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Abstract—We consider a decentralized sensor network of
multiple nodes with limited communication capability where
the cross-correlations between local estimates are unknown. To
reduce the bandwidth the individual nodes determine which
subset of local information is the most valuable from a global
perspective. Three information selection methods (ISM) are de-
rived. The proposed ISM require no other information than the
communicated estimates. The simulation evaluation shows that
by using the proposed ISM it is possible to determine which
subset of local information is globally most valuable such that
both reduced bandwidth and high performance are achieved.

Index Terms—Cooperative target tracking, information extrac-
tion, track fusion, communication efficiency, covariance intersec-
tion, consistency.

I. INTRODUCTION

In target tracking one or multiple sensors, e.g., radar, sonar,
and cameras, are used to estimate the instant state of a
dynamic target. When utilizing multiple sensor nodes com-
plementary information can be extracted, resulting in synergy
effects through the multi-sensor fusion. Multiple sensor nodes,
however, means more measurements must be exchanged. This
bandwidth issue can be partial overcome by distributed and
decentralized fusion architectures since these allow for mea-
surements to be pre-processed, within the sensor nodes, into
filtered estimates which are exchanged. When speaking of
estimates of a true state x, we here mean the pair (x̂,P),
where x̂ is the state estimate and P the covariance reported
by the estimator.

Benefits with decentralized solutions compared to their
centralized counterparts are the distribution of data processing
and the flexibility and modularity, where nodes can be added
and removed on the fly. In total, these benefits provide
decentralized solutions a high level of robustness.

One of the primary problems encountered in decentralized
architectures, and track-to-track fusion (T2TF) in general, is
the handling of the induced dependencies between the filtered
estimates. Failure to handle these cross-correlations in a proper
way can lead to inconsistent estimates as information is double
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counted, which, in the worst case, make the estimates start
diverging. Providing consistent estimates is therefore one of
the main aspects in this work. The definition of consistency
used herein is formulated as [1]

P− E[x̃x̃T] � 0, (1)

where x̃ = x̂−x is the true error of the estimate and E[·] the
expectation value. An estimator fulfilling (1) without reaching
equality is called conservative.

The Bar-Shalom-Campo formulas compensate for all
present cross-correlations such that optimality, in the sense of
(1), can be assured [2, 3]. Unfortunately, the requirement of
maintaining memory of cross-correlations makes this method
inefficient for large sensor networks with many interacting
nodes [4]. The recently developed sample-based fusion (SBF,
[5, 6]) method partially comes around this tractability issue by
introducing samples, which are themselves exchanged, that are
used for reconstructing the cross-correlations. In the general-
ized information matrix filter (GIMF, [7]) the T2TF is solved by
a decorrelation step where previously fused track information
is removed prior to updating with new information.

The methods covariance intersection (CI, [1, 8]), inverse
covariance intersection (ICI, [9]) and safe fusion (SF, [10]),
the latter also called ellipsoidal intersection (EI, [11, 12]), all
belong to the category of memory-less methods. None of these
methods requires the actual cross-correlations to work, but
come with the drawback that they also become conservative.
Various of the mentioned fusion schemes have been compared
in different contexts, see, e.g., [10, 13]. In [14, 15] covariance
matrix bounds for the decentralized fusion problem were
derived.

In the common fusion setup the problem is to fuse two,
possibly cross-correlated, estimates where all quantities are
complete, i.e., no partial information is missing. In [16] the
problem of approximating the exchanged covariance with its
diagonal was addressed. In this paper a bandwidth limited
configuration is likewise assumed, but here the approach is
rather to selectively choose and exchange only the most useful
information.

The paper is organized as follows. Sec. II states and moti-
vates the problem. General aspects of the considered estima-
tion problem are provided in Sec. III. The proposed methods



are presented in Sec. IV and are evaluated experimentally in
Sec. V. Concluding remarks are given in Sec. VI.

II. PROBLEM STATEMENT

The problem is to develop methods, denoted information se-
lection methods (ISM), for determination of which information
is the most useful to exchange such that high performance can
be achieved using less communication bandwidth while still
guaranteeing consistent estimates.

A. Considered Estimation Problem

We consider cooperative nodes complementing each other
in the estimation of some true state x, by observing and
exchanging filtered estimates of the state. Roughly speaking,
the estimation performance of such a setup will depend
on properties of the local estimates and the communication
bandwidth.

