference is 7.3 · 10−5 degrees with a standard devi-
ation of 6.34 · 10−4 degrees.

can then be used as input to an Extended Kalman Filter (ekf) which calculates an
estimate of the attitude of the uav. This is done by other sensors, mainly an in-
ertial measurement unit (imu). The input to the controller will be the estimated
attitude.

4.2.3 Accuracy using moving base

In order to determine the accuracy of the rover position when using moving base,
three receivers are used. The first one is configured as moving base and the other
two are configured as rover.

An estimate of the baseline between the rovers is calculated based on the rovers
position in the moving base frame. The ground truth of the baseline length be-
tween the rovers is 16.5 cm. The rovers are stationary and the moving base is
moved in a random pattern around the rovers to introduce possible disturbances
and noise in the positioning of the rovers. From (4.3), it is possible to calculate
the heading of the baseline between the rovers. Since the receivers configured as
rovers do not move the heading should be constant. Multiple experiments have
been performed with varied heading and positions of the receivers.

The estimated baseline between the two rovers during one of the moving base
experiments is shown in Figure 4.3a. The mean value of the estimated baseline
is 17.13 cm with a standard deviation of 7.62 cm. An outlier is clearly seen in
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the figure and it is only at one sample. That one can be removed and by doing
so the mean value is changed to 16.55 cm with a standard deviation of 0.68 cm.
In Figure 4.3b the baseline during the first 60 seconds is shown to see the low
frequency variations in the estimated baseline. The standard deviation for the
three other experiments are in the range of 0.22-0.7 cm.

Figure 4.4 shows a heading estimation from one of the moving base experiments.
The mean value of the heading is 141.73 degrees with a standard deviation of
1.82 degrees. The mean value is shown as a horizontal black line in the figure.
Three more experiments are performed for which the standard deviation of the
heading are in the range of 0.041-0.76 degrees. The outlier is also clearly seen
in Figure 4.4. If the outlier is removed the mean value of the measurement is
changed to 141.86 degrees with a standard deviation of 0.80 degrees.

There are both high frequent noise and low frequent variations in the measure-
ments of the heading, as can be seen in Figure 4.4. These effects may arise from
the short length of the baseline between the two receiver antennas used to calcu-
late the heading. The baseline length is 16.5 cm and with such a short distance
temporary precision reductions are expected [22]. The baseline maximum length
was somewhat limited by the relatively short cables used to connect the antennas
to the receivers.

A standard deviation between 0.041-1.82 degrees when the base is moving sug-
gest that the relative position between each of the rovers and the moving base is
known with high accuracy. This conclusion is reinforced by the small standard
deviation of the estimated baseline between the rovers. The most likely reason for
the outlier shown in Figure 4.4 and 4.3a is a temporary loss of precision for one
sample, which means that the precision changes from fixed to float. A probably
reason for the precision loss is a disturbance from a surrounding object. However,
the receiver regains the precision at the next sample and the decrease in accuracy
is not long-lived. The ZED-F9P modules knows the state of precision (fixed or
float), which makes it possible to handle outliers caused by changes in the preci-
sion. Outliers could also be removed by comparing the estimated baseline to the
known ground truth baseline length that is constant.

4.2.4 Precision during rover movement

In order to determine the precision of rtk during rover movement, two receivers
are used. The first one is configured as rover and the second one configured as
static base. By moving the rover in a circle the precision of the relative position
between the receivers can be evaluated. In Figure 4.5 the resulting rover motion
from the experiment is plotted together with a circle fitted to the measurement.
The axis show the relative distance between the rover and the static base. The
error between the measurement and the fitted circle is shown in Figure 4.6.

During the experiment, the receiver was manually moved around, which poten-
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(a) The mean value of the estimated baseline is 17.13 cm with a stan-
dard deviation of 7.62 cm. If the outlier is removed the mean changes
to 16.55 cm with a standard deviation of 0.68 cm. Ground truth of the
baseline length is 16.5 cm.
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(b) The first 60 seconds of (a).

Figure 4.3: The estimated baseline between the two rovers.
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Figure 4.4: The mean value of the heading is 141.73 degrees (black line) with
a standard deviation of 1.82 degrees. At one sample there is an outlier and
if removed the mean changes to 141.86 degrees with a standard deviation of
0.80 degrees. The outlier is probably caused by a temporary loss of precision
during that sample.
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Figure 4.5: A circle, the red line, is fitted to the measurements given by the
blue line.
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Figure 4.6: The difference between the measurement and the fitted circle
at each time stamp. The mean value of the difference is 0.96 cm and the
maximum difference is 5.0 cm.

tially weakened the received signal. Despite this the measurements are precise
and there are only small fluctuations in the data. If the measurement is inside
the fitted circle the difference is negative and is it outside the difference is pos-
itive. The mean value of the difference between the fitted circle, with radius
68.5 cm, and the measurements is 0.96 cm with a standard deviation of 1.1 cm.
That means that even though the receivers might have been disturbed during
the experiment, the stability in the measurements are still very satisfying. The
precision of the positioning should not be affected by motion when the measure-
ments are used to estimate the position of a uav and this result indicates that it
is possible to use rtk for such an application.

