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Abstract

Self-assembly is ubiquitous in nature and underlies the formation of many complex

systems from the molecular to the macroscopic scale. Kern-Frenkel like patchy particles

are powerful models to investigate this phenomenon by computational methods such as

Monte-Carlo or Molecular Dynamics simulations. However, in these models the inter-

actions are mediated by circular patches at the particles surface, which can be hardly

mapped to realistic systems, containing for instance faceted particles with rectangular
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surfaces. In this paper we extend the model to take into account such geometries, and

we use it to build a supra Coarse-Grained model of Cellulose Nanocrystal where the

interactions are parametrized against All-Atomistic Molecular Dynamics simulations.

The formation of cholesteric ribbons and defects in cholesteric droplets of Cellulose

Nanocrystal are investigated and confirm experimental behavior reported in the liter-

ature. The flexibility of this new patchy particle model makes it a powerful tool to

develop supra Coarse-Grained models of self-assembly for large space and time scales

and should find a broad range of applications for self-assembly in chemical and biological

systems.

1 Introduction

Self-assembly, which refers to the autonomous organization of building blocks into specific

patterns, is ubiquitous in nature and underlies the formation of many complex biological

systems.1 It can provide an efficient way of manufacturing complex objects at all scales

and constitutes a totally new paradigm into technologies.2 Synthesis relying on such self-

assemblies has already been applied successfully on a very broad range of length scales, and

at the micrometric scale for instance, many efforts have been devoted to develop so-called

patchy particles as building blocks.3–6 They are particles, micrometric colloids essentially,

with anisotropic shapes or surface functionalizations, which can self-assemble into a vast

zoology of structures, such as 2D crystals,7–11 3D crystals,12–16 or helices17–21 due to the

anisotropic interactions between particles. They can be described theoretically by the Kern-

Frenkel patchy particle model,22 and in particular the tetravalent Kern-Frenkel model has

been widely used to investigate the phase diagram of tetrahedral liquids (e.g. water or

silicon).23–29 This model, illustrated in Figure 1(a), is a combination of the hard sphere

model (blue particles) with four attractive square well patches (pinkish cones). A patch k

on a particle i can interact with another patch l on a different particle j providing that

they are facing each other, and thus promoting a certain relative orientation of two adjacent
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particles, leading for instance to the formation of a diamond structure. More precisely, the

Kern-Frenkel interaction potential UKF between particle i and j is the sum of all patches

interactions:

UKF =
4∑

k=1

4∑
l=1

Ukl (1)

where the patch-patch interaction potential reads

Ukl =
∞ if |−→rij| ≤ σ

−ε if σ < |−→rij| ≤ σ + δ and θi,k ≤ Ω and θj,k ≤ Ω

0 if |−→rij| > σ + δ

(2)

with

cos (θi,k) =
−−→rij. ˆpi,k
|−→rij|

cos (θj,l) =
−→rij.p̂j,l
|−→rij|

(3)

Patchy particles can be used fundamentally as a mesoscale model for atoms (so-called

colloidal atoms6), but they also have practical applications linked to their properties, op-

tics or photonics for instance.30–32 Another class of self-assembled materials that has been

recognized instrumental in the technology of optics are the liquid crystals.33 Here, there is

a molecular self-assembly of molecules in solution, the mesogens, into a mesophase possess-

ing both the properties of a liquid and of a crystalline solid.34 Among these mesophases,
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Figure 1: (a) Kern-Frenkel patchy particle model for tetravalent particles. In certain con-
dition these particles can self-assemble into a diamond structure as depicted at the bottom
left. (b) Schematic of a cholesteric liquid crystal of rod-like molecules.

cholesteric liquid crystals of rod-like molecules, discovered in the late 19th by Reinitzer, ap-

pear as a fascinating material with great potential applications.35 This phase, illustrated in

Figure 1(b), can be seen as a stack of horizontal layers along a vertical axis
−→
h . All rods

in a layer have the same orientation, denoted by the director field −→n , and from one layer

to the other −→n slightly rotates around the axis
−→
h to form a helical structure. The length

p along the axis h such that the director has rotated 360°, the so-called cholesteric pitch,

as well as the sense of rotation of the director, right-handed or left-handed (right-handed in

Figure 1(b)), are the principal factors that will affect the general optical properties of the

material: Bragg diffraction due to the periodical structure and induced circular dichroism.

Cellulose has emerged as one of the most promising materials to fabricate such system due

to its low-cost, abundance in nature, biodegradability, renewability, recyclability and already

well-established industrial use.36 In order to obtain the cholesteric behavior of cellulose, one

can prepare an aqueous suspension of Cellulose Nanocrystal (CNC) by acid hydrolysis of

cellulose fibers extracted from wood, plants or bacteria followed by a mechanical stirring.37

Subsequent solvent evaporation will lead to the formation of a CNC cholesteric phase that

will be retain in the final dry state. Despite the apparent simplicity of the process, there

are still a lot of unresolved questions regarding the phase transformation thermodynamics
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and kinetics, and how the final morphology of the cholesteric phase relates to the system

parameters: CNC morphology, lengths distribution and surface charges (induced by the acid

hydrolysis), and ionic strength of the solvent.38 As a result, it remains quite challenging to

obtain reproducible pitch and films with uniform optical properties. Yet, a lot of studies

have been concerned with the molecular modeling of CNC by mean of All-Atomistic (AA)

