
Linköping University | The Department of Electrical Engineering
Master’s thesis, 30 credits| Mechanical Engineering

Spring 2020| LiTH-ISY-EX--20/5290--SE

Semi-automatic generation
of control law parameters for
generic fighter aircraft

Markus Lindblom

Supervisor: Shervin Parvini Ahmadi
Examiner: Martin Enqvist

Linköping University
SE-581 83 Linköping, Sweden
+46 013 28 10 00, www.liu.se

Semi-automatic generation of control law

parameters for generic fighter aircraft

Markus Lindblom

July 15, 2020

Abstract

Control law design can be an iterative and time-consuming process. The design
procedure can often include manual tuning, not uncommonly in the form of trial
and error. Modern software tools may alleviate this process but are generally
not developed for use within any specific industry. There is therefore an appar-
ent need to develop field-specific tools to facilitate control law design.

The main contribution of this thesis is the investigation of a systematic and
simplified approach to semi-automatic generation of control law parameters for
generic fighter aircraft. The investigated method aims to reduce human work-
load and time spent on complex decision making in the early stages of aircraft
development. The method presented is based on gain scheduled LQI-control
with piece-wise linear interpolation. A solution to the automated tuning prob-
lem of the associated weighting matrices Q and R is investigated. The method
is based on an LQ-optimal eigenstructure assignment. However, the derived
method suffers from problem regarding practical implementation, such as the
seemingly narrow LQ-optimal root-loci of the linearized aircraft model.

Furthermore, the inherent problem of hidden coupling is discussed in relation
to gain scheduled controllers based on conventional series expansion lineariza-
tion. An alternative linearization method is used in order to circumvent this
problem. Moreover, the possible benefits and disadvantages of control alloca-
tion is addressed in the context of actuator redundancy. It is concluded that
one may achieve a somewhat simpler handling of constraints at the expense of
some model accuracy due to the inevitable exclusion of servo dynamics.

Contents

1 Introduction 1
1.1 Purpose . 1
1.2 Background . 1
1.3 Approach . 1
1.4 Limitations . 2
1.5 Thesis outline . 2

2 Linear quadratic control 4
2.1 LQI-control . 5
2.2 Prescribed degree of stability . 6

3 Gain scheduling 7
3.1 Introduction to hidden coupling 7
3.2 Handling hidden coupling terms 9

3.2.1 A small mathematical example 10
3.3 Slow variation requirements . 11

4 Gain scheduling example 12
4.1 Modeling and design goals . 12
4.2 Design procedure . 13
4.3 Results . 14
4.4 Discussion . 19

5 Modelling of aircraft dynamics 20
5.1 Rigid body dynamics . 20
5.2 Current aircraft layout . 21
5.3 Linearized flight mechanical model 22
5.4 Servo dynamics . 25
5.5 Validation . 27

6 Tuning of weighting matrices 32
6.1 The inverse LQ-problem . 33

6.1.1 Solution to the inverse LQ-problem 36
6.2 Eigenstructure assignment . 37

6.2.1 Solution to the eigenstructure assignment 39
6.3 A small example . 40

ii

7 Actuator redundancy 44
7.1 Optimal control . 44
7.2 Control allocation . 45

7.2.1 Control allocation and servo dynamics 46

8 Results 49
8.1 Program description . 49
8.2 Linear simulation results . 55
8.3 Nonlinear simulation results . 56

9 Conclusions 59

Appendices 63

A Non-linear missile dynamics 64

B Linearized missile dynamics 66

C Missile guidance system script 68

D Coefficients of linearized equations 73

E Inverse LQ-algorithm script 74

F LQ-optimal eigenstructure assignment script 81

iii

Chapter 1

Introduction

The work included in this thesis has been performed at the request of SAAB
Aeronautics and supervised and examined by the department of electrical engi-
neering at Linköping University.

1.1 Purpose

The main purpose of this thesis is to create a semi-automatic program that
generates initial values of control parameters for generic fighter aircraft. The
aim is to facilitate control law design and create a basis for early assessment of
aircraft performance. The program is intended to reduce human workload and
relieve complex decision making in the early stages of new aircraft development.

1.2 Background

SAAB Aeronautics is a subset of the SAAB corporation, a military company
that, among other products, designs and produces the modern multirole fighter
JAS-39 Gripen. Currently the SAAB corporation owns and maintains an in-
ternally developed simulator environment known as Ares Mars. This simulator
will to some degree be extended and serve as the basis for the implementation
and evaluation of the developed method.

1.3 Approach

The controller scheme applied is gain-scheduled LQI-control with only minor
variations and/or extensions which will be further introduced in the relevant
sections. This choice, among other things, assures simple validation and certi-
fication of flight-worthiness. Moreover, two different linearization methods will
be compared, classical series expansion (i.e. Jacobian linearization) and what
is known as velocity-based linearization first introduced by Kaminer et al. [5].
The purpose of this comparison is to address the inherent problem of hidden
coupling terms relating to the interpolation of controller parameters, a problem
that is said to be alleviated by use of the later. Furthermore, methods for auto-
mated tuning of weighting matrices will be analyzed including solutions relating
to the inverse LQ-problem.

1

1.4 Limitations

It is not within the scope of this thesis to evaluate different controller schematics,
nor is it to in practice perform any studies of altering aircraft layouts. Moreover,
all controller parameters created are, without exception, linearly interpolated
to yield a piece-wise linear structure for their respective values. No effort will
be devoted to evaluating stability preserving methods or alike. This choice en-
sures decoupling of the later validation process, i.e. one can simply re-tune the
necessary parameters for any single sub-region of the flight envelop where per-
formance does not confine to expectations or demands.

1.5 Thesis outline

In Chapter 2, a theoretical background on linear quadratic control (LQ-control)
is given along with two relevant extensions. The first being linear quadratic inte-
gral control (LQI-control) which is used in order to gain setpoint tracking. The
second being alpha-shifted LQ-control, sometimes also referred to as LQ-control
with a prescribed degree of stability. This extension serves the purpose of re-
ducing possible overshoot and oscillatory behaviour in the transient response.

In Chapter 3.1, the concept of gain scheduling is introduced including the
associated problem of hidden coupling terms (HCT -s). Some possible meth-
ods of dealing with HCT-s are discussed including velocity based linearization
first presented in [5]. An extension to this approach is given, here referred
to as enhanced velocity based linearization in accordance with the title to [4].
Furthermore, a small mathematical example is given as to motivate the effect
of the velocity based approach. Lastly, the slow variation requirement of gain
scheduling parameters is mentioned, partially in relation to the velocity based
linearization technique.

In Chapter 4, the presented theory is put to practice in a small example
regarding the pitch control of a non-ballistic (fuel propelled) missile. In this
example both conventional linearization, by use of a first order series expansion,
and enhanced velocity based linearization is implemented and the results are
subsequently compared. The possible existence of HCT-s are noted and dis-
cussed in relation to the gradient of the interpolated feedback coefficients.

In Chapter 5, the modelling of the aircraft dynamics are presented includ-
ing the resulting structure of the linearized state space model along with the
definition of states and inputs. The current aircraft layout in the Ares Mars
simulator is described and some practicalities regarding the implementation of
servo dynamics are covered. The Chapter is ended with results from a small
validation process in which linear and nonlinear responses are compared.

2

In Chapter 6, tuning of weighting matrices are discussed. The idea of au-
tomation is introduced through some notable examples. A new method of au-
tomation through the sequential solving of an eigenstructure- and inverse LQ-
problem is introduced. Some practical obstacles are consequentially addressed
and the Chapter is ended in a small example for a randomly created linear time
invariant (LTI) system.

In Chapter 7, two possible methods of handling actuator redundancy are dis-
cussed. Focus lies on optimal control allocation along with its possible benefits
and apparent drawbacks. Subsequently the concept of virtual control signals
is introduced and the necessary alteration of the linear state space model is
presented.

In Chapter 8 the resulting program is introduced along with some brief
commentary regarding which of the addressed procedures and techniques were
implemented. Examples of linear simulation results are given and the Chapter
is ended by presenting results from nonlinear simulations when the aircraft is
operating in rate mode.

3

Chapter 2

Linear quadratic control

Linear quadratic control is a special case of optimal control where the per-
formance index is quadratic in both states and control effort. The notion of
minimizing a quadratic cost functional (performance index) stems from work
performed by Wiener [10] and Hall [11]. However the rigorous mathematical
foundation needed, including the introduction of the concept of controllability,
was first presented in the article Contributions to the theory of optimal control
written by R.E Kalman [12], published in 1960. The LQ-problem is defined as
follows, given an arbitrary initial condition x0 of the linear system ẋ = Ax+Bu,
find the optimal control effort u that minimizes the performance index

J(x, u) =
∫ t1
t0

1

2
(xTQx+ uTRu)dt+

1

2
xT (t1)Px(t1) (2.1)

where Q and R are referred to as either cost matrices, penalty matrices or weight-
ing matrices. Both Q and R are symmetric and subject to Q ≥ 0, R > 0. The
last term in the above performance index is known as a terminal cost and is in
principle only relevant when the final time t1 is finite.

The solution to the LQ-problem is well known and is here only presented in
a straightforward manner. If the reader wishes to have further insight into the
derivation he or she is referred to, e.g. [12]. The control effort u that minimizes
the performance index in (2.1) is u = −Kx where K = R−1BTP and P is the
solution to the Riccati Differential Equation (RDE)

−Ṗ = ATP + PA− PBR−1BTP +Q (2.2)

where P is bounded by P (t1) = P1. Note that the solution to this ordinary
differential equation is in general time-varying, however if the final time t1 is
infinite the solution P kan be shown to be constant and the problem simplifies
to finding the solution P to

ATP + PA− PBR−1BTP +Q = 0 (2.3)

known as the Algebraic Riccati Equation (ARE). Note that the word simplifies
does not imply that finding the solution to the above equation is trivial (nei-
ther in a theoretical nor practical sense) as can be seen by the extensive work
presented in [13].

4

Note: It is worth mentioning the apparent similarity between the ARE
and the Lyapunov equation

AP + PAT = −Q. (2.4)

The Lyapunov equations derives from the observation that in order for a
system to be stable the generalized energy (belonging to the system states)
must decrease as time progress. The solution P , if such exist, takes the

form P =
∫∞
0
eA

T tQeAtdt. Noting that for an unforced LTI system the

natural response, given the initial condition x0, equals x = eAtx0 it is
straightforward to show that

xT0 Px0 =

∫ ∞
0

xT0 e
AT tQeAtx0dt =

∫ ∞
0

xTQxdt (2.5)

The apparent conclusion of this is that finding the solution P to the
Lyapunov equation (and pre-/post multiplying by xT0 /x0) is equivalent to
evaluating a quadratic cost functional in x, weighted by Q, over infinite
time. Similarly to above, the forced system response, characterized by
the optimal control u = −Kx, may be shown to be x = e(A−BK)tx0.
In accordance with previous reasoning it may be shown that in order to
evaluate the quadratic cost functional over infinite time for the implied
forced system one may solve the equation

(A−BK)P + P (A−BK)T = −Q (2.6)

Substituting K for R−1BTP (and possibly transposing the result depend-
ing on convention) we find that in order to evaluate the cost functional
(2.1) we must solve the ARE.

Several extensions to the LQ-problem has over time been presented and solved,
including cross-coupled LQ-control, see for example [14]. The only extensions
relevant to this thesis however are LQI-control and what is known as LQ-control
with a prescribed degree of stability, sometimes referred to as alpha-shifted LQ-
control.

2.1 LQI-control

LQI-control abbreviates Linear Quadratic Integral control and is one of several
ways of solving the servo problem (note that ordinary LQ-control only pro-
vides stability). In addition to the conventional state feedback, inherent to
LQ-control, a second feedback loop containing simple integral control is added.
In order to find appropriate values for the integral controller coefficients the
system is augmented to include the controller states (i.e. the integral of the
tracking error e). The augmented system takes the form

(
ẋ
ė

)
=

[
A 0
−Cyi 0

] (
x
e

)
+

[
B
−Dyi

]
u+

[
0
I

]
r (2.7)

y =
[
C 0

](x
e

)
+Du

x ∈ Rn, u ∈ Rm, e ∈ Rl

5

Figure 2.1: Block diagram of a general LQI controlled system.

where the matrices Cyi and Dyi are the output- and feed-trough matrices for
the outputs that are to be tracked (of sizes l × n and l ×m respectively). The
subsequent feedback-matrix K may be divided and written in block matrix form
as K = [Kx,Ki], where Ki is of size m × l. The matrix Ki contains the LQ-
optimal integral controller coefficients and the system takes the general form
shown in Figure 2.1.

In contrast to LQI-control one could use static- or dynamic feed forward
control to gain proper tracking. However, as is well known, this approach yields
high model dependency. Both LQI-control and feed forward control could in
practice be combined in order gain tracking performance and introduce further
freedom in shaping of the transient response and sensitivity functions. However,
the main focus of this thesis is, as stated, not the control structure itself but
rather the investigation of possible methods of automation. As such no feed
forward control is implemented.

2.2 Prescribed degree of stability

The optimal control, deriving from the solution to the LQ-problem, may at times
result in a step response that exhibits either overshoot and/or other unwanted
transient behaviour. In order to lessen the extent of this issue the performance
index may be altered accordingly

J(x, u) =

∫ t1

t0

1

2
(eαt)T (xTQx+ uTRu)eαtdt (2.8)

Note that in order for a stabilizing solution to exist, in the general case, the
states x must converge towards the origin (zero). For the altered performance
index in (2.8) this effectively means that the states must converge to the origin
faster than, or at least equally fast as, e−αt, otherwise the performance index
would per definition diverge. To implement this extensions in practice one need
only alter the state transfer matrix accordingly ẋ = Aαx + Bu, Aα = α + A,
where α is a diagonal positive semi-definite matrix, for further details regarding
this approach the reader is referred to [14].

6

Chapter 3

Gain scheduling

Gain scheduling is the practice of dividing an intended operating region into a
set of sub-regions, conventionally about a set of operating points. The plant is
then linearized about each point and a family of linear controllers is synthesized
based on given performance specifications. These controllers could then either
be implemented as is, with an associated switching logic, or controller parame-
ters and/or outputs could be interpolated to estimate an appropriate controller
structure at intermediate values. Regardless, the current choice of controller pa-
rameters is scheduled based on the parameters that define the operating domain.
These parameters, called scheduling parameters, can be either exogenous (such
as local atmospheric properties) and/or endogenous (such as angle of attack,
angular rates etc.). However if one chooses to use endogenous state variables as
scheduling parameters one will, if not taken particular caution, invoke what is
known as hidden coupling terms. For further insight and additional references
regarding gain scheduling the reader is referred to [1].

3.1 Introduction to hidden coupling

In order to create a basis for the introduction, and subsequent discussion, of
hidden coupling terms we will here refer to the example given in [3].