4.2.5 Consistency of errors

To determine the consistency of the position estimate, an experiment with two
receivers is preformed. The first receiver is configured as rover and the second
as static base. First, the rover is stationary and after a few minutes the rover is
moved randomly and then returned to the initial position. This is done with both
standard gnss and rtk. A comparison of the initial and the end position of the
rover is shown in Figure 4.7.

Since the initial and final position are the same, it is expected that the initial
and final measurements should indicate this. However, as seen in Figure 4.7,
the positions using standard gnss differ significantly. One reason for this is the
uncertainty in the position when using standard gnss, this is also supported
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Figure 4.7: The difference between the start and end position when the re-
ceiver is moved in a random manner for a few minutes. The start and end po-
sitions are the same. The start position is calculated as the mean value of the
position during the first 50 seconds and the end position is the mean value
of the 50 last seconds. When using standard gnss the difference between
the start and end position is 0.254 m and when using rtk it is 0.012 m. The
position is psychically exactly the same when using standard gnss as when
using rtk.
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by the results from the experiments evaluating the noise level in Section 4.2.1.
Hence, it is difficult to get a precise position using standard gnss. Note that
when using rtk the position accuracy is achieved in the relative frame between
the base and the rover. Based on the relative position between the static base
and the rover, the start and end positions differ with 0.012 m when using rtk.
This can be compared to the corresponding difference when using standard gnss,
which is 0.254 m.

The result indicates that the positioning errors are constant or very close to con-
stant for rtk. This is not the case for standard gnss.

4.2.6 In-flight evaluation

In order to determine the precision and the accuracy of rtk positioning during
a scenario similar to a typical mission for the uav and the ugv, described in
Section 1.1, an experimental flight is conducted using two receivers. The first
one is configured as rover and the second one as static base. Only one of the
gnss antennas mounted on the uav, as shown in Figure 3.2, is used in this ex-
periment. The uav starts on the ugv’s starting and landing pad, and is then
flown manually for a short while to finally be landed on the ugv. The relative
position of the receivers is evaluated for the possibility of making such a mission
autonomously.

The estimated position of the uav during the in-flight experiment can be seen in
Figure 4.8. The ugv’s starting and landing pad is illustrated as a red box. The
Euclidean distance between the measured start and end position of the uav is
0.197 m. The difference is mainly from the uav’s orientation, as the measured
position represents the antenna’s position on the uav. This means that the orien-
tation of the uav affects the measurements, which are different for the start and
end position in Figure 4.8. However, the orientation can be used to estimate posi-
tion with greater accuracy since both antennas on the uav have known positions.
The maximum deviation from start position that is caused by a change in orien-
tation is equal to the baseline length, i.e 0.22 m. The deviation in position could
also be caused by the difficulties of manually start and land on the exact same
position. The result from this experiment shows that accurate position estimates
can be achieved using the platforms in a typical mission scenario.
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Figure 4.8: The estimated position during a manually controlled flight with
the uav, where the red box represents the ugv’s starting and landing plat-
form (0.5 m x 0.5 m). The uav takes off from the ugv, flies about 5 meters
away and returns back and lands on the ugv.

4.3 Summary

Based on the results from the previous section, it can be concluded that rtk can
achieve up to centimeter level accuracy, which is expected based on previous
studies. The conclusion applies both to stationary and moving receivers.

The standardgnss is sufficient in many applications but for multiple autonomous
vehicles that collaborate with high precision, it does not meet the necessary con-
ditions on neither accuracy or consistency. In order to control cooperative un-
manned and autonomous vehicles, which perform e.g, high precision landings or
collaborative mapping of unknown terrain, the position needs to be known with
accuracy at centimeter level. Furthermore, if rtk is used for positioning of a mov-
ing platform it must be accurate during motion as well, and this is implied by the
results in Sections 4.2.1-4.2.6. Hence, it is shown that it is possible to use rtk
for this application. The heading estimate provides input for the uav attitude
controller and could allow for more accurate flight maneuvers that in turn would
lead to more efficient use of the uav. Also, the level of accuracy achieved in this
thesis is well below the threshold necessary for autonomous flights. Positioning
based on standard gnss fused with the estimate from an inertial navigation sys-
tem has proved sufficient for flying uav in previous studies [15]. Based on the
experiments in this thesis, rtk should exceed such methods and achieve even
better positioning. Which enables the possibility to execute precise maneuvers
such as landing a uav on a ugv.



5
Collaborative exploration

In this chapter the developed algorithms for collaborative exploration of unknown
terrain are described in detail. First an overview is given followed by a descrip-
tion of the informative path planning algorithm used by the uav and the map-
ping and path planning algorithms used by the ugv. Then, a simulation environ-
ment is introduced and finally the performance of the system is evaluated in the
simulated environment and the obtained results are analyzed.