Molecular Dynamics (MD) simulations39–48 or Coarse-Grained (CG) MD,49–56 providing es-

sential insights into the properties of an individual CNC as well as the interactions within

a small bundle of CNC. However, the computational cost required to investigate the large

scale ordering during formation of the cholesteric phase has remained a barrier to model

this phase transformation. Only recently we had developed a supra-CG molecular model of

CNC able to simulate hundreds of CNC, reaching the micro scale both in space and time,

although the self-assembly into the cholesteric phase itself remains challenging.57

At a considerably longer length scale, a significant effort has been made for some 70

years, starting with the seminal work of Onsager, to build a theoretical understanding of the

cholesteric ordering in liquid crystals.58–71 These models, essentially built on hard particles

representations, are able to explain the formation of cholesteric liquid crystals but they

are then missing a link with the microscopic molecular structure and they are unable to

take into account fine details such as molecules flexibility or solvent ionic strength. More

recently, CG-MD simulations of model systems such as helical Yukawa rods72,73 or flexible

chains with helical interactions74,75 have appeared as an interesting compromise between

the aforementioned models and molecular CG models like existing for the CNC. However, in

these models the introduction of the molecule chirality is done by considering only one helical

arrangement of spherical beads around the molecule core, which still can be hardly mapped to

any real molecular structure. On the other hand, Kern-Frenkel-like patchy particles models

for MD have been successfully developed and appear to be very powerful and versatile models

to handle complex self-assembly process, being the formation of helical structures, hexagonal

columnar and body-centered tetragonal structures, graphene-like two-dimensional structures,
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diamond lattices, urchin-like cluster structures, ordered hamburger-like structures and linear

chain-like structures.76,77

In this work, we develop a new Kern-Frenkel-like patchy particle model for MD and apply

it to the CG modeling of CNC. We start by introducing the CG beads definition based a

molecular description of the CNC. We then present the interaction potentials that we have

used and the parametrization of the force-field against AA-MD simulations following the

methodology that we have used previously to build our supra-CG model of CNC.57 Finally,

we illustrate the potential of the new model to investigate cholesteric ordering in CNC, by

simulating 1D cholesteric ribbons and a 3D cholesteric nanodroplet.

2 Supra Coarse-Grained model

The essence of the supra CG model is summarized by the central part of Figure 2. A CNC is

a long fiber-like twisted molecule, that we cut into small sections represented by the greyish

nearly hexagonal prisms. These sections are modeled by ellipsoidal CG beads (brownish

particles). The beads are decorated with six patches (forming a ball around each bead) that

introduce attractive interactions between the various CNC surfaces (different patch colors

mean different types of surfaces), and lead to the self-assembly of the CNC. We shall now

present the beads definition in details and the interaction potentials that we use.

2.1 Beads definition

A CNC comprises a self-assembly of many polysaccharide chains, the cellulose polymers, as

illustrated in Figure 2. Two allomorphs exist for the native CNC, respectively the cellulose

Iβ and Iα, and so far there is no consensus regarding the cross-sectional morphology of the

CNC. In this study, we considered the 36-chains Iβ model of Ding and Himmel78 as shown

in Figure 2(a), because: (i) NMR spectroscopy suggests that the Iβ crystalline allomorph

is the one encountered in higher plants,79 (ii) this shape of the CNC is a good study-case
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to demonstrate the flexibility of our novel approach since it has a non-regular cross-section

(otherwise we could use the "standard" Kern-Frenkel patchy particle model). The Iβ CNC

has a monoclinic crystallographic cell, depicted in Figure 2(a), with a = 7.784 Å, b = 8.201

Å, c = 10.38 Å, α = β = 90°, γ = 96.5°,80 and features three different surfaces, the (100),

often referred as hydrophobic, and the (110) and (1-10), often referred as hydrophilic. The

length of the CNC along the c-axis (in the x-direction in Figure 2(a)) can vary from tens

of nanometers to several micrometers.81 Beads are defined in a very straightforward way by

simply cutting the nanocrystal into several sections along the c-crystallographic direction.

In this way, each bead groups 36 glucose units (in the ab crystallographic plane) × 8 glucose

unit (along the c-crystallographic direction) and contains around 6000 atoms.

Since the groups of atoms represented by the beads are highly anisotropic and should

interact in very different ways depending on their relative orientations, we introduced finite

size aspherical particles to track the beads dynamics in the MD simulations. All that is

required to describe a finite size aspherical particle is its mass and position, just like in a

point-particle MD simulation, but also its orientation and its moment of inertia. Then it can

rotate due to the torques coming from interactions with other particles. One could directly

calculate the exact moment of inertia of the group of atoms represented by the beads, but

for simplicity we simply approximated the bead shape by an ellipsoid as depicted in Figure

2(a). The calculation of the resulting moment of inertia is straightforward and is handled

automatically by the LAMMPS software that we used to implement our new supra CG

model.82 The orientation of the beads is given by the three principal ellipsoid semi-axes (−→ex ,
−→ey , −→ez ), whose lengths are (41.52 Å, 45.54 Å, 27.05 Å). It is worth noting that the ellipsoid

shape drives the dynamics of the beads through the moment of inertia that will appear in

Newton’s law of motion, but it does not represent any kind of interaction between the beads.

