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Abstract

In the last decades, the development of self-driving vehicles has rapidly increased.
Improvements in algorithms, as well as sensor and computing hardware have led to
self-driving technologies becoming a reality. It is a technology with the potential to
radically change how society interacts with transportation. One crucial part of a self-
driving vehicle is control schemes that can safely control the vehicle during evasive
maneuvers.

This work investigates the modeling and lateral control of tractor-trailer vehicles
during aggressive maneuvers. Models of various complexity are used, ranging from
simple kinematic models to complex dynamic models, which model tire slip and
suspension dynamics. The models are evaluated in simulations using TruckMaker,
which is a high fidelity vehicle simulator.

Several lateral controllers are proposed based on Model predictive control (MPC)
and linear-quadratic (LQ) control techniques. The controllers use different complex
prediction models and are designed to minimize the path-following error with re-
spect to a geometric reference path. Their performance is evaluated on double lane
change maneuvers of various lengths and with different longitudinal speeds. Addi-
tionally, the controllers’ robustness against changes in trailer mass, weight distribu-
tion, and road traction is investigated.

Extensive simulations show that dynamic prediction models are necessary to
keep the control errors small when performing maneuvers that result in large lateral
accelerations. Furthermore, to safely control the tractor-trailer vehicle during high
speeds, it is a necessity to include a model of the trailer dynamics. The simulation
study also shows that the proposed LQ controllers have trouble to evenly balance
tractor and trailer deviation from the path, while the MPC controllers handle it much
better. Additionally, a method for approximately weighting the trailer deviation is
shown to improve the performance of both the LQ and MPC controllers. Finally,
it is concluded that an MPC controller with a dynamic tractor-trailer model is ro-
bust against model errors, and can become even more robust by tuning the controller
weights conservatively.
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1 Introduction

This thesis is concerned with modeling and automatic lateral control of tractor-trailer
vehicles. This chapter is dedicated to give an introduction to the work.

1.1 Background

The development of self-driving vehicles has made an incredible stride in the last
decades. Although the idea of self-driving cars has been around since the start of
the 20th century, it is not until recently that it seemed like a real possibility. A major
milestone along the way was the first DARPA Grand Challenge in 2004 [1]. With
the objective to autonomously follow a 240 km off-road course, none of the 15 robot
vehicles that had entered, finished the race. As no winner could be declared, a second
DARPA challenge was scheduled for 2005 [2]. A major breakthrough in field was
made that day as all but one of the 23 finalists finished the race. With the DARPA
Urban Challenge in 2007 [3], the competition was set in an urban setting. The vehicles
were required to complete a 96 km long course while obeying traffic regulations and
negotiating other agents as well as obstacles along the road. The event proved that
considerable progress had been made since 2004, as 6 teams finished the challenge,
showing that fully autonomous driving is a possibility.

The improvements in technology and hardware availability have further fueled
the start of many companies and research groups. The possibilities of self-driving
cars are numerous, the development of them however, is not without challenges. In a
fast-evolving industry, many companies have failed in the race. However, optimism
is not unmotivated as several companies have shown commercial success in both taxi
businesses and freight-carrying operations. With the recent success of many compa-
nies, the goal of self-driving road vehicles is getting closer to reality. However, as the
industry matures, the demands of the public are becoming more vocal.

With the increased interest in the commercialization of autonomous vehicles, de-
veloping systems that meet the safety demands has become an important mission
for both academia and industry alike. One part of the problem is the implementa-
tion of control schemes that can safely control the vehicle’s behavior during evasive
maneuvers.

For the autonomous trucking industry, the importance of systems that can handle
safety-critical scenarios cannot be overstated. Compared to the passenger car indus-
try, the addition of a trailer requires more comprehensive models that may add sub-
stantial complexity to the problem. When operating during high-speeds, dynamic
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1.2. Problem formulation

effects of both the tractor and trailer may need to be incorporated in the controller to
produce a safe behavior.

1.2 Problem formulation

This thesis aims to investigate how models of varying degrees of complexity can im-
prove lateral control of a tractor-trailer system during aggressive maneuvers. Addi-
tionally, different methods for lateral control should also be evaluated in combination
with these models. This thesis aims to answer the following questions:

• How well do models of varying complexity predict the lateral behavior of the
system?

• How is controller performance affected by different models?

• How well do different controllers perform during aggressive maneuvers?

• How robust are the different controllers against parameter uncertainty?

1.3 Related work

Modeling of car-like vehicles has been an active research field during the past
decades. For passenger cars, kinematic models are often used in the literature for
automatic steering applications [4, 5, 6]. Corresponding models for tractor-trailer
vehicles are extensively covered in [7], where a method is presented for deriving
models of the general n-trailer. Kinematic models of articulated vehicles have been
used successfully for both planning and control applications [8, 9, 10]. Substantial re-
search has been done in dynamic modeling of tractor-trailer combinations at various
complexity [11, 12, 13, 14, 15] and a comparative evaluation between lateral dynamic
models for tractor-trailer systems are done in [16].

Automatic control of car-like vehicles is widely covered in the literature. In [4],
various control schemes are suggested for self-driving, including pure-pursuit, linear
quadratic control, and model predictive control. The former two, are evaluated for
automatic steering in [17]. In [18], kinematic and dynamic models are compared for
control design using a model predictive control approach. A comparative study of
linear quadratic control and model predictive control for path-following applications
is done in [19]. Low speed path-following of a tractor-trailer system using a model
predictive control approach is done in [20]. For high speed applications the focus of
tractor-trailer vehicles have been mostly on stability control [21, 22], although exten-
sive work has been done on lateral control as well [23, 24, 25].

1.4 System overview

An overview of a typical system architecture for an autonomous vehicle is presented
in Figure 1.1. Inspired and adapted from [9, 26, 27]. On a high level it consists of three
distinct software modules, the planner, the controller and the perception module.

2



1.4. System overview

Planning

Lateral

Longitudinal

Control

Trajectory

Path

s(t)

δ f

ax

Vehicle

Control signal

Perception
Sensor signalState and environment

Ego state

Figure 1.1: The complete system and its underlying components.

The planning module may be further divided into submodules with different
tasks. One example of such a configuration is to divide it into route planning, be-
havioral layer and motion planning [4]. At the highest level of the planning module, the
decision-making system of the vehicle determines a route through the road network
to its requested destination. The task of the behavioral layer is to navigate the sur-
rounding environment, determine the actions of other agents in traffic and decide on
an appropriate driving behavior. Finally, the goal of the motion planner is to gener-
ate a local reference trajectory for the controller to follow. The trajectory should fulfill
high-level goals specified from the preceding layers, avoid collision with surround-
ing obstacles and be feasible to execute.

The task of the perception module is to continuously scan and monitor the in-
ternal and external environment of an autonomous vehicle [26]. The stream of ob-
servations are generated by gathering information of the on-board sensors, such as
radars, LIDARs, cameras, GNSS units and vehicle odometry [4]. Additionally, state-
estimation is performed by fusing the sensor information together with prediction
models of the vehicle. It is needed as all the important vehicle states are seldom di-
rectly available from sensor signals. Localization and mapping information as well
as the state estimates are then used by the planner and controller.

The controller receives a reference trajectory from the planning module to fol-
low. Together with information of the vehicle states, the controller can determine the
required control signals which should be sent to the actuators in the vehicle. The
controller may be decoupled into lateral and longitudinal control. Longitudinal con-
trol involves regulating the vehicle speed by determining the appropriate throttle
command. On the contrary, lateral control is concerned with automatic steering of
the vehicle to follow the reference. The underlying goal of the controller is to make
the vehicle follow the trajectory while demonstrating desirable behaviors, such as
keeping proper spacing to other vehicles and maintaining passenger comfort.

In planning and control, a trajectory is a generalization of a path. Since this thesis
is only concerned with lateral control, the trajectory-following problem is collapsed
into a path-following problem. This is done by assuming a constant velocity through-
out the investigated scenarios. Furthermore, the function of the planning module is
replaced by generating pre-defined paths. The paths considered are further explained

3



1.4. System overview

in Section 1.4.3. The vehicle module in Figure 1.1 is omitted in this brief overview and
instead detailed Section 1.4.2.

1.4.1 Simulation environment

Testing aggressive maneuvering with live testing, is time consuming and expensive.
Therefore, evaluating the system in simulation is an important and common step in
the development process. The simulation environment that is used in this thesis is
the commercial TruckMaker vehicle simulator seen in Figure 1.2. TruckMaker is a
product developed by IPG Automotive and is a complete software solution that pro-
vides tools for simulation of heavy-duty vehicles using realistic high fidelity models
and a modifiable environment.

(a) TruckMaker main GUI. (b) IPG Movie.

Figure 1.2: Overview of IPG TruckMaker.

1.4.2 Vehicle specification

The tractor and trailer combination used throughout this work is a model from the
TruckMaker simulation environment. It is both used for the system identification
and for simulation. The model consists of a conventional three-axle tractor, together
with a two-axle semitrailer. The tractor and trailer are connected by a fifth-wheel
hitch coupling. The fifth-wheel coupling limits roll and pitch motion of the trailer
relative to the tractor but allows for free yaw rotational motion [28]. An overview of
the vehicle can be seen in Figure 1.3.

Figure 1.3: The tractor-trailer vehicle investigated.
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1.4. System overview

1.4.3 Maneuver overview

For system identification and controller evaluation, the maneuvers of interest need to
be defined. The baseline maneuver of this thesis work is a double lane change. This
driving scenario requires the vehicle to switch lanes at high speeds while avoiding
possible obstacles in the way. A schematic illustration of a double lane change ma-
neuver is illustrated in Figure 1.4. The maneuver is chosen for its reproducibility and
its relevancy to the considered problem. Since it is also a good representation of a
possible emergency maneuver, the results found might be applicable to real driving
situations. Finally, lane changing maneuvers are widely used in research for evalu-
ation of both model and controller performance, see for example [16, 14, 5, 17, 19].
More detailed specifications of the created paths are later presented in Section 4.2.2.

!

!

Figure 1.4: A double lane change scenario, illustrating an evasive maneuver.
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2 Modeling and system
identification

This chapter introduces several physical models of the lateral dynamics of the tractor-
trailer system, as well as the system identification techniques used to estimate the
model parameters.

2.1 Models

Several types of models are investigated in this work, which can be separated into
two categories: kinematic and dynamic models. Kinematic models are derived based
on kinematic constraints, i.e. the wheels can only move in the direction they point.
On the contrary, dynamic models are derived from Newton’s laws related to force
and torque equilibriums of the system. All models are single-track bicycle models,
which replace the left and right wheels of an axle with a single wheel [29].

Two different kinematic models are presented, one that just models the tractor,
and one that also models the semitrailer. Three dynamic models of increasing com-
plexity are also introduced. These include a tractor model, a tractor-trailer model,
and a tractor-trailer model that also models roll effects. For the dynamic models,
linear and nonlinear tire models are presented in Section 2.1.6.

2.1.1 Kinematic tractor model

The kinematic bicycle model is one of the simplest models of a tractor system. It is
widely used in the control literature and has been shown to describe car-like vehicles
well during normal driving situations [5, 18, 4, 27]. In [5] a kinematic and dynamic
model is compared and it is concluded that a kinematic model describes the system
sufficiently well during highway driving.

6



2.1. Models

X

Y

v
β1

δ f

a11

a12

Y

X

ψ1

Figure 2.1: A kinematic bicycle model of a tractor system.

From the vehicle in Figure 2.1 a kinematic model is derived from assuming no-
slip conditions of the front and rear wheels, resulting in the following differential
equations [18]:

Ẋ = v cos (ψ1 + β1) (2.1a)

Ẏ = v sin (ψ1 + β1) (2.1b)

ψ̇1 = v
sin β1

a12
(2.1c)

β1 = arctan
(

a12

a11 + a12
tan δ f

)
(2.1d)

where the variables and parameters are described in Table 2.1.