Consider the problem of designing a missile guidance system. The problem
is, for simplicity, reduced to that of only controlling the pitching dynamics of a
ballistic (non propelled) missile. The goal is to design a controller in order to
enforce reference tracking of commanded normal force to ensure that the missile
follows a predefined trajectory. In [3] the authors choose to use angle of attack,
α, and mach number, M , as scheduling parameters and derive an analytic ex-
pression for a general PI-controller acting on commanded and measured normal
force along with pitch rate. The controller dynamics are given as

ż = Ki(α,M)(nc − n) (3.1)

δe = z +Kn(α,M)n+Kq(α,M)q (3.2)

where nc denotes the commanded normal force and δe denotes the elevator
deflection.

7

If both α and M were independent parameters that did not affect nor became
affected by either n or q, then the designed controller would per definition be
linear, however this is not the case. There is an inherent coupling between the
states that are to be controlled (n and q) and the parameters used to define the
controller gains (α and M), hence, the above controller is non-linear in both n
and q. To clarify (3.1) and (3.2) should perhaps be rewritten as

ż = Ki(α(n, q),M(n, q))(nc − n) (3.3)

δe = z +Kn(α(n, q),M(n, q))n+Kq(α(n, q),M(n, q))q (3.4)

In order to evaluate the local behaviour of this non-linear controller it is nec-
essary to differentiate with respect to both n and q and evaluate arising terms
at the given operating conditions. Since the gains Kx(α(n, q),M(n, q)), by
above reasoning, must be regarded as composite functions one must inevitably
turn to the composite function rule for derivatives, perhaps more well known
as the chain rule. When applied to the general PI-controller in (3.3)-(3.4), it

is straightforward to show that ∆ż = Ki(∆nc − ∆n) + ∂Ki

∂Θ
∂Θ
∂n

∣∣∣
oc

∆n, as well

as ∆δe = ∆z + Kn∆n + Kq∆q + ∂Kn

∂Θ
∂Θ
∂n

∣∣∣
oc

∆n +
∂Kq

∂Θ
∂Θ
∂q

∣∣∣
oc

∆q. Note that

the subscript oc denotes operating conditions. The last terms included in the
above expressions derive from the aforementioned coupling and is as such prop-
erly named hidden coupling terms, this dependency may be visualized as in
Figure 3.1.

Figure 3.1: When the scheduling parameters are internal states of the system
the passing of their instantaneous values to the controller will cause additional
feedback. In order to preserve designed performance and margins this added
dynamics must be accounted for in some manner.

8

3.2 Handling hidden coupling terms

There are a number of ways to deal with hidden coupling terms (including the
method from [3]), however only two methods will be mentioned here. The first
of which is by simply stating that:

∂Ki

∂Θ

∂Θ

∂n

∣∣∣
oc

∆n = 0 (3.5)

∂Kn

∂Θ

∂Θ

∂n

∣∣∣
oc

∆n+
∂Kq

∂Θ

∂Θ

∂q

∣∣∣
oc

∆q = 0 (3.6)

In other words, one states that the hidden couplings, deriving from the differ-
ent scheduling parameters, must cancel each other out. However this imposes
restrictions on any forthcoming interpolation, restrictions that may not be com-
patible with the original design specifications.

The second approach includes applying a velocity-based plant model first
presented in [5]. In contrast to the conventional series expansion approach this
method relies on the use of state and output derivatives rather than the intro-
duction of the familiar deviation variables. In [5] the authors prove that using
a velocity-based approach will preserve the local input-output relation of the
designed linear controller, i.e. one avoids the presence of hidden coupling terms.
Furthermore, the authors present a method of realizing the resulting controller
structure when necessary measurements of derivatives are not available. This
method simply involves using pseudo derivatives in the form of low-pass filtered
ordinary derivatives. In [4] the authors extend upon this idea and conclude that
adapting this approach on pseudo derivatives leads to the inclusion of an un-
wanted pole located at − 1

τ , where τ represents the low-pass filter time constant.
This in turns leads to an additional trade off between performance and system
noise injection. The authors then suggest a post-filtering structure that intro-
duces a zero at the unwanted pole in order to compensate for the pre-filtering
dynamics. They conclude that the new structure is mostly insensitive to the
choice of time constant τ and that one therefore can use fairly high values of
the same without severely degrading performance. Furthermore, the authors
prove that among the possible choices of pre- and post-filtering structures that
could be made, a standard first order low-pass filter is the only one that will
preserve the local input-output relations and avoid hidden coupling. The re-
sulting generic structure is illustrated in Figure 3.2. For further reference, this
approach will (in accordance with the title of the original article) be referred to
as enhanced velocity-based linearization.

9

Figure 3.2: Enhanced velocity-based gain scheduled controller operating on
pseudo derivatives. Note that the only practical difference between this ap-
proach and those based on the conventional series expansion is the introduction
of the low pass filtered derivative and its subsequent inverse.

3.2.1 A small mathematical example

Consider the SISO-system

ẋ = ax+ bu (3.7)

y = x (3.8)

Assume that a gain scheduled feedback law of the type u = k(x)x has been
derived (by any preferable method). Further assume that k(x) takes the sim-
ple form k(x) = cx, where c is some constant. Linearization of the controller
structure at the operation point x = x0 yields

∆u = k(x0)∆x+
∂k(x)

∂x

∣∣∣
x0

x0∆x = 2cx0∆x (3.9)

The deviation in input, ∆u, is obviously twice that what was anticipated (due
to hidden coupling). Suppose instead that the feedback law takes the structure

u =

∫
k(x)ẋdt (3.10)

as suggested by the velocity based approach. The integral term may be evalu-
ated by partial integration accordingly

u = k(x)x−
∫
∂k(x)

∂t
xdt = k(x)x−

∫
∂k(x)

∂x

∂x

∂t
xdt (3.11)

If the structure for k(x) is inserted and and the integral evaluated one ends up
at

u = k(x)x− cx
2

2
(3.12)

Linearizing at x = x0 now yields

∆u =
∂

∂x

(
k(x)x− cx

2

2

)∣∣∣
x0

∆x = cx0∆x (3.13)

The deviation in input ∆u now matches exactly what was desired and expected.

10

3.3 Slow variation requirements

Any non-linear system with a controller structure that has been based on a
finite number of linear approximations will inevitably, for nominal stability, be
subject to a slow variation requirement on the inherent scheduling parameters.
This may in practice limit the effectiveness about some of the system extremes
where such an assumption could be far from valid. One approach to alleviate
this problem may be to design a sufficiently high bandwidth controller, but for
obvious reasons this may not be realizable for the intended application. Such
restrictions may be relaxed by the use of the former velocity-based linearization
method since it allows for linearization at off-equilibrium points. However, since
one instead operates on the derivatives, or pseudo-derivatives, of the system
states and/or outputs one may, if not taking proper precaution, create a static
offset through the integration of existing modelling errors [6].

11

Chapter 4

Gain scheduling example

In order to show the principles, a small example will here be given in the form
of the LQ gain-scheduling of a non-ballistic missile.

4.1 Modeling and design goals

Consider the pitch dynamics of a ballistic missile given in [7], all necessary
equations can be found in Appendix A. Note that this system offers only one
degree of freedom when it comes to classical gain scheduling, i.e. the equilibrium
domain over which to schedule is a single trajectory.

Note: Simply put, without propulsion the only motion in which the mis-
sile is experiencing equilibrium is gliding. The gliding motion has a slope
explicitly determined by the angle of the tail fin (all else held constant)
and each slope is associated with a terminal velocity, i.e. a velocity at
which the missile will no longer accelerate due to drag. Intuitively one
might replace the missile with a paper airplane, the principles are much
the same. This effectively means that the value of any single parameter,
meaning input or state, defines an arbitrary equilibrium point and, in ef-
fect, the values of all other associated parameters. Stated differently, we
can only choose one single scheduling parameter.

However, similar to [3] and [4], both angle of attack and missile velocity are
here chosen as scheduling parameters. In both [3] and [4] the authors choose
to exclude the dynamics of the missile velocity in the scheduling procedure (as
it is deemed to vary slow enough in relation to other parameters). As such
they effectively regain one degree of freedom for scheduling purposes. Here an
alternative approach is employed by introducing an additional control signal in
the form of an imagined engine. Equation (A.4c), from appendix A, therefore
becomes

V̇m =
Fx + T

m
cos(α)− |Fl

m
sin(α)| (A.4c)

where T denotes the thrust produced by the engine. Note that this is a simple
summation of forces in the direction of the missile velocity.

12

The problem is thus converted from that of controlling a ballistic missile
to that of controlling a non-ballistic missile. Note that in reality this thrust is
realistically a function of both height, speed and perhaps several other system
and/or environmental parameters, but this approach will however be realistic
enough for this example. Further note that the engine is assumed to be per-
fectly aligned with the central-axis of the missile body such that it creates no
pitching or yawing moment. The overall design goal is to control the missile
normal acceleration as to force the missile to follow a desired flight path. The
performance requirements are

• the closed loop effective time constant is to be no greater than 0.35 seconds

• the overshoot may be no more than 5%

This is, as someone may point out, not a complete performance description but
will however suffice. The missile operating domain is defined by α ∈ [−20°, 20°]
and Vm ∈ [2, 4]× sos, where sos denote speed of sound.

4.2 Design procedure

The system is linearized using a first order series expansion resulting in a family
of linear systems of the form:

∆ẋ = A(xe, ue)∆x+B(xe, ue)∆u (4.1)

∆y = C(xe, ue)∆x

where the subscript e denotes equilibrium. The feed-through matrix D has been
excluded since all elements equal zero (note that this is only valid if the servo
model in question is included in the state-space matrix A, otherwise the tail-fin
deflection, δ, will show up as a feed-through term to the normal acceleration η).
The full list of linearized equations can be found in Appendix B. Once linearized
a grid of 20×20 equilibrium points are calculated and each point is inserted into
(4.1). This results in a family of in total four hundred linear systems for each of
which an LQI-controller is to be designed where the integral term operates on
the error in the output η. This may seem excessive but note that as α spans a
full forty degrees the resulting grid-resolution is 2°, which, from an aerodynamic
point of view, is fairly large. Since LQ-design is inherently based on full state
feedback the matrix C(xe, ue) takes the form of

[
I4×4 Cy

]
(where Cy derives

from the linearization of (A.4e)) assuming that all states are measurable. In
order to include the integral of the tracking error the system is augmented in
accordance with Section 2.1. Note that the approach for the enhanced velocity
based technique is initially the same, the only difference is the later addition of
the aforementioned pre and post filtering structure, see Section 3.2. The above
procedure is hence common to both linearization techniques.

The practical implementation and evaluation is performed by use of Matlab
and Simulink, the Matlab script can be found in Appendix C. In order to in-
terpolate the static feedback coefficients a look-up table with automated linear
interpolation was used in Simulink. Note that, by default, Simulink performs a
bilinear interpolation that in reality is quadratic in the grid-position.

13

The apparent implication is that the feedback coefficients at times may be
over- or underestimated compared to a true piece-wise linear interpolation.
However, true piece-wise linear interpolation requires triangularization of the
grid which in effect, if to avoid all ambiguity, would imply the need of an addi-
tional 19×19 grid values, as illustrated in Figure 4.1. This bilinear interpolation
is therefore deemed adequate for this introductory example.

Figure 4.1: Four three dimensional data points (black dots), representing ar-
bitrary values, are shown in the leftmost figure. For ease of visualization they
are connected by solid blue lines. The grey solid lines beneath them indicate
their height (or equally functional value). Subfigures a and b both represent
valid piece-wise linear interpolations. As can be seen they may yield different
interpolated values at identical position. In order to avoid this ambiguity one
additional data point is needed in the space between them, as illustrated in
figure c.

4.3 Results

Below is presented a series of figures showing the result from the non-linear
simulations. Note that in these simulations a static feed-forward term has been
added, which includes the thrust and tail-fin deflection needed to keep the mis-
sile at equilibrium. The responses shown in Figures 4.2-4.4 correspond to the
weighting matrices

Q =

1 0 . . . 0
0 1000
... 1

...
1 0

0 . . . 0 4000

 (4.2)

R =

[
0.001 0

0 0.01

]
(4.3)

In Figure 4.3 the annotation provided indicate that the missile, for both lin-
earization techniques, has reached just below 12.7 g, or approx. 63.5% of the
total initial step size, after roughly 0.15 seconds. This proves that the require-
ment regarding effective time constant has been fulfilled (with some margin).
Likewise, in Figure 4.4 the annotation provided to the right shows that the ini-
tial (and equally largest) overshoot is around 3.75% and 1.15% respectively. As
such both techniques further fulfill the requirement regarding overshoot.

14

Figure 4.2: Response to a series of steps for the closed loop nonlinear system.
The red curve shows the commanded normal acceleration. The black curve
corresponds to the conventional series expansion approach (First order SE).
The blue curve corresponds to the enhanced velocity based approach (Enhanced
VB).

Figure 4.3: Response to the initial step. The enhanced velocity based approach
reaches approx. 63.40% at around 0.1487 seconds. Likewise the conventional
series expansion approach reaches approx. 63.45% at around 0.1503 seconds.

15

Figure 4.4: Response to the initial step. The enhanced velocity based approach
reaches its maximum value, corresponding to roughly 3.75% overshoot, at about
0.3340 seconds. Likewise the conventional series expansion approach reaches its
maximum value, corresponding to roughly 1.15% overshoot, at 0.3671 seconds.

In Figures 4.5a and 4.5b one can see how two elements from the feedback
matrix K changes with the element R22 (lower right element of weighting matrix
R) according to R22 = 0.01(10i− 9), i = 1, 2, 3...21. In this instance, element
R11 (upper left element of matrix R) equals 0.001. All other elements are set to
zero, i.e. R is diagonal. Note that Q is chosen as in (4.2).

2000

3000
-490

-480

-470

0.4

-460

-450

-440

0.2

-430

4000

-420

0
-0.2

5000-0.4

(a) Element K12, feedback coefficient
from pitch rate to tail fin deflection.

2000

3000
-20

-15

-10

0.4

-5

0

5

10

0.2

15

4000

20

0
-0.2

5000-0.4

(b) Element K13, feedback coefficient
from missile speed to tail fin deflection.

Figure 4.5

16

Figure 4.6 shows the response when the system has been subjected to the
same series of steps as in Figure 4.2 with R22 chosen as 1.01 (i = 21). In Figure
4.7 one can see how the values of the angle-of-attack, α, vary over the scope of
the simulation. Note that the minimum value lies just above −0.24 radians (or
roughly −13.75 degrees).

Figure 4.6: Response to a series of steps for the closed loop nonlinear system.
The red curve shows the commanded normal acceleration. The black curve
corresponds to the conventional series expansion approach (First order SE).
The blue curve corresponds to the enhanced velocity based approach (Enhanced
VB).

Figure 4.7: Angle-of-attack, α, belonging to the response shown in Figure 4.6.
The minimum value, for both linearization techniques, lies at roughly −0.24
radians (with only a slight initial difference).

.

17

Figure 4.8 shows the response with the same commanded normal acceleration
and weighting matrices as in Figure 4.6. However, the initial step size has been
increased to 30g. The purpose of the increased step size is to force the missile
to operate at the extremes of the envelope. In Figure 4.9 one can see that when
the angle-of-attack approaches the boundary of the operating domain the step
response slows down and exhibits undershoot (to such an extent that the missile
does not reach its commanded acceleration within the prescribed time).