The way two particles interact when their surfaces are close to each other is described by

the potentials that will be introduced in the following. Based on this bead definition, the

energy function that will drive the MD simulations is written as
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Figure 2: Supra Coarse-Grained patchy particle model of cellulose nanocrystal. The central
part shows two interacting CNC. At the forefront, the All-Atomistic representation of the
CNC is shown, where cyan atoms are carbon and red atoms are oxygen (hydrogen atoms are
omitted for clarity). (a) Cross-section (top) and side-view (bottom) of a part of the CNC.
Colors on the side-view show how the atoms are grouped into CG beads. Ellipsoidal CG
beads (brownish particles on the central picture) approximate the nearly hexagonal prismatic
shape (greyish particles on the central picture) of the groups of atoms. (b) Geometrical
parameters involved in the calculation of the bonded interaction between adjacent CG beads
i and j in the same CNC, for the harmonic bond and cosine harmonic angle potentials (top),
and for the dihedral potential (bottom). (c) Geometrical definition of the patches decorating
the CG beads, seen into cross-section (left) and perspective (right) views. The 6 circular
sectors represent various patches, each color coding for a specific patch type / surface type.
The purple nearly hexagonal prism highlights the shape of the group of atoms modeled by
the CG bead. (d) General representation of the interaction between a patch k on bead i and
a patch l on bead j. ( ˆpxi,k, ˆpyi,k, ˆpzi,k) and (p̂xj,l, p̂

y
j,l, p̂zj,l) are the patch orientations, and the

aperture angles 2Ωx
i,k and 2Ωy

i,k of patch k are highlighted.8



Utot =

Nbond∑
i=1

Ub +
N∑
i=1

N∑
j>i

Unb,ij (4)

where Nbond is the number of bonds and N is the number of particles (CG beads) in the

system, Ub is a bond energy and Unb,ij is a nonbonded interaction potential. We shall now

describe the bonded and nonbonded interaction potential in Section 2.2 and 2.3.

2.2 Bonded potential

The bonded interaction potential is responsible for maintaining the nanocrystal integrity

along the c-crystallographic direction. Three potentials were introduced to model the total

bonded interaction potential Ub of a bond:

Ub = Uh + Ua + Ud (5)

where Uh and Ua are respectively a harmonic bond potential and a cosine harmonic angle,

similar to the potentials used by Chen et al. in Ref. 83, and Ud is a dihedral potential that

we designed. The harmonic bond potential writes

Uh = khr
2
c (6)

where kh is the spring constant and rc is the ellipsoid contact distance calculated with an

effective particle size rh, as illustrated in Figure 2(b). It should be noted that this effective

particle size can be slightly different than the ellipsoid size and is an adjustable parameter of

the force-field. The harmonic bond potential can be rewritten as a function of the effective

particle size rh, particle to particle vector −→r = −→rij = −→ri − −→rj and the particles orientation

(êxi ,ê
y
i ,êzi ), (êxj ,ê

y
j ,êzj), where êxi denotes the unit vector

−→
exi /|
−→
exi |, see Figure 2(b):

Uh = kh|−→r + rh
(
êxi + êxj

)
|2 (7)
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The cosine harmonic angle potential only depends on the particle orientations as illus-

trated in Figure 2(b) and writes

Ua = ka [cos (θ)− cos (θ0)]2 (8)

where ka is the bending constant, θ is the angle between the particles along their x-axis

(180°for the planar configuration showed in Figure 2(b)) and θ0 is the equilibrium bond

angle. θ is directly related to the particles orientation by cos (θ) = −êxi .êxj , and thus:

Ua = ka
[
êxi .ê

x
j + cos (θ0)

]2
(9)

The last term in the bonded potential is a dihedral potential aimed at reproducing the

twisting observed in CNC. It has indeed been observed that the CNC has a right-handed

twist along the c-direction induced by the chirality of the saccharide glucose unit, with a

rotation of about 1.5°/nm for a CNC with 36 chains.84 This twist is introduced by the

following dihedral potential:

Ud = kd [1 + cos (φ− φ0)] (10)

where kd is the dihedral constant, φ is the dihedral angle, illustrated in Figure 2(b),

and φ0 is the equilibrium angle. The dihedral angle can be expressed as a function of the

particle-particle separation and the particles orientation by

φ = σ arccos (ν) (11)

with

σ = sign
[(
êzj ×

−→r
)
.êzi
]

(12)
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ν =

(−→r × êzj) . (−→r × êzi )
|−→r × êzj ||

−→r × êzi |
(13)

Every potential U induces forces
−→
F and torques −→τ on particle i and j given by:85

−→
F =

−→
Fi = −

−→
Fj = − ∂U

∂−→r
(14)

−→τi = −
∑

m=x,y,z

êmi ×
∂U

∂êmi
(15)

−→τj = −
∑

m=x,y,z

êmj ×
∂U

∂êmj
(16)

All the final calculated expressions for forces and torques, for all potentials used in the

model (including nonbonded potentials presented in the next section), can be found in the

Supporting Information.

2.3 Nonbonded potential

In our model, we described the nonbonded interactions between two CNC as interactions

between the two CNC surfaces in contact (e.g. interaction between (100)-(100) surfaces,

or (110)-(100) surfaces...). These interactions are introduced by decorating the CG beads

with six attractive patches, as illustrated in Figure 2(c). But before going into the details of

the patches geometrical definition, we shall explain what kind of interaction they represent

exactly.