Essentially, three types of estimation problems are implied
by the problem formulation:

1) Obtaining estimates by filtering local measurements into a
common coordinate frame used for representing the state
of the object of interest.

2) A decentralized data fusion problem in which the esti-
mates received via datalink are merged with the local
filter estimate. The cross-correlations between the fused
estimates are assumed unknown.

3) Estimation of the information that is most valuable for
the remaining nodes.

The choice of using CI for solving the decentralized data
fusion problem is based upon the guarantee that CI produces
consistent fused estimates as long as the estimates to be fused
are consistent [17]. In fact, it has been shown that for fusion of
two estimates under completely arbitrary cross-correlations CI
provides the least conservative bound on the fused covariance
[14].

B. Motivating Example

As a motivating example, consider the information matrices
P−11 and P−12 defined according to their information ellipses
as illustrated in Fig. 1. The gain of fusing P−11 with the full
information P−12 is in this case not significantly higher than
that of fusing with only the information along direction v1 in
P2. Thus, the entity that has retrieved the information P−12

can, instead of transmitting the full information P−12 , choose
to only transmit the information along the v1. In this way the
bandwidth consumption can be reduced, while still generating
high information fusion gains.

III. FUSING CORRELATED PARTIAL ESTIMATES

We here investigate how N unbiased estimates
{(x̂i,Pi)}Ni=1 can be fused into (x̂f ,Pf ) in a setup
where only partial information is available.

u1

u2

P−1
1

v1

v2

P−1
2

Fig. 1: The information ellipses of two information matrices,
P−11 and P−12 . The principal axes of P−11 are given by ui and
the principal axes of P−12 are given by vi, with i = 1, 2.

A. Fusion of Arbitrary Projections
An estimate in space X is given by (x̂,P). An estimate

(x̂′,P′) in an arbitrary space X ′ can be constructed, using the
mapping H : X → X ′, according to

(x̂′,P′) = (Hx̂,HPHT). (2)

We limit ourselves to linear transformations and projections
H with orthogonal basis vectors of unit length, i.e. the row
vectors of H are orthonormal. The restriction to orthonormal
projections is not necessary, but will nevertheless be useful as
we will see later.

Now, the projection of (x̂,P) along the direction defined
by the unit vector u can be calculated by letting H = uT, i.e.

(x̂u, σ
2
u) = (uTx̂,uTPu), (3)

where σ2
u is the variance of the estimate x̂ in the direction

defined by the vector u. Hence, arbitrary components can be
extracted of both the state estimates and their associated error
covariance by using projections. The fusion of such arbitrary
projections are realized by using the projection as the (virtual)
measurement model.

B. Weighted Least Squares
N partial uncorrelated estimates can be fused using the

weighted least squares (WLS) method as [18]

P−1f =

N∑
i=1

HT
i P−1i Hi, (4a)

P−1f x̂f =

N∑
i=1

HT
i P−1i x̂i, (4b)

where x̂f is the fused state estimate and Pf is the estimated
covariance of x̂f . The matrix Hi is the mapping of x̂f into
x̂i.



C. Covariance Intersection

While (4) fuses uncorrelated estimates consistently, any
degree of cross-correlation between estimates implies an in-
consistent fused estimate. The CI algorithm fuses N estimates
with unknown cross-correlations according to [17]

P−1f =

N∑
i=1

ωiH
T
i P−1i Hi, (5a)

P−1f x̂f =

N∑
i=1

ωiH
T
i P−1i x̂i, (5b)

where
∑N

i=1 ωi = 1. CI produces a consistent fused estimate
(x̂f ,Pf ), for any values of the parameters ωi ∈ [0, 1] fulfilling∑N

i=1 ωi = 1, if each estimate in {(x̂i,Pi)}Ni=1 is consistent
[8]. The parameters ωi are chosen by minimizing a loss
function, e.g., the trace or the determinant of Pf .

It should be emphasized that (4) is similar to (5), both in
terms of structure and involved matrices. The difference lies
in the usage of scalar weights to avoid information from being
double counted.

IV. INFORMATION SELECTION METHODS

In this section three proposed methods for selecting infor-
mation are proposed. The information projections are con-
tained as column vectors of unit length in US . The number of
columns in US are denoted by nS . The information along the
directions defined in US are contained as the diagonal entries
in the diagonal matrix DS . Thus, the partial information is
fully described by DS and US .