Table 2.1: The variables and parameters for the kinematic models.

Symbol Description

X x-coordinate of tractor COM
Y y-coordinate of tractor COM
ψ1 Yaw angle of tractor
ψ2 Yaw angle of trailer
δ f Steering angle of front wheels
v Velocity of tractor
β1 Side slip angle of tractor
a11 Distance between COM and front axle for the tractor
a12 Distance between COM and rear axle for the tractor
a21 Distance between COM and the axle for the trailer
b1 Distance between COM and the hitch point for the tractor
b2 Distance between COM and the hitch point for the trailer

2.1.2 Kinematic tractor-trailer model

The kinematic tractor model can be extended to have an arbitrary number of trailers.
Kinematic trailer models are used in literature for both planning and control [10, 9].
In [7] a recursive formula for a general n-trailer kinematic model is derived. This

7



2.1. Models

X

Y

b2

a21

v β 1
δ f

a 11

a 12

b 1

Y

X

ψ 1
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Figure 2.2: A kinematic bicycle model of a tractor-semitrailer system.

model describes a kinematic tractor-trailer system with off-hitching, i.e. when the
hitch joint and rear axle are offset longitudinally. Using the recursive formula in [7]
for a tractor-trailer vehicle (see Figure 2.2), the following nonlinear model is obtained:

Ẋ = v cos (ψ1 + β1) (2.2a)

Ẏ = v sin (ψ1 + β1) (2.2b)

ψ̇1 = v
sin β1

a12
(2.2c)

ψ̇2 = v
sin (ψ1 ´ ψ2)

b2 + a21
´ v

(b1 ´ a12) cos (ψ1 ´ ψ2) sin β1

a12(b2 + a21)
(2.2d)

β1 = arctan
(

a12

a11 + a12
tan δ f

)
(2.2e)

where the variables and parameters are described in Table 2.1.

2.1.3 Dynamic tractor model

During more aggressive maneuvers, models that take dynamic effects into account
are needed to accurately describe the system [18, 27]. They have been used to suc-
cessfully control car-like vehicles at the limits of handling [30, 31]. A dynamic bicycle
model can be derived from a force and torque equilibrium of the vehicle in Figure 2.3.
This results in the following dynamic model:

Ẋ = vx cos ψ1 ´ vy sin ψ1 (2.3a)

Ẏ = vx sin ψ1 + vy cos ψ1 (2.3b)

ψ̇1 = ψ̇1 (2.3c)

ψ̈1 =
1

Izz,1

(
a11Fy, f cos δ f ´ a12Fy,r

)
(2.3d)

v̇y = ´vxψ̇1 +
1

m1

(
Fy, f cos δ f + Fy,r

)
(2.3e)

8



2.1. Models
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Figure 2.3: A dynamic bicycle model of a tractor system.

where the variables and parameters are described in Table 2.2. In this model the
lateral tire forces Fy,i are functions of the lateral slip. This relation is the tire model,
which is further described in Section 2.1.6.

Table 2.2: The variables and parameters for the dynamic models.

Symbol Description

X x-coordinate of tractor COM
Y y-coordinate of tractor COM
ψ1 Yaw angle of tractor
ψ2 Yaw angle of trailer
vx Longitudinal velocity of tractor
vy Lateral velocity of tractor
δ f Steering angle of front wheels
m1 Mass of tractor
m2 Mass of trailer
Izz,1 Yaw moment of inertia of tractor
Izz,2 Yaw moment of inertia of trailer
a11 Distance between COM and front axle for the tractor
a12 Distance between COM and rear axle for the tractor
a21 Distance between COM and the axle for the trailer
b1 Distance between COM and the hitch point for the tractor
b2 Distance between COM and the hitch point for the trailer

Fy, f Lateral force of front tractor tires
Fy,r Lateral force of rear tractor tires
Fy,t Lateral force of trailer tires

2.1.4 Dynamic tractor-trailer model

The dynamic tractor model can be extended to include a trailer. Dynamic trailer mod-
els are frequently used for analyzing the handling characteristics of tractor-trailer ve-
hicles [11, 29]. They are also used for braking and steering control of tractor-trailer ve-
hicles during emergency braking [25]. In [16], several dynamic tractor-trailer models

9



2.1. Models

from the literature are compared. One of the better performing models is presented
below. This model assumes that the longitudinal velocity of the trailer is equivalent
with the tractor and that the hitch angle is small.

Ẋ = vx cos ψ1 ´ vy sin ψ1 (2.4a)

Ẏ = vx sin ψ1 + vy cos ψ1 (2.4b)

q̇ = q̇ (2.4c)[
v̇y q̈T

]T
= M´1

ψ Hψ(q, q̇, vx, vy, Fy) (2.4d)

where q =
[
ψ1 ψ2

]T
, Fy =

[
Fy, f Fy,r Fy,t

]T
, and

Mψ =

m1 + m2 ´b1m2 ´b2m2

´b1m2 Izz,1 + b2
1m2 b1b2m2

´b2m2 b1b2m2 Izz,2 + b2
2m2

 (2.5a)

Hψ(q, q̇, vx, vy, Fy) =

Fy, f + Fy,r + Fy,t ´m1ψ̇1vx ´m2ψ̇1vx

Fy, f a11 ´ Fy,ra12 ´ Fy,tb1 + b1m2ψ̇1vx

´Fy,ta21 ´ Fy,tb2 + b2m2ψ̇1vx

 (2.5b)

where Mψ is assumed to be invertible. The variables and parameters in these differ-
ential equations are described in Table 2.2.

2.1.5 Dynamic tractor-trailer roll model

As the risk of rollover is high during aggressive maneuvering with heavy vehicles
[21, 32, 28], a model that includes rolling phenomena of the tractor and semitrailer
is developed. Roll models of tractor-trailer vehicles are frequently used in literature
for active roll control systems [21, 15, 33]. In [21], a general method is derived for
construction of dynamic tractor-trailer roll models with an arbitrary number of trail-
ers. The method models the roll dynamics by adding a sprung mass connected to the
axles with a rotational spring and damper, which can rotate about a fixed longitudi-
nal axis, see Figure 2.4. This is done for both the tractor and trailer. The connection
between the two sprung bodies is then modeled as a rotational spring in the hitch
joint.

The model created with their method also models the suspension dynamics of the
tires separately from the rest of the suspension. This phenomenon and the effect of
the coupling force on the roll dynamics is neglected, which results in the following
differential equations:

Ẋ = vx cos ψ1 ´ vy sin ψ1 (2.6a)

Ẏ = vx sin ψ1 + vy cos ψ1 (2.6b)

q̇ = q̇ (2.6c)[
v̇y q̈T

]T
= M´1

φ Hφ(q, q̇, vx, vy, Fy) (2.6d)

10
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Y

Z

hi

φi

Figure 2.4: Rear view of ith body in roll model, where i = 1 is the tractor, and i = 2 is
the trailer.

where q =
[
ψ1 ψ2 φ1 φ2

]T
, Fy =

[
Fy, f Fy,r Fy,t

]T
, and

Mφ =


m1 + m2 ´b1m2 ´b2m2 ´h1ms,1 ´h2ms,2

´b1m2 Izz,1 + b2
1m2 b1b2m2 0 b1h2ms,2

´b2m2 b1b2m2 Izz,2 + b2
2m2 0 b2h2ms,2

0 0 0 Ixx,1 0
0 0 0 0 Ixx,2

 (2.7a)

Hφ(q, q̇, vx, vy, Fy) =


Fy, f + Fy,r + Fy,t ´ ψ̇1m1vx ´ ψ̇1m2vx

Fy, f a11 + Fy,ra12 ´ Fy,tb1 + ψ̇1b1m2vx

Fy,ta21 ´ Fy,tb2 + ψ̇1b2m2vx

ψ̇1h1ms,1vx + gh1ms,1ψ1 ´ k1ψ1 ´ φ̇1d1 ´ kφ(ψ1 ´ ψ2)

ψ̇2h2ms,2vx + gh2ms,2ψ2 ´ k2ψ2 ´ φ̇2d2 + kφ(ψ1 ´ ψ2)

 (2.7b)

where the mass matrix, Mφ is assumed to be invertible. All parameters and variables
are described in Tables 2.2 and 2.3.

This model assumes that the spring and damper are linear for both the tractor and
trailer. This is a reasonable assumption for small roll angles as the effect of nonlinear-
ities is typically small. However, when the suspension is close to bottoming out this
assumption becomes inaccurate [21].

11



2.1. Models

Table 2.3: The variables and parameters added for the roll model.

Symbol Description

φ1 Roll angle of tractor
φ2 Roll angle of trailer

ms,1 Sprung mass of tractor
ms,2 Sprung mass of trailer
Ixx,1 Roll moment of inertia of sprung tractor mass
Ixx,2 Roll moment of inertia of sprung trailer mass
h1 Height of COM over the roll center for the trailer
h2 Height of COM over the roll center for the trailer
k1 Roll stiffness of tractor
k2 Roll stiffness of trailer
kφ Roll stiffness of hitch joint
d1 Roll damping of tractor
d2 Roll damping of trailer

2.1.6 Tire models

Many different tire models exist to describe the interaction between tire and road
[34]. In this thesis the tire model refers to the cornering force-slip angle relationship
of a tire. Lateral tire slip is defined as the angle between the velocity vector of the tire
and the direction of the tire. For the tractor-trailer system this can be written as [35]:

α f = arctan
(

vy + a11ψ̇1

vx

)
´ δ f (2.8a)

αr = arctan
(

vy ´ a12ψ̇1

vx

)
(2.8b)

αt = arctan

((
vy ´ b1ψ̇1

)
cos (ψ1 ´ ψ2)´ ψ̇2(b2 + a21) + vx sin (ψ1 ´ ψ2)

vx cos (ψ1 ´ ψ2)´
(
vy ´ b1ψ̇1

)
sin (ψ1 ´ ψ2)

)
(2.8c)

These relations can be simplified by assuming that the slip, steering, and hitch angles
are small and that the longitudinal velocities of the tractor and trailer are the same.
By doing this, Equation (2.8) are converted to the following:

α f =
vy + a11ψ̇1

vx
´ δ f (2.9a)

αr =
vy ´ a12ψ̇1

vx
(2.9b)

αt =
vy ´ b1ψ̇1 ´ ψ̇2(b2 + a21)

vx
+ ψ1 ´ ψ2 (2.9c)

which are linear in the modeled states and the steering angle. For a realistic vehicle
model, the steering angle, δ f is limited by the mechanical system and the actuators.
These limitations are expressed as:

|δ f | ď 45° (2.10a)

|δ̇ f | ď 45 °/s (2.10b)

12
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Figure 2.5: The general behavior of a linear, linear-saturated, and Pacejka’s tire model.

A common tire model is the linear model [29], defined as:

Fy,i = ´Cα,iαi, i P t f , r, tu (2.11)

where the lateral tire force is linearly dependent on the lateral tire slip. This model
is typically a good approximation for small slip angles when the operating point is
far from the limit of traction. This is often the case for tractor-trailer systems as their
cornering performance is more limited by the dynamic behavior of the trailer than
friction. Additionally, truck tires tend to be more linear than car tires [12].