Figure 4.8: Response to a series of steps for the closed loop nonlinear system.
The red curve shows the commanded normal acceleration. The black curve
corresponds to the conventional series expansion approach (First order SE).
The blue curve corresponds to the enhanced velocity based approach (Enhanced
VB).

Figure 4.9: Angle-of-attack, α, belonging to the response shown in Figure 4.8.
As α approaches it minimum allowable value (of roughly −0.349 radians) the
response of the conventional series expansion technique exhibits severe under-
shoot, as shown in Figure 4.8

.

18

4.4 Discussion

The static feedback coefficients calculated are, per definition, only intended to
operate on the deviation-variables around each local equilibrium and a trans-
formation of the controller output is therefore necessary. From (4.5) it becomes
clear that in order to perform this transformation one must, to the already
calculated controller effort ∆u, add the controller output at equilibrium ue.

∆u = −K∆x = −K(x− xe) = u− ue (4.4)

⇒ u = ∆u+ ue (4.5)

As presented in [1] there are several ways to address this problem. If the
system includes pure integral action this additional control signal will inherently
equal zero and does not need to be accounted for. If the system does not con-
tain integral action one can calculate the value of this signal through the original
non-linear system. However, such an approach can, depending on the system at
hand, include fairly complex calculations. Furthermore, since this approach is
based on the original non-linear model it becomes sensitive to modelling errors
and, as stated in [1], seems to have little practical value. The seemingly most
straightforward approach to solve this problem is to include integral action in
each linear controller and so implicitly create this transformation through the
feedback loop of the system. If such an approach is chosen, relying on integral
action in the controller structure, one should keep in mind that the effect of the
integral term is not immediate. In other words, proper tracking will not occur
until the integral term has had sufficient time to correct for the lack of the
aforementioned equilibrium control signal. This delay, meaning that belonging
to the integral term, can be lessened by giving the integral part high weighting
in the corresponding weighting matrix. However, depending upon the system
and application at hand, this may not be realizable.

In Figure 4.8 it is easily observed that the conventional series expansion tech-
nique yields considerably worse performance compared to that of the enhanced
velocity based technique. However, it remains to be proven whether this differ-
ence in performance stems from hidden coupling or is simply a result of other
non-accounted factors. Due to a fairly complex structure, involving several par-
tial derivatives (as shown in Section 3.1), the presence of hidden coupling terms
is in practice hard to confirm analytically. However, as seen from the collected
data in Figures 4.5a, 4.5b, 4.8 and 4.9, when the gradient with respect to α
becomes sufficiently high, the performance of the conventional series technique
lessens noticeably. As such there is a strong indication that hidden coupling
may be involved and in fact, as suggested, can be resolved by the use of the
velocity based linearization technique.

19

Chapter 5

Modelling of aircraft
dynamics

In this chapter follows a short description of the modelling of the aircraft dy-
namics including the current aircraft layout, linearization of governing equations
and the extension of the resulting linear system to include servo dynamics.

5.1 Rigid body dynamics

At the core of the Ares Mars simulator lies the general rigid body dynamic
equations, for details regarding these equations and their derivation the reader
is referred to, for example, [23]. A short summary will however be given, starting
by simply stating the relevant equations

˙̄V =
F̄

m
− ṁ

m
V̄ − [ω]V̄ (5.1)

˙̄ω = I−1Ḡ− I−1İω̄ − I−1[ω]Iω̄ (5.2)

where V̄ and ω̄ denote the speed- and angular rate vector respectively. F̄
and Ḡ are the force and moment vectors containing all external forces and
moments acting on the aircraft. These forces and moments are in turn generated
by models of the engine and the aerodynamics, which are functions of system
states, inputs, outputs and atmospheric properties. The parameters m and
I denotes mass and the tensor of mass-moment-of-inertia respectively. The
reference point is the aircraft center-of-gravity (cg). Furthermore [ω] denotes the

skew-symmetric matrix
[0 −ωz ωy

ωz 0 −ωx
−ωy ωx 0

]
, where ωx, ωy and ωz are pitch, roll and

yaw rate respectively. Note that a left-multiplication with [ω] is equivalent to
performing a cross-product with ω̄. Further note that since mass may, locally in
time, be treated as constant the derivative terms of the mass and mass-moment-
of-inertia are neglected during simulation. Furthermore, the system is extended
with a set of kinematic equations describing the bearing of the aircraft in the
inertial, or earth-fixed, frame of reference.

20

To summarize, the non-linear state-space representation of the rigid body
dynamics may be written as

∂

∂t

V̄ω̄
Θ̄

 =

−[ω] 0 0
0 −I−1[ω]I 0
0 T 0

V̄ω̄
Θ̄

+

 1
m 0
0 I−1

0 0

[F̄
Ḡ

]
Θ̄ =

[
φ, θ, ψ,

]T
T =

1 sin(φ) tan(θ) cos(φ) tan(θ)
0 cos(φ) − sin(φ)
0 sin(φ)/ cos(θ) cos(φ)/ cos(θ)

(5.3)

where Θ̄ denotes the Euler angle vector containing the Euler angles (φ, θ, ψ).
The matrix T is a transformation matrix deriving from the predefined order of
rotations belonging to the Euler angles.

5.2 Current aircraft layout

The current, and so far only, aircraft layout in Ares Mars is that of the open
access ADMIRE model, [24]. It is, in terms of overall appearance, similar to that
of the JAS 39-Gripen aircraft, meaning that available control surfaces include
a single vertical rudder, two canards, leading edge flaps and inner and outer
elevons, see Figure 5.1.

Figure 5.1: Principal overhead view of the ADMIRE aircraft model. Dark blue
portions represent available control surfaces.

Other available control signals include pilot-leaver-angle (PLA) (which in
extension relates to engine thrust). Note that since the motion of the system
has six degrees of freedom (DOF) this aircraft has actuator redundancy, mean-
ing that there are more ways to control the aircraft than what is principally
needed. In order to resolve this redundancy one may, as discussed in [8], either
turn to optimal control, such as LQ-control, or any form of control allocation,
both of which will be further discussed in later sections. So far the standard for
the Ares Mars simulator has been to apply both non-optimal control allocation
and LQ-optimal control. Both canards and elevons have been coupled in pitch

21

and roll to create new control signals referred to as for instance; canard elevators
and canard ailerons, depending on which motion the signal is to contribute to.
To clarify, both canards and elevons have been coupled so that they operate
symmetrically in pitch and anti-symmetrically in roll respectively.

5.3 Linearized flight mechanical model

Linearizing (5.3), by use of first order series expansion, about the equilibrium
point [V̄, ω̄, Θ̄]T = [V̄0, ω̄0, Θ̄0]T yields the following set of equations:

∆V̇x = −∆T

m
+ ωz0∆Vy + ∆ωzVy0 − ωy0∆Vz − ωy∆Vz0 − ... (5.4)

...− g cos(θ0)∆θ

∆V̇y = −∆C

m
− ωz0∆Vx −∆ωzVx0 + ωx0∆Vz + ωx∆Vz0 + ... (5.5)

...+ g cos(φ0) cos(θ0)∆φ− g sin(φ0) sin(θ0)∆θ

∆V̇z = −∆N

m
+ ωy0∆Vx + ∆ωyVx0 − ωx0∆Vy − ωx∆Vy0 − ... (5.6)

...− g sin(φ0) cos(θ0)∆φ− g cos(φ0) sin(θ0)∆θ

∆ω̇x =
∆l

Ix
+ c11∆ωx + c12∆ωy + c13∆ωz +

Ixy
Ix

∆ω̇y +
Ixz
Ix

∆ω̇z (5.7)

∆ω̇y =
∆m

Iy
+ c21∆ωx + c22∆ωy + c23∆ωz +

Ixy
Iy

∆ω̇x +
Iyz
Iy

∆ω̇z (5.8)

∆ω̇z =
∆n

Iz
+ c31∆ωx + c32∆ωy + c33∆ωz +

Ixz
Iz

∆ω̇x +
Iyz
Iz

∆ω̇y (5.9)

∆φ̇ = ∆ωx + tan(θ0) sin(φ0)∆ωy + tan(θ0) cos(φ0)∆ωz + ... (5.10)

...+ tan(θ0)(ωy0 cos(φ0)− ωz0 sin(φ0))∆φ+ ...

...+ sec2(θ0)(ωy0 sin(φ0) + ωz0 cos(φ0))∆θ

∆θ̇ = cos(φ0)∆ωy − sin(φ0)∆ωz − (ωy0 sin(φ0) + ωz0 cos(φ0))∆φ (5.11)

∆ψ̇ =
sin(φ0)

cos(θ0)
∆ωy +

cos(φ0)

cos(θ0)
∆ωz + ... (5.12)

...+ sec(θ0)(ωy0 cos(φ0) + ωz0 sin(φ0))∆φ+ ...

...+
tan(θ0)

cos(θ0)
(ωy0 sin(φ0) + ωz0 cos(φ0))∆θ

Here the equations have been written out explicitly rather than in conventional
matrix form. Expressions for coefficients c11 to c33 may be found in Appendix D.
Note that

∆F̄ = [∆T,∆C,∆N]T (5.13)

∆Ḡ = [∆l,∆m,∆n]T (5.14)

where T denotes the force acting on the aircraft in the body-fixed coordinate
system’s x-direction and is defined as

T =
ρV 2S

2
CT (5.15)

where ρ, V and S denote local density of air, aircraft effective speed and refer-
ence surface respectively.

22

The linear forces C (y-direction) and N (z-direction) are defined similarly.
l in turn denote the roll moment acting on the aircraft about the body-fixed
coordinate system’s x-axis and is defined as

l =
ρV 2Sb

2
Cl (5.16)

where b denotes wing span and equally reference length in the lateral direction.
The moments m (y-axis) and n (z-axis) are, again, defined similarly. Note that
both CT and Cl are nonlinear functions of several parameters, all of which are
presented in Table 5.1

Table 5.1: Names and notation for all variables of which the coefficients of forces
and moments are functions.

Parameter Notation/symbol

Angle-of-attack α
Sideslip angle β
Mach number M

Canard elevator deflection δce
Canard aileron deflection δca
Elevator inner deflection δei
Elevator outer deflection δeo
Aileron inner deflection δai
Aileron outer deflection δao

Rudder deflection δr
Leading edge deflection δle

Angle-of-attack rate α̇

Sideslip angle rate β̇
Pitch rate p
Roll rate q
Yaw rate r

Pitch angular acc. ṗ
Roll angular acc. q̇

Normal load factor nz
Canard elevator rate δ̇ce
Canard aileron rate δ̇ca
Elevator inner rate δ̇ei
Elevator outer rate δ̇eo
Aileron inner rate δ̇ai
Aileron outer rate δ̇ao

Rudder rate δ̇r
Pilot lever angle PLA

23

The forces and moments are therefore linearized accordingly

∆T =
dT

dα
∆α+

dT

dβ
∆β + · · ·+ dT

dδ̇r
∆δ̇r +

dT

dPLA
∆PLA (5.17)

∆l =
dl

dα
∆α+

dl

dβ
∆β + · · ·+ dl

dδ̇r
∆δ̇r +

dl

dPLA
∆PLA (5.18)

(5.19)

Evaluating derivative terms and inserting expressions for ∆α, ∆β etc. finally
yields a system of the form

A1∆ẋ = A2∆x+B∆u

∆x = [∆V̄,∆ω̄,∆Θ̄]T

∆u = [∆F̄,∆Ḡ]T
(5.20)

Note that derivatives of aerodynamic coefficients are calculated as central deriva-
tives from tabulated data. The inputs of the flight mechanical system are hence
all control surface deflections along with their respective rates (with the excep-
tion of leading edge flaps). The states include all linear and angular velocities,
as described in Section 5.1, along with the introduced Euler angles. A summary
is given below.

States : x = [V̄, ω̄, Θ̄]T

V̄ = [Vx, Vy, Vz]
T

ω̄ = [ωx, ωy, ωz]
T

Θ̄ = [φ, θ, ψ]T

Inputs : u = [δce, δca, δei, δai, δeo, δao, δr, δle, . . .

δ̇ce, δ̇ca, δ̇ei, δ̇ai, δ̇eo, δ̇ao, δ̇r, δPLA]T

(5.21)

In order to create full freedom for the user, the coupling between canards
and elevons are broken. This is simply done by post-multiplying the linear input
matrix B with the inverse of the connectivity/coupling matrix

M =

J 0 . . . 0
0 J
...

. . .

0 J

J =

[
1 −1
1 1

] (5.22)

This results in the new system

A1∆ẋ = A2∆x+ B̂∆u

B̂ = BM−1
(5.23)

The new inputs to the system are

u = [δrc, δlc, δrie, δlie, δroe, δloe, δr, δle, . . .

δ̇rc, δ̇lc, δ̇rie, δ̇lie, δ̇roe, δ̇loe, δ̇r, δPLA]T
(5.24)

24

All subscripts are explained in Table 5.2.

Table 5.2: Abbreviations of control signal subscripts.

Subscript/abbreviation Name/parameter
rc right canard
lc left canard
rie right inner elevon
lie left inner elevon
roe right outer elevon
loe left outer elevon
r rudder
le leading edge flaps

PLA pilot leaver angle

5.4 Servo dynamics

As shown in (5.24) both control surface deflections and control surface rates are
inputs to the linearized flight mechanical model. However, in a strict physical
sense, these are not allowed to vary independently. A servo model is therefore
necessary in order to couple deflections and rates. In order to properly ex-
tend the existing model with the servo dynamics the linearized servo dynamics
should, preferably, be of (at least) second order. However, it is not uncommon
practice to appreciate servo dynamics with a simple first order model, and a
small description regarding the necessary approach for both first- and second
order servo dynamics will be given. Note that δc denotes commanded deflection.

If the linear servo models were of second order the extended model, now
including deflections and rates, would take the form that is shown in Figure 5.2.
Ã and B̃ denote the extended, or new, system matrices. The lower square block
matrix of Ã will be diagonal given that there are no couplings between actuators.

Figure 5.2: Extended state space model with a linear second order servo. Black
dots represent either scalar (potentially) non-zero values or blocks of the same.
Note that the tall matrix beneath δ and δ̇ is the portion of the old input matrix
B that concerns deflections and rates (not PLA).

25

If the linear servo model instead were of first order there would be no present
information on how the control surfaces accelerate in response to commanded
deflection. The rows and columns crossed with red lines in Figure 5.3 must
subsequently be left out from the augmented system matrix Ã. However, if the
columns containing information about the effects of control surface rates were
to be left out completely then information would inevitably be lost and the
resulting model would suffer from problems with accuracy.

Figure 5.3: Extended state space model with a linear first order servo. Infor-
mation about the effects of control surface rates are intentionally left out.

A simple solution to this problem is to replace all rates, by means of the
linear first order servo model, and add the resulting coefficients at appropriate
locations, as shown in Figure 5.4.