A. Selecting Information

When selecting only a subset of projected information
IS = USDS , from an estimate (x̂,P), to be exchanged,
the state estimate x̂ must be projected accordingly. The state
estimate is projected using (3), i.e. x̂S = UT

Sx̂. An equivalent
approach would be to consider projected variances, see, e.g.,
(3), but here we will focus on information simply because of
its additive properties in different algorithms.

To minimize the bandwidth allocation a certain node can
choose to transmit only (x̂S , IS). The node receiving (x̂S , IS)
can derive US and DS separately using the fact that each
mutually orthogonal eigenvector ui of US is of unit length.
The considered projections are equivalent to the (virtual)
measurement model given by H = UT

S .
Three proposed ISM are introduced below, namely:

• The largest eigenvalue (LE) method where only the
largest information eigenvalues are exchanged.

• The transmitted information (TI) method where the ex-
changed information is selected based on previously
transmitted information.

• The received information (RI) method where the ex-
changed information is selected based on previously
received information.

B. Aging Information

So far we have only considered static aspects of estimation,
here in terms of fusion formulas. From now on, when the
situation requires, we will use argument k for quantities
calculated at time k, with the argument k|k being used for
filtered quantities.

The TI method and the RI method are based upon main-
taining a separate filtered covariance matrix P̄(k|k), referred
to as the reference covariance, which is used in the infor-
mation selection process. P̄(k|k) is only locally available.
When selecting the currently most valuable information, old
information should be forgotten. The aging of information
can be done in different ways, but is here accomplished by
predicting P̄(k|k) according to

P̄(k + 1|k) = FP̄(k|k)FT + Q, (6)

where F is the process model. The process noise Q basi-
cally plays the role of a forgetting factor [18]. Any cross-
correlations introduced by (6) are neglected.

C. Largest Eigenvalue Method

The eigendecomposition of the positive definite matrix P is
defined as [19]

P = VΣVT =
∑
i

λiviv
T
i , (7)

where Σ is a diagonal matrix containing the ith eigenvalue λi
of P on its ith diagonal entry. V is an orthogonal matrix, con-
taining the corresponding mutually orthogonal eigenvectors vi

as column vectors.
Since the information matrix P−1 is positive definite it can

also be decomposed according to (7), resulting in

P−1 = (VΣVT)−1 = VΣ−1VT =
∑
i

λ−1i viv
T
i . (8)

The eigenvalues λi of P are assumed to be sorted in ascending
order implying that P−1 is the most informative in the v1

direction since λ1 comprises the smallest uncertainty.
A trivial and straightforward selection of the subset IS is to

perform the eigendecomposition of P−1 and selecting the nS
largest eigenvalues. Hence, the largest eigenvalue (LE) method
can be written compactly as

IS = {(λ−1i ,vi)}nS
i=1. (9)

D. Transmitted Information Method

A more sophisticated approach is to estimate what informa-
tion the other nodes of the network lack. In the transmitted
information (TI) method the introduced reference covariance
P̄ is the result of fusing only information that has been
transmitted from the own node.

The TI procedure is as follows: IS which in turn is derived
from the covariance P of a track, is fused with P̄. Denoting
the spanning of all subsets IS by F(IS ;nS), where the size
parameter nS is explicitly included, the problem of selecting
information can then be expressed as

arg min
IS∈F

J(Pc
f (P̄, IS)), (10)
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Fig. 2: Schematics over the TI method. The main filter is updat-
ing the track estimate (x̂,P) with own sensor measurements
and datalink estimates. Information selected for transmission
is fused with P̄ in the TI filter.
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Fig. 3: Schematics over the RI method. The main filter is
updating the track estimate (x̂,P) with own sensor measure-
ments and datalink estimates. Information received via the
datalink is fused with P̄ in the RI filter.

where J is a loss function. The fused covariance candidate Pc
f

is hence evaluated with respect to J over the subsets IS ∈ F .
The information IS minimizing J is selected for transmission
and is also fused with P̄.

TI will prefer information that has not yet been communi-
cated. Schematics of TI is given in Fig. 2. Initially, when no
information has been transmitted, the TI method selects the
largest eigenvalues.

E. Received Information Method

The received information (RI) method is similar to the TI
method given above but differ in how the reference covariance
P̄ is calculated. In the RI method P̄ is fused only with infor-
mation received from other nodes. RI will favour information
not contained in the received information. RI is schematically
illustrated in Fig. 3.