5.1 Overview

The collaborative exploration is mainly built upon three algorithms: ipp used by
the uav, mapping and path planning used by the ugv. Each of the algorithms
consists of at least one ros node and all communication between the nodes are
handled by the ros core, see Section 3.4 for ros description. A flowchart of the
communication between the algorithms and hardware components is given in Fig-
ure 5.1. The algorithms are initiated when theugv identifies an area that needs to
be passed through and therefore mapped. The initialization is performed by the
mapping algorithm which initializes a prior map over the area of interest. This gp
map is then used by the ipp algorithm to compute the next target position for the
uav. The uav receives the trajectory of positions to be visited to reach the target
position and collects measurements at the desired positions. The measurements
are sent back to the mapping algorithm that fuses the new information with a
prior map into a posterior map, that is feed back to the exploration algorithm
and a new trajectory for the uav is computed. The informative planning and
mapping loop continues until the map is considered sufficiently accurate. Then,
the resulting map is used by the ugv to compute an optimized path through the
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Figure 5.1: A flowchart describing how the algorithms and the system com-
ponents interact. Hardware is solid lines and software/algorithms dashed
lines. The ugv sends information about the area to be mapped and the algo-
rithms are initiated. The uavs collect measurements at the positions along
their respective trajectory, calculated by the ipp algorithm, and the map is
updated. When the map is complete a path is calculated and sent to the
ugv.

5.2 Mapping algorithm

The mapping algorithm is used for fusing measurements to create a map of the
unknown terrain. The terrain is modelled as a gp over all map positions for a dis-
crete grid map described by a mean function µ(x), representing the height of the
terrain in each map position x and a covariance function P (xi , xj ), describing the
correlation between all map positions. A gp, together with a choice of covariance
function, is a good representation of unknown terrain since it is possible to model
the spatial dependence of neighboring positions in the map. Thus, it is suitable
for applications with few measurements. This is useful since the uav has limited
flight time due to its low capacity battery. Algorithm 1 was initially developed in
[10] and for the sensor used in this thesis the measurement equation described in
this section is used. The algorithm is presented in Algorithm 1 and is described
in detail below.

The algorithm described in Algorithm 1 receives the mean and the covariance
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Algorithm 1: Gaussian Process Mapping

Input: Prior gpmap described by mean and covariance function;
while σm > σthre do

Wait for new measurements;
for All measurements do

Extract map positions affected by the measurement and form H, see
(5.4);

Update the gpmap using the kf fusion, see (2.6),(2.7) ;
end
Send posterior map to informative path planning algorithm;

end
Result: A gp terrain map described by a mean and a covariance function

prior function as input. The prior mean function is selected as

µk|k−1(x) = mx, (5.1)

where mx is a user-defined constant which represents an expected mean value of
the terrain to be mapped. The map is represented as a grid of positions x ∈ X
described as

x = (x1, x2), x1, x2 ∈ N and x1, x2 < x1,max, x2,max (5.2)

where X is the set of all possible map positions described by thegp and x1,max, x2,max
are the map bounds. The prior covariance function describing the map is initial-
ized as described in [14]:

Pk|k−1 = K(X, X) − K(X, X) × [K(X, X) + σ2
p I]
−1K(X, X)T , (5.3)

for K is the initial covariance function used to correlate the map positions, I is
the identity matrix and σp is a user defined Gaussian noise. If there is some prior
knowledge about the terrain, the gp’s hyperparameters could be trained to fit
those measurements as described in [13].

The algorithm updates the map sequentially when new measurements are re-
ceived. This is done by fusing the new data with the prior mean and covariance
functions to form a posterior map with updated mean and covariance. The pos-
terior map then becomes a prior for the subsequent measurement. The fusion is
achieved using the Kalman filter described by (2.6) and (2.7) in Section 2.2.

The measurement model H described in Section 2.2 is formed to update the
correct map position for each measurement. In this thesis H is a column ma-
trix

H = [0 . . . 0 1 0 . . . 0]T , (5.4)

where each row in H corresponds to a position in the map. In the simulation, the
LiDAR is modelled with noise levels depending on measurement altitude [10]:

σ2
l = a(1 − exp(−bh)), a, b > 0, (5.5)
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for an altitude h and constants a and b, representing the magnitude and height
dependence of the noise.

The updated uncertainty map is sent to the ipp algorithm and the mapping algo-
rithm waits for new measurements. The mapping algorithm terminates when the
total map variance

σm =
∑
x∈X

Pk|k(x, x), (5.6)

or as an alternative, when the maximum variance

σm = max(Pk|k), (5.7)

fulfills
σm ≤ σthre, (5.8)

where σthre is a user-defined threshold parameter depending on map size. Then
the algorithm is terminated and the map quality is considered adequate for the
ugv path planning algorithm.