Figure 5.4: Extended state space model with a linear first order servo. Informa-
tion about the effects of control surface rates have been added in both the state
matrix Ã and the input matrix B̃. Note that Bdot denote the portion of the old
input matrix B that only concern control surface rates. Furthermore, As and
Bs denote state- and input matrix for the linear servo model. A superscript in
the form of an asterisk has been added to δ and δc to indicate that the values
contained in the column below are not the same as in Figure 5.2.

26

By employing this approach information is retained. However, the com-
manded deflections will now directly influence states in an nonphysical manner.
This is, unfortunately, an unavoidable consequence deriving from the nonphysi-
cal first order servo model. After the extension with the servo model, regardless
of its order, the new inputs to the system becomes

u = [δrcc, δlcc, δriec, δliec, δroec, δloec, δrc, δlec, δPLA]T (5.25)

where the addition c to the subscripts denotes commanded.

The current servo model in Ares is a simple first order plus dead time
(FOPDT) model. Unfortunately, LQ-regulation techniques do not accommo-
date for exponential (conventional) delay terms and the servo model must be
linearized. This is done by a Padé approximation to yield a model of the form

Gservo =
−s+ c1

c2s2 + c3s+ c4
(5.26)

Here, the model is represented in transfer function form (or in terms of the
Laplace variable s) rather than in the previous state space form. This is simply
to highlight the presence of the right half plane (RHP) zero that derives from
the linearization of the delay term. Note that this zero in fact is necessary
to approximate the delay, the existence of such does not invalidate the above
described procedure. However, when implementing one needs to make sure that
the state space matrices corresponding to (5.26) are modified such that the input
matrix Cservo is the unity matrix. This is achieved by performing a change of
basis with the new base matrix C−1

servo.

5.5 Validation

Equilibrium values from two different trim conditions are inserted into the lin-
earized equations derived in Section 5.3. These trim points are [M,Htrue] =
[0.75, 1100] and [M,Htrue] = [0.22, 3000], where M is the Mach number and
Htrue denotes true altitude. These points are chosen to represent conditions in
which control authority is high and low respectively. Trim is achieved with fixed
level canards (δrc = δlc = 0) and open loop control from pilot stick deflection to
elevons, i.e. all elevons operate symmetrically in pitch. The pilot model takes
the form of simple proportional feedback acting on pitch rate. The aircraft is
initialized at zero bank and yaw angle (with no roll or yaw rate present) from
which the pilot simply trims the plane by adjusting the stick deflection until
the aircraft reaches equilibrium. Two linear systems are hence created. The
response to a step of −1° (or roughly −0.0175 rad) in pilot stick deflection is
calculated and compared between the nonlinear simulator and the derived linear
systems. The results are shown in Figures 5.5-5.7.

27

0 0.2 0.4 0.6 0.8 1

time [s]

-18

-16

-14

-12

-10

-8

-6

-4

-2

0

2

e
 [

ra
d

]

10
-3 Elevator deflection

Ares

Linear

Figure 5.5: Elevator deflection, δe, as a function of time. Note that the signal
δe consists of all available elevons operating as one. As expected, the curves
overlap at almost all instances. However one can distinguish a small undershoot
in the response of the linear system deriving from the linearized servo model.

0 0.2 0.4 0.6 0.8 1

time [s]

-0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

q
 [

ra
d

/s
]

Pitch rate

Ares

Linear

(a)

0 0.2 0.4 0.6 0.8 1

time [s]

-0.005

0

0.005

0.01

0.015

0.02

0.025

 [
ra

d
]

Euler angle

Ares

Linear

(b)

0 0.2 0.4 0.6 0.8 1

time [s]

-0.45

-0.4

-0.35

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

V
x
 [

m
/s

]

Speed in body fixed x-direction

Ares

Linear

(c)

0 0.2 0.4 0.6 0.8 1

time [s]

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

V
z
 [

m
/s

]

Speed in body fixed z-direction

Ares

Linear

(d)

Figure 5.6: (a): Pitch rate q (or equally wy). (b): Euler angle θ. (c): Speed in
body fixed x-direction, Vx. (d): Speed in body fixed z-direction, Vz. Trim point
[0.22 3000].

28

0 0.2 0.4 0.6 0.8 1

time [s]

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

q
 [

ra
d

/s
]

Pitch rate

Ares

Linear

(a)

0 0.2 0.4 0.6 0.8 1

time [s]

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

 [
ra

d
]

Euler angle

Ares

Linear

(b)

0 0.2 0.4 0.6 0.8 1

time [s]

-7

-6

-5

-4

-3

-2

-1

0

1

V
x
 [

m
/s

]

Speed in body fixed x-direction

Ares

Linear

(c)

0 0.2 0.4 0.6 0.8 1

time [s]

-5

0

5

10

15

20

25

30

35

40

45

V
z
 [

m
/s

]

Speed in body fixed z-direction

Ares

Linear

(d)

Figure 5.7: (a): Pitch rate q (or equally wy). (b): Euler angle θ (about the
inertial frame y-axis). (c): Speed in body fixed x-direction, Vx. (d): Speed in
body fixed z-direction, Vz. Trim point [0.75 1100].

As expected agreement between non-linear and linear simulations lessen
when control authority is high (given the same step in pilot stick deflection).
However, in addition, there seems to be some coupling causing the pitch rate
to deviate at approximately 0.3 seconds. In Figures 5.8a-5.8c one can see that
there is a slight response in both φ, ψ and Vy. However, there are no inertial
couplings and there appear to be no added disturbances in the simulator. Unfor-
tunately, the number of signals within Ares are in the order of several hundred,
meaning that tracking the source of the apparent coupling would be extremely
time consuming.

29

0 0.2 0.4 0.6 0.8 1

time [s]

-1

0

1

2

3

4

5

6

7
 [

ra
d

]

10
-3 Euler angle

Ares

Linear

(a)

0 0.2 0.4 0.6 0.8 1

time [s]

-0.5

0

0.5

1

1.5

2

2.5

3

 [
ra

d
]

10
-3 Euler angle

Ares

Linear

(b)

0 0.2 0.4 0.6 0.8 1

time [s]

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

V
y
 [

m
/s

]

Speed in body fixed y-direction

Ares

Linear

(c)

Figure 5.8: (a): Euler angle φ. (b): Euler angle ψ. (c): Speed in body fixed
y-direction, Vy. Trim point [0.75 1100]

In [8] the authors make use of the ADMIRE model (ver. 3.4h, 2003) when
giving an example of the possible benefits of control allocation for a simplified
flight controller. They choose their states as [α, β, p, q, r]T . Their inputs have,
similarly to the earlier approach in Ares, been coupled such that canards and
elevons operate symmetrically. Their inputs are therefore [δc, δle, δre, δr], where
c denotes canard, le denotes left elevon, re denote right elevon and r denotes
rudder. They perform their linearization about trimmed values at 0.22 Mach
and 3000m. Their resulting state space matrices A and B are given in (5.28)
and (5.30). In comparison, when trimmed values from the same operating point
are inserted in to the linearized flight mechanical model from Section 5.3, one
receives the state space matrices shown in (5.27) and (5.29). The later has been
given the subscript A denoting Ares. Note that the Euler angles, engine related
signals and leading edge flaps have been excluded. Furthermore, the input
matrix, BA, has been rearranged to yield the same order of control signals as
in [8]. The states in common are p, q and r (or equally ωx, ωy and ωz) and as
such the lower right 3 × 3 block matrix of A and the lower 3 × 4 portion of B
may be compared.

30

AA =

−0.052 0 0.012 0 −16.312 0

0 −0.118 0 16.490 0 −69.733
−0.129 0 −0.601 0 68.784 0

0 −0.138 0 -1.010 0 0.559
−0.004 0 0.035 0 −0.503 0

0 0.009 0 −0.096 0 -0.214

 (5.27)

A =

−0.543 0.014 0 0.978 0

0 −0.118 0.222 0 −0.966
0 −10.513 -0.997 0 0.618

2.622 −0.003 0 −0.506 0
0 0.708 −0.094 0 -0.213

 (5.28)

BA =

−1.297 −0.169 −0.169 0

0 0.812 −0.812 2.073
−1.012 −6.251 −6.251 0

0 −4.546 4.546 1.342
1.708 −1.379 −1.379 0

0 −0.306 0.306 -0.909

 (5.29)

B =

0.007 −0.087 −0.087 0

0 0.012 −0.012 0.029
0 −4.242 4.242 1.487

1.653 −1.274 −1.274 0.002
0 −0.281 0.281 -0.882

 (5.30)

Note that all values have been rounded off to three decimal points. With the
matrices from [8] as basis the deviation (of all non-zero values) ranges from
roughly 0.47% to 9.74% with an average of about 5.62%. The largest deviation
belongs to the input matrix BA, but this difference may stem from the control
technique applied when performing the trim in question.

Given the results presented it should be concluded that the linearized models
compare well to the nonlinear simulator.

31

Chapter 6

Tuning of weighting
matrices

One of the apparent drawbacks of LQ-control is the inability to explicitly control
where the closed loop poles are placed, instead one has to manually tune the
weighting matrices Q and R until a suitable location is found. Several attempts
have been made at finding ways to automatically tune these matrices including
heuristic population-based optimization schemes such as particle swarm, evo-
lution algorithm and bees algorithm optimization, e.g. [16] , [17]. These have
to various degrees been successfully implemented, however there seems to be
an (understandable) lack of representation of higher order MIMO systems. The
developed method aims at being applicable for a large variety of possible aircraft
models, for some of which decoupling of lateral and longitudinal motion may not
be possible. The system that describes the motion of the aircraft will therefore
have, at a minimum, six dynamic equations relating to linear and angular veloc-
ities respectively. Furthermore there should be no restriction to the manageable
number of control signals (other than that it must be finite). It is therefore
necessary to find a more systematic approach to the automatic tuning problem.
One such an approach may be to solve the inverse LQ-problem. To clarify, given
that the designer chooses a set of poles an eigenstructure assignment approach
could yield a feedback matrix K. This feedback matrix could then be analyzed
through the inverse LQ-problem to generate values of weighting matrices Q and
R. The approach is illustrated in Figure 6.1.

Figure 6.1: Given a set of eigenvalues (spectrum) of the closed loop state matrix,
conventionally denoted Ac, a static feedback matrix K is generated through an
eigenstructure assignment procedure. This feedback matrix K is then associated
with a set of weighting matrices Q and R such that K is LQ-optimal.

32

Note that even though the eigenstructure is assigned, the system might not
behave according to specifications, depending on how the structure in question
is chosen. It might very well be that the poles are chosen based on a rule of
thumb or perhaps experience from previous design iterations. Regardless, the
functional relationship between the system poles and the transient behaviour,
sensitivity functions and/or other design outputs is in general difficult to ap-
preciate. Therefore the design process might not be completed after generating
the feedback matrix K and the weighting matrices Q and R become relevant
starting points for further design iterations. The advantage of this approach is
that, given that the feedback matrix K is LQ-optimal, the system is guaran-
teed at least 60 degrees of phase margin and infinite gain margin (however only
one-half gain reduction tolerance) [15]. Furthermore, the weighting associated
with the generated matrices Q and R grants insight in to the implied priorities
of the eigenstructure assignment.

6.1 The inverse LQ-problem

The inverse LQ-problem may, somewhat informally, be defined as; given the
stabilizing state feedback matrix K find the real valued set of weighting matrices
Ω = {Q,R} that generates K as a solution to the LQ-problem. In [9] the author
presents a method of finding such a set of equivalent Q’s assuming R is fixed at
unity. He consequently derives and proposes the relation

Q = KTK −DA−ATD (6.1a)

where
D = (B+TK − (I −B+TBT)L) (6.1b)

and A and B are the conventional system matrices such that ẋ = Ax+Bu and
the superscript + denotes the Moore-Penrose pseudoinverse. L is an arbitrary
symmetric matrix of appropriate size. As can be seen in (6.1b), the freedom
in the choice of L is lost, and the problem becomes bijective, when the input
matrix B has a left inverse. Further note that this relation does not guarantee
the necessary positive semi-definiteness of Q.

Note: Simply put, if B has a true left inverse such that (I−B+TBT) = 0,
the set of equivalent matrices Q collapse (into a single point) and hence
one specific feedback matrix K maps to one specific weighting matrix Q,
and vise versa (bijective). Further note that if this is the case and Q does
not fulfill the necessary requirements, i.e. is not symmetric and positive
semi-definite, then K is simply not LQ-optimal.

By definition, any sum of positive semi-definite matrices remains positive
semi-definite. A sufficient, but not necessary, condition for the positive semi-
definiteness of matrix Q can therefore be broken down into the definiteness of
the three separate terms on the right hand side of (6.1a), i.e. KTK, −DA, and
−ATD. The term KTK will, regardless of the value of K, be positive definite
(the proof is trivial and is therefore omitted). However the definiteness of state
matrix A may vary depending on the nature of the system in question, i.e.
whether all included states-, only some- or none are stable.

33

Therefore to predict the definiteness of the matrix products−DA and−ATD
is, in general, exceedingly difficult. Suppose, for the sake of argument, that the
matrices A and AT were known to be negative definite, then the matrices −A
and −AT would inherently be positive definite. However the same could not nec-
essarily be said about the products −DA and −ATD, for such to be true it must
hold that both A and AT commute with the matrix D and D is likewise positive
definite. By inspection it may be concluded that, by an appropriate choice of L,
D could in fact be made (at least) positive semi-definite (e.g. L = −λI, where
I is the unity matrix of the same size as matrix A and λ is an arbitrary number
chosen sufficiently large). However, as the matrix I − B+TBT per definition
is rank deficient, it is clear that the choice of L only has limited effect on the
structure of D and no guarantee could be made that either A or AT commutes
with D for all possible values of A.

Note: Through the property of subadditivity we know that
rank(I − B+TBT) ≤ rank(I) − rank(B+TBT) = n − rank(B+TBT),
where n is the number of system states. Therefore, the term I −B+TBT

will only have full rank if (and only if) rank(B+TBT) = 0. This is clearly
only fulfilled when B = 0̄. Therefore, any non-zero input matrix B,
regardless of shape and values contained, will cause the term I −B+TBT

to be rank deficient.

Note that a brute force approach, of simple trial and error of the elements
of L, will quickly become infeasible with an increasing number of system states.
As such, the problem (of solving (6.1a)-6.1b)) must be approached analytically
to, if such exist, yield an implicit solution in terms of L and Q, i.e. Q = f(L).
Note that (6.1a) could be rearranged to yield a Sylvester equation in D which
could be solved efficiently by use of, for example, the Kronecker product, as
shown in (6.1a∗)-(6.1a∗∗).

ATD +DA = KTK −Q (6.1a∗)

⇔ (I ⊗AT +AT ⊗ I)vec(D) = vec(KTK −Q) (6.1a∗∗)

However, as the state matrix A might be singular due to inclusion of controller
states (i.e. tracking errors) the solution might not be unique, as suggested by
the Sylvester-Rosenblum-theorem, see for example [25].