V. EXPERIMENTAL EVALUATION

In this section the simulation scenarios, the evaluation
metrics and the results are presented and discussed. But first,
we will begin by mentioning the information projections that
are considered in the experimental evaluation.

A. Considered Information Projections

So far we have considered information in arbitrary di-
rections. Even though the methods proposed here hold for
arbitrary projections of information we will, to simplify the
following analysis, only deal with projections along the eigen-
vectors of the information matrix.

The eigendecomposition, see (8), allows us to easily break
down the information into orthogonal components. In essence,
the matrix V in P−1 = VΣ−1VT is a rotation matrix, rotating

r r

b

β

T

S1 S2

Fig. 4: Two sensors, S1 and S2, observing a target T at range
r. The baseline between the sensor nodes is b which is related
to r and β.

the diagonal and axis aligned matrix Σ−1 into the frame that
P−1 is represented in. For example, the information P−1vi

can
be calculated as

P−1vi
= vT

i P−1vi = vT
i VΣ−1VTvi = λ−1i , (11)

where λi is the ith eigenvalue of P and where the orthogo-
nality property of the eigenvectors has been used.

Using the eigendecomposition as the basis for information
projections reduces the optimization problem in (10) into a
grid search among a finite set F consisting of combinations
of information projections.

B. Scenarios and Experimental Setup

Our evaluation will be based on scenarios where the tracking
sensors are highly accurate in bearing but are of poor range
accuracy, e.g., an infra-red search and track (IRST) system.
The uncertainty in range for tracking filters deploying such
sensors can be enhanced in a setup where the observed target
is triangulated using two spatially separated sensors.

The estimation performance when triangulating depends on
the geometry. A triangulation setup is illustrated in Fig. 4. Two
sensors, denoted S1 and S2, are observing a target T located
at distance r from each sensor. The baseline b depends on both
r and the baseline angle β according to

b = 2r sin
β

2
. (12)

The baseline angle β will parametrize the geometry in the
following.

We will evaluate the considered estimation problem on
two extreme triangulation geometries, i.e. the following two
scenarios:

1) Scenario 1: The baseline angle is approximately 90◦.
2) Scenario 2: The baseline angle is small but non-zero.
In addition to the proposed ISM a number of reference

methods will be used in the evaluation. In total we have the
following methods:

1) LE – Largest eigenvalue method (Sec. IV-C).
2) TI – Transmitted information method (Sec. IV-D).
3) RI – Received information method (Sec. IV-E).
4) CRLB – The Cramér-Rao lower bound (see below).
5) CKF – A centralized Kalman filter utilizing the unpro-

cessed measurements from each sensor.



6) LKF – A local Kalman filter having access only to local
sensor data.

7) CIF – A decentralized scheme deploying CI and the full
filtered estimates from all sensing nodes.

Next, an analysis of the fusion gain dependency on the
baseline angle is described. The purpose of the baseline angle
analysis is to connect the two extreme geometries evaluated
in Scenario 1 and 2.

C. Baseline Angle Analysis

To investigate how the fusion gain more generally depends
on the geometry we introduce the covariance matrices P1 and
P2 according to

P1 = T(−β/2)A(a)T(−β/2)T, (13a)

P2 = T(β/2)A(a)T(β/2)T, (13b)

respectively, where A and T are given by

A(a) =

(
1 0
0 a

)
, (14a)

T(α) =

(
cosα − sinα
sinα cosα

)
. (14b)

P1 and P2 have the same eigenvalues as A, but with the
eigenvectors being rotated by T(−β/2) and T(β/2), respec-
tively.

In the baseline angle analysis P−11 and P−12 are being fused
using CI into P−1f , with β varied and for different values of a.
The weight parameters ωi of (5a) are optimized using different
norms, i.e. the determinant det(Pf ), the trace tr(Pf ), and the
spectral norm λmax(Pf ). The cases where P−11 is fused with
complete P−12 , with only the largest eigenvalue of P−12 and
with only the smallest eigenvalue of P−12 , are studied. Fig. 5
provides a summary of the baseline angle analysis.

D. Evaluation Metrics

The position component of the root mean squared error
(RMSE) is used to measure the performance. The position
RMSE for each time step over all MC runs are calculated,
yielding a time series of position RMSE for each method.