To describe the tire behavior for larger slip angles, nonlinear tire models must
be used. A common nonlinear tire model is the empirical Pacejka’s Magic Formula
model. This model adds two additional features to the linear model, a saturation
where the lateral force reaches its peak, and a decline after the peak to model the
friction force from sliding friction [29]. The Magic Formula model is:

Fy,i = D sin (C arctan (Bαi ´ E (Bαi ´ arctan(Bαi)))), i P t f , r, tu (2.12)

This model uses three more parameters than the linear model. A simpler alternative
to the Magic Formula is to use a piecewise linear model with a linear region for slip
angles around zero, and a saturation for larger angles. This is the same as using a
simple brush model with the same friction coefficient for static and sliding friction
[29], and can be written as:

Fy,i =

#

´Cα,iαi, if ´ Fy,i,max ď ´Cα,iαi ď Fy,i,max

´Fy,i,max sign αi, otherwise
, i P t f , r, tu (2.13)

This model only adds the maximum lateral force parameter in addition to the corner-
ing stiffness. It is because of this simplicity that this model is used. One issue with
this model is that it has discontinuous derivatives, which can be problematic during
optimization. This can be resolved by implementing the saturation with a smooth
maximum function, e.g. a LogSumExp function. Figure 2.5, shows the general be-
havior of this model together with a linear model and the Magic Formula.
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2.2. System identification

2.2 System identification

The parameters in the models described in Section 2.1 have to be identified before
the models can be used. In this work, this is done in two different ways, by directly
using parameters from the TruckMaker model and by identifying them from data.
The parameters that are directly identified are the inertias of both the tractor and the
trailer. These would also be reasonably easy to measure and approximate on a phys-
ical tractor-trailer. Similarly, other parameters such as axle locations and the center
of gravity would be easy to measure on a real truck. They are, however, allowed to
differ from their measured values to improve model fit. This is possible as the mod-
els are only approximations of the system, and their maximum performance does not
necessarily occur when the parameters are the same as the true parameter value.

The model structure might make it impossible to uniquely identify certain pa-
rameters simultaneously. For example, in the dynamic tractor model in Section 2.1.3,
the yaw inertia, mass, and cornering stiffnesses cannot all be identified. This can
be seen because if all four parameters are scaled by the same factor k, the resulting
model will not change. This is discussed in [36] for the identification of a dynamic
car model using only stationary maneuvers.

The problem with identifiability partly explains why the inertias are fixed. An-
other reason is that identifying many parameters in the mass matrix in the dynamic
trailer models in Sections 2.1.4 and 2.1.5 makes the implementation slow, likely due
to slow automatic differentiation of the matrix inversion.

2.2.1 Optimization problem

To identify the parameters, a nonlinear optimization problem is formulated. It is
assumed that perfect measurements of all states are available. The problem is then
constructed to minimize the squared prediction error of a one-step predictor. The
one-step predictor is created by simulating the system forward one step, using an
Euler forward discretization of the continuous model.

x̂k+1 = xk + f (xk, uk, θ)dt (2.14)

where f is the continuous model of the system, defined as ẋ = f (x, u, θ), dt is the
time step, and θ is the parameter vector. The time step is selected to be equal to
the sampling time of the dataset. From this, the optimization problem is defined as
follows:

min
θ

n´1
ÿ

k=1

‖xk+1 ´ xk ´ f (xk, uk)dt‖2
W (2.15)

where n is the size of the dataset, and ‖ ‖2
W denotes the weighted l2-norm with the

weight matrix W. This matrix determines how much the prediction error of each state
should be weighted. As the optimization problem is nonlinear, there is no guarantee
that the solution is the global optimum. It is therefore important that the parameter
vector is initialized well. Additionally, constraints are added to the parameters to
help the optimizer converge to a good minimum, with a low cost. These included
requiring all parameters to be positive, and constraints that reflect prior knowledge
of the system. For example, requiring that the roll stiffness and damping coefficients
for the trailer are larger than for the tractor.
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2.2. System identification

The reason that the one-step ahead prediction error is minimized is to keep the
problem simple and make it computationally cheap. An alternative formulation
would be to predict the system several time steps forward, and minimize the pre-
diction error there. One advantage of that approach is that the prediction of impor-
tant states such as position and heading angle can directly be optimized. This is not
done as the simpler approach results in similar model performance while being much
faster.

Another method of identifying the parameter values is to estimate them online.
This can for example, be done using moving horizon estimation, where the deviation
of the model from a finite horizon of measurements is minimized. This has been used
for parameter and state estimation in autonomous systems [37, 38]. Estimating the
parameters online are beneficial if the parameters change over time, e.g. if different
trailers are used or if the environment changes.
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3 Lateral control techniques

This chapter presents different control techniques for lateral control of tractor-trailer
vehicles. By controlling the steering angle of the front wheels, the objective of the
lateral controller is to safely follow a path and keep the deviation from the path small.
First an error model of the system is presented, which is used in the remainder of the
thesis. Then linear-quadratic (LQ) control and model predictive control (MPC) are
introduced.

ψ1,r

ψ1 ψ1,r

ψ1,e

ψ2

dt

d

Y

X

Figure 3.1: Frenet-Serret frame of a tractor-trailer system.

3.1 Error models

For lateral control of a vehicle it is natural to represent the vehicle coordinates in a
Frenet-Serret frame as opposed to Cartesian coordinates. The Frenet-Serret frame is
a path coordinate system that represents the vehicle’s position as a progression along
a path, s(t) as well as its signed lateral distance to the path, d(t), see Figure 3.1. The
orientation of the tractor can also be represented relative to the path with ψ1,e =

ψ1 ´ ψ1,r.
In this representation an error model can be derived that describes how the path

relative coordinates change over time. An error model is especially useful in the
creation of an LQ controller, because the goal in the LQ optimization problem intro-
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3.1. Error models

duced in (3.27) is to move all states to the origin. The error models for the models in
Section 2.1 are presented below.

3.1.1 Kinematic tractor

In [39] an error model is created for a kinematic vehicle model. This transforms the
model in Equation (2.1) to the following:

ẋe =

[
ḋ

ψ̇1,e

]
=

[
v sin(ψ1,e + β1)

ψ̇1 ´ ṡc(s)

]
(3.1)

where c(s) is the curvature of the path. The velocity along the path, ṡ is given by:

ṡ =
v cos (ψ1,e + β1)

1´ dc(s)
(3.2)

which is further assumed to be ṡ = v to simplify the model. This assumption is valid
when ψ1,e + β1 and dc(s) are close to zero. The expression for the yaw rate of the
tractor, ψ̇1 is found in Equation (2.1). Inserting it together with the simplified ṡ into
Equation (3.1) yields:

ẋe =

[
v sin(ψ1,e + β1)

v
a12

sin(β1)´ vc(s)

]
(3.3)

where the sideslip of the tractor, β1 is given by:

β1 = arctan
(

a12

a11 + a12
tan δ f

)
(3.4)

3.1.2 Kinematic trailer

Using the kinematic trailer model presented in Section 2.1.2, an error model is de-
rived. The kinematic trailer model can be transformed in the same way as was done
in the previous section for the kinematic tractor model. In addition to the error states
found in the previous section, an additional state must be added to represent the er-
ror in the hitch angle, Γe. This results in the following error model for the kinematic
trailer:

ẋe =

 ḋ
ψ̇1,e

Γ̇e

 =

v sin(ψ1,e + β1)

ψ̇1 ´ ṡc(s)
Γ̇´ Γ̇r

 (3.5)

where Γ denotes the hitch angle, which is given by:

Γ = ψ1 ´ ψ2 (3.6)

Furthermore, Γr denotes the hitch angle reference and a definition of it is given in
Section 3.1.6. The tractor and trailer yaw rates, ψ̇1 and ψ̇2, are found in Equation (2.2).
These expressions, together with the simplified ṡ from Section 3.1.1 are inserted into
(3.5). The full error model is then given by:

ẋe =

 v sin(ψ1,e + β1)
v

a12
sin(β1)´ vc(s)

v
(

sin β1
a12

´
sin(Γe+Γr)

b2+a21
+ (b1´a12) cos(Γe+Γr) sin β1

a12(b2+a21)

)
´ Γ̇r

 (3.7)

where the sideslip of the tractor, β1 is given by (3.4).
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3.1.3 Dynamic tractor

Using the dynamic tractor model in Section 2.1.3 an error model is derived. In the
same manner as the kinematic models, an error model for vehicles with separate
longitudinal and lateral velocities, such as the dynamic models, is derived in [40].
This results in the following Frenet-Serret representation:

ḋ = vx sin ψ1,e + vy cos ψ1,e (3.8a)

ψ̇1,e = ψ̇1 ´ ṡc(s) (3.8b)

By differentiating these equations, the dynamic tractor model in Equation (2.3) can
be transformed to an error model:

ẋe =

[
ż
z̈

]
(3.9)

where:

ż =
[
ḋ ψ̇1,e

]T
(3.10a)

z̈ =

[
(v̇x ´ vyψ̇1,e) sin ψ1,e + (v̇y + vxψ̇1,e) cos ψ1,e

ψ̈1 ´ s̈c(s)´ ṡ2 d
ds c(s)

]
(3.10b)

The velocity, ṡ and acceleration, s̈ along the path are given by:

ṡ =
vx cos ψ1,e ´ vy sin ψ1,e

1´ dc(s)
(3.11a)

s̈ =
ψ̇1,evx sin (ψ1,e) + ψ̇1,evy cos (ψ1,e)´ v̇x cos (ψ1,e) + v̇y sin (ψ1,e)

(c(s)d´ 1)
+(

ḋc(s) + ṡd d
ds c(s)

) (
vx cos (ψ1,e)´ vy sin (ψ1,e)

)
(c(s)d´ 1)2 (3.11b)

Similarly to the kinematic error models, ṡ is assumed to be equal to vx. Additionally
the longitudinal speed is assumed to be constant, which results in s̈ = v̇x = 0. With
these assumptions together with v̇y, and ψ̈1 from (2.3), as well as vy from (3.8a), z̈
becomes:

z̈ =

[
(vx sin ψ1,e ´ ḋ)ψ̇1,e tan ψ1,e + ( 1

m1

(
Fy, f cos δ f + Fy,r

)
´ vxψ̇1,r) cos ψ1,e

1
Izz,1

(
a11Fy, f cos δ f ´ a12Fy,r

)
´ ṡ2 d

ds c(s)

]
(3.12)

3.1.4 Dynamic tractor-trailer

Using the dynamic tractor-trailer model in Section 2.1.4 an error model is derived.
This is done using the same procedure as for the dynamic tractor model. Similarly to
Section 3.1.2, the hitch angle error has to be added, which results in:

ẋe =

[
ż
z̈

]
(3.13)
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where:

ż =
[
ḋ ψ̇1,e Γ̇e

]T
(3.14a)

z̈ =

(v̇x ´ vyψ̇1,e) sin ψ1,e + (v̇y + vxψ̇1,e) cos ψ1,e

ψ̈1 ´ s̈c(s)´ ṡ2 d
ds c(s)

Γ̈´ Γ̈r

 (3.14b)

The expressions for v̇y, ψ̈1, and ψ̈2 are found in (2.4) and vy is found in (3.8a). This
together with the simplified ṡ, and s̈ results in the following expression:

z̈ =

(vx sin ψ1,e ´ ḋ)ψ̇1,e tan ψ1,e + ((M´1
ψ H̃ψ)1 + vxψ̇1,e) cos ψ1,e

(M´1
ψ H̃ψ)2 ´ ṡ2 d

ds c(s)
(M´1

ψ H̃ψ)2 ´ (M´1
ψ H̃ψ)3 ´ Γ̈r

 (3.15)

where the notation (a)i denotes the i:th element of the vector a and H̃ψ is an alias for:

H̃ψ = Hψ

(
q, q̇, vx,

ḋ´ vx sin ψ1,e

cos ψ1,e
, Fy

)
(3.16)

where:

q =
[
ψ1,e + ψ1,r ψ1,e + ψ1,r ´ Γe ´ Γr

]T
(3.17a)

q̇ =
[
ψ̇1,e + vxc(s) ψ̇1,e + vxc(s)´ Γ̇e + Γ̇r

]T
(3.17b)

from Section 2.1.4.