The gp kernel hyperparameters is chosen based on testing parameters until a
good result is achieved. The characteristic length-scale must be chosen consider-
ing the map size and complexity of the mapped terrain.

5.3 Informative path planning algorithm for UAV

To explore an area, partly known or unknown, with autonomous vehicles there
is need for an algorithm that finds the next position to visit. In this work, an
ipp algorithm is used for it. The decision of which position the uav should visit
next is based on an estimate of the information gain for traveling to that specific
position, while the distance to travel is optimized. That means, the position that
maximizes the collected information while minimizing the travel distance is se-
lected. The ratio between the information and the travel distance is called the
score of the position and is used as the objective function, see Section 2.3. The
ipp problem introduced in Section 2.3 and the algorithm used, is similar to the
one in [10], but modifications have been made in order to enable the use of mul-
tiple uavs. The number of uavs is denoted M. The algorithm is presented in
Algorithm 2 and is described in detail below.

The ipp algorithm receives a map from the mapping algorithm, which contains
the information uncertainty for each position in the map. The uncertainty is
represented as the variance at a position. Hence, higher variance at a position is
equivalent to higher uncertainty about the terrain at that position. Based on an
user-defined number, C, candidate target positions

Xcand = {xcand,i}, i = 1, . . . , C, (5.9)
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Algorithm 2: Informative path planning algorithm

Input: A gp terrain map with measurement uncertainty;
Create candidate target positions, Xcand;
for Number of vehicles, M do

for All candidate target positions do
Calculate the score of the target position;
Update the M + 1 target positions with the highest scores;

end
end
if Multiple vehicles then

For the first vehicle: Select the target position with the highest score
according to (5.14);

For the other vehicles: Select the target position, of the M + 1 calculated,
which maximize the distance to the other uav’s target positions
according to (5.15);

else
Select the target position with highest score according to (5.14);

end
Result: Trajectory to the selected target position(s) for the uav(s)

are considered. These are placed in a grid pattern over the map. An example of
this can be seen in Figure 5.2. The resolution of the map is much higher than
the resolution of candidate target positions. In the example shown in Figure 5.2,
every fifth position in the map has been chosen as a candidate target position.
From the current position of the exploring vehicle xstart, a trajectory is defined
as

traji = {xstart, x1, . . . , xk , xcand,i}, k = 1, . . . , Ni − 2, (5.10)

where Ni reflects the number of positions in the trajectory and xcand,i is a can-
didate target position. The shortest path between xstart and xcand,i is given by
x1, . . . , xk .

The purpose of the ipp is to minimize the total uncertainty in the gp map. To
avoid simulating the entire mapping procedure with maximum likelihood mea-
surements for all possible trajectories, since it could be computationally expen-
sive, a rough estimate of a trajectory’s covered uncertainty is made to guide the
exploration toward map areas with high uncertainty. However, if other means of
measuring information gain is used, it is possible to exploit the gp in the path
planner. For such methods, as described in [10], the gp is used to predict which
positions are affected by a certain trajectory’s measurements and optimize the
planning. But this thesis employs the simpler measure due to the computational
capacity of the system:

I(xstart, xcand,i) =
∑
x∈traji

Pk|k(x, x), (5.11)
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Figure 5.2: Candidate target positions. Every fifth position in the map is
selected as a potential target position.

where x is a gird position along the trajectory traji and Pk|k is the covariance
function describing the grid map. The distance between two positions, x and y,
is calculated as

d(x, y) =
∥∥∥x − y ∥∥∥

2
. (5.12)

The travel cost is calculated as the distance to travel from the initial position to
the target position

dtot(xstart, xcand,i) =
Ni−2∑
k=0

d(traji(k), traji(k + 1)), (5.13)

where Ni is the number of positions in traji . Then, the uav’s next target position
x∗ is calculated as

x∗ = argmax
x∈Xcand

I(xstart, x)
dtot(xstart, x)

, (5.14)

i.e. the position that maximizes the score. This way of selecting the next target
position is also used in [10]. The M + 1 highest scores are saved, to be used in the
assignment of target position when using multiple uavs, where M is the number
of uavs.

When one uav is used, the target position with the highest score is selected and
the calculated trajectory is sent to the uav. Thus, for one uav the algorithm is
similar to the one in [10] and this thesis extends the algorithm for using multi-
ple uavs. When using multiple uavs, the vehicles are assigned a number that
determines the selection order of the target positions. The first uav is the first to
select target position and the second uav is the second to select target position,
and so on. The target position for the first uav is selected in the same manner
as using one uav. For the other uavs, the target position is selected as the posi-
tion that maximizes the distance to the uavs with an already determined target
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position:
x∗ = argmax

xi∈Xcand

d(xI , xi), i = 1, . . . , M + 1. (5.15)

Here, xI is the selected target position for the uavwith an already determined tar-
get position, xi is the target position with the i-th highest score for the other uav
and M is the number of uavs. This aims to direct the exploration more evenly
over the unknown area by avoiding that all uavs concentrate to explore the same
area. This is also the reason why M + 1 is used, to increase the opportunity for
exploration in unknown areas. The trajectories to the selected target positions
are calculated and sent to the exploring uavs.