The parametric CRLB [20], P0, is calculated according to
the following filter recursion

P0(k|k) =
(
(P0(k|k − 1))−1 + (H0)TR−1H0

)−1
,

(15a)

P0(k + 1|k) = F0P0(k|k)(F0)T + Q0, (15b)

where F0 is a model of the true dynamics, H0 =
d

dx′ h(x′)|x′=x is the true measurement model, h(x′) is the
mapping from state coordinates to measurement coordinates,
and R is the measurement covariance. The true process noise
Q0 is derived from the true dynamics of the target. Time
indices have been included in (15) since P0 is a filtered
quantity.

Consistency is evaluated using the normalized estimation
error squared (NEES), defined as [21, 22]

ε(k) = (x(k)− x̂(k|k))TP(k|k)−1(x(k)− x̂(k|k)), (16)

where x(k) is the true state, x̂(k|k) the state estimate and
P(k|k) the estimated covariance, all given at time k. In
a Monte Carlo (MC) approach multiple values of ε(k) are
calculated which can be combined into the average NEES
(ANEES) according to

ε̄(k) =
1

nxM

M∑
i=1

εi(k), (17)

where εi(k) is the NEES value at time k for MC run i, nx is
the number of dimensions of x̂ and M is the number of MC
runs. An estimator yielding ANEES significantly larger than 1
is interpreted as an optimistic and inconsistent estimator. An
estimator for which ANEES is significantly smaller than 1 is
consistent but conservative.

E. Simulation Specifications

The two simulation scenarios are shown in Fig. 6. In both
scenarios there are two cooperating nodes sensing a target. In
Scenario 1 the cooperating nodes are well separated, yielding a
large baseline angle. In Scenario 2 the baseline angle is small.
The simulations are performed in 3D, but the dynamics are
constrained to a plane.

The cooperating nodes are synchronized and each tracking
sensor generates new measurements at 1 Hz. No clutter is
simulated and the detection probability is 100%. The mea-
surement noise is white Gaussian noise, where the uncertainty
in range and bearing is set to 5 000 m and 0.5◦, respectively.
The measurements are filtered using an extended Kalman filter
(EKF, [23]) and a constant velocity model is used to describe
the dynamics, i.e. the state dimensionality nx = 6. The filter
estimates are given in a Cartesian frame. The process noise
is tuned such that the CKF initially achieves ε̄(k) ≈ 1 in
Scenario 1.

Also the datalink runs at 1/TDL = 1 Hz, where TDL is
the transmission period, and is scheduled to exchange filtered
estimates immediately after each measurement update.

The simulation environment is implemented in MATLAB®.
10 000 (MC) runs are performed for each method with the
same noise realization being used for each and every method.
The optimization problems implied by CI, TI and RI are solved
using the trace of the relevant covariance matrix as the loss
function. The fused covariance candidate Pc

f (P̄, IS) of TI and
RI is generated using (4a). It should be noted that the results of
using (4a) for optimizing the subset IS are in general not the
same as using CI for this optimization. However, the results
would be the same as using CI constrained to ω = 0.5 since
this is equivalent (up to a scaling factor) to (4a).

F. Results and Discussion

The results presented below are derived from only one of
the two cooperating nodes. The results generated by the other
cooperating node are approximately equivalent. This is true
for both scenarios.

The simulation results, RMSE and ANEES, for Scenario 1 are
given in Fig. 7. nS ≤ nx = 6 is the number of eigenvalues
used in the corresponding ISM, i.e. the number of eigenvalues
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Fig. 6: Simulation scenarios used in the experimental evalua-
tion. The cooperating sensor nodes are marked blue, and the
target, located above the sensor nodes each case, is marked
red. The black lines from a node indicate its initial orientation.
Dotted lines represent the simulated trajectories.

exchanged in each datalink transmission. When nS = 1, only
TI performs comparable to CIF, but with a slower transient. As
suggested, increasing nS increases the performance. For TI and
RI the performance of CIF is reached when nS ≥ 3. Initially,
LE performs well since the largest information eigenvalues
will initially be the most useful ones, but there is a bump
around 10 s for each LE curve. This bump is explained by the
fact that the largest information eigenvalues are not always
the most informative for the receiving node. In general, LE
requires nS > 3 before the performance of CIF is reached.
The RMSE for all methods are bounded from below by CKF
and from above by LKF. CRLB is represented by the square
root of the trace of the position part of P0.

For Scenario 2, RMSE and ANEES are given in Fig. 8. The

RMSE for all methods are bounded from below and above
by CKF and LKF, respectively. For this geometry nS > 3 is
required for all three ISM before the performance of CIF is
approached.

Except for the initial peaks all methods, both in Scenario 1
and 2, are consistent and quickly become conservative due to
the accumulated process noise. More eigenvalues exchanged
typically means a more conservatively fused estimate.

In Fig. 9 and 10 the performance at ke = 12 s is plotted for
different TDL for Scenario 1 and 2, respectively. The geometry
provided by Scenario 1 leads to a higher sensitivity to TDL than
the geometry provided by Scenario 2, relatively speaking.

The results for the baseline angle analysis is given in Fig. 5.
When full information P−12 is fused with P−11 , the gain is
strictly monotonically increasing when β goes from 0◦ to 90◦,
which is true for each norm and for each a. This is however not
true for the case when only the largest eigenvalue of P−12 is
fused with P−11 , where there is no gain until a certain threshold
angle βt is reached. The threshold βt seems to depend on a.
As expected, no gain is achieved when fusing P−11 with the
smallest eigenvalue of P−12 .

The threshold βt reflects what is seen in the simulation
results. The LE method performs poorly with a small baseline
angle since no fusion gain is acquired at the receiving node
when transmitting only the most informative projections.

G. Bandwidth Reduction

When considering the exchange of full estimates nx(nx +
1)/2 parameters must be transmitted. Using the proposed
methods with nS = 1 only nx + 1 parameters are required.
For arbitrary nS the number of parameters required in each
transmission is calculated as Np = nS +

∑nS

i=1(nx − i +
1) = nS(3 + 2nx − nS)/2 since we have assumed mutually
orthogonal projections.
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Fig. 7: Scenario 1: Position RMSE to the left and ANEES to the right.
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Fig. 8: Scenario 2: Position RMSE to the left and ANEES to the right.

TABLE I: The number of parameters Np transmitted, when
using the proposed ISM, as dependent on the number of
projections nS for different nx.

nS Np(nx = 4) Np(nx = 6) Np(nx = 9)

1 5 7 10
2 9 13 19
3 12 18 27
4 14 22 34
6 - 27 45
9 - - 54

The bandwidth reduction is illustrated in Table I by calcu-
lating Np for different nx and nS .

VI. CONCLUSIONS AND FUTURE WORK

Three information selection methods (ISM) have been de-
rived, suitable for a decentralized configuration of sensor
nodes. The ISM try to select information projections based
on what information is the most valuable for the remaining
nodes of the sensor network. A comparison study of the ISM

has been conducted, regarding their performance, measured as
root mean squared error (RMSE), and consistency, measured
as average normalized mean squared error (ANEES). The
evaluation was made using two triangulation setups.

The largest eigenvalue (LE) method suffers from its inability
to prevent the same information projections from being repeat-
edly exchanged. Once the most informative projections have
been transmitted, these will often become the most informative
projections at the receiving node, which in turn will transmit
the same information projections. This type of round trip
inhibits complementary information from being extracted.

The transmitted information (TI) method and the received
information (RI) method circumvent the previously discussed
round trip issue by trying to maximize the fusion gain at the
remaining nodes. Hence, not only the instantaneously most
informative projections will be transmitted, but rather the
projections that favours the considered fusion problem. This
optimization strategy enables complementary information to
be extracted in a larger extent.

Both TI and RI outperform the LE method in terms of
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Fig. 9: Scenario 1: Position RMSE evaluated at ke for different
datalink transmission periods TDL.
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Fig. 10: Scenario 2: Position RMSE evaluated at ke for different
datalink transmission periods TDL.

RMSE. All ISM yield consistent ANEES values. A key feature
of the suggested methods is that the bandwidth allocation
of the communication link can be significantly reduced. It
is also remarkable that none of the proposed ISM require
any additional information than the communicated estimates
themselves.

A possible future extension of the problem addressed herein
is to allow TI and RI to be optimized using arbitrary projections
instead of only projections along eigenvectors. The algorithms
can be further improved by making them more flexible regard-
ing the number of information projections selected. Another
aspect is to analyze how the chosen fusion rule affects the
performance. It would also be interesting to combine TI and
RI.
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