Inspired by the Kern-Frenkel patchy particles model,22 Li and coworkers have introduced

a powerful soft-anisotropic potential to describe such surface-anisotropic interactions.76,77

This model relies on the introduction of so-called attractive patches at the particles surface,

that will interact with each other providing that they are facing each other, and thus pro-

moting a certain relative orientation of two adjacent particles. Although the patches position
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gives an anisotropy to the particle’s interaction, the patches by themselves are circular (like

in Figure 1), and thus not very suitable to represent real particle facets such as the different

surfaces of a CNC. In the following, we introduce a new patch model with an anisotropic

spherical rectangle patch shape, see Figure 2(d). This model can be seen as an extension

of the model of Li et al.,76,77 with inspirations from the work of Vacha et al. on patchy

spherocylinders.86 The nonbonded interaction potential between two particles i and j is the

sum of the interactions between all particles patches:

Unb =
∑
k,l

Up,kl (17)

The interaction between two patches k and l, respectively on particles i and j, is il-

lustrated in Figure 2(d). Each patch is defined by an orientation (relative to the particle

orientation) via the three unit vectors ( ˆpxi,k, ˆpyi,k, ˆpzi,k), and by two aperture angles (Ωx
i,k,

Ωy
i,k). The patches interact if they are facing each other, and in this case they will pro-

mote alignment and rapprochement of the particles. This is expressed through the following

potential:

Up,kl = Dk,l (
−→r ) fk,l

(
ˆpxi,k,

ˆpyi,k, ˆpzi,k, p̂
x
j,l, p̂

y
j,l, p̂

z
j,l,
−→r
)

(18)

where D is a function depending on the particles distance only, and fk,l is a function

containing the angular dependence of the patch-patch interaction. fk,l writes as

fk,l

(
ˆpxi,k,

ˆpyi,k, ˆpzi,k, p̂
x
j,l, p̂

y
j,l, p̂

z
j,l,
−→r
)

=
cos
(
πθxi,k
2Ωx

i,k

)
cos
(
πθyi,k
2Ωy

i,k

)
cos
(
πθxj,l
2Ωx

j,l

)
cos
(
πθyj,l
2Ωy

j,l

) if cos
(
θxi,k

)
≥ cos

(
Ωx

i,k

)
and cos

(
θyi,k

)
≥ cos

(
Ωy

i,k

)
and cos

(
θxj,l

)
≥ cos

(
Ωx

j,l

)
and cos

(
θyj,l

)
≥ cos

(
Ωy

j,l

)
0 otherwise

(19)
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where the cosines of the projected angles θxi,k, θ
y
i,k, θ

x
j,l, θ

y
j,l are given by

cos
(
θxi,k
)

=
ˆpzi,k.
−−→
rxji,k

|−−→rxji,k|

cos
(
θyi,k
)

=
ˆpzi,k.
−−→
ryji,k

|
−−→
ryji,k|

cos
(
θxj,l
)

=
p̂zj,l.
−→
rxij,l

|−→rxij,l|

cos
(
θyj,l
)

=
p̂zj,l.
−→
ryij,l

|
−→
ryij,l|

(20)

These cosines depend on the projection of the particle-particle separation −→rij = −→r (or
−→rji = −−→r ) on the (px, pz) and (py, pz) planes:

−−→
rxji,k =

(
ˆpzi,k.
−→rji
)

ˆpzi,k +
(

ˆpxi,k.
−→rji
)

ˆpxi,k
−−→
ryji,k =

(
ˆpzi,k.
−→rji
)

ˆpzi,k +
(

ˆpyi,k.
−→rji
)

ˆpyi,k

−→
rxij,l =

(
p̂zj,l.
−→rij
)
p̂zj,l +

(
p̂xj,l.
−→rij
)
p̂xj,l

−→
ryij,l =

(
p̂zj,l.
−→rij
)
p̂zj,l +

(
p̂yj,l.
−→rij
)
p̂yj,l (21)

For the distance-dependent function, we found that a Morse potential was a good repre-

sentation of the CNC surface interactions as it will be shown in section 3.2, therefore,

Dk,l (
−→r ) = UM,k,l

[
( 1− exp (−aM,k,l (|−→r | − rM,k,l) ) )

2 − 1
]

(22)

with UM,k,l being the interaction well depth, rM,k,l the equilibrium distance, and aM,k,l
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controlling the width of the potential.

Eventually, to set the patches orientations and geometries shown in Figure 2(c), we

started by calculating the edges of the CG beads by considering the positions of the outer

glucose units in the crystal structure. This gives the nearly hexagonal shape on the cross-

section of Figure 2(c), or the nearly hexagonal prism on the perspective view. We then divide

the cross-section into six circular sectors by considering the angles formed by the particle

center-of-mass and the corners of the particle. Finally, the patches y-aperture angles Ωy and

the patches z-orientations p̂z are calculated respectively as the half-angles and bisector of

the circular sectors. The patches x-orientations were aligned with the bead orientation êx

and the patches y-orientations were calculated such that (p̂x, p̂y, p̂z) form an orthonormal

basis. For the patches x-aperture angles, we simply set them to Ωx = 90° in order to have

a full coverage of the bead with the patches as shown in Figure 2(c). All the geometrical

information from the aforementioned procedure are summarized in Table 1.