Finally, the uavs collect measurements along their trajectories and updates their
position in the map. Then, the measurements are sent to the mapping algo-
rithm.

It is also possible to calculate all trajectories for the uavs simultaneously in a cen-
tralized approach, but the computational complexity will increase exponentially
due to the curse of dimensionality. To enable parallelization of the calculations,
the method described above is used.

5.4 Path planning algorithm for UGV

Once a terrain map is received an optimal path can be planned through the
mapped area. For this an A? algorithm is used. Given a start and a target po-
sition, the path planner returns a path, given by a list of positions, that should be
visited in order to reach the goal in an optimized manner. A state in the graph
is represented by a map coordinate x, as defined in (5.5). The costs introduced
earlier in Section 2.3 are chosen as the following:

f (x) = f (xprev) + ||x − xprev||2 + |µ(x) − µ(xprev)|, (5.16)

g(x) = ||xgoal − x||2, (5.17)

where µ(x) is the terrain height for state x and xprev is the previous state in the
trajectory. The goal state is given by xgoal. For a state to be considered as free and
possible to visit, it must fulfil the following constraint:

x =

Obstructed, P (x, x) > ζ or |µ(x) − µ(xprev)| > δ
Free, otherwise

, (5.18)

for a given state x that lies within the grid map boundaries and is modelled by
the gp, P is map covariance and µ(x) is terrain height at position x. ζ is a positive
constant that determines the maximum tolerance of uncertainty in the measure-
ment in state x and δ is a constant describing the maximum height difference in
meters between two adjacent states. ζ and δ make it possible to adjust the ugv
path planner based on terrain and the map. For complicated terrain, a lower ζ
and δ can be used.
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5.5 Simulation study

The algorithms described earlier in this chapter are evaluated in several collabo-
rative exploration scenarios in unknown terrain. The simulations are performed
using ros, where the uav movement and collection of measurements are simu-
lated by stepping through the uav trajectory and sending the measured positions
to the mapping algorithm. The measurements are simulated using a ground truth
map and noise is added using the altitude dependent noise equation described
in (5.5). The uav is moving at approximately 4 m/s in all simulations. To eval-
uate the algorithms, two ground truth maps has been produced which aims at
highlighting different aspects of the algorithms. These maps are described in Fig-
ure 5.3a and 5.3b, respectively. As for the mapping algorithm the Martén 3/2
kernel, see (2.3), that proved suitable by [10] is used. The hyperparameters is
chosen as

` = 1.3, (5.19)

σf = 0.3. (5.20)

All tests are conducted in a simulated 10 m x 10 m area with a map resolution
of 0.5 m. The mean function is initialized with a constant mean mx = 0.5 and
the covariance function with (5.3) using (2.3). The prior mean and uncertainty
variance maps are shown in Figure 5.4. The covariance map is displayed as the
double standard deviation for each position, called the variance map. Terminal
constraint (5.8) is used for all evaluations.

5.5.1 Efficiency based on number of candidate target
positions

To find the optimal number of candidate target positions, a number of simula-
tions are conducted with a varied number of available target positions. The pos-
sible exploration target positions are described in Section 5.3 and three different
sizes are investigated, as shown in Figure 5.5. The main interest is the total mis-
sion time, i.e. how long time does the uav need before the map has sufficient
quality, measured as the total map variance given by (5.8). The same experi-
ments are also evaluated using two uavs. The map variance threshold, σthre, is
chosen to 20 or 30 since it was discovered during the initial testing that σthre = 20
yields a map with high quality but takes considerably longer time than σthre = 30,
that yields a map with reasonable quality. These values also represent the phys-
ical capabilities of the ugv, where σthre = 20 yields an average map variance of
0.05 m and σthre = 30 yields an average map variance of 0.075 m in each map
position. The results for one uav are summarized in Table 5.1 and two uavs in
Table 5.2. In Figure 5.6 the result for one uav with σthre = 20 and 25 possible
target positions is shown. Figures 5.7, 5.8 and 5.9 show the resulting maps for
two uavs with σthre = 20 for 9, 25 and 49 number of possible target positions,
respectively. The mean execution time for running the ipp once in order to find a
target position for the uav(s) is shown in Table 5.3.
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(a) Scenario 1: Two elevated sections and flat ground on the left side of
the map.
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(b) Scenario 2: Multiple elevated sections with different heights.

Figure 5.3: The maps used as ground truth to generate measurements for the
simulation. The color represents height of the terrain with highest position
being one meter above the zero level.
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(a) Prior mean map.
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(b) Prior variance map. The plot shows two times the standard deviation.

Figure 5.4: The prior mean and variance maps used in all simulation runs.



5.5 Simulation study 45

Table 5.1: The results from the simulation experiments using one uav and
the first scenario ground truth map. Mission time includes flight time of the
uav.