Note: Excluding some of the mathematical formality the Sylvester-Rosen-
blum-theorem could simply be stated as: ”The equation AX+XB = C has
a unique solution in X for every C if and only if A and −B do not share
any eigenvalues”. Note that if the state matrix A has been augmented
with integral states (controller states) some of the eigenvalues inevitably
takes the value zero. As such the matrices −A and AT consequently shares
these eigenvalues and a unique solution is no longer guaranteed, i.e. the
matrix (I ⊗AT +AT ⊗ I) is non-invertible.

One therefore has to turn to solution methods including reduced row eche-
lon forms or alike. Introducing the following definitions: vec(X) = Xvec,
(I ⊗X +X ⊗ I) = XSylv and I ⊗ X = XKron, the overall system (that guar-
antees the necessary definiteness and symmetry of Q and L) becomes

34

(AT)Sylv Dvec = (KTK)vec −Qvec (6.2)

Dvec = (I −B+TBT)Kron Lvec − (B+TK)vec (6.3)

SLvec = 0̄ (6.4)

SQvec = 0̄ (6.5)

Q ≥ 0 (6.6)

where S is a matrix containing all necessary symmetry conditions on the ele-
ments of Q and L. To give a brief example, the first row of S would take the
form [0, 1 . . . − 1, 0 . . . 0], where the negative one appears at the (n+1)’th po-
sition such that the first equation of (6.4) reads L12−L21 = 0. Note that S will

have in total n(n−1)
2 rows. Further note that among the challenges, of efficiently

solving (6.2) - (6.6), lies the need to express (6.6) linearly in terms of Qvec. One
possible linear and sufficient condition, that ensures positive semi-definiteness
of Q, is that all diagonal elements are non-negative and that Q simultaneously is
diagonally dominant. Such restrictions in the structure of Q may however result
in a lack of viable solutions. In contrast one could create a set of polynomial
conditions on the elements of Q by use of the Schur complement, however these
might, as implied, make (6.2) - (6.6) analytically hard to solve.

Note: Given the partitioning M =
[A B
BT C

]
, the Schur complement of the

block A is defined as M/A = C − BTA−1B. It can be proven that the
matrixM is positive definite if and only if both A andM/A are positive
definite. Assuming that A is invertible and that B has one column the
Schur complement M/A will take the form of a rational polynomial of

degree O(i+1)
O(i)

(in the elements of matrix M), where A ∈ Ri×i. However,
assuming that the determinant of the matrix A is positive, this Schur con-
dition for positive definiteness may be rewritten as a polynomial of degree
O(i + 1). The same principles may then be reiterated for successively
smaller portions of M each giving rise to a polynomial of the above form.

Given all stated above there seems to be no simple approach to guarantee a
viable analytic solution given arbitrary A, B and K.

Noting that (6.1) is linear in L, another approach to finding a solution may be
to reformulate the problem as a semi-definite program which could be solved by,
for example, modern interior-point methods. In practice this could be achieved
by use of the function feasp in the Matlab LMI toolbox or by use of the open
access Matlab-based modeling language YALMIP, [22]. In contrast the problem
could likewise be solved as a constrained non-linear optimization problem as
presented in [18]. The degrees of freedom, relating to the choice of L, are here
diminished by the choice of a suitable objective function, f(Q(L)). Note that
the choice L = 0 causes (6.1) to reduce to the ARE and the freedom in the
variable L is instead inherited in the set of equivalent matrices P (by introduc-
ing the necessary optimality condition K = R−1BTP). For convenience, and
without loss of generality, this choice (L = 0) is hereby assumed throughout.

35

The optimization problem thus becomes

min
P

f(Q(P))

s.t. P = PT

K = BTP

Q = (A− 1

2
BK)TP + P (A− 1

2
BK)

P ≥ 0
Q ≥ 0

(6.7)

In [18] the authors choose the condition-number of the block matrix
[
Q 0
0 R

]
as

the objective function f(Q(P)). As such they ensure low loss of significant digits
when performing operations including Q and R (note that they do not assume
that R is fixed at unity). In [19] the authors instead suggest σ̄(Q− diag(Q)) as
the objective function, where σ̄(X) denotes the maximum singular value of the
matrix X. This choice ensures that Q is maximally diagonal and hence that the
weighting implied by Q is easily interpreted. In both [18] and [19] the authors
prove that the resulting optimization problem is convex, however in the former
case with the necessity of LMI constraints. Note that the constraint Q ≥ 0
can be rewritten as min(λ(Q)) ≥ 0 and likewise for P , where λ(X) denotes the
set of eigenvalues of the matrix X. As pointed out in [19] however, depending
on formulation, the problem may not be differentiable at all instances and a
non-gradient based search method might be necessary.

6.1.1 Solution to the inverse LQ-problem

The solution to the inverse problem is found by solving problem (6.7) by means
of non-linear optimization with σ̄(Q− diag(Q)) as the objective function. The
constraints Q ≥ 0 and P ≥ 0 are rewritten in the form min(λ(Q)) ≥ 0 and
min(λ(P)) ≥ 0 respectively. The implementation is performed by use of the
Matlab function fmincon with the default interior-point algorithm. The prob-
lem is convex, as proven in [19], and the initial values of all elements in P are
arbitrarily set to one. The matrix P is further vectorized (denoted Pvec) and
the symmetry condition P = PT is rewritten as SPvec = 0, where the matrix S
contains all necessary symmetry conditions on all elements of P . The optimality
condition K = BTP may be rewritten in terms of Pvec as Kvec = (I⊗BT)Pvec,
where ⊗ denotes the Kronecker product. Combining these conditions on Pvec
yields [

S
I ⊗BT

]
Pvec =

[
0

Kvec

]
(6.8)

to which one may find the associated set of solutions by use of the reduced row
echelon form to in turn yield Pvec as a linear function of the free variables in
the same (denoted Pfree), i.e. those instances in Pvec which are not necessary
to uphold the given equality constraints. The minimization problem therefore

36

becomes

min
Pfree

σ̄(Q(P)− diag(Q(P)))

s.t. Q = (A− 1

2
BK)TP + P (A− 1

2
BK)

P = V0 + V Pfree

min(λ(Q)) ≥ 0

min(λ(P)) ≥ 0

(6.9)

where V0 and V derive from the aforementioned reduced row echelon form of
(6.8). A Matlab script of the described procedure may be found in Appendix E.

6.2 Eigenstructure assignment

For any given LTI MIMO-system, with cross-coupling between states, the lo-
cation of the poles do not uniquely define the systems transient behaviour.
Rather the behaviour depends on both poles (eigenvalues) and eigenvectors of
the closed loop system matrix Ac. If Ac is diagonalizable, i.e. has full rank of
the eigenspace, then the solution to the initial value problem becomes

x = eActx0 = XeλtX−1x0 (6.10)

where the column vectors of X are the eigenvectors of Ac and λ is a diagonal ma-
trix with diagonal entries equal to the eigenvalues of Ac. From (6.10) it becomes
apparent that the poles of the closed loop system only uniquely defines the sys-
tem transient response when X − diag(X) = 0, i.e. all states are decoupled.
Therefore, a simple pole placement technique may be insufficient. It is known,
[20], that when employing constant output feedback, a maximum of max(m,n)
eigenvectors may be assigned with min(m,n) free entries in each vector, where
n and m are the dimensions of states and control signals respectively. However,
some of this inherent freedom must be used to ensure that there in fact is a
viable solution to the inverse LQ-problem as described above. As presented in
[18] a solution to the inverse problem exists if and only if

T ∗(jω)T (jω)− I ≥ 0 (6.11)

T (jω) = I +K(Ijω −A)−1B (6.12)

where the superscript ∗ denotes the conjugate transpose. The remaining free-
dom in the choice of K, if such exist, may be used to enforce optimality in some
other sense, e.g. such that Ac is maximally diagonal.

In order to place the poles of a MIMO-system one may employ a Lyapunov
based technique accordingly

AX −Xλ = BG (6.13)

K = GX−1 (6.14)

37

where X and λ are defined as in (6.10) and G is an arbitrary auxiliary ma-
trix. The question that naturally arises is then, how does one choose G such
that (6.11) is fulfilled? Given that X is linear in G the feedback matrix K
becomes nonlinear in the same due to the inversion of X in (6.14) (given that
X is not diagonal, in which case pole placement may be employed). This fur-
ther implies that T (jω) is not only frequency dependent (as implied by the
functional relationship to w) but also nonlinear in G. This means that the
criteria for LQ-optimality is determined by a nonlinear, frequency dependent,
matrix inequality. Similar to the constraint Q ≥ 0, (6.11) may be rewritten
as min(λ(T ∗(jω)T (jω) − I)) ≥ 0. Even though this may simplify the pro-
cedure to some degree the problem still remains ambiguous in the sense that
there are infinitely many feedback matrices K which satisfy (6.11), or other-
wise put, there are an infinite number of feasible structures of the function
f(jω) = min(λ(T ∗(jω)T (jω)− I)).

Given a randomly chosen system, that may or may not be stable, along with
a predetermined and already proven LQ-optimal feedback matrix K, the term
min(λ(T ∗(jω)T (jω)−I)) can be seen to take the shape of a rational polynomial
with a denominator of an even degree, see Figure 6.2. Note that this is purely
an empirical observation.

-60 -40 -20 0 20 40 60

 [rad/s]

0

0.5

1

1.5

2

2.5

m
in

(
(T

(j
)*

T
(j

)-
I)

)

10 -3 min((T(j)
*
T(j)-I))

Figure 6.2: The term min(λ(T ∗(jω)T (jω) − I)), plotted over the interval ω ∈
[−60, 60], for a randomly created LTI-system with a predetermined LQ-optimal
feedback matrix K.

38

A first approach may then be to choose the elements of G such that K solves
the inverse eigenvalue problem (places the poles) and such that one minimizes
some suitable measure of correlation between the term min(λ(T ∗(jω)T (jω)−I))
and a beforehand chosen, non-negative and proper, rational polynomial. How-
ever by doing so one might risk unnecessary pole-zero cancellations which in
practice could increase model dependency. A second and perhaps more rea-
sonable approach is to allow an arbitrarily weighted LQ-algorithm to create a
feasible structure of min(λ(T ∗(jω)T (jω) − I) which may be used in the same
sense as described above. As such one can ensure that if pole-zero cancellations
do exist it is no worse than that caused by other valid choices of weighting
matrices Q and R. Note that for simplicity ω may be discretized and made
finite however at the expense of some accuracy, as will be further discussed
in Section 6.3. The optimization problem of finding an LQ-optimal feedback
matrix K, that solves a given inverse eigenvalue problem, so becomes

min
G

√√√√1

k

k∑
i=1

(Yr(jωi)− Y (jωi, G))2 (6.15a)

Y (jωi, G) = min(λ(T ∗(jωi, G)T (jωi, G)− I))

T (jωi, G) = I +K(G)(Ijωi −A)−1B

K = GX−1(G)

AX −Xλ = BG

(6.15b)

Yr(jωi) = min(λ(T ∗r (jωi)Tr(jωi)− I))

Tr(jωi) = I +Kr(Ijωi −A)−1B

Kr = BTPr

ATPr + PrA− PrBBTPr +Qr = 0

(6.15c)

where the subscript r denotes reference and indicates association with the pre-
determined LQ-optimal feedback matrix (here denoted Kr). Note that the
correlation measure is here taken to be the the root-mean-square over a finite
interval in ω (ω ∈ {ω1, ω2...ωk}). Further note that assigning the poles, as
previously mentioned, does not uniquely define a solution to the eigenstructure
assignment problem, or otherwise stated, problem (6.15) might not be bijective.
It is however analytically hard to predict which elements in G are necessary to
achieve a small enough value of the objective function (6.15a) (such that (6.11)
is upheld).

6.2.1 Solution to the eigenstructure assignment

The solution to the eigenstructure assignment problem is found by solving (6.15)
by means of nonlinear optimization with an interior-point algorithm (in similar
fashion to that of problem (6.7)). Note that convexity of problem (6.15) is not
guaranteed, the solution may therefore alter according to the choice of initial
values. Given that the optimization variable G is merely a transformed version
of K in the eigenspace of Ac (G = KX) it is reasonable to assume that low

39

controller effort may be gained from choosing low initial values of G. The initial
values of all elements in G are therefore arbitrarily chosen to be 0.01 (as K
is undefined at G = 0). A Matlab script of the procedure can be found in
Appendix F.

6.3 A small example

An LTI-system is created with random values of all elements in matrices A
and B (the only constraint is that the pair (A,B) be controllable and that the
matrix A does not share any eigenvalues with those desired by the eigenstruc-
ture assignment). All states are assumed to be measured perfectly (without
disturbances) and the system therefore takes the form

ẋ = Ax+Bu

y = x
(6.16)

The dimensions of the state- and input vector are 6× 1 and 4× 1 respectively.
A set of LQ-optimal poles for the system are created by solving an LQ-problem
with a randomly chosen (positive semi-definite) state weighting matrix Q along
with the input weighting matrix R = I4×4. The eigenstructure assignment, as
described in this section, is applied. In Figures 6.3-6.4s one can see the results
of the procedure, i.e. the linearly interpolated graph to the function Y (jωi, G)
from (6.15b) and the resulting pole locations in comparison to those desired.

-60 -40 -20 0 20 40 60

 [rad/s]

-0.5

0

0.5

1

1.5

2

2.5

3

Y
(j

)

10 -3 Y(j)

Eig. assignment

LQ reference

Figure 6.3: The function Y (jω) plotted over the interval ω ∈ [−60, 60].

40

Figure 6.4: Location of poles for the LQ-optimal eigenstructure assignment
(blue) in comparison to the desired pole placement (red). The small axes provide
a close-up of each unique pole pair, note the scales. One can see that the complex
conjugate poles deviate the most from their desired locations.

The resulting weighting matrix Qea, where the subscript ea denotes eigen-
structure assignment, from the solution to the inverse LQ-problem becomes

Qea =

3.84 −5.74 −4.61 −10.38 −1.36 5.56
−5.74 11.20 8.62 17.62 2.39 −7.68
−4.61 8.62 7.21 14.03 1.95 −4.85
−10.38 17.62 14.03 31.10 4.24 −15.42
−1.36 2.39 1.95 4.24 0.66 −1.90
5.56 −7.68 −4.85 −15.42 −1.90 14.20

 (6.17)

In comparison the randomly created weighting matrix Q is

Q =

1.80 1.34 1.45 0.95 1.12 1.28
1.34 3.31 1.28 0.97 1.76 1.55
1.45 1.28 2.28 1.14 1.17 1.08
0.95 0.97 1.14 1.88 0.88 0.88
1.12 1.76 1.17 0.88 2.22 1.09
1.28 1.56 1.08 0.88 1.09 2.65

 (6.18)

Note that all values have been rounded off to two decimal points. Further
note that, in this instance, the resulting matrix Q is not maximally diagonal.
The possibility of gaining a maximally diagonal Q seems to depend largely on
the quantitative success of the eigenstructure optimization, i.e. how well the
solution has managed to uphold (6.11). In this particular case the resulting
function Y (jω), at large absolute values of ω, becomes slightly negative (in the

41

order of 10−6), as shown in Figure 6.5. This seemingly small violation of the
constraints appears to cause conflicts between the symmetry constraints of the
matrix P and the optimality constraint

K = R−1BTP (6.19)

As such symmetry of the matrix P has to be enforced through optimization and
the new objective function has hence been set as

f(P) =

n∑
i=1

(

n∑
j=1

(|Pji − Pij |)) (6.20)

where n is the number of states, in this instance six.