Table 1: Patches definitions

n° Ωy Ωx p̂x p̂y p̂z Type

1 22.02° 90° (1,0,0) (0,-0.452,0.892) (0,0.892,0.452) (1-10)
2 29.94° 90° (1,0,0) (0,-0.981,0.194) (0,0.194,0.981) (100)
3 38.03° 90° (1,0,0) (0,-0.547,-0.837) (0,-0.837,0.547) (110)
4 22.02° 90° (1,0,0) (0,0.452,-0.892) (0,-0.892,-0.452) (1-10)
5 29.94° 90° (1,0,0) (0,0.981,-0.194) (0,-0.194,-0.981) (100)
6 38.03° 90° (1,0,0) (0,0.547,0.837) (0,0.837,-0.547) (110)

3 Parametrization

3.1 Bonded

We parametrized the bonded interactions developed in the previous section against AA-

MD simulations of the CNC shown in Figure 2(a) (containing 32 glucose units along the

c-axis) in water. The computational details of the AA-MD can be found in the Supporting
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Information, and are identical to Ref. 57 since we used exactly the same MD trajectory as

in that study. From the equilibrated frames of the AA-MD, we extracted the bond length,

bond angle and dihedrals angle distributions of the CG representation of this AA description

of the CNC, see the blue histograms in Figure 3. For the extraction of the bonds length,

we proceeded in a standard way by computing the center-of-mass distances between the

groups of atoms forming adjacent beads in the CG representation (e.g. distance between

center-of-mass of all red atoms and center-of-mass of all green atoms in the bottom CNC of

Figure 2(a)) and accumulating the values on an histogram for all equilibrated frames, Figure

3(a). For the extraction of the bonds angle and dihedrals angle, we developed a new method

to calculate the orientation of the groups of atoms forming adjacent beads. Let us denote

Ok the point cloud of oxygen atoms forming bead k and dOk,Ok+1
=
∑

i⊂Ok,j⊂Ok+1
|−→ri −−→rj |2

the distance between two bonded CG beads k and k + 1. We applied the Iterative Closest

Point algorithm (ICP)87 to obtain the transformation matrix T k,k+1 such that dOk,T (Ok+1) =∑
i⊂Ok,j⊂Ok+1

|−→ri − T (−→rj )|2 is minimized. In other words, we found the transformation T

that superimposes the oxygen atoms of bead k + 1 with the oxygen atoms of bead k. This

transformation matrix T contains the bonds angle and dihedrals angle, that we accumulated

over the equilibrated AA-MD frames to obtain the distributions in Figure 3(b)-(c). More

details can be found in the Supporting Information.

After having extracted these distributions, we performed CG-MD simulations of one

CNC containing four beads. The simulations were carried out with a modified version of the

LAMMPS simulation package, in an implicit solvent, with the nve/asphere integrator and a

Langevin thermostat with a damping factor of 4.0 ps. The time step was set to 100 fs and

the temperature to 300 K. The same conditions were applied throughout the entire study.

Note that to study the dynamics of the single CNC, periodic boundary conditions were

applied in xyz directions, and the simulation box was chosen big enough so that the CNC

cannot interact with itself across the boundaries, just like for the AA-MD simulation. The

distribution of bonds length, bonds angle and dihedrals angle were extracted on equilibrated
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Figure 3: Parametrization of the bonded CG force-field. The plots show the distributions
of bonds length, bonds angle and dihedrals angle obtained from AA-MD and from CG-MD
after proper parametrization.

frames of these MD simulations, and we adjusted the force-field parameters introduced in the

previous section until the distributions from AA-MD and CG-MD superimpose. We finally

obtained the satisfactory agreement shown in Figure 3 for the set of parameters reported in

Table 2.

Table 2: Bonded force-field parameters

Bonded interaction Force constant Equilibrium value

Harmonic bond Ub kb = 500 kcal/mol/Å2 rh = 20.66 Å
Cosine harmonic angle Ua ka = 15× 107 kcal/mol θ0 = 180°

Dihedral Ud kd = 3600 kcal/mol φ0 = 6.1°

3.2 Nonbonded

We parametrized the Morse potential appearing in the patch-patch interaction in Equation

22 against AA-MD simulations following the method in Ref. 57. The Potential of Mean

Force (PMF) for AA-MD simulations of two CNC lying parallel to each other, in water, were

calculated for different surface interactions as depicted by the CNC cross-sections in Figure 4.

The periodic boundary conditions were maintained in xyz directions, and the box dimension

were big enough in y and z directions such that the two CNC interact only with each other’s
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in the central box (not across the boundaries). However, the CNC cross the x-boundary along

their c-axis such that we are simulating infinitely long CNC. Therefore, the obtained PMF

are a bit biased because the twist is prohibited, but since the situation is comparable both for

AA and CG the comparison is still valid. On the other hand, this setup has the advantage to

remove effects of the CNC end, and it prevents the rotation of the CNC during the simulation

towards their preferred surface interaction. More information can be found in the Supporting

Information. We used umbrella sampling simulations to calculate the PMF as it was done

previously by Paajanen and coworkers.45 Two CNC were first put in contact without water

between them, one was restrained to its position, and a pulling force was then applied to the

other in order to generate several CNC configurations at different surface-surface distances.

For each configuration, an AA-MD was conducted and the PMF extracted using theWeighted

Histogram Analysis Method (WHAM). We refer the reader to Ref. 57 for the computational

details. This procedure provides the AA PMF curves of Figure 4 for different surface-surface

interactions as a function of the surface-surface distance. The standard deviation, as obtained

from the BOOTSTRAP algorithm implemented in GROMACS,88 was approximately 2 %.

We conducted the same PMF calculations for our new CG model, and adjusted the Morse

potential parameters in order to superimpose the AA PMF and the CG PMF. As it can be

seen on Figure 4, we obtained an excellent agreement for the set of parameters reported in

Table 3. Note that the PMF were scaled by the number of glucose units for each surface,

and we were therefore able to parametrize all possible surface-surface interactions from the

three configurations presented in Figure 4. For all patchy interactions the distance cut-off

was set to 10 nm and we excluded these interactions for bonded particles up to the third

bond.