Number
of uavs

σthre

Candidate
target
positions

Mission
time
[min:sec]

1 20 9 40:14
1 20 25 5:39
1 20 49 9:30
1 30 9 3:10
1 30 25 4:01
1 30 49 5:30

Table 5.2: The results from the simulation experiments using two uavs and
the first scenario ground truth map. Mission time includes flight time of the
uavs.

Number
of uavs

σthre

Candidate
target
positions

Mission
time
[min:sec]

2 20 9 23:10
2 20 25 4:33
2 20 49 4:50
2 30 9 2:05
2 30 25 3:18
2 30 49 5:01

Table 5.3: The mean execution time for the ipp algorithm when finding a
target for the uav in the first scenario. σthre = 30.

Number
of uavs

Candidate
target
positions

Mission
time [sec]

1 9 0.7
1 25 1.3
1 49 2.7
2 9 1.3
2 25 3.2
2 49 5.4



46 5 Collaborative exploration

(a) 9 positions. (b) 25 positions. (c) 49 positions.

Figure 5.5: The candidate target positions used in the experiments.
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(a) Ground truth.
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(b) Posterior mean map.
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(c) Posterior variance map. The plot shows two times
the standard deviation for each map position.

Figure 5.6: Resulting maps from experiment using one uav, σthre = 20 and
25 possible target positions that was completed in 5 minutes and 39 seconds.
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(a) Ground truth.
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(b) Posterior mean map.
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(c) Posterior variance map. The plot shows two times
the standard deviation for each map position.

Figure 5.7: Resulting maps from experiment using two uavs, σthre = 20 and
9 possible target positions that was completed in 23 minutes and 9 seconds.
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(a) Ground truth.
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(b) Posterior mean map.
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(c) Posterior variance map. The plot shows two times
the standard deviation for each map position.

Figure 5.8: Resulting maps from experiment using two uavs, σthre = 20 and
25 possible target positions that was completed in 4 minutes and 33 seconds.
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(a) Ground truth.
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(b) Posterior mean map.
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(c) Posterior variance map. The plot shows two times
the standard deviation for each map position.

Figure 5.9: Resulting maps from experiment using two uavs, σthre = 20 and
49 possible target positions that was completed in 4 minutes and 50 seconds.



50 5 Collaborative exploration

5.5.2 Analysis of the mapping and exploring efficiency

Based on the results in the previous section it is clear that the number of candi-
date target positions for σthre = 30 greatly influence the total mission time for
both one and two uavs. Table 5.3 indicates that using more possible target po-
sitions leads to longer execution times for the ipp. This is caused by the large
number of trajectories that results from using many candidate target positions.
More candidate target positions also lead to more frequent calculations, since
more positions leads to shorter flights in general. This could contribute to the
long mission times for 49 candidate target positions. It could also be a part of
the explanation of why 25 candidate target positions is faster than 49 when using
σthre = 20, even if it is possible to visit more positions with a higher resolution,
but it requires more frequent calculations of a lot of trajectories if utilized. The
trade-off between exploration time and map quality is something that is applica-
tion dependent.

The results in Table 5.1 and 5.2 indicates that few candidate target positions re-
quires a higher σthre for the algorithm to converge to a solution. Likely because of
what can be seen in Figure 5.7. The figure shows that 9 candidate target positions
results in a distinct pattern for the variance. When there are only 9 candidate tar-
get positions, some areas become inaccessible for the uav. Because of the gp
hyperparameters, the measurements sampled in these "corridors" will not have
sufficient influence over the positions in between and the information gain for
each new trajectory will eventually be almost immeasurable. This is also the rea-
son for the remarkably long execution time needed for 9 candidate positions. If
the gp’s characteristic length-scale ` is increased, the "corridors" would widen,
and the execution time would decrease since more information is gained from
each measurement. On the other hand, if increased, the map would lose its detail
since all features would be smoothed in a more extensive way, as described in Fig-
ure 2.3c. Figures 5.8 and 5.9 display the effect of more possible candidates, which
results in more evenly distributed variances. Using 49 possible candidates obvi-
ously yields a more continuous map compared to 25 candidate positions. Based
on this a suitable length-scale ` for the gp kernel function needs to be at least
half the distance between two neighboring target candidate positions. However,
different hyperparameters was never tested and it is fully possible that it could
affect the mission times as well as map quality.

The results in Figures 5.6 and 5.8 show that there are no obvious differences in
the resulting maps using one or two uavs. When using two uavs, as shown in
Figure 5.8, there is a peak in the variance at approximately position (1,10). The
same type of phenomena can also be found in the 49 candidate position experi-
ment, shown in Figure 5.9 at map positions (0,10) and (10,0). Since this behavior
is not present for one uav, Figure 5.6, it is most likely an effect of (5.15). If the
trajectory for the second uav is calculated considering the estimated information
gain and trajectory of the first uav, it might be possible to avoid this behavior.
However, the parallelization is lost. Another possibility is to use the maximum
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variance in any position in the map as terminal constraint, instead of the total
variance. This means using (5.7) instead of (5.8) and in that case the user can set
a threshold of the maximum height of any occurring variance peak.