-5000 0 5000

 [rad/s]

-0.5

0

0.5

1

1.5

2

2.5

3

Y
(j

)

10 -3 Y(j)

Eig. assignment

LQ reference

X: -3282

Y: -1.012e-06

Figure 6.5: The function Y (jω) plotted over the interval ω ∈ [−5000, 5000].
The provided annotation shows that when the absolute value of ω is sufficiently
large, the function Y (jω) becomes negative.

Unfortunately this approach does not explicitly guarantee the necessary sym-
metry of P and as such a final measure has to be taken in the form

Pf =
1

2
(PT + P) (6.21)

where the subscript f denotes final, and Pf is then used in order to find Q (or
equivalently Qea). Because of this constraint violation the poles shift slightly
from their desired positions, as shown in Figure 6.4. From simple trial and error
it becomes clear that both too few and too many samples taken in ω, as a rule,
results in greater violation of (6.11). Too few samples renders the optimization
excessively relaxed and optimal solutions may be found in structures of Y (jω)
far from what is sought after. Too many samples however increases complexity
and seem to make the problem more non-convex. As such the optimization
may end in local optima that greatly violates (6.11). Noteworthy is that the
allowable violation seem to increase both with absolute values of ω and with
decreased sizes of state matrices, allowable in this instance referring to results
with seemingly reasonable deviations in pole locations. It should here be stated

42

that when the set of discretized values of ω increases the computational cost
rises as well and eventually the optimization becomes so slow that the added
time consumption may invalidate any potential gain in accuracy.

Note: It should further be noted that (for larger systems) even when
comparably few samples in ω are taken the optimization still takes a fair
amount of time and the practicality of this approach could, with reason,
be questioned.

The resulting feedback matrix Kea, where the subscript ea denotes eigen-
structure assignment becomes

Kea =

2.89 −6.87 6.14 24.92 12.39 −0.02
−31.81 31.62 29.17 36.29 −5.51 −14.82

3.87 14.83 −2.31 16.51 2.81 −8.66
20.43 −12.69 −2.90 −0.54 9.61 17.27

 (6.22)

In comparison the LQ-optimal feedback matrix K used to create the desired
set of poles is

K =

3.24 −7.30 5.78 24.94 12.53 0.40
−31.88 31.64 29.29 36.39 −5.58 −14.88

4.77 14.12 −3.01 15.95 2.88 −7.79
20.87 −12.61 −3.14 −0.51 9.65 17.07

 (6.23)

Note that, as before, all values have been rounded off to two decimal points.

43

Chapter 7

Actuator redundancy

For both reasons of safety (e.g. fault tolerance) and performance it is sometimes
practice to include more control signals than are inherently needed. As discussed
in Section 5.2 this is the case for the current aircraft model. A necessary question
then becomes, how does one specify which control signal is to be used at any given
moment? Or otherwise stated, how does one prioritize between all available
controls? Two ways of solving these questions are discussed in detail in [8], the
first method being optimal control and the later what is referred to as control
allocation.

7.1 Optimal control

Given a performance index, or equally objective function, a suitable algorithm
is used to find a solution to an associated optimization problem (either off- or
online). Notable examples include H-infinity control, LQ-control and model pre-
dictive control. Given that the optimization problem is well-defined the solution
defines the optimal priority between controls and no further design choices are
necessary.

Among the drawbacks of optimal control is the necessity to define an appro-
priate objective function, as in the special case of LQ-control in which weighting
matrices must be defined. Furthermore, inclusion of constraints may make the
problem computationally expensive, as with explicit model predictive control.
In reality constraints are bound to be present, for instance in the shape of limits
on the controller output. For the aircraft at hand these constraints may also
come in the form of limits on load factors as to avoid undue stress on both
components and pilot. These constraints may be resolved afterwards in a non-
optimal fashion, e.g. by use of rate limiters or alike, however at the expense of
designed performance.

44

7.2 Control allocation

Given that the pair (A,B) is controllable and that the input matrix B is rank
deficient there exists a factorization of B such that

B = B1B2 (7.1)

where B1 has full column rank and B2 inherits the rank deficiency from B. The
system may consequently be rewritten as

ẋ = Ax+B1v (7.2)

v = B2u (7.3)

In [8] the authors refer to signal v as the virtual control input and points out
that it may be interpreted as the total control effort deriving from all actuators.
In another sense v may be viewed as the raw input to the system in question.
For the flight mechanical model presented in Section 5.3 this signal v would
refer to external forces and moments acting on the aircraft, B1 would then be
a partial unity matrix stating how forces and moments enter the system. B2

would in turn be a matrix stating how all available control signals translate into
forces and moments, i.e. a matrix describing the control surface effectiveness at
the given operating point. System (7.2) may be stabilized, or controlled, by any
preferable method, such as LQ-control. Equation (7.3) must then be solved in
order to portion the necessary raw signal onto the real, or actual, input signals
of the original system. Note that since B2 is rank deficient there exists an infi-
nite number of solutions, i.e. an infinite number of ways to create the necessary
controller effort. A solution may be found both in an optimal and non-optimal
sense. An example of a non-optimal approach is to simply state how control
signals are to co-operate based on a rule of thumb or perhaps designers intu-
ition. One could combine signals, for example saying that some signals are to
be symmetric, anti-symmetric or operate in a proportional fashion. If these
combinations are linear in nature the columns of B2 inevitably decreases until,
if the procedure is repeated, there is no inherent freedom left and the resulting
remains of B2 no longer exhibits rank deficiency.

In [8] the authors prove that, if the system in question is linear and per-
formance indexes are constant, using LQ-control along with optimal control
allocation (with a quadratic performance index) yields the same result as using
LQ-control on a corresponding non-truncated system (i.e. with the original in-
put matrix B). The authors further conclude that the handling of constraints
may, to some degree, be made simpler with the use of control allocation. They
hence propose the optimization problem

w = arg min
u∈U

uTWu (7.4)

U = arg min
¯
u≤u≤ū

(B2u− v)TWv(B2u− v) (7.5)

45

In terms of words, the process may be described as: Among those allocations
that minimize the difference between the real and desired control effort, choose
the one that minimizes the performance index in (7.4). The authors stress that
this approach is not equivalent to including constraints in a non-allocated op-
timal control problem. Note that, as shown in [8], the set of solutions to this
optimization problem may take a fairly complex shape even for comparably low
order systems.

7.2.1 Control allocation and servo dynamics

When extending the model with the linear servo dynamics the new input matrix
B̃ will take the form

B̃ = [B̃1, B̃2] (7.6)

as described in Section 5.4, where B̃2 refers to control signals not belonging to
control surfaces (e.g. engine related) and

B̃1 =

B̃11 . . . B̃1m

...
. . .

...

B̃n1 . . . B̃nm
Bs . . . 0
...

. . .
...

0 . . . Bs

(7.7)

where Bs is the input matrix for the linear servo system, n is the dimension
of states (of the former non-extended system) and m is the number of control
surfaces. Note that the elements B̃xx will always equal zero apart from the
special case when the order of the linear servo model is lower than the highest
order derivative of the control surface deflections. From the structure in (7.7)
it is apparent that B̃1 will have full column rank and so the possibility of per-
forming control allocation vanishes. Otherwise stated, the rank deficiency of
the former input matrix B is hidden in the new state matrix Ã. The question
then becomes, how does one perform control allocation while taking the servo
dynamics into account?

If the effects of the control surface rates on the system are sufficiently small,
in comparison to control surface deflections, a simple (and perhaps crude)
method may be to simply remove control surface rates from the given input
signals (with no adjustments made). The system could then be fitted with fic-
tional delays on the control surface deflections (in order to simulate the inherent
delay of actuator movement). Note however that this is not a true augmentation
of the system and so no new states relating to the delay appears in the system
description, one is merely keeping track of the delayed response when trimming
for the non-delayed system.

Note: If the delay terms are linearized, by use of for example a Padé
approximation, and the system augmented with subsequent states, one
inevitably ends up with the same dilemma as when extending the system
with linear servo dynamics, i.e. the resulting input matrix has full rank
and control allocation is no longer possible.

46

If such an approach is applied, the input matrix B remains rank deficient
effectively allowing the designer to use control allocation techniques. Note that
the resulting phase margin of the closed loop system is inevitably decreased
and so the requirement for accurate modeling of other internal parts increase as
such. In order to lessen the effects of this approach, the resulting control signals
may be sped up using, for example, either a Smith predictor or a suitable lead
filter. The later could potentially be in the form of a low-pass filtered inverse
of the servo dynamics. Note however that this method is only appropriate if
the servo model does not exhibit any notch behaviour or alike, no substantial
overshoot (i.e. is well damped) and there exist no strong non-linearities in the
same. Simply put, the servo system must be predictable and well-behaved. In
Figure 7.1 one may see the working principles of a Smith predictor.

Figure 7.1: Working principles of a Smith predictor. The Smith predictor com-
pares the modelled system response, with and without delay, and makes the
appropriate compensation

An other possible solution is to truncate the system before the inclusion of
servo dynamics, perform control law design with forces and moments as vir-
tual inputs, and then implement a dynamic control allocation scheme. In other
words, perform one additional control law design that is equality constrained,
e.g. with LQ-control. However, when constraining the LQ-problem an analyti-
cal solution is in general hard to find. As such, most approaches aim at solving a
discretized finite time horizon estimation of the initial problem, simpler put, the
problem is converted to that of MPC (to which all associated challenges follow
suit, such as robust online optimization). The benefit of simplified handling of
constraints may therefore be lost and so invalidate one of the main premises of
the control allocation approach. Furthermore the optimal virtual control signal
is likely time-varying, as in the case of LQ-control, the problem is therefore only
truly linear in frozen time or likewise if the equality constraint is discretized and
made finite (i.e. the virtual control is sampled at a finite number of instances
in time).

47

Further solutions include designing an outer feedback loop for the servo that
tracks the optimal virtual control. However, several difficulties arise, including
that (for reason of stability) the outer loop should be slower than the inner, ef-
fectively meaning that the servo dynamics has to be slowed down. Furthermore,
the optimal virtual control may be time-varying in such a way that either zero
steady state error may not be guaranteed or introduce the necessity of higher
order integral control, which may violate the criterion of a slower outer loop. In
excess to that one must either be able to directly measure the control surface
rates, turn to pseudo derivatives or augment the existing servo model with an
observer, e.g. linear time-derivative tracker, which inevitably would introduce
further delay.

48

Chapter 8

Results

A program has been written in Matlab that incorporates many, but not all, of
the above mentioned procedures and techniques. In this chapter the program
and its functionality will be covered. Moreover, a summary will be given of
which procedures/techniques were implemented along with a brief explanation
as to why some where excluded. Lastly, the results from both linear and non-
linear simulations will be put forth.

8.1 Program description

Within the Ares simulator lies a module that calculates central derivatives of
aerodynamic coefficients. Furthermore, the module outputs trim conditions and
trim accuracy along with mass and inertial data. These are saved in a simple
text file, which is initially read and sorted by the program. The program then
creates a family of linear systems in accordance with Chapter 5. When calling
the program the user has the possibility of choosing whether or not to use virtual
signals, i.e. whether or not to apply control allocation as described in Chapter 7.
If the user chooses virtual controls a new input matrix is created of the form

B1 =

1 0 . . . 0
0 1 . . . 0
...

. . .
...

0 0 . . . 1
0 0 . . . 0
...

. . .
...

0 0 . . . 0

(8.1)

where the upper portion is a 6×6 unity matrix. The matrix relating the virtual
and original control signals is hence created as

B2 = B+
1 B (8.2)

49

where + denotes pseudo inverse. In this particular case the pseudo inverse
is chosen as the Moore-Penrose pseudo inverse. As outlined in Chapter 7 the
introduction of virtual control signals hinders the adding of proper servo dy-
namics and as such the original input matrix B is simply truncated to remove
control surface rates. Fortunately the aerodynamic model of the Admire model
is simple enough such that the influence of the rates are mostly zero (with the
exception of canards). Furthermore, if virtual controls are chosen a graphical
user interface (GUI) is subsequently started that allows the user to couple the
original control signals if he/she so wishes. The purpose of the GUI is simply to
make the interaction with the program as user friendly as possible. In Figure 8.1
one may see how this GUI is designed

Figure 8.1: Design of the graphical user interface. The user may simply press
on whichever surface he/she wishes to apply constraints to.

Note that for every new constraint that is applied, the effective redundancy
decreases and eventually the system is no longer overactuated. If such is the
case, when the GUI is closed (by pressing solve), the program automatically
changes the approach to optimal control, the original input matrix B is re-
stored and the servo dynamics are subsequently added.

The original intent of the program was to further allow the user to choose be-
tween either LQ-optimal eigenstructure assignment, as described in Chapter 6,
or a straightforward LQI approach, as described in Chapter 2. However, as
outlined in Section 6.3, the time consumption of the LQ-optimal eigenstructure
assignment rapidly increases with the size of the state matrices A and B. Fur-
thermore, the loci of LQ-optimal poles is, unfortunately, much narrower than
anticipated. This means that in order to successfully make use of the proposed
eigenstructure assignment one has to have extensive insight into the LQ-optimal
root loci of the system in question. Even though the movement of the poles are
known (to some extent), see for example [15], the problem is evident. What is
interesting to note is however that when a set of LQ-optimal poles have been
chosen, they seem to remain sufficiently optimal for comparably large deviations
in system matrices A and B (implying that the proposed eigenstructure assign-

50

ment can be solved with moderate deviations in pole locations). In Figure 8.2
one can see the results from a similar trial to that of the example in Section 6.3.
In this trial however, one randomly chosen element in each of the matrices A
and B have successively been decreased by five percent for a total of five times,
resulting in a maximal deviation of roughly 22.62%.

Figure 8.2: Location of poles for the LQ-optimal eigenstructure assignment
(blue) in comparison to the desired pole placement (red). The small axes provide
a close-up of the poles that deviate the most.

The method is nonetheless deemed to impractical to be incorporated in the
program. Moreover, when extending the system with the linear servo dynamics
the order of the system increases to such an extent that, not only is the process
heavily time consuming, but the eigenstructure assignment risks failing due to
the added complexity. It should here be mentioned that the Matlab function
place solves for the feedback matrix K by optimizing for numerical stability,
i.e. minimizes the condition number for the eigenvector matrix X of the closed
loop state matrix A−BK. In practice, this means that the place function may
yield systems where the strength of the coupling between states are far from
acceptable. As such no pole placement or eigenstructure assignment techniques
are currently incorporated in the presented program.