It is worth noting that in the present model we needed three different patches to model

the three different CNC surfaces while in our previous CG model of the same CNC, Ref. 57,

only two beads were used: One for the (100) surface and one for the (110) and (1-10) surfaces.

We could do that previously because we used "classical" CG beads interacting with Lennard-
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Figure 4: Parametrization of the nonbonded CG force-field. The plots show the PMF curves
calculated for various surface-surface interactions, both from AA-MD and CG-MD after
proper parametrization. The configurations of the two CNC used to calculate the PMF are
schematically depicted by the blue and red CNC cross-sections.

Table 3: Surface-surface interactions

Surfaces UM,k,l (Kcal/mol) aM,k,l (Å−1) rM,k,l (Å)

(100)-(100) 110.0 0.326 31.26
(100)-(110) 40.9 0.55 33.88
(100)-(1-10) 35.8 0.55 38.45
(110)-(110) 70.0 0.4 37.0
(110)-(1-10) 63.0 0.4 41.57
(1-10)-(1-10) 56.0 0.4 46.15

Jones potential, and therefore: (i) the beads for (110) and (1-10) not only represented the

surface glucose units but very similar groups of glucose units including inner-CNC glucose

units, (ii) the non-regular shape of the CNC cross-section could be reproduced by setting

different positions of the (110) and (1-10) beads around the CNC core, (iii) since the surface

interactions arose from all beads interacting at the same time, the CNC-CNC interaction

was different for surfaces (110) and (1-10) because of the position of these beads around the

core (even though the beads themselves were identical). In the patchy particle model, since

the surface-surface interactions only arose from one single patch-patch interaction at a time,

we were obliged to have different patches for (110) and (1-10) surfaces in order to have a

non-regular CNC shape and different interactions for surfaces (110) and (1-10). The physical
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meaning of the parameters reported in Table 3 for the various surfaces can be understood

by considering the hydrophobic or hydrophilic properties of the surface: the (100) surface

exposes C-H moieties to the surrounding medium and therefore is hydrophobic, while the

(110) and (1-10) are decorated by protruding hydroxyls and are hydrophilic.89 Since the

values for UM,k,l include the effect of different surface areas (i.e. number of glucose units

at the surface) and the values for rM,k,l include the effect of different CNC core to surface

distances, it is more straightforward to directly inspect the PMF of Figure 4, from which

they are derived. The interaction is the strongest for (100)-(100) surfaces, with the lowest

equilibrium distance. The two surfaces being hydrophobic, at equilibrium there is no layer of

water between the CNC, they are very close and interact strongly via direct Van der Walls

interactions. The (110)-(110) hydrophilic surfaces have a weaker interaction because at equi-

librium there is one or more layers of water in between the CNC that reduce the direct Van

der Walls interactions. Therefore they also exhibit the largest equilibrium distance. Finally,

the equilibrium distance between the hydrophobic (100) surface and the hydrophilic (1-10)

surface is intermediate because in this case there is a competition between the hydrophobic

surface that tends to expel the water in between the CNC and the hydrophilic surface that

tends to retain the water. As a results, the interaction between these surfaces is the weaker

because the hydrophilic and hydrophobic properties of the two surfaces in contact cannot

be meet concomitantly. Finally, the parameter aM,k,l essentially replicates the information

contained in UM,k,l since for the Morse potential aM,k,l ∝ 1/
√

2UM,k,l.

4 Applications

4.1 Single nanocrystal properties

To assess the validity of the bonded parametrization, we calculated the longitudinal elastic

modulus E of a CNC along the c-direction as well as the diffusion coefficient of the CNC

as a function the CNC length. To perform these simulations, periodic boundary conditions
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were applied in xyz directions and the boxes were big enough to fit in the CNC with desired

dimensions. Yet, the CNC could in principle interact with itself across the boundaries, or

with other CNC in the case of diffusion, but we turned-off the non-bonded interactions since

we were interested in properties depending on the bonded interactions only. E was obtained

by a steered MD simulation of a single CNC of length ∼ 200 nm when the position of one end

of the CNC was fixed and a gradual pulling force was applied to the other end. We monitored

the CNC elongation from this dynamics and we extracted the Stress-Strain curve shown in

Figure 5(a). The slope of the curve gives us an elastic modulus E = 340 GPa. Note that in

our CG model, the cross-sectional area (used to calculate the stress) remains constant when

the CNC is steered. AA-MD performed by Poma et al. on the same model of CNC show

that this is actually the expected behavior.55 The calculated value is close to those reported

in the literature, both theoretical and experimental, which cover a large range (50 ∼ 220

GPa) depending on the CNC source, extraction method and cross-sectional morphology.90

In particular, this value, if scaled by the number of chains in the CNC, i.e. 340 × (18/36) =

170 GPa, is quite close to the elastic modulus E = 161 GPa found theoretically by Muthoka

et al. for the same CNC cross-section morphology but with 18 chains.91 Note that in our

previous supra-CG model of CNC, the elastic modulus E = 110 GPa was somehow lower.57

The diffusion coefficient was estimated for three different CNC lengths, 8 nm, 200 nm

and 400 nm, by monitoring the Mean Squared Displacement (MSD) of 200 non-interacting