The things above considered, it is possible to use 9 candidate target position if the
terrain is not too complicated. If most of the map is free from obstructions, then
it is possible to get decent results using 9 candidate target positions. However, if
the terrain is more complex with more obstructions and features, a finer grid of
candidate target positions is required to avoid the "corridors" mentioned above
and to be able to complete the mission within reasonable time.

Furthermore, the gp performs well and it is not likely that another algorithm
like an occupancy grid would perform better than the gp with the hardware con-
sidered in this thesis. A standard occupancy grid as described in [6] needs mea-
surements in each position and will not correlate nearby data to each other. A
possible alternative is to use another type of sensor, like a rotating or sweeping
LiDAR that has a wider field of view. Then an occupancy grid is a more compara-
ble option to the gp described here.

5.5.3 UGV path planner performance results

The quality of the path planned for the ugv highly depends on the variance
threshold σthre and the variance limit ζ in (5.18). If the map is too uncertain
or too noisy, the planner will not find a path possible for the ugv to follow or
unnecessarily ineffective path. In these experiments three levels of map quality
are assessed, σthre = 40, 30, 20. These particular numbers are chosen based on the
visual appearance of the resulting maps and paths from the initial testing during
development. The values of ζ = 0.6, 0.4 and δ = 0.1 are selected based on the es-
timated capabilities of the ugv. All maps used in the experiments regarding the
ugv path planning algorithm are computed with a 25 candidate target positions
for the uav, see Figure 5.5b. The ugv’s start and goal position are the same for all
experiments, start in (5,0) and goal in (5,10). The planned paths are analyzed in
the following section. Figure 5.10 shows the influence of ζ on the same map pro-
duced with 25 candidate target positions and σthre = 20. In Figures 5.11, 5.12 and
5.13 a path is planned using ζ = 0.6 on maps produced with σthre = 20, 30, 40 to
demonstrate the influence of σthre. In Figure 5.14 a standard A? algorithm with
path length as cost function is used to plan a path to highlight the influence of
the cost function. The results are summarized in Table 5.4.
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(a) Planned path using σthre = 20 and ζ = 0.4.
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(b) Planned path using σthre = 20 and ζ = 0.6.

Figure 5.10: To illustrate the effect of ζ in (5.18) the path planner is evalu-
ated on the same map twice with different ζ. δ = 0.1 in both cases.
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Figure 5.11: Planned path using σthre = 20, δ = 0.1 and ζ = 0.6.
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Figure 5.12: Planned path using σthre = 30, δ = 0.1 and ζ = 0.6.



54 5 Collaborative exploration

1 2 3 4 5 6 7 8 9 10

x
1
 [m]

1 

2 

3 

4 

5 

6 

7 

8 

9 

10
x

2
 [

m
]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 5.13: Planned path using σthre = 40, δ = 0.1 and ζ = 0.6.
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Figure 5.14: Planned path using a standard A? cost function that only con-
siders path length as cost-to-come. σthre = 20, δ = 0.1 and ζ = 0.6.
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Table 5.4: The results from the simulation experiments for the path planning
algorithm. Planning result passed means that the planning algorithm is able
to find a path from start to goal. δ = 0.1 meter was used for all experiments.

Map σthre ζ
Planning
result

Scenario 1 20 0.6 Passed
Scenario 1 30 0.6 Passed
Scenario 1 40 0.6 Passed
Scenario 1 20 0.4 Failed
Scenario 1 30 0.4 Failed
Scenario 1 40 0.4 Failed
Scenario 2 20 0.6 Passed
Scenario 2 30 0.6 Failed
Scenario 2 40 0.6 Failed
Scenario 2 20 0.4 Passed
Scenario 2 30 0.4 Failed
Scenario 2 40 0.4 Failed

5.5.4 Analysis of the UGV path planner performance

From the experiments with maximum state variance threshold ζ = 0.6, shown
in Table 5.4, it is clear that the map quality and the type of terrain has a great
influence on the performance of the path planner. For the first scenario σthre has
little effect on the possibilities of finding a path, see Figures 5.11, 5.12 and 5.13.
These figures also show that when using a higher σthre the resulting paths are
more unpredictable, as is the case in Figure 5.11 and 5.12. Since the uncertainty is
lowest close to where theuav has taken measurements, the ζ constraint will force
the path towards these areas. This can be visually confirmed by looking at the
Figures 5.11, 5.12 and 5.13. For the higher σthre some areas are not fully mapped
and thus has sections of high uncertainty. Comparing Figure 5.11 and 5.14 show
that using A? algorithm with only path length as cost-to-come function is not
suitable for this application. Compared to the cost function described in (5.16)
this results in a direct path that will be very hard for the ugv to follow since
the total altitude difference is not optimized. If the ugv path planner would
have been tested with ground truth map the results would probably resemble
Figure 5.11, since the outline of the base of the central elevated section is the
shortest path without altitude change.