3.1.5 Dynamic tractor-trailer roll

The error model of the dynamic trailer is naturally extended to include roll. This is
done by adding an error state for the tractor and trailer roll angles and rates, φ1,e and
φ2,e

ẋe =

[
ż
z̈

]
(3.18)

where:

ż =
[
ḋ ψ̇1,e Γ̇e φ̇1,e φ̇2,e

]T
(3.19a)

z̈ =


(v̇x ´ vyψ̇1,e) sin ψ1,e + (v̇y + vxψ̇1,e) cos ψ1,e

ψ̈1 ´ s̈c(s)´ ṡ2 d
ds c(s)

Γ̈´ Γ̈r

φ̈1 ´ φ̈1,r

φ̈2 ´ φ̈2,r

 (3.19b)

The roll references φ̈1,r and φ̈2,r are further discussed in Section 3.1.6. The expressions
for v̇y, ψ̈1, ψ̈2, φ̈1, and φ̈2 are found in (2.6) and vy is found in (3.8a). This together
with the simplified ṡ, and s̈ results in the following expression:

z̈ =


(vx sin ψ1,e ´ ḋ)ψ̇1,e tan ψ1,e + ((M´1

φ H̃φ)1 + vxψ̇1,e) cos ψ1,e

(M´1
φ H̃φ)2 ´ ṡ2 d

ds c(s)
(M´1

φ H̃φ)2 ´ (M´1
φ H̃φ)3 ´ Γ̈r

(M´1
φ H̃φ)4 ´ φ̈1,r

(M´1
φ H̃φ)5 ´ φ̈2,r

 (3.20)
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where H̃φ is an alias for:

H̃φ = Hφ

(
q, q̇, vx,

ḋ´ vx sin ψ1,e

cos ψ1,e
, Fy

)
(3.21)

where:

q =
[
ψ1,e + ψ1,r ψ1,e + ψ1,r ´ Γe ´ Γr ψ1,e + ψ1,r φ2,e + φ2,r

]T
(3.22a)

q̇ =
[
ψ̇1,e + vxc(s) ψ̇1,e + vxc(s)´ Γ̇e + Γ̇r ψ̇1,e + ψ̇1,r ψ̇2,e + ψ̇2,r

]T
(3.22b)

from Section 2.1.5.

3.1.6 Trailer reference

When a trailer or roll model is used, up to six additional states are available: the hitch
angle Γ = ψ1 ´ ψ2, the roll angle of the tractor φ1, the roll angle of the trailer φ2, as
well as the rate of these states. There are many possibilities for how the controllers
could use these states. The most simple approach would be to disregard them and
only weight their effect on the tractor. However, this may not lead to satisfactory
results, as the goal of the controller is not to only minimize the tractor errors, but to
minimize the deviation from the reference for both the tractor and trailer.

One straightforward way to do this would be to instead control all trailer and roll
states to zero. This approach is selected for the roll angles and rates, as minimizing
all roll motion is desired. This means that φ̈1,r and φ̈2,r are set to zero in the error
model. However, this is not the case with the hitch angle and rate, as this would not
minimize the trailer deviation unless the reference is a straight line and the tractor
errors are zero. In spite of this, it could still result in a low deviation as large trailer
oscillations would be avoided.

These arguments motivate the need for a hitch angle reference that actually min-
imizes the deviation of the trailer. One problem with this is that no general closed-
form expression for the trailer deviation exists [8]. In an MPC controller, this could
be circumvented by numerically calculating the trailer deviation, and using finite dif-
ferences to approximate its derivatives, which is done in [10] for a path planner. This
is not used as it would make the optimization slower and because there is no direct
equivalent for the LQ controller. Instead a hitch angle reference, Γr is calculated by
finding the hitch angle that minimizes the trailer deviation when ψ1,e = 0 and d = 0.
This is done numerically for every point of the path.

The hitch reference is approximately related to the trailer cross-track error accord-
ing to:

dt « d´ b1 sin ψ1,e ´ (b2 + a21) sin (ψ1,e ´ Γe) (3.23)

This relation approximates the cross-track error by projecting the position of the
trailer on a straight line with the same slope as the tractor reference point. See Fig-
ure 3.2 for a visualization of this approximation.

The approximated cross-track error can be included in the LQ and MPC con-
trollers by modifying the weight matrix Q, as done in [20]. Naturally, this can only be
done for the trailer model, and is done as follows. First a new vector is defined with
both the error states and the cross-track approximation:

z =

[
xe

dt

]
(3.24)
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d̄t

d

Figure 3.2: The approximated trailer cross-track error d̄t, shown together with the
dashed reference position.

By linearizing Equation (3.23), this can then be written as linear function of the state
vector.

z «

[
In

Bdt
Bxe

ˇ

ˇ

ˇ

xe=0

]
xe

4= Mxe (3.25)

The relation between the weight matrix for z and xe can then be written as:

zTQz « xT
e MTQM
looomooon

Q

xe (3.26)

where Q allows the semitrailer cross-track error in z to be weighted.

3.2 Linear-quadratic regulator

In this section the LQ controller is introduced. The control signal, u(t) in the LQ
controller consists of two parts, the feedforward u0 and the state feedback Kx(t). The
purpose of the feedforward is to track the reference signal, while the feedback should
compensate for modeling errors and other disturbances.

The feedback gain, K is calculated with LQ control, which is a method of opti-
mally determining a linear state feedback control law for linear systems [41]. The
time-invariant infinite horizon LQ control problem is:

min
u(t)

J =
ż 8

0
x(t)TQx(t) + u(t)TRu(t)dt

s.t. ẋ(t) = Ax(t) + Bu(t)

x(0) = x0

(3.27)

The solution to this problem is a linear state feedback controller, where the feedback
gains is:

K = ´R´1BTP (3.28)

where the Riccati matrix, P is the solution to the algebraic Riccati equation:

ATP + PA´ PBR´1BTP + Q = 0 (3.29)

This matrix represents the optimal infinite horizon cost, J = xT
0 Px0 to control the

system from x0 to the origin.
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As the models in Section 3.1 are not linear, LQ control cannot directly be applied.
Therefore, the matrices A and B are computed by linearizing the error models around
an operating point. In the work, the error models are linearized around a straight
reference path with a constant longitudinal velocity:

A =
B fe(x, u)
Bx

ˇ

ˇ

ˇ

ˇ

c=0, d=0, ψ1,e=0, Γ1,e=0, vx=vx

(3.30a)

B =
B fe(x, u)
Bu

ˇ

ˇ

ˇ

ˇ

c=0, d=0, ψ1,e=0, Γ1,e=0, vx=vx

(3.30b)

where fe(¨) is the nonlinear error model. As the longitudinal velocity has large effects
on the vehicle, the controller would not perform well if it was linearized for only one
velocity. To solve this issue, the LQ problem is solved for a large range of velocities.
Gain scheduling techniques are then used to interpolate between the gains at the
different operating points. The resulting gain scheduled controller will no longer
minimize the cost in (3.27) and the performance is only guaranteed for the linearized
operating points.

3.2.1 Feedforward

The feedforward term is formulated based on the model. This results in three differ-
ent expressions, one for the kinematic models, one for the dynamic tractor, and one
for the dynamic trailers, which can be found in [29]. For the kinematic models, the
relation between steering angle and curvature in steady-state is formulated as:

u0 = (a11 + a12)c(s) (3.31)

For the dynamic models the understeer gradient, Kus is additionally incorporated,
resulting in:

u0 = (a11 + a12)c(s) + Kusv2
xc(s) (3.32)

The understeer gradient describes the handling characteristics of the vehicle and is a
function of the tractor weight distribution and the cornering stiffnesses of front and
rear tires [29]:

Kus =

(
W f

Cα, f g
´

Wr

Cα,rg

)
(3.33)

where W f and Wr are the vertical force on the front and rear axles, respectively. By
including the understeer gradient, the feedforward is capable of compensating for the
vehicle understeer or oversteer that occurs at higher speeds. The difference between
the feedforward for the dynamic tractor and the dynamic trailer models is in how the
vertical forces are calculated. For the tractor model, they are defined as follows:

W f = m1g
a12

a11 + a12
Wr = m1g

a12

a11 + a12
(3.34)

For the trailer model the trailer mass is included, which results in:

W f = m1g
a12

a11 + a12
Wr = m1g

a12

a11 + a12
+ m2g

a21

b2 + a21
(3.35)
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3.3. Model predictive control

Curvature saturation

The feedforward term described above naively tries to follow the reference, regard-
less of how aggressive it is. When a trailer is added, this can lead to excessive oscil-
lations of the trailer system. For this reason, the impact of the feedforward term on
the total control law is adjusted depending on the current speed and curvature. This
is done by limiting the value of the curvature with regards to a maximum allowed
lateral acceleration before computing the feedforward value.

c̄(s) =

$

&

%

c(s), if ´ ay,max

v2
x
ď c(s) ď ay,max

v2
x

sign c(s) ¨ ay,max

v2
x

, otherwise
(3.36)

3.3 Model predictive control

Model predictive control is a general control methodology where an optimal control
problem (OCP) is solved online with a system in a closed-loop. Traditionally MPC
was used in the process industry to control slow systems. However, increased avail-
ability of powerful computing hardware and optimization solvers, have introduced
MPC to many other applications. It is widely used for the control of vehicles and
is considered an especially effective method when the vehicle model is more com-
plex [4]. One additional benefit with MPC is the ability to have control and state
constraints in the OCP. This can improve the controller’s performance over other so-
lutions, such as naive clamping of the control signal.

The nonlinear MPC problem is defined as follows:

min
u(t)

φ(x(t0 + T), t0 + T) +
ż t0+T

t0

L(x(t), u(t), t)dt

s.t. ẋ(t) = f (x(t), u(t), t),

x(t) P X, u(t) P U,

x(t0) = x0

(3.37)

where φ is the terminal cost function, L the stage cost function and T the time hori-
zon, X and U represent the constraints on the states and controls, respectively, and
x0 is the initial state. As opposed to the infinite horizon LQ problem in (3.27), the
MPC problem has a finite horizon, T. This parameter balances how well the solution
approximates an infinite horizon solution and the computational requirements of the
controller. The problem is solved repeatedly at every time step, with x0 set to the
current state. Here, only u(t0) is applied to the system at every time step, while the
rest is discarded.

To solve the problem in (3.38), it is first discretized with an Euler forward method
and cast as a nonlinear program using direct multiple shooting [42]. The created
nonlinear program can then be solved with a general nonlinear solver, such as IPOPT
[43]. As with most nonlinear optimization problems there is no guarantee that the
solver will converge to the global optimum, therefore it is important to initialize the
problem with a good initial guess. When the problem is solved in an MPC, it can be
warm-started with the solution from the previous time-step.

The implemented MPC controller uses constraints on both the steering angle, δ f
and rate, δ̇ f , while no constraints are used on the other vehicle states.
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3.3. Model predictive control

3.3.1 Linear MPC

As the nonlinear optimal control problem in (3.38) can be hard to solve, a simpler
linear MPC problem is defined as:

min
u(t)

‖x(t0 + T)‖2
QT

+

ż t0+T

t0

‖x(t)‖2
Q + ‖u(t)‖2

Rdt

s.t. ẋ(t) = A(t)x(t) + B(t)u(t),

x(t) P X, u(t) P U,

x(t0) = x0

(3.38)

where QT is the terminal weight, Q the state weight, and R the control weight. More-
over, A(t) and B(t) define the linear state space model. Linear MPC requires that the
problem in (3.38) fulfills three conditions:

• The cost functions are quadratic.

• The model is linear and may be time-variant.

• The sets of allowed controls and states are convex polytopes, i.e. the constraints
are linear.