Therefore, regardless of the choice concerning virtual control signals, an LQ-
optimal feedback matrix K is generated for each linear system created. The
user must promptly input which states and outputs he/she wishes to stabilize
and/or control through set point tracking (LQI-control). Furthermore, the user
has the possibility of defining weighting matrices Q and R. If no such choice is
made, the program automatically creates these matrices by applying Bryson’s
rule. This however means that the user consequently must define maximum
limits for all control signals and/or states (depending on if both matrices are
left empty or not).

The user further has the possibility to apply alpha-shifted LQ-control, as
described in Chapter 2. Before the process of creating the feedback matrices K,
the user is therefore prompted if he/she wishes to trim the initial alpha-shift
and integral values (initial referring to the first trim point of those input to
the program). If the user chooses to do so, a series of additional windows are
opened, one of which contains two continuous knobs. In this window the user

51

can simply trim the integral weighting and alpha-shift values (by turning the
knobs) while keeping track of linear transient responses and pole/zero locations
in the z-plane. Note here that all systems are discretized, using a zero-order
hold method, with a sample time of 1/60 seconds. This is to take into consid-
eration the update frequency in the digital Ares Mars simulator.

While it would be beneficial for the alpha-shift and integral values to alter
according to the position in the operating domain, as with weighting matrices
Q and R, performing automated tuning of such values implies yet further opti-
mization procedures effectively slowing down the process. Moreover, as can be
seen in Figures 8.3a-8.3b, the transient response remains fairly consistent over
large portions of the subsonic envelop.

(a) Transient response of roll rate p (ωx).

(b) Transient response of pitch rate q (ωy).

Figure 8.3: Linear transient response for roll- and pitch rate in the envelope
0.4-0.9 Mach and 1000-4000m (true altitude). Note that each figure contains
641 graphs which, mostly, overlap. The red line represents commanded values.

52

For the responses in Figures 8.3a-8.3b, the weighting matrices Q and R were
chosen as

Q = diag([3.77× 10−6, 4.00, 1.11× 10−3, 1.01× 10−1, ... (8.3)

...4.05× 10−1, 5.25, 150, 15× 103, 150])

R = diag([4.00× 10−2, 4.00× 10−2, 8.16× 10−4, 8.16× 10−4, ... (8.4)

...8.16× 10−4, 8.16× 10−4, 1.00× 10−4])

Furthermore, the state matrix A was altered (alpha-shifted) as

A = A+ α (8.5)

α = diag([0, 0, 0, 3.02, 2.03, 0]) (8.6)

Note that the Euler angles have been removed from the linear state space sys-
tems in these simulations. The grid applied takes the shape of that shown in
Figure 8.4

Figure 8.4: Portioning of the envelope. Note that each vertex and each center
of all squares represent one operating point (equally equilibrium- or trim point)

As the response remains fairly consistent over large portions, it may in prac-
tice only be necessary to perform a limited number of trimming sessions (in
critical portions of the envelope). Such portions may be instances where the
solution to the dynamic equations undergo sudden changes (bifurcation), such
as supersonic transitioning, or where control surface authority is low or in risk
of reversal.

Once feedback matrices for all trim points have been calculated all values are
linearly interpolated to yield a piecewise linear surface as shown in Figure 8.5

53

8000

1.5

0.2

2

2.5

K-element: (1,5)

3

3.5

6000

4

0.4 4000

H
true

0.6

Mach [-]
20000.8

01

Figure 8.5: Element (1, 5) from the feedback matrix K plotted over the flight
envelop. All red dots represent interpolated values at intermediate points in
the grid, they are calculated and shown simply to verify that the interpolation
has been successful. As anticipated, the strength of the feedback lessens when
control authority increases (i.e. when speed is high and altitude is low). Note
that this picture is merely illustrative and does not relate to the responses shown
in Figures 8.3b and 8.3a

During simulation the flight control systems module (FCS-module) calcu-
lates the aircraft’s current position in the grid in terms of center-point and
angle about such center-point. Center-point refers to all trim points located at
the center of each square sub-region shown in Figure 8.4. These points are all
given a linear index starting from one, at the lowest value of the first scheduling
parameter (in this instance Mach number), and from there successively increases
to the highest value of the second scheduling parameter (in this instance true al-
titude). Furthermore, all triangular sub-regions surrounding these center-points
are likewise given a linear index starting from one at the lowest such region and
successively increasing in counter clockwise direction (CCW), These indices are
are hence used when reading and updating the values of the interpolated feed-
back coefficients from the matrix K, the principle is shown in Figure 8.6

54

Figure 8.6: Partitioning of the envelope. Each center-point is given a linear
index ranging from one to n. Furthermore each triangular sub-region about
these center-points are given a linear index ranging from one to four (CCW).

8.2 Linear simulation results

The program is called with states one through six as states to be stabilized,
i.e. all linear and angular velocities. Since the Euler angles are merely the
integrals of the angular rates in the linearized systems they are, for simplicity,
removed. The states to be controlled through set point tracking are Vx, ωx,
ωy and β (speed in x-direction, roll rate, pitch rate and side slip angle). The
matrix R is created by use of Bryson’s rule. The matrix Q is chosen manually
and all instances relating to tracking errors are tuned using the built-in GUI.
The resulting values are

Q = diag([0.1, 50, 0.1, 30, 600, 50, 220, 500, 6000, 1]) (8.7)

R = diag([0.82× 10−3, 0.82× 10−3, ..., 0.1× 10−3) (8.8)

Additionally, the state matrix A is altered accordingly (alpha-shifted)

A = A+ α (8.9)

α = diag([0, 0, 0, 3, 0, 2]) (8.10)

The scheduling parameters are, again, Mach number and true altitude. The
lower and upper limits of the operating domain are chosen as 0.3 and 0.9 Mach
and 1000 and 7000 meters true altitude respectively. The operating grid takes
the form of that shown in Figure 8.4 where each square sub-region has dimen-
sions 0.1 Mach and 1000 meters true altitude, which gives 85 trim points in
total. Furthermore, both right elevons, left elevons and canards are made to
operate symmetrically. To clarify, the new inputs to the system are δle, δre,

55

δce, δr and δPLA, where le, re and ce denotes left elevon, right elevon and
canard elevon respectively. Note that, as a result, canards cannot directly affect
lateral motion. The linear transient responses of Vx, ωx, ωy and β are shown in
Figures 8.7a-8.7d.

(a) Response in Vx. (b) Response in roll rate ωx

(c) Response in pitch rate ωy. (d) Response in side slip angle β

Figure 8.7: Linear transient responses for Vx, ωx, ωy and β in the envelope
0.3-0.9 Mach and 1000-7000m (true altitude). Each figure contains 85 graphs.
Note that no step has been made in β.

8.3 Nonlinear simulation results

The resulting interpolated values of the feedback matrix K, from the procedure
described in Section 8.2, are implemented in the Ares Mars simulator and the
aircraft is initialized in trim at 0.8 Mach at 1100 meters. Due to the current
trimming procedure there is a sudden change in controlled parameters at the
beginning of the simulation. As such, there is an immediate transient response
when the simulation starts. To clarify, the pilot first trims the aircraft using
open loop control (in which stick deflection directly translate to control surface
deflections). When the simulation begins the aircraft switches to rate mode
(stick deflection translates to commanded angular rates) and the pilot must
consequently shift the stick to neutral position. Due to these transients the
aircraft initially ends up with negative pitch and as such starts to loose altitude.
The pilot must therefore, shortly after the shift to neutral, make a slight negative
step in elevator stick deflection to level out the aircraft. In Figure 8.8 one can
see the response in pitch rate during these initial maneuvers.

56

0 2 4 6 8 10

time [s]

-10

-8

-6

-4

-2

0

2

q
 [
d
e
g
re

e
s
/s

]

Initial transient response in pitch rate

Figure 8.8: Response in pitch rate during the initial maneuvering (with the
purpose of leveling the aircraft).

At ten seconds into the simulation the pilot makes a doublet step command
in pitch rate (note that the rate of the stick deflection is slightly limited to
simulate human movement). The results in both pitch rate, pitch angle and
altitude are shown in Figures 8.9a-8.9c.

12 14 16 18 20 22 24 26 28 30

time [s]

-6

-4

-2

0

2

4

6

q
 [

d
e

g
/s

]

Series of steps in commande pitch rate

(a) Response in pitch rate.

12 14 16 18 20 22 24 26 28 30

time [s]

5

10

15

20

25

30

 [
d

e
g

re
e

s
]

Pitch angle

(b) Response in pitch

12 14 16 18 20 22 24 26 28 30

time [s]

1200

1400

1600

1800

2000

2200

H
tr

u
e

 [
m

]

True altitude

(c) Response in true altitude

Figure 8.9: Nonlinear transient response for ωy, θ and Htrue. The red curve in
subfigure (a) shows the commanded pitch rate.

.

57

In Figures 8.10a and 8.10b one can see the corresponding control surface
deflections and pilot lever angle.

12 14 16 18 20 22 24 26 28 30

time [s]

-0.5

0

0.5

1

1.5

2

2.5

C
tr

l.
 s

u
rf

.
d

e
fl
.

[d
e

g
re

e
s
]

Control surface deflections

Canards

Left elevons

Right elevons

Rudder

(a) Control surface deflections

12 14 16 18 20 22 24 26 28 30

time [s]

60

65

70

75

80

85

90

95

100

P
L

A
 [

d
e

g
re

e
s
]

Pilot lever angle

(b) Pilot lever angle

Figure 8.10: Control surface deflections and pilot lever angle during the doublet
in pitch rate

.

58

Chapter 9

Conclusions

A program for creating control law parameters for generic fighter aircraft has
been created. The program is based on gain scheduled LQ-control with pos-
sible setpoint tracking and a prescribed degree of stability (alpha-shift). The
possibility of automated tuning has been investigated by solving the inverse
LQ-problem coupled to an eigenstructure assignment. The resulting method is
however, currently, of limited practical use due to the seemingly narrow loci of
LQ-optimal poles and the extensive time consumption associated with the nec-
essary non-convex optimization. Furthermore, the existence of hidden coupling
during conventional gain scheduling procedures has been brought to light and a
possible remedy in the form of enhanced velocity based linearization (EVBL) has
been considered. Note that due to the limited time budget of this project the
EVBL approach has not been implemented in the Ares simulator and as such
the possible presence of hidden coupling, for the controller structure employed
in Section 8, has not been evaluated. It should however be stressed that, given
the results presented, hidden coupling may indeed pose serious issues in the
implementation of gain scheduled controller schemes and that velocity based
linearization, in this context, is a viable alternative to conventional series ex-
pansion. It should further be concluded that hidden coupling may be present
even when employing advanced control techniques such as LQ-control and that
advantages of EVBL, in the implementation flight control systems, should be
further considered. Moreover, the benefits and disadvantages of LQ-optimal
control allocation has been studied. Regarding such it is to be concluded that
one of the main advantages is the ability to explicitly handle constraints in a
less strict manner than that of constrained LQ-control. However, similar to
constrained LQ-control (and explicit MPC), the problem still requires solving a
comparably complex optimization problem that may result in a heavily faceted
polytopic set of solutions. To avoid this one would instead have to turn to online
numerical optimization in which case MPC may be a viable option. Further-
more, the introduction of virtual controls causes possible loss in model accuracy
as it effectively hinders the inclusion of linearized servo dynamics. As a possible
alternative to the proposed LQ-optimal eigenstructure assignment one may look
to, for example, partial pole placement techniques, see e.g. [21].

59

Bibliography

[1] D. J. Leith W. E. Leithead. ”Survey of gain-scheduling analysis and de-
sign”, Int. Journal of Control, vol. 73, no. 11, pp. 1001-1025, 2000.

[2] D. J. Leith W. E. Leithead, ”Gain-scheduled and nonlinear systems: Dy-
namic analysis by velocity-based linearization families”, Int. Journal of
Control, vol. 70, no. 2, pp. 289-317, 1998.

[3] H. Lhachemi, D. Saussié, G. Zhu, ”Hidden Coupling Terms Inclusion
in Gain-Scheduling Control Design: Extension of an Eigenstructure
Assignment-Based Technique”, IFAC-PapersOnLine, vol. 49, no. 17, pp.
403-408, 2016.

[4] H. Lhachemi, D. Saussié G. Zhu, ”An enhanced velocity-based algorithm
for safe implementations of gain-scheduled controllers”, Int. Journal of
Control, vol. 90, no. 9, pp. 1973-1989, 2017.

[5] I. Kaminer, A. M. Pascoal, P. P. Khargonekar, E. E. Coleman, ”A velocity
algorithm for the implementation of gain-scheduled controllers”, Automat-
ica, vol. 31, no. 8, pp. 1185-1191, 1995.

[6] L. Reberga, D. Henrion, J. Bernussou, F. Vary. ”LPV Modeling of a Tur-
bofan Engine”, Proc. of the 16th IFAC World Congress, Prague, Czech
Republic, IFAC Proceedings Volumes, vol. 38, no. 1, pp. 526-531, 2005.

[7] R. T. Reichert, ”Dynamic scheduling of modern-robust-control autopilot
designs for missiles”, IEEE Control Systems Magazine, vol. 12, no. 5, pp.
35-42, 1992.

[8] O. Härkeg̊ard, S. T. Glad. ”Resolving actuator redundancy: optimal control
vs. control allocation”, Automatica, vol. 41, no. 1, pp. 137-144, 2005.

[9] J. L. Casti. ”A Note on the General Inverse Problem of Optimal Control
Theory”, IIASA Research Memorandum. IIASA, Laxenburg, Austria: RM-
74-008, 1974.

[10] N. Wiener, Extrapolation, Interpolation, and Smoothing of Stationary Time
Series: With Engineering Applications, Cambridge, MA: MIT Press; 1942.

[11] A. C. Hall, The Analysis and Synthesis of Linear Servomechanisms, Cam-
bridge, MA: MIT Press; 1943.

[12] R. E. Kalman,. ”Contributions to the Theory of Optimal Control”, Bol.
Soc. Mat. Mexicana, vol. 5, pp. 102–119, 1960.

60

[13] Y. S. Ledyaev, ”On Analytical Solutions of Matrix Riccati Equations”,
Proc. Steklov Inst. Math, vol. 273, pp. 214-228, 2011.

[14] F. Jabbari, ”Extensions to LQR” [Internet], University of Califor-
nia Irvin [updated 2014 March; cited 2020 Jul 15]. Available from:
http://mae2.eng.uci.edu/~fjabbari//me270b/chap5.pdf

[15] M. S. Triantafyllou, F. S. Hover, ”Maneuvering and Control of Marine Ve-
hicles” [Internet], Massachusetts Institute of Technology Cambridge, Mas-
sachusetts USA [updated 2003 Nov 5; cited 2020 Jul 15]. Available from:
https://ocw.mit.edu/courses/mechanical-engineering/2-154-

maneuvering-and-control-of-surface-and-underwater-vehicles-

13-49-fall-2004/lecture-notes/

[16] M. A. Sen, M. Kalyoncu, ”Optimal Tuning of a LQR Controller for an
Inverted Pendulum Using the Bees Algorithm”, Journal of Automation
and Control Engineering, vol. 4, no. 5, 2016.