In the second scenario the algorithm only finds a path when σthre is at the lowest
σthre = 20, shown in Table 5.4. This is most likely because the second scenario
map consists of small passages that must be captured with great detail if the path
planner should be able to find a path without violating the constraints in (5.18).
This can be seen in Figure 5.10 for ζ = 0.4 and ζ = 0.6. For ζ = 0.4 the resulting
path is more precise and stays very close to the middle of the passage. The path
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created with ζ = 0.6 is shorter but cuts closer to the elevated sections since it is
not limited to the lower variance. Thus, ζ = 0.4 yields a safer path but longer
than ζ = 0.6.

If the ugv path planner is unable to find a path through the terrain, one reason
could be that the map is too uncertain. In that case this information could be feed
back to the mapping algorithm and ipp, that can use the uavs to gather more data
and lower the map uncertainty before the ugv path planner tries to plan a new
path.



6
Conclusions and future work

In this thesis, rtk positioning and collaborative exploration using autonomous
vehicles in unknown terrain have been studied. In this chapter conclusions from
Chapter 4-5 are discussed. Possible future work directions are also presented.

6.1 Conclusions

To analyse the performance of rtk positioning, experiments have been performed.
The results from these experiments show that the technique has a sufficient per-
formance to be used for collaborative autonomous vehicles, such as those stud-
ied in this thesis, to solve a task like exploring unknown terrain. For a mission
where autonomous collaborative vehicles should explore unknown terrain, the
rtk positioning performance achieves sufficient accuracy. However, it may ex-
ist applications where the measured accuracy is not sufficient. The accuracy in
the relative position between base and rover is at centimeter level both when the
rover is static and dynamic. Such high accuracy in relative positioning is required
when multiple autonomous vehicles should collaborate to solve tasks. When us-
ing moving vehicles, a moving base is needed, but in several of the experiments
a static base is used together with a rover. However, the experiments conducted
in this thesis show that the accuracy is at the same level when using both moving
and static base. Another conclusion from the experiments is that it would not be
possible to use standard gnss for a collaborative exploration mission since the
position accuracy is not high enough.

The results presented previously in this thesis show that a gp is a suitable terrain
map representation that makes it possible to explore unknown terrain and to

57
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use the resulting map to plan a path for a ugv through the terrain. For efficient
exploration, a path planner to control the uav is required and for this purpose an
ipp is used successfully. The ipp guides the uav when it collects measurements
to optimize the exploration. The mapping algorithm receives the measurements
to update the map with new data. Based on the map, the ugv can use an A?

algorithm to plan a path that can be used to traverse the previously completely
unknown terrain.

Depending on application, time can be a crucial resource and as previously seen
in the thesis there exist a lot possible choices that greatly influence the total mis-
sion time. For a search and rescue mission, time must be kept to a minimum. In
other cases, such as mapping resources or delivering non-vital supplies, time is
not as critical. In addition to this, each vehicle has limited range and operational
time before refueling or battery change is required. The quality of both the ter-
rain map and the ugv path is closely coupled with total mission time, since a
more accurate terrain map and ugv path demands a more thoroughly explored
terrain. Also, the use of a denser representation of the possible target positions,
which are the positions that can be selected as the uav’s next target position dur-
ing the exploration, leads to a higher quality map. Multiple uavs can solve some
of these problems since they can be controlled to explore different parts of the un-
known terrain, increasing efficiency. Also, multiple uavs introduce redundancy
in the system, which can be useful if e.g one of the uavs crash or gets incapaci-
tated. Considering the above mentioned aspects, it seems like a good option to
use ipp for the exploration of unknown terrain and to use A? to plan an optimal
path through the mapped terrain.

6.2 Future work

The results presented in this thesis show that rtk positioning can be used for posi-
tioning and to control multiple uavs simultaneously while mapping an unknown
area. The rtk-estimated heading can be used to improve the attitude estimation
for the uav and allow for more efficient and safe missions. Furthermore, the ugv
can use its sensors to either guide or help the uav with measurements, increas-
ing efficiency even further. One possible enhancement is to let the ugv identify
interesting areas of unknown terrain and automatically command the uav to the
areas of interest.

To further verify the performance of the developed system it must be imple-
mented and tested in real-world experiments. The exploration takes whatever
measurements received and will work with real data without any adjustments.

To improve the exploration and avoid the "corridors" that occurs when using few
possible target candidate positions, a dynamic grid of possible target positions
can be used. Based on the uncertainty the ipp algorithm would place possible
target positions in areas with high uncertainty, resulting in a more efficient explo-
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ration.

The ugv is equipped with sensors that can be used to detect if the path needs to
be re-planned during execution. If a new obstacle is observed the execution stops
and the ugv could send the uav to improve the map and re-plan the path from
its current location.
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