The resulting problem can be solved using quadratic programming. Quadratic pro-
gramming gives the MPC many guarantees that do not exist for the nonlinear prob-
lem. Most importantly it guarantees convergence to the global optimum if it exists.
Additionally, when quadratic programming is used, it is possible to calculate a worst-
case bound on the number of iterations until convergence. This makes sure, that the
MPC controller is safely implementable in a real-time system [44, 45].

When a linear MPC controller is created, the weight matrix for the terminal cost
QT is set to the Riccati matrix, which is calculated by solving (3.29). This is done us-
ing the error model linearized around a straight reference path with the longitudinal
velocity set to 70 km/h, in the same manner as in (3.30).

3.3.2 Reference signal

For the MPC controller, the future reference signal is included in the optimization
problem to give the controller preview capability. The reference signal for the error
model discussed in Section 3.1, consists of curvature, the derivative of curvature,
and the hitch angle reference. It is created by assuming that the vehicle travels at
the current speed along the reference line. The references are then extracted at the
following arc lengths:

s = s0 + vxTsk k P 0, 1, . . . ,
T
Ts

(3.39)

where s0 is the current arc length and Ts is the sampling time of the controller.
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4 Results

This chapter presents the results that are obtained by using the previously defined
methods. The results are divided into two separate parts. In Section 4.1 the models
are presented with their parameters together with their predictive performance. Then
in Section 4.2, the performance of using these models with an LQ and MPC controller
is presented and discussed.

4.1 Modeling

This section consists of a short description of the dataset, the implementation of the
identification procedure from Section 2.2, how the models are validated, and the re-
sults from the validation together with a discussion of the results.

4.1.1 Dataset

A system identification dataset is created with TruckMaker. As the goal of the models
is to describe the system well during aggressive maneuvering, the dataset should
reflect this and excite the dynamics of the vehicle. Therefore, the dataset consists of
double lane change maneuvers and driving with aggressive sinusoidal steering at
speeds ranging from 40 km/h to 100 km/h for a total of 20 maneuvers. The dataset
includes the states and control signals of the models with a sampling time of 10 ms.

The dataset is split into a separate training and validation set, and only the train-
ing data is used during identification, while the validation is used for the evaluation
of the models.

As the kinematic models assume that no tire slip occurs, the aggressive high-
speed maneuvers are excluded from the dataset when they are identified. This is
done to ensure that these models are accurate for conservative driving, where kine-
matic models should behave well.

4.1.2 Implementation

The nonlinear optimization problem in (2.15) is constructed for the different models
in CasADi [46] and solved using IPOPT [43]. A step size of 10 ms is selected for the
one-step predictor to match the sampling time of the data. The same procedure is
performed for all models with one exception, the dynamic roll model. The reason
for this is that the optimizer has trouble finding a good minimum for the roll model,
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4.1. Modeling

when all parameters are free. Because of this, the parameters of this model are iden-
tified in a two-stage approach. First, the parameters shared with the dynamic trailer
model are identified by using the dynamic trailer model and disregarding roll. Then,
these parameters are fixed while the rest of the parameters are identified. This is
similar to the estimation approach in [33], where the same two-stage method is used
but for slightly different parameters. A third stage where all parameters are free and
initialized with the solution from the second stage could be added. However, this
barely improved the model fit and is therefore disregarded.

4.1.3 Validation

Validation is done by evaluating the prediction performance of the model in a longer
time horizon than the 10 ms horizon they are identified with. It is important that the
models perform well during longer horizons, as they are used to simulate the system
forwards in the MPC controller. A prediction horizon of 1 s is selected as a reasonable
length.

The evaluation is performed on double lane change maneuvers of varying speeds.
The performance of the predictions at varying parts of the maneuvers are averaged
using a root-mean-square error (RMSE).

4.1.4 Model performance

The system identification procedure is performed for all models. An overview of
the performance of the models can be seen in Table 4.1, which presents the predic-
tion errors of the models for all test data. It can be seen that the prediction errors of
the kinematic models are particularly high, especially for the position of the tractor.
This is quite natural as the full dataset includes high-speed aggressive driving with
large sideslip angles, which severely violates the no-slip assumptions in the kine-
matic models. Between the dynamic models, the performance of predicting tractor
pose differs much less. The largest difference is found when a trailer is included in
the model, which in addition to modeling the hitch dynamics, also reduces the pre-
diction error in position by around a third. Furthermore, the dynamic trailer model
with a nonlinear tire model improves the performance slightly over the same model
with a linear tire model. Finally, the trailer model with roll has practically the same
performance as the one without. One possibility for this is that there is too little
energy in the rolling motion relative to the rest of the system. This can be seen by
comparing the energy in rotation along the roll axis with rotation around the hitch
point for the trailer. This is done in Figure 4.1, where it can be seen that the kinetic
energy in the roll motion is almost negligible in comparison to motion around the
hitch point. This explains one possible reason why adding dynamic hitch states to
the model improves the prediction performance, while adding roll leaves it largely
unchanged.

Comparison of dynamic and kinematic model

The errors in the previous table only describe how the models performed on the
whole dataset. To get a more detailed understanding of how the models behave, the
prediction errors are plotted against the speed of the maneuvers. In Figure 4.2, the
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4.1. Modeling

Table 4.1: RMSE of 1 s predictions using the different models.

Model
Position

(m)
Heading
angle (°)

Hitch
angle (°)

Tractor roll
angle (°)

Trailer roll
angle (°)

Kinematic tractor 0.306 0.75 — — —
Dynamic tractor 0.060 0.31 — — —
Kinematic trailer 0.306 0.75 0.96 — —
Dynamic trailer 0.039 0.27 0.50 — —
Dynamic trailer w/nl tire 0.037 0.26 0.44 — —
Dynamic trailer w/roll 0.038 0.27 0.49 0.28 0.94

0 20 40 60 80 100 120 140 160

0.0

2.5

5.0

y-
co

or
di

na
te

[m
]

Position

0 20 40 60 80 100 120 140 160
x-coordinate [m]

0

10

20

En
er

gy
[k

J]

Kinetic energy

Energy in hitch motion
Energy in roll motion

Figure 4.1: The energy in roll motion and rotation around the hitch point for a trailer
during a double lane change maneuver in 70 km/h.

kinematic tractor and tractor-trailer models are compared with their dynamic coun-
terparts. This shows that the kinematic models have around the same prediction
error in position and heading as the dynamic models until around 55 km/h. After
this point, the kinematic models’ performance quickly worsens relative to the dy-
namic models. Some increase in prediction error of position is expected as the speed
increases, because the vehicle travels a longer distance during the 1 s horizon. How-
ever, this cannot explain the decrease in relative performance.

A similar behavior can be seen in the prediction error of the hitch angle, but it
is slightly different with the kinematic model performing better at low speeds, and
it does not perform worse until 75 km/h. The lower prediction error at low speeds
could be explained by the fact that the kinematic model is only fit to data with low
speed maneuvers, while the dynamic model is fit to a larger range of data. This
is indicative of the fact that the dynamic trailer model lacks the expressive power
to accurately describe the full dataset. The cause of this is likely that the nonlinear
behavior of the tires is prominent during more aggressive driving, which is further
discussed in the next section. Additionally, the assumption of small hitch angles, and
that the longitudinal velocities of the tractor and trailer are the same, may contribute
to this issue.
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Figure 4.2: The RMSE of 1 s predictions plotted against longitudinal speed for the
kinematic models, dynamic tractor model, and dynamic trailer model. Note that
both kinematic models have the exact same errors in position and heading.

The difference between the kinematic and dynamic models is further illustrated
in Figure 4.3. In this figure, 1 s predictions of position for both types of models are
plotted against the true values for a low (40 km/h) and high (70 km/h) speed. For
the low speed the models behave the same and there is barely any deviation from the
reference values. However, for the higher speed the kinematic model starts to predict
that the vehicle will turn more than the reference. At the same time, the dynamic
model appears to track the reference very well. This is the general behavior of the
kinematic models during more aggressive driving as they ignore sideslip and the
tendency of many vehicles to understeer [29].
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Figure 4.3: 1 s predictions of the tractor position for a low and high speed maneuver,
using a kinematic and dynamic model.
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4.1. Modeling

Comparison of dynamic models

The performance of the different dynamic models is presented in Figures 4.4 and 4.5.
The first of these shows a general comparison of the models, and the latter, the roll
angle predictive performance. Overall, this shows a similar result as is presented in
Table 4.1, with the trailer models having a smaller prediction error than the tractor
model, while at the same time not differing much from each other. The tractor model
has about the same performance in position error and slightly better in heading error
for speeds around 50 km/h to 70 km/h. Outside of this region the predictive ability
of this model worsens. However, it is still decent, reaching an average position error
of 0.11 m for 1 s predictions at 100 km/h. As an illustration, the vehicle travels „28 m
during the prediction horizon.
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Figure 4.4: The RMSE of 1 s predictions for the different dynamic models and for
different speeds. Note that the dynamic trailer model with roll overlaps the dynamic
model.
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Figure 4.5: The RMSE 1 s prediction error of the tractor and trailer roll angle for dif-
ferent speeds.

Just as the results in Section 4.1.4, the largest difference for the trailer models is
between the one with a nonlinear tire model and the rest. For these, the difference in
position and heading error are consistently quite small, but the linear model performs
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4.1. Modeling

slightly worse at almost every speed. For the hitch angle prediction, the difference
is larger and the linear model performs much worse at most speeds, while having
a slightly better performance at 100 km/h. This is most likely related to the worse
predictive performance of the dynamic trailer model compared with the kinematic
model at low speeds, discussed in the previous section. The cause of this is likely
that the full dataset includes aggressive driving, where the nonlinear properties of
the tires are substantial. The nonlinear effects are probably larger for the trailer as the
higher speeds cause it to oscillate heavily. When a linear tire model is fit to this data
it distorts the model and worsens model fit for low slip angles. This is visualized in
Figure 4.6, which shows a distorted linear tire model with a nonlinear true model. It
is also reflected in the cornering stiffnesses that are identified for the linear and non-
linear models. When a nonlinear tire model is used, the cornering stiffnesses increase
by 2.6 %, 12.6 %, and 38.3 % for the front, rear, and trailer wheels, respectively. This is
another indication that nonlinear effects are more prominent for the trailer
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Figure 4.6: The effect of fitting a linear tire model to a nonlinear underlying model.

As the system is evaluated in simulation, the tire slips can be plotted to show the
actual behavior. A plot of this can be seen in Figure 4.7, which shows the tire slips of
the front wheels, the rearmost tractor wheels, and the rearmost trailer wheels, for a
double lane change in 100 km/h. The previous result is reflected in this figure, with
the trailer tires having larger slip angles than the tractor tires.
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Figure 4.7: The tire slip angles for a double lane change in 100 km/h.

For the roll model, prediction performance of the position, heading, and hitch an-
gle hardly changes in comparison to the dynamic trailer model, just as in Section 4.1.4.
The predictive performance of roll, shown in Figure 4.5, is good for low speeds, but
worsens as speed increases. It is also better at predicting the tractor roll angle than
the trailer roll angle. To get some perspective, the largest expected roll angle of the
tractor and trailer are around 10°, when the suspension nears its end-stop. Some in-
crease in prediction error over velocity is anticipated as the magnitude of roll angles
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4.2. Control

increases with more aggressive driving. However, after 85 km/h the errors of both
the tractor and trailer roll angles increase much faster than before. This suggests that
the nonlinear effects, discussed in Section 2.1.5 start to have a larger effect, mostly
due to the suspension approaching its end-stop.

4.2 Control

General controller performance is presented in Section 4.2.3 for a range of maneuvers
at various speeds using the different models. Furthermore, an extended discussion
follows in Section 4.2.3, regarding how varying the parameters in the MPC controller
affects its performance. Finally, in Section 4.2.4 robustness evaluation is presented.