[17] K. Hassani, W. S. Lee, ”Optimal Tuning of Linear Quadratic Regulators
Using Quantum Particle Swarm Optimization”, Proc. of the Int. Con-
ference of Control, Dynamic Systems, and Robotics, Ottawa, Ontario,
Canada, no. 59, 2014.

[18] M. C. Priess, R. Conway, J. Choi, J. M. Popovich Jr., C. Radcliffe. ”Solu-
tions to the Inverse LQR Problem with Applications to Biological Systems
Analysis”, IEEE, vol. 23, no. 2, 2015.

[19] F. Aioun, A. Heniche and H. Bourles, ”Maximally-diagonal solution to the
inverse LQR problem”, Proc. of 1994 33rd IEEE Conference on Decision
and Control, Lake Buena Vista, FL, USA, IEEE, vol. 2, pp. 1445-1446,
1994.

[20] K. Sobel, S. Joshi, ”Eigenstructure Assignment for Fault Tolerant Flight
Control Design” [Internet], Nasa Office of Equal Opportunity; 2002. NASA
grant number NAG 2028 [cited 2020 Jul 25]. Available from: https://

ntrs.nasa.gov/search.jsp?R=20020023592

[21] K. C. Cheok, ”Simultaneous linear quadratic pole placement (LQPP) con-
trol design”, IFAC 15th Triennial World Congress, Barcelona, Spain, IFAC
Proceedings Volumes vol. 35, no. 1, pp. 289-293, 2002.

[22] J. Löfberg, ”YALMIP : a toolbox for modeling and optimization in MAT-
LAB”, 2004 IEEE International Conference on Robotics and Automation,
New Orleans, LA, pp. 284-289, 2004.

[23] R. Nelson, Flight stability and automatic control, second edition, New
York:McGraw-Hill;1998.

[24] L. Forsell, U. Nilsson, ”ADMIRE The Aero-Data Model In a Research Envi-
ronment Version 4.0, Model Description” [Internet], FOI - Swedish Defence
Research Agency, Systems Technology; 2005. [cited 2020 Jul 15]. Available
from: https://www.foi.se/rest-api/report/FOI-R--1624--SE

61

http://mae2.eng.uci.edu/~fjabbari//me270b/chap5.pdf
https://ocw.mit.edu/courses/mechanical-engineering/2-154-maneuvering-and-control-of-surface-and-underwater-vehicles-13-49-fall-2004/lecture-notes/
https://ocw.mit.edu/courses/mechanical-engineering/2-154-maneuvering-and-control-of-surface-and-underwater-vehicles-13-49-fall-2004/lecture-notes/
https://ocw.mit.edu/courses/mechanical-engineering/2-154-maneuvering-and-control-of-surface-and-underwater-vehicles-13-49-fall-2004/lecture-notes/
https://ntrs.nasa.gov/search.jsp?R=20020023592
https://ntrs.nasa.gov/search.jsp?R=20020023592
https://www.foi.se/rest-api/report/FOI-R--1624--SE

[25] O. Nevanlinna, “Sylvester equations and polynomial separation of spectra”,
OaM, vol. 13, no. 3, pp. 867-885, 2019.

62

Appendices

63

Appendix A

Non-linear missile dynamics

Values of all coefficients that are not defined may be found i [7].

Atmospheric properties
Q: dynamic pressure [lb/ft2]
p0: free stream static pressure [lb/ft2]
M : Mach number [-]

Q = 0.7p0M
2 (A.1)

Aerodynamic coefficients
Cn: normal force coefficient [-]
Cm: pitching moment coefficient [-]

Cn = sign(α)(an|α|3 + bn|α|2 + cn|α|) + dnδ (A.2a)

cn = −0.17(2− M

3
) (A.2b)

Cm = sign(α)(am|α|3 + bm|α|2 + cm|α|) + dmδ (A.2c)

cm = 0.051(
8M

3
− 7) (A.2d)

Forces and moments
Fl: Normal/lift force [lb]
Fx: Tangential force [lb]
Ml: Pitching moment [ft-lb]

Fl = QSCn(α,M, δ) (A.3a)

Ml = QSdCm(α,M, δ) (A.3b)

Fx = QSCa (A.3c)

64

Governing dynamics
States
α: angle of attack [rad]
q: pitch rate [rad/s]
Vm: missile velocity [ft/s]
δ: tail fin deflection [rad]

Inputs
δc: commanded tail fin deflection [rad]

Outputs
η: normal acc. [g]

Miscellaneous
τ : tail fin time constant [1/s]
m: mass [slugs]
g: gravitational acc. [ft/s2]

α̇ =
cos(α)

mVm
Fl + q (A.4a)

q̇ =
Ml

I
(A.4b)

V̇m =
Fx
m

cos(α)− |Fl
m
sin(α)| (A.4c)

δ̇ = −1

τ
δ +

1

τ
δc (A.4d)

η =
Fl
mg

(A.4e)

65

Appendix B

Linearized missile dynamics

Functions f1 to f4 correspond to the right hand sides of (A.4a) to (A.4d) in that
given order. Function h similarly corresponds to the right hand side of (A.4e).
Note that sine and cosine are abbreviated s and c respectively. The linearization
of aerodynamic coefficients can be found in the Matlab script in Appendix C.

∂f1

∂α
=

QeS

mVme
(−s(αe)Cne + c(αe)

∂Cn
∂α
|ec) (B.1)

∂f1

∂q
= 1

∂f1

∂Vm
= c(αe)

0.7p0S

msos2
(Cne + Vme

∂Cn
∂Vm

|ec)

∂f1

∂δ
= c(αe)

QeS

mVme
dn

∂f2

∂α
=
QeSd

I

∂Cm
∂α
|ec (B.2)

∂f2

∂q
= 0

∂f2

∂Vm
=

0.7p0Sd

I sos2
(2VmeCme + V 2

me

∂Cm
∂Vm

|ec)

∂f2

∂δ
=
QeSd

I
dm

66

∂f3

∂α
=
QeS

m
(−s(αe)(Ca +

T

QeS
)− ... (B.3)

...− ζ1(c(αe)Cne + s(αe)
∂Cn
∂α
|ec))

ζ1 = sign(Cne)sign(s(αe))

∂f3

∂q
= 0

∂f3

∂Vm
=

0.7p0S

msos2
(2Vme(c(αe)Ca − ...

...− |s(αe)Cne|)− ζ2V 2
me|s(αe)|

∂Cn
∂Vm

|ec)

ζ2 = sign(Cne)

∂f3

∂δ
= −ζ2

QS

m
|s(αe)|dn

∂f4

∂α
= 0,

∂f4

∂q
= 0,

∂f4

∂Vm
= 0,

∂f4

∂δ
= −1

τ
(B.4)

∂f1

∂δc
= 0,

∂f2

∂δc
= 0,

∂f3

∂δc
= 0,

∂f4

∂δc
=

1

τ

∂f1

∂T
= 0,

∂f2

∂T
= 0,

∂f3

∂T
=
c(αe)

m
,
∂f4

∂T
= 0

∂h

∂α
=
QS

mg

∂Cn
∂α
|ec

∂h

∂q
= 0

∂h

∂Vm
=

0.7p0S

mg sos2
(2VmeCne + V 2

me

∂Cn
∂Vm

|ec)

∂h

∂δ
=
QS

mg
dn

67

Appendix C

Missile guidance system
script

1 %% Linearisation
2

3 clear all; %#ok<*CLALL>
4 close all;
5 clc
6

7 % a = (AoA) [rad]
8 % q = pitch rate [rad/s]
9 % Vm = missile velocity [ft/s]

10 % n = normal acceleration [−] (g)
11

12 % Conversion
13 m2ft = 3.2808398950131; %[ft/m]
14 % ft2m = 1/m2ft; %[m/ft]
15 d2r = pi/180; %[rad/degree]
16 r2d = 1/d2r;
17 % sqft2sqm = ft2mˆ2; %[mˆ2/ftˆ2]
18 % slug2kg = 14.5939029; %[kg/slug]
19 % lb sqft2kg sqm = 0.04214011; %[(kg/mˆ2)/(lb/ftˆ2)]
20

21 %% Model parameters
22

23 % Imperial
24 sos = 316*m2ft; %[ft/s] (speed of sound)
25

26 S = 0.44; %[ftˆ2]
27 m = 13.98; %[slugs]
28 p0 = 973.3; %[lb/ftˆ2]
29 d = 0.75; %[ft]
30 l = 182.5; %[slugs/ftˆ2]
31 g = 9.82*m2ft; %[ft/sˆ2]
32

33 % SI
34 % sos = 316; %[m/s] (speed of sound)
35 %
36 % S = 0.44*sqft2sqm; %[mˆ2]
37 % m = 13.98*slug2kg; %[kg]
38 % p0 = 973.3*lb sqft2kg sqm; %[kg/mˆ2]
39 % d = 0.75*ft2m; %[m]

68

40 % l = 182.5*(slug2kg/sqft2sqm); %[kg/mˆ2]
41

42 % Tail fin actuator time constant
43 tau = 1/150;
44

45 % Aero−data parameters
46 a n = 0.000103;
47 b n = −0.00945;
48 d n = −0.034;
49

50 a m = 0.000215;
51 b m = −0.0195;
52 d m = −0.206;
53

54 Ca = −0.3;
55

56 %% Operating domain grid
57 a = linspace(−20,20,20)*d2r;
58 Vm = linspace(2,4,20)*sos;
59

60 i = 0;
61 for ai = a
62 i = i + 1;
63 j = 0;
64 for Vmi = Vm
65 j = j + 1;
66 clear A B C D
67

68 e n = −0.17;
69 e m = 0.051;
70

71 M = Vmi/sos;
72 Qp = 0.7*p0*Mˆ2;
73

74 c n = e n*(2−M/3);
75 c m = e m*(8*M/3 − 7);
76

77 % Areo. coeff. without ∆−term
78 Cna(i,j) = sign(ai)*(a n*abs(ai*r2d)ˆ3 + ...

b n*abs(ai*r2d)ˆ2 + c n*abs(ai*r2d));
79 Cma(i,j) = sign(ai)*(a m*abs(ai*r2d)ˆ3 + ...

b m*abs(ai*r2d)ˆ2 + c m*abs(ai*r2d));
80

81 % Equilibrium tail fin deflection (same as commanded)
82 ∆(i,j) = −Cma(i,j)/d m; %#ok<*SAGROW>
83

84 Cn(i,j) = Cna(i,j) + d n*∆(i,j);
85 Cm(i,j) = Cma(i,j) + d m*∆(i,j);
86

87 % Equilibrium engine thrust
88 T(i,j) = (Qp*S)*((abs(Cn(i,j)*sin(ai))/cos(ai)) − Ca);
89

90 % Equilibrium pitch rate & normal acceleration
91 q(i,j) = −cos(ai)*((Cn(i,j)*Qp*S)/(m*Vmi));
92 n(i,j) = (Cn(i,j)*Qp*S)/(m*g);
93

94 %Test (to validate eq. calculations)
95 a dot(i,j) = (cos(ai)/(m*Vmi))*Qp*S*Cn(i,j) + q(i,j);
96 q dot(i,j) = (Qp*S*Cm(i,j)*d)/l;
97 Vm dot(i,j) = (Qp*S/m)*((Ca + ...

T(i,j)*(1/(Qp*S)))*cos(ai) − abs(Cn(i,j)*sin(ai)));
98

69

99 % Areo. coeff. derivatives
100 dCn da = ...

sign(ai*r2d)*(2*b n*r2d*abs(ai*r2d)*sign(ai*r2d) − ...
e n*r2d*sign(ai*r2d)*(Vmi/(3*sos) − 2) + ...
3*a n*r2d*abs(ai*r2d)ˆ2*sign(ai*r2d));

101 dCm da = ...
sign(ai*r2d)*(2*b m*r2d*abs(ai*r2d)*sign(ai*r2d) + ...
e m*r2d*sign(ai*r2d)*((8*Vmi)/(3*sos) − 7) + ...
3*a m*r2d*abs(ai*r2d)ˆ2*sign(ai*r2d));

102

103 dCn dVm = −(e n*abs(ai*r2d)*sign(ai))/(3*sos);
104 dCm dVm = (8*e m*abs(ai*r2d)*sign(ai))/(3*sos);
105

106 dCn d∆ = d n;
107 dCm d∆ = d m;
108

109 % Jacobian linearisation
110

111 df1 da = ((Qp*S)/(m*Vmi))*(−sin(ai)*Cn(i,j) + ...
cos(ai)*dCn da);

112 df1 dq = 1;
113 df1 dVm = cos(ai)*((0.7*p0*S)/(m*sosˆ2))*(dCn dVm*Vmi + ...

Cn(i,j));
114 df1 d∆ = cos(ai)*((Qp*S)/(m*Vmi))*dCn d∆;
115

116 df2 da = ((Qp*S*d)/l)*dCm da;
117 df2 dq = 0;
118 df2 dVm = ((0.7*p0*S*d)/(l*sosˆ2))*(dCm dVm*Vmiˆ2 + ...

Cm(i,j)*2*Vmi);
119 df2 d∆ = ((Qp*S*d)/l)*dCm d∆;
120

121 df3 da = ((Qp*S)/m)*(−sin(ai)*(Ca + T(i,j)*(1/(Qp*S)) ...
) − sign(Cn(i,j))*sign(sin(ai))*(dCn da*sin(ai) + ...
Cn(i,j)*cos(ai)));

122 df3 dq = 0;
123 df3 dVm = (0.7*p0*S)/(m*sosˆ2)*(Ca*cos(ai)*2*Vmi − ...

2*Vmi*abs(Cn(i,j)*sin(ai)) − ...
sign(Cn(i,j))*(Vmiˆ2)*dCn dVm*abs(sin(ai)));

124 df3 d∆ = −sign(Cn(i,j))*abs(sin(ai))*((Qp*S)/m)*dCn d∆;
125

126 df4 da = 0;
127 df4 dq = 0;
128 df4 dVm = 0;
129 df4 d∆ = −(1/tau);
130

131 df1 d∆ c = 0;
132 df2 d∆ c = 0;
133 df3 d∆ c = 0;
134 df4 d∆ c = (1/tau);
135

136 df1 dT = 0;
137 df2 dT = 0;
138 df3 dT = cos(ai)/m;
139 df4 dT = 0;
140

141 dy da = ((Qp*S)/(m*g))*(dCn da);
142 dy dq = 0;
143 dy dVm = ((0.7*p0*S)/(m*g*sosˆ2))*(dCn dVm*Vmiˆ2 + ...

Cn(i,j)*2*Vmi);
144 dy d∆ = (Qp*S*(dCn d∆))/(m*g);
145

146 A = [df1 da, df1 dq, df1 dVm, df1 d∆;

70

147 df2 da, df2 dq, df2 dVm, df2 d∆;
148 df3 da, df3 dq, df3 dVm, df3 d∆;
149 df4 da, df4 dq, df4 dVm, df4 d∆];
150

151 B = [df1 d∆ c, df2 d∆ c, df3 d∆ c, df4 d∆ c;
152 df1 dT , df2 dT , df3