CNC in a simulation box during 7 µs. The results are shown in Figure 5(b), and are in

good agreement with experimental data as well as theoretical calculations from our previous

supra-CG model.57

4.2 Cholesteric phase of the cellulose nanocrystal

In this section, we finally test the ability of this new patchy particle model to reproduce

the self-assembly of CNC into a so-called cholesteric phase. Note that in all the simulations

presented in this section, periodic boundary conditions were applied in xyz directions. Yet,
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Figure 5: (a) Stress-Strain curve obtained from CG-MD simulation and extracted value of
the longitudinal elastic modulus. (b) CNC diffusion coefficient as a function of the CNC
length. Values from the present patch model are represented as orange circles with a linear
fit superimpose (orange dotted line). Experimental values come from Ref. 92 for Exp. 1,
Ref. 93 for Exp. 2, Ref. 94 for Exp. 3, Ref. 95 for Exp. 4. The set of points denoted
Supra-CG correspond to simulation results from our previous supra-CG model of CNC, see
Ref. 57.

the simulation boxes were chosen big enough so that there were no interactions across the

boundaries, and the presented systems can be seen as isolated systems. We start by simu-

lating the equilibration of a model system made up of a long layer of 180 CNC put next to

each other in a parallel alignment, with the (110) surfaces facing each other, see Figure 6(a).

This structure was simulated for different CNC lengths, from 8 nm to 100 nm, and we ran

the dynamics until an equilibrated state was reached as indicated by a plateau in the MD

energy curve. The equilibrated structures form a left-handed helical ribbon where the CNC

c-directions are rotating in the (x-z) planes, as shown in 6(a) for the CNC length ∼ 41.5 nm.

It proves the ability of the model to reproduce the tendency of the right-handed CNC to

form a left-handed cholesteric phase due to their intrinsic twist.96 It is worth noting that in

our previous supra-CG model of CNC, we were not able to directly simulate this cholesteric

ordering due to computational limits. This qualitatively indicates better performances of this

new patchy particle model regarding the simulation of cholesteric ordering, and we plan to

21



provide a quantitative comparison in a future study. We also foresee that the implementation

of our model with GPU acceleration would bring significant speedup considering for instance

that Li et al. have reported a speedup of two orders of magnitude between LAMMPS with

one CPU and GALAMOST97,98 with one GPU for a benchmark system with 40000 ellipsoid

particles.77 We measured the pitch p (y-distance such that the c-directions has rotated by

360°in the (x-z) plane) of these cholesteric ribbons as a function of the CNC length, see

Figure 6(b). While this study cannot be directly compared quantitatively to experimen-

tal data, because CNC form 3D cholesteric phases instead of 1D ribbons and because the

surface modification have a crucial role in determining the cholesteric pitch, the results are

in qualitative agreement with the findings of Beck-Candanedo et al.99 They found that for

spruce-derived CNC at a constant mass fraction in solution, the pitch increases from 7 µm

to 18 µm when the average length of the CNC increases from ∼ 100 nm to ∼ 140 nm. There

was no clear explanation of this effect in the original paper, but later on Honorato-Rios and

coworkers commented the experiment:100 “At present this is a purely empirical observation

without any proposed explanation for the effect. One may speculate that the greater rod

length affects the elastic constants of the phase, rendering twist less favorable [...]”. Indeed

our results can be qualitatively understood in terms of the energy stored in a twisted rib-

bon. A very complete mathematical model has been developed by Chopin and coworkers to

describe the morphology of a ribbon subjected to twist.101,102 The analytical treatment is

rather complex, but essentially relies on the fact that twisting a ribbon to form an helicoid

induces a longitudinal compressive stress (in the y-direction) because the edges of the helix

are much longer that the central part of it, and that when this stress is too high it can be

relaxed by forming longitudinal or transverse wrinkling, loops or self-contact zones. In our

case, there is a competition between the tendency of the ribbon to twist toward a prescribe

angle due to the intrinsic twist of the CNC, and the apparition of a compressive stress that

tends to untwist the ribbon. The larger the ribbon width the larger the compressive stress,

and therefore the pitch increases (the ribbon tends to untwist) when the CNC length (the
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ribbon width) increases. When the CNC length reaches 100 nm, there is the apparition of

longitudinal wrinkles with a wavelength λ as shown in Figure 6(c), in agreement with the

theoretical and experimental findings of Chopin et al.. This wrinkling reduces the effective

length of the ribbon and therefore the pitch increase with the CNC length is less pronounced

at 100 nm than for shorter lengths. While this model 1D cholesteric ribbon is not represen-

tative of the real cholesteric phase morphology of CNC, it can be of significant importance

for a wide variety of other building blocks such as amphiphilic lipids or proteins that can as-

semble into such nanoribbons,103 opening up a large field of applications for our new patchy

particles model.