4.2.1 Implementation

The LQ controller described in Section 3.2 is implemented for the different models.
The controller weights for the different controllers are presented in Table 4.2, which
represent the respective diagonal element in the Q matrix. It was implemented with a
running rate of 100 Hz. Additionally, the steering signal and rate were constrained to
˘45° and ˘45 °/s, respectively, which are defined in Equation (2.10). This was done
by clipping the steering signal, uk and the rate, uk´uk´1

Ts
.

Table 4.2: The controller weights for the LQ controller, with R = 1

Model d ḋ dt ψ1,e ψ̇1,e Γe Γ̇e φ1,e φ̇1,e φ2,e φ̇2,e

Kinematic tractor 0.02 – – 0.3 – – – – – – –
Kinematic trailer 0.02 – 0 0.3 – 0.1 – – – – –
Dynamic tractor 0.02 0.3 – 0.3 1.5 – – – – – –
Dynamic trailer 0.02 0.3 0 0.3 1.5 0 2 – – – –
Dynamic trailer w/dt 0.02 0.1 0.25 0.1 0.5 0 1.5 – – – –
Dynamic trailer w/roll 0.02 0.3 0 0.3 1.5 0 2 0 0 0 2

The MPC problem in (3.38) is constructed for the different models in CasADi [46].
A time horizon of 5 s is selected, to give the controller a long preview of the ma-
neuver. The error models from Section 3.1 are used and discretized using an Euler
forward method with a sampling time of 100 ms. An extra state representing the
steering signal is added to the model and the steering angle rate is used as the input
to the model. Additionally, constraints are added to the steering angle and rate with
the same limits as above. The controller weights for the different MPC controllers
are presented in Table 4.3, which represent the respective diagonal element in the Q
matrix. All general performance and robustness evaluation is done using the models
with no weight on dt. The dynamic trailer model with the dt tuning is compared with
the regular tuning in Section 4.2.3.

When a linear tire model is used, the error model is linearized around the ref-
erence. The resulting quadratic optimization problem is then solved using qrqp, a
QP solver bundled with CasADi. For the model with a nonlinear tire model, the er-
rors and steering angle are assumed to be small, and small angle approximations are
performed to simplify the trigonometric expressions. The nonlinearity from the tire
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Table 4.3: The controller weights for the MPC controller, with R = 1

Model d ḋ dt ψ1,e ψ̇1,e Γe Γ̇e φ1,e φ̇1,e φ2,e φ̇2,e δ f

Kinematic tractor 0.2 – – 0.1 – – – – – – – 0.5
Kinematic trailer 0.2 – 0 0.1 – 10 – – – – – 0.5
Dynamic tractor 0.3 0 – 0 0.1 – – – – – – 1
Dynamic trailer 0.3 0 0 0 0.1 1 0.25 – – – – 1
Dynamic trailer conservative 0.3 0 0 0 0.1 1 6 – – – – 1
Dynamic trailer w/nl tire 0.3 0 0 0 0.1 1 4 – – – – 1
Dynamic trailer w/dt 1 0 0.3 0 0.1 0 0 – – – – 1
Dynamic trailer w/roll 0.3 0 0 0 0.1 1 0.25 0 0 0 0.5 1

model is still included in the problem. The resulting nonlinear optimization problem
is solved with IPOPT [43]. Finally, the running rate of the MPC controller was set to
10 Hz.

4.2.2 Evaluation

The controllers are evaluated by investigating their performance in the simulation
environment. The tests are performed for different maneuvers using a constant lon-
gitudinal velocity in the range of 50 km/h to 100 km/h with a resolution of 5 km/h.
The performance is evaluated according to several criteria. First, a run is consid-
ered a failure if the vehicle rolls over. If rollover is avoided, then the performance
is assessed with the following measures: tractor cross-track error, trailer cross-track
error, and maximum roll angle of the trailer. The tractor and trailer cross-track errors
indicate how well the vehicle follows the path. For a run they are averaged using
root-mean-square. The maximum roll angle is used as a measure of vehicle stabil-
ity. The reason that the trailer roll angle is used is because rollover of a tractor-trailer
tends to start at the rear of the trailer [21]. Roll angles at 10° and above are considered
critical as this is when the trailer nears rollover.

Maneuver description

Three different paths representing double-lane change maneuvers of varying aggres-
siveness are created for evaluation. The rollover threshold index is used as a measure
to determine path aggressiveness. This index describes the lowest value of lateral
acceleration which causes the vehicle to rollover for steady-state cornering. A typical
U.S. style five-axle tractor-trailer combination has a rollover threshold in the range
of 0.25 g to 0.5 g [32]. To determine the configuration of the double lane change, the
maximum lateral acceleration is calculated by using the maximum speed of 100 km/h
together with the largest curvature of the path (ay = cv2). The width of the maneu-
ver is selected to be 3 m, which roughly corresponds to the width of a normal drive
lane. The length is then selected such that the maximum lateral acceleration would be
4 m/s2 which is the approximate rollover threshold of the investigated vehicle. After
this, two more maneuvers are created by adjusting the length to create one more and
one less aggressive maneuver. The three different maneuvers are shown in Figure 4.8,
with the maximum curvature and lateral acceleration shown in Table 4.4.
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Figure 4.8: The three different double lane changes that the controllers are evaluated
on.

Table 4.4: The length, curvature and maximum lateral acceleration of the three ma-
neuvers.

Maneuver
length (m)

Max curvature
(1/m)

Max lateral acceleration
(m/s2)

100 0.0069 5.32
115 0.0052 4.01
130 0.0041 3.16

4.2.3 General performance

The following section is dedicated to results and discussion of the LQ and MPC con-
trollers’ performance for the maneuvers specified in Section 4.2.2.

LQR performance

In Figure 4.9 the performance of the LQ controller is presented for different speeds
during a double lane change of 100 m. As the speed increases, the cross-track errors
and roll angles increase for all the models. However, the performance and general
behavior differs between the models.

The controllers that use kinematic models perform well for lower speeds up to
55 km/h. After that, the tractor error quickly increases at a much higher rate than
the other models. This is likely related to the fact that the predictive performance of
position and heading for the kinematic models also worsen at around 55 km/h, as
discussed in Section 4.1.4. Both the controllers with kinematic models fail for speeds
above 90 km/h, as the controllers cannot handle the increased trailer momentum,
which results in the vehicle rolling over.

For the controller using a dynamic tractor model, the tractor cross-track error is
kept consistently low for all speeds. This leads to a more aggressive behavior, which
can be seen from the large roll angles for speeds above 85 km/h. This behavior be-
comes unmanageable for „95 km/h as the vehicle nears rollover.

The controllers using dynamic trailer models have the smallest trailer errors and
trailer roll angles compared to the others. This improved performance however,
comes at a cost of a larger tractor error. The controllers have the same general per-
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Figure 4.9: The performance of the LQ controllers at different speeds, for the 100 m
long maneuver.

formance for all speeds up to 85 km/h where they start to differ. At this speed, the
controller using the dynamic trailer model including roll outperform all other models
in terms of trailer error and roll angle.

Despite model choice, it is noted that the LQ controller had difficulties in mini-
mizing the effects of trailer oscillations during faster maneuvers. This is one of the
main reasons behind the large trailer errors and trailer roll angles. The controllers
that use the dynamic trailer models are better in this regard, however, the decrease
in trailer error barely compensates for the increase in tractor error. Instead, the addi-
tional states allow the controller to behave more conservatively. In turn, this allows
the controller to complete the maneuver at higher speeds without rolling over. This is
also the effect of including the roll angles, as it is another state that forces the system
to be more conservative.

The underlying issue with the LQ controller is that it tries to minimize the current
errors, without regard to the future reference. This is problematic, since the controller
will still follow the path, even when it is close to becoming infeasible.

Trailer cross-track error tuning In Section 3.1.6 a procedure is presented for direct
weighting of the trailer cross-track error. This is implemented for the LQ controller
and the method is further referenced to as dt-tuning. This controller is then tested by
using the dynamic trailer model for the 100 m double lane change. Furthermore, per-
formance is compared to the regularly tuned controlled, and the result is presented
in Figure 4.10.

The performance of the two tuning strategies are comparable over all measures,
although the dt-tuned controller shows a minor performance increase. The improved
performance of the dt-tuned controller becomes prominent for higher speeds. Al-
though the errors are quite large overall, it does manage to decrease all errors and the
roll angle for 80 km/h and upwards.
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Overall, the dt-tuning has a decent positive effect on performance at higher speeds
and generally improves the controller’s response to tuning.
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Figure 4.10: Comparison of the dt-tuning and the regular tuning for the LQR con-
troller with a dynamic trailer model.

MPC performance

In Figure 4.11, the performance of the MPC controller on the 100 m double lane
change is presented. The overall performance when using the MPC controller dif-
fers greatly between the models.
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Figure 4.11: The performance of the MPC controllers at different speeds, for the 100 m
long maneuver.

Just as with the LQ controller the kinematic models perform well for low speeds,
but as the speed increases, the errors also steadily increase. These controllers start
to deviate from the others around 60 km/h, and most notably struggles with large
trailer errors. The maximum trailer roll angles for these controllers nears critical val-
ues at 80 km/h, and at „90 km/h this leads to vehicle rollover.

The controller using the dynamic tractor model has seemingly good performance
despite its lack of trailer information. What is interesting however, is that the trailer
error does not become worse relative the trailer models, until at 90 km/h. Although
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the controller has fair performance in many regards, it differentiates from the con-
trollers using dynamic trailer models, by having large roll angles for the higher
speeds. Most noteworthy, the controller that uses a dynamic tractor model has al-
most twice the roll angle („10°) than the controller with the lowest value („5°) for
100 km/h. This is discouraging, since a trailer roll angle of 10°, especially at such a
high speed is considered critical in these tests.

For the controllers using dynamic trailer models, performance is comparable
when considering trailer cross-track error. The controller using the roll model how-
ever, shows slight improvement in decreasing the roll angle at the highest speed.
Interestingly, the controller using the dynamic trailer model (without roll) shows a
better performance in reducing the tractor error, and performs best in this regard
among all controllers.

Conclusively, the MPC controller performs better if the predictive performance
of the used model is good. This is motivated by the considerable difference in per-
formance when comparing controllers using dynamic models, with controllers using
kinematic models. Additionally, the MPC controller shows a significant performance
increase when equipped with a dynamic model that includes the trailer. Especially
considering how it not only outperforms its tractor counterpart in decreasing the
trailer error, but more significantly, the tractor error as well. Finally, although the
performance increases when a trailer is included in the model, there is no substantial
performance increase when extending the model to include roll. Despite the lack of
an overall performance increase, the added roll states allow the controller to reduce
the roll angles of the trailer. This is likely related to the discussion in Section 4.1.4,
and the comparison made between the energies in rotation around the hitch point
and trailer roll motion (see Figure 4.1).

Nonlinear model In Figure 4.12, the performance of the MPC controller using lin-
ear and nonlinear tire models are compared. This is done by using the dynamic trailer
model on the 100 m maneuver. Overall, the performance is similar, with almost the
same tractor error and maximum roll angle across all speeds. One slight difference
appears for the trailer errors at larger speeds, where the error for the nonlinear model
becomes approximately 10 cm larger than for the linear model. This may seem coun-
terintuitive to the better predictive ability of the nonlinear model compared with the
linear model presented in Section 4.1.4. Nevertheless, there are several explanations
for this. First, as the linear dynamic trailer model is also used in the LQ controller,
more time is spent tuning controllers with this model. In turn, this likely led to the
linear model being slightly better tuned. Second, the increase in trailer error is prob-
ably caused by the larger cornering stiffnesses of the nonlinear model. These help
the nonlinear model describes the trailer motion more accurately, compared to the
linear model that will overestimate the trailer motion. However, this overestimation
will make the controller more conservative, as it believes that the trailer will oscil-
late more than it does. Finally, as the MPC controller is run in a closed loop with the
system, the feedback mechanism from this can compensate for the mismatch between
the model and the system. This makes model improvements past a certain point have
diminishing returns, as the controller is robust against small modeling errors.

36



4.2. Control

50 60 70 80 90 100
Speed [km/h]

0.0

0.1

0.2

0.3

0.4

D
is

ta
nc

e
[m

]

Tractor cross-track RMSE

Linear model
Nonlinear model

50 60 70 80 90 100
Speed [km/h]

0.0

0.1

0.2

0.3

0.4

0.5

D
is

ta
nc

e
[m

]

Trailer cross-track RMSE

50 60 70 80 90 100
Speed [km/h]

0

2

4

6

8

A
ng

le
[°

]

Maximum roll angle

Figure 4.12: Comparison of using a linear and nonlinear tire model in the MPC con-
troller with a dynamic trailer model.

Trailer cross-track error tuning Similarly to the LQ controller, a dt-tuned MPC con-
troller is implemented. This is done with the dynamic trailer model, and the con-
troller is tested for the 100 m double lane change. A comparison of the performance
between the regularly tuned, and dt-tuned controller is presented in Figure 4.13. It
can be seen that the performance is quite similar. The main difference is that trailer
error is smaller at higher speeds for the dt-tuning, at the expense of a slightly larger
tractor error. To see how the tuning affects the behavior of the vehicle, the paths are
compared for increasing velocities, which can be seen in Figure 4.14. In this plot, it
can be seen that the dt-tuning changes the behavior in two main ways. First, it re-
duces the large overshoot of the trailer at the end of the maneuver. Second, it centers
the trailer trajectory slightly better on the reference path.

Conclusively, dt-tuning for the MPC controller shows an increase in general
performance at higher speeds. The greatest benefit however, is that tuning the
trailer cross-track error is more intuitive since the performance variables are directly
weighted.
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Figure 4.13: Comparison of the dt-tuning and the regular tuning for the MPC con-
troller with a dynamic trailer model.

Comparison of controller performance

By comparing the results presented in the previous section, the MPC controller on av-
erage outperforms the LQ controller on all measures. The difference in performance
is highly related to the behaviors of the respective controllers. This can be visual-
ized by comparing the trajectory of the tractor and trailer for the different controllers.
This is done in Figure 4.15, using the dynamic trailer model for the 100 m maneuver
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Figure 4.14: Comparison of the tractor and trailer paths for the two different tuning
strategies.

at increasing speeds. This shows that for low speeds, both the LQ and MPC con-
trollers track the reference well. However, when the speed increases their behaviors
diverge. As the MPC controller is aware of the future path, it can realize that naively
following the path will lead to massive trailer errors. Because of this, it can avoid this
scenario by cutting through the curve. As the speed increases, it takes increasingly
conservative actions.
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Figure 4.15: Comparison of the tractor and trailer paths for double lane changes of
increasing speed, using a LQ and MPC controller with the dynamic trailer model.

The LQ controller, on the other hand, handles the situation completely differently.
For higher speeds it starts to deviate from the path, just like the MPC. However,
it does this in a much worse way. Instead of conservatively turning before the left
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curve, it does it after. This becomes a large problem when the path suddenly changes
direction from left to right, leading to a large heading error. When the controller
tries to compensate for this heading error, it results in a large trailer swing. This
is especially an issue because of the aggressiveness of the feedforward. A similar
problem is found in [17], where it is shown that LQ with feedforward control has a
tendency to overshoot the trajectory during aggressive maneuvers.

This shows one of the main differences between the LQ and MPC controllers.
As the MPC is aware of the future reference, it can handle a path that is close to
infeasibility, while the LQ is incapable of this.

Performance for additional maneuvers

The controllers are further tested on all maneuvers specified in Section 4.2.2 to inves-
tigate possible correlation between performance and path properties. Figures 4.16
and 4.17 show the performance of the LQ and MPC controllers for all maneuvers
plotted against maximum lateral acceleration of the path. There is a notable disper-
sion of the data points in the cross-track errors plots. Although there is a clear a
correlation between these errors and the acceleration, the variance is quite large. This
implies that maximum lateral acceleration of the reference cannot by itself describe
the cross-track errors.
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Figure 4.16: The performance of the LQ controllers plotted against the theoretical
maximum lateral acceleration of the reference.

There seem to be a strong linear correlation between the maximum trailer roll
angle and lateral acceleration. The relation is quite reasonable as the steady state roll
angle is a linear function of the lateral force, which can be seen in Equation (2.6),
when all rates are set to zero.

Interestingly, there seems to be much less variation when the errors are plotted
against the lateral acceleration of the reference multiplied by the vehicle speed, i.e.
ay,maxvx. This can be seen in Figures 4.18 and 4.19. This interaction effect describes
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Figure 4.17: The performance of the MPC controllers plotted against the theoretical
maximum lateral acceleration of the reference.

the cross-track errors particularly well, but show no additional improvement in de-
scribing the roll angle.
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Figure 4.18: The performance of the LQR controllers plotted against an interaction ef-
fect of the velocity and the theoretical maximum lateral acceleration of the reference.

The requirement of velocity in addition to lateral acceleration to accurately pre-
dict the increasing controller errors, makes intuitive sense. The errors during more
aggressive driving are largely caused by increased oscillation of the trailer. The en-
ergy in this oscillatory motion must come from the rest of the system. As the energy
in the system is speed dependent, it is likely that the oscillations are also dependent
on the speed, in addition to the lateral acceleration. A similar effect is seen for yaw
instability of trailers, which can only happen at higher speeds [29].
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Figure 4.19: The performance of the MPC controllers plotted against an interaction
effect of the velocity and the theoretical maximum lateral acceleration of the refer-
ence.

Parameters of the MPC controller

In Figure 4.20 the effect of changing the running rate, sampling rate, and time horizon
on the performance of the MPC is presented. This is done using the dynamic trailer
model for the 100 m maneuver with a speed of 85 km/h. When one parameter is
varied, the others are kept constant at their respective nominal value.
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Figure 4.20: The effect of varying the MPC parameters on its performance. For a run
at 85 km/h on the 100 m maneuver.
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Running rate The performance is largely unaffected by the running rates of the
controller in the tested interval. One reason is probably because the MPC controller
outputs the steering rate instead of angle, which allows it to affect the future steer-
ing angle without running faster. However, this result might not transfer very well
outside of this exact scenario as there are no measurement errors nor external dis-
turbances in the simulation. When larger disturbances are present, the system might
drift far off the predicted path if the running rate is too low, i.e. there is less feedback
to compensate for model errors.

Sampling rate The performance is much more affected by the sampling rate. For
large rates it is still mostly constant, although when the rate is decreased below 10 Hz,
then the trailer error decreases slightly, at the cost of a larger tractor error. One possi-
ble reason for this could be that the larger discretization error from sampling slower,
makes the model overestimate the trailer oscillation. This makes the controller more
conservative, which increases the tractor error and decreases the trailer error. This is
similar to [18], where it is found that a lower sampling rate could increase the perfor-
mance of an MPC controller with a kinematic model. However, it is different as the
discretization error actually improved their kinematic model, while in this thesis, it
likely just made the dynamic trailer model overestimate the trailer states.

Time horizon The largest difference of performance is found for the time horizon.
When it is lowered below „3 s, the trailer error starts to rapidly increase and at 1 s
it becomes more than five times larger than the baseline error. At the same time, the
tractor error decreases slightly, although much less than the trailer error increases.
The cause of this is likely that the shorter time horizon removes the ability of the MPC
to deviate from the maneuver in a calculated way, as it is no longer aware of how the
path changes ahead. This is probably why the error starts to increase around 3 s, as
that equals a prediction distance of „71 m for 85 km/h, which is also the lookahead
distance required to see the second lane change before the first has started. Interest-
ingly, as the MPC uses the Riccati matrix as the terminal weight, its behavior will
approximate the LQ controller for lower time horizons. This can be seen as the LQ
in the previous sections tends to greedily reduce the tractor error, at the cost of an
increased trailer error. However, as the controllers are slightly differently tuned, and
because of the feedforward term in the LQ controller, the performance is not exactly
the same.

4.2.4 Robustness evaluation

The properties of a semitrailer are highly dependent on several factors. Some of these
include static features that vary depending on the manufacturer and model. For ex-
ample: wheelbase, track width, number of axles, et cetera. Other factors are more
related to the cargo, such as the total weight and distribution of load. Additionally,
the properties of a trailer are also affected by changes in the environment. Notably,
the road coefficient of friction affects the handling stability of the vehicle and varies
depending on the current road and weather conditions. These factors play a major
role in the overall stability of the vehicle, and there is a wealth of literature regarding
the stability properties for various tractor-trailer combinations, [11, 13, 15, 28, 32, 47].
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For a freight moving truck, its task is performed with interchangeable trailers.
Since the properties of trailers may vary, the controllers should be evaluated under
these varying conditions. This is done by changing the values of selected parameters
in the simulation environment. The parameters of interest are longitudinal position
for trailer center of mass (COM), trailer inertia and road coefficient of friction. The
parameters are chosen due to their natural changeability, and presumably, major in-
fluence on the vehicle behavior and handling stability.

Using both the LQ and MPC controllers with the dynamic trailer model, the tests
are run for the 100 m double lane change at 85 km/h. Furthermore, a conservative
tuning of the MPC controller is created to see if performance during large parameter
uncertainties can be improved.

Controller performance against uncertainty in position of trailer COM is done by
moving it as far back as 3 m from the nominal position and up to 3 m in front of it.
Testing for performance during uncertainty in trailer inertia is done by varying the
mass of the trailer between 40 % to 140 % of its nominal value (31 610 kg), and scaling
the trailer moment of inertias linearly with the mass. Testing for road coefficient of
friction uncertainty is done by varying its value from 0.5 to 1.0. The lowest friction
corresponds to driving on a wet earth road, and the highest to driving on dry asphalt
[29].

LQR performance

The following section presents the LQ controller’s performance under parameter un-
certainty.

Trailer load distribution In Figure 4.21, the performance of the LQ controller is pre-
sented when longitudinal position of the trailer COM is varied. The results show an
increase in both cross-track errors when moving the COM rearwards. When moving
the COM forwards, the tractor error increases steadily. For the trailer error, it initially
becomes smaller until a critical point is reached when the roll angles become very
large. As the trailer COM is moved rearwards, the trailer is more prone to lateral tire
force saturation of the axles. This leads to trailer sway which becomes increasingly
hard for the controller to handle. As the COM is moved forward, rollover stability
is decreased [32]. The large roll angles that are produced greatly influences the over-
all system and the errors increase accordingly. When moving the trailer COM, 2 m
forwards from its nominal position, rollover becomes unavoidable.

It is clear that moving the COM of the trailer generally leads to oscillatory behav-
ior, or in worst case, rollover instability. The controller fails to handle these changes,
ultimately leading to a decrease in performance.

Trailer inertia In Figure 4.22, the performance of the LQ controller is presented
when the trailer inertia is varied. The results show a steady increase in both cross-
track errors and maximum trailer roll angle as the mass increases.

As the mass increases the handling stability of the trailer decreases. This is ex-
plained with the cornering stiffnesses of the tires not having a linear relation to the
vertical load [21, 13]. Since the relation is not linear, the cornering stiffnesses of the
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Figure 4.21: The effect of the moving the trailer COM longitudinally on the perfor-
mance of the LQ controller with a dynamic trailer model.

tires will not increase by the same amount as the mass. Therefore, the damping forces
will not increase as much either, making the trailer more prone to sway.

Similarly, to the results that are found in the previous section, the controller does
not handle the effects of mass uncertainty well.

40 60 80 100 120 140
% of nominal mass [-]

0.0

0.1

0.2

0.3

0.4

0.5

D
is

ta
nc

e
[m

]

Tractor cross-track RMSE

40 60 80 100 120 140
% of nominal mass [-]

0.0

0.5

1.0

1.5

2.0

D
is

ta
nc

e
[m

]

Trailer cross-track RMSE

40 60 80 100 120 140
% of nominal mass [-]

0

5

10

15

A
ng

le
[°

]

Maximum roll angle

Figure 4.22: The effect of the inertia of the trailer on the performance of the LQ con-
troller with a dynamic trailer model.

Road coefficient of friction In Figure 4.23, the performance of the LQ controller is
presented when the road coefficient of friction is varied. As the coefficient of friction
is reduced, the vehicle starts to skid, which changes the handling characteristics of
the vehicle. The cross-track errors of both the tractor and the trailer increases as the
friction decreases, motivated by the loss of traction. The trailer roll angle is almost
unaffected by the change in friction. The loss of adhesion means a decrease in the
lateral forces on the tires. As these are the main contributers to the rolling dynamics
of the trailer, the roll angle maintains mostly unchanged throughout the tests, with a
only minimal decrease at the lowest friction values.

From the previous tests it is shown that as trailer sway becomes more prominent,
the LQ controller shows a decrease in performance. Similarly to these, the controller
fails to react to these changes and underperforms in this case as well.

Summary By varying the parametric values for trailer COM, trailer inertia and road
coefficient of friction, the overall vehicle behavior changes. In most cases it leads
to decreased handling stability and a trailer that is prone to oscillations. For the
LQ controller this becomes problematic, due to its already aggressive behavior (see

44



4.2. Control

0.5 0.6 0.7 0.8 0.9 1.0
Friction coefficient [-]

0.0

0.1

0.2

0.3

0.4

0.5

D
is

ta
nc

e
[m

]

Tractor cross-track RMSE

0.5 0.6 0.7 0.8 0.9 1.0
Friction coefficient [-]

0.0

0.5

1.0

1.5

2.0

D
is

ta
nc

e
[m

]

Trailer cross-track RMSE

0.5 0.6 0.7 0.8 0.9 1.0
Friction coefficient [-]

0

5

10

15

A
ng

le
[°

]

Maximum roll angle

Figure 4.23: The effect of changing the friction coefficient of the road on the perfor-
mance of the LQ controller with a dynamic trailer model.

Section 4.2.3). As the parametric values are changed, the controller does not adjust its
behavior. This is a major drawback for this controller as it shows lack of robustness
against uncertainties in these scenarios.

MPC performance

The following section presents the MPC controller’s performance under parameter
uncertainty. In addition to the standard tuning used in most of the previous exper-
iments, a more conservative tuning is created to see if performance could be im-
proved. All robustness tests therefore include results for both the tuning strategies.

Trailer load distribution In Figure 4.24, the performance of the MPC controller is
presented when longitudinal position for the trailer COM is varied. Considering the
tractor error, both controllers maintain a near constant value for all tests. The conser-
vative controller has a „30 % increase in tractor error, which is expected as a more
conservative tuning will worsen the path-following abilities. The trailer oscillations
that become prominent as the COM is moved increasingly rearwards have a large
effect on the trailer errors. The effect is notable for both tuning strategies, though
the conservative tuning shows better performance for the tests when the COM is dis-
placed within the range of´2 m to 0 m. As the trailer COM is moved increasingly for-
wards, large trailer roll angles become prominent for the regularly tuned controller.
However, the conservative tuning has a large positive effect on the stability of the
system, as it manages to the keep the roll angles low.

With the MPC controller, moving the trailer COM affects the vehicle behavior, but
some of these effects may be inhibited by a more conservative tuning. Though this
tuning show some performance increase for the trailer error in limited intervals, the
positive effects are more prominent in the reduction of the trailer roll angles.

Trailer inertia In Figure 4.25, the performance of the MPC controller is presented
when the trailer inertia is varied. Once again, the tractor error maintains near con-
stant values for both controllers, though the conservatively tuned controller shows a
slight performance increase when the mass becomes very large. For the trailer errors,
the regularly tuned controller performs much better with a small trailer mass than
the conservative one. Performance becomes comparable around the trailer’s nomi-
nal value and upwards.
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Figure 4.24: The effect of the moving the trailer COM longitudinally on the perfor-
mance of the regular and conservative MPC controllers with a dynamic trailer model.

The difference between the controllers is more notable for the trailer roll angles.
For the regularly tuned controller, the maximum roll angles increases heavily when
mass is changed from its nominal value. For larger increases in mass, the roll angles
reach critical values. In contrast, the conservative controller maintains much lower
roll angles. Although, the roll angles become larger as the mass increase, they never
become as large as for the regularly tuned controller.

When varying the trailer inertia, performance of the MPC controller is most neg-
atively affected when its increased beyond its nominal value. The positive effects of
the conservatively tuned controller is mostly seen for the trailer roll angles. How-
ever, for smaller values of inertia, the conservatively tuned controller has large trailer
errors. On the contrary, this is when the regularly tuned controller performs particu-
larly well.
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Figure 4.25: The effect of the inertia of the trailer on the performance of the regular
and conservative MPC controllers with a dynamic trailer model.

Road coefficient of friction In Figure 4.26, the performance of the MPC controller is
presented when the road coefficient of friction is varied. Performance is very consis-
tent for both tractors error and trailer roll angles for both controllers. Most notably,
there is a major difference in trailer error when the friction is low. The conserva-
tive controller tries much harder to keep the trailer from swinging. At the limits of
adhesion, this is extremely beneficial as the risk of skidding is higher. For the low-
est friction values, the regularly tuned controller has 0.4 m (200 %) increase in trailer
error compared to the conservative one.
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Figure 4.26: The effect of changing the friction coefficient of the road on the perfor-
mance of the regular and conservative MPC controllers with a dynamic trailer model.

Summary When varying the longitudinal position of trailer COM, trailer inertia
and road coefficient of friction, the handling capabilities of the vehicle is largely
affected. With the MPC controller, some of these problems become more apparent
while others are better handled. Generally, the controller performs well within mod-
est margins of the parameters’ nominal values. The largest impact on the controller
performance in these tests is when the trailer inertia is increased or when the trailer
COM is moved far forward. The boundary values of these parameters are quite ex-
treme, and may not be representable for everyday situations. However, they do well
to illustrate more critical trailer configurations. Some of these behaviors, such as large
roll angles or excessive yaw motion are inhibited when tuning the MPC controller to
act more conservatively. The conservative tuning sacrifices a small tractor error to
reduce trailer oscillation. This controller shows a performance increase in some of
the edge cases for these tests, especially for a large trailer inertia, a small friction coef-
ficient and a large load displacement in the forward direction. What these tests have
in common, is they represent scenarios where the handling stability of the vehicle is
low, which the conservative controller handles well. Although the performance in-
crease is mostly noticeable in the extreme cases, it shows that the MPC controller can
be modified such that its more robust against uncertainties and possible instabilities.
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5 Conclusion

In this thesis, different models of various complexities have been developed for a
tractor-trailer vehicle. Additionally, linear quadratic control and model predictive
control have been investigated as potential strategies for automatic steering during
evasive maneuvers. The main contribution of this work, is the comparative evalu-
ation of dynamic models for lateral control design of tractor-trailer vehicles. In this
chapter, the results are summarized, and future works are discussed.

5.1 Conclusions

This thesis has treated modeling and control design of tractor-trailer vehicles. The
focus of this work has been the models’, and controllers’ performance during aggres-
sive maneuvers.

Models of varying complexity of the vehicle have been presented. The models
range from a simple kinematic model, to a complex dynamic roll model. It was found
that the predictive ability of the models varied extensively. The kinematic models
performed exceptionally well for low speeds but struggled as the speed increased.
On the contrary, the dynamic models were much better in this regard. Furthermore,
the inclusion of a trailer in the model, improved the model’s predictive ability. In-
cluding roll in the model showed decent results for its ability to predict roll motion,
but did not improve prediction of the pose, compared to the model without roll.

Two control methods were used in this thesis, linear quadratic control and model
predictive control. With the LQ controller, the best performance was recorded when
using dynamic models. The dynamic tractor model performed exceptionally well in
keeping the tractor on the path but struggled greatly as trailer sway became more
prominent for higher speeds. The best performing model when applying an LQ con-
trol strategy was the dynamic trailer model including roll, mainly due to its added
capability of making the controller more conservative. Overall, the controller strug-
gled with aggressive behavior, which was mainly explained by its feed-forward term.
The aggressive behavior remained a continued issue when evaluating the controller’s
performance under parameter uncertainty. Although the LQ controller overall has
not shown satisfactory performance in this work, the weakness is likely not with the
controller, but more so with the path it is required to follow. If the path were gener-
ated using the dynamic model (similar to what the MPC does), the performance of
the LQ might have been improved, and possibly comparable to the MPC controller.
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Similarly, to the LQ controller, the MPC controller enjoyed a performance increase
when using the dynamic models. With the MPC controller however, the best perfor-
mance was gained when using the dynamic trailer model (without roll). In compari-
son with the LQ controller, the MPC controller performed much better and has shown
an overall promising performance for this application. The controller showed decent
robustness against parameter uncertainty, which may further be improved with more
conservative tuning. The strength of the MPC controller, comes from the fact that it
has access to the future reference of the path, making it more robust against sudden
changes in the path. This was highly beneficial for the aggressive driving scenarios
as the trajectories were on the limits of feasibility.

For both the MPC and LQ controller, the performance improved by directly
weighting the approximated trailer deviation. In addition, it made the tuning of the
MPC controller much simpler.

5.2 Future work

In this section, future work regarding control of tractor-trailer vehicles is presented.

5.2.1 Modeling improvements

The models presented in Section 2.1, can be extended in several ways to improve
their predictive performance. Two large avenues for improvement are the inclusion
of nonlinear suspension dynamics to the model with roll, and the inclusion of a non-
linear vertical load dependency on the cornering stiffnesses, as was done in [21]. If
nonlinear suspension effects are added, the predictive performance of roll at the brink
of rollover could improve. This could make it possible to effectively constrain the lat-
eral load transfer in the MPC controller, and thus reduce the risk of rollover, without
making the controller more conservative. Additionally, vertical load dependency on
the cornering stiffnesses, can improve the tire model when the weight is shifted to
one side of the vehicle.

5.2.2 Robust control

In Section 4.2.4 the robustness of the controllers against parameter uncertainty is an-
alyzed. Additionally, a more conservative MPC controller is used, which shows im-
proved robustness. The usage of robust control techniques, such as robust MPC, could
be investigated. This can create a conservative controller that handles parameter un-
certainty in a more calculated manner.

5.2.3 Combined longitudinal and lateral control

In a realistic evasive maneuver, both steering and braking are important. The inter-
action between these is significant when the system operates at the limit of traction
and stability. Harsh braking can lead to the complete loss of lateral control, but well-
executed differential braking can also greatly improve lateral stability. Because of
this, it is important to investigate when lateral and longitudinal control cannot be
decoupled.
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5.2.4 Inclusion of obstacles in MPC

During more aggressive driving, the developed controllers struggle to accurately fol-
low the reference paths. This makes it hard to guarantee that the trajectory of the
vehicle is obstacle-free. One way of resolving this issue is the inclusion of obstacles
in the MPC controller, which would allow for local re-planning of the trajectory. This
is done in [27], but would have to be done using dynamic models to handle aggres-
sive driving.

5.2.5 Planning with dynamic models

Performing re-planning with the MPC controller as described in the previous section
is not necessary the most effective method of creating a dynamically feasible trajec-
tory. It will have the typical disadvantage of variational methods, i.e. getting stuck in
local minima. Because of this, another possible method is including dynamic models
in the typical graph search or incremental search planner. This would allow the use
of simpler control techniques, at the cost of a more complex planning cycle.
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