Figure 6: (a) Initial model structure with 180 CNC of length ∼ 41.5 nm side-by-side with
(110) surfaces facing each other, and corresponding equilibrated cholesteric ribbon. The
CG beads are colored according to the angle between their êx axis and the x-axis, and the
cholesteric pitch p is highlighted. (b) Pitch as a function of the CNC length. Orange dotted
line is a guide for the eyes. (c) Equilibrated cholesteric ribbon for CNC length 100 nm.
Longitudinal undulations of wavelength λ are visible. The software package OVITO was
used for visualization.104

As stated previously, CNC self-assemble into 3D cholesteric phase in solution, when the

solution undergoes a phase separation between an isotropic liquid crystal phase and the

anisotropic cholesteric phase during the solvent evaporation. The first stage of the phase

separation, when the cholesteric phase nucleates into ellipsoidal nanodroplets, the so-called
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tactoids, has a significant role for the rest of the evolution of the cholesteric phase, up to the

final film after drying.105 We investigated the cholesteric ordering starting from an already

formed compact nanodroplet as illustrated in Figure 7(a). This model system comprises

an array of 20 × 20 CNC of length ∼ 83 nm arranged into a hexagonal structure. We let

the system relax to its equilibrated state as shown on the right in Figure 7(a), which took

about 10 ns. The black lines outline the nanodroplet contour, highlighting the right-handed

twist that develops along the x-axis. A closer inspection of the CNC orientation in the (y,z)

plane shows an onion-like concentric pattern, where the CNC attempt to radially twist (the

helicoidal axes are along the radii of the circular rings). This particular structure, known

as a non-singular λ+1 cholesteric disclination, has been both modelled theoretically106 and

observed experimentally107 for liquid crystals, and is the result of an orientational frustration

experienced by the CNC at the center of the nanodroplet. As a result, left-handed cholesteric

order appears in the three surface interaction directions, (110), (100) and (1-10), as illustrated

in Figure 7(b). Remarkably, the extent of the twisting in the tactoid along the 3 directions

(about 20-25° as highlighted by the colorbar) is rather similar even though the corresponding

surfaces have different interaction strengths and equilibrium distances. Actually, a more

precise analysis of the tactoid structure reveals that the concentric pattern consists of circular

layers separated by 3.2 nm, and CNC from one layer to the next have radially twisted of

0.3°, giving a radial pitch of 1.2 µm similar in all directions. This constant radial pitch is

consistent with the perfect bright circles observed experimentally on tactoid with polarized

optical microscopy.

5 Conclusion

In summary, a new patchy particle model for molecular dynamics simulations has been

developed. Compared to existing models, it provides more flexibility by replacing the circu-

lar patch geometry by a spherical rectangle patch geometry, which is well-suited to model
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Figure 7: (a) Initial model structure of a CNC tactoid, containing 400 CNC of length ∼ 83
nm, and relaxed structure in perspective and orthonormal view. For the perspective view,
black lines outline the tactoid shape to help visualize the global right-handed twist. For the
orthonormal view, CNC are represented as thin rods in order to show the concentric pattern.
(b) Cholesteric ordering in three different directions corresponding to the three surface-
surface interactions. The red arrows show the directions of the surface-surface interactions.
Cg beads are colored according to the angle between their êx orientation and the z-axis for
(110), the y-axis for (100), and the vector −→y +−→z for (1-10). The software package OVITO
was used for visualization.104
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faceted particles for instance. It opens the way to investigate self-assembly at large space

and time scales in a broad range of systems. This is demonstrated by the development of a

new supra coarse-grained model of cellulose nanocrystal where the interactions between the

surfaces of distinct nanocrystal are introduced by patchy interactions. The coarse-grained

model is parametrized against the results of all-atoms molecular dynamics simulations of the

nanocrystal and the validity of the approach is demonstrated by calculating the longitudinal

elastic modulus and the diffusion coefficient of a single nanocrystal. The cholesteric ordering

of the cellulose is investigated on two model systems. First, cholesteric ribbons are simulated

and the dependence of the cholesteric pitch with different nanocrystal length is discussed.

The trend is explained considering the elastic energy stored in the structure and for the

first time the occurrence of longitudinal undulations in a twisted ribbons are reported at the

molecular scale, an effect that has been theoretically predicted and experimentally observed

in macroscale ribbons. A cholesteric nanodroplet, a so-called tactoid, is then simulated and

demonstrates the potential of the model to investigate the nucleation step during phase sep-

aration of the cellulose nanocrystal suspension into a cholesteric phase. In particular, the

formation of a non-singular λ+1 cholesteric disclination is reported, in agreement with the

literature. Having such insights into the morphology of the CNC cholesteric nanodroplet is

instrumental for the interpretation of the optical properties of the material but the full de-

scription of the CNC tactoids will require to include surface charges and solvent ionic strength

effects, a work that we are performing currently. Indeed, these parameters can drastically

modify the thermodynamics of an assembly of rod-like molecules forming cholesteric phase,

and as a result strongly affect the cholesteric pitch.108 Yet, the two cholesteric model systems

introduced in this study show that this new patchy particle model provides a solid base for

the systematic investigation of the interplay between microscopic properties of the molecules

and macroscopic properties of the ordered phase such as the cholesteric pitch. The general

model presented in this paper, including the extension of the Kern-Frenkel patchy particle

model but also the derivation of the bonded force-field for chiral molecules, can be applied
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to any rod-like molecules. All what is required is to perform the parametrization against

All-Atom Molecular Dynamics, for which we have detailed all necessary steps. Starting from

an isotropic distribution of rod-like molecules, we envisage that the model will be able to

investigate the full phase transformation towards the cholesteric phase, giving access to the

cholesteric volume fraction, the cholesteric pitch, and the potential presence of defects. As

a result, it could be used to design the system to obtain a targeted final morphology or

to help the interpretation of experimental results such as polarized light microscopy. For

the future, we plan to extend the model in order to account for surface modification of the

cellulose nanocrystal as well as to investigate different cellulose nanocrystal cross-sectional

shape, and we also envisage to develop GPU implementation of the new patchy particles

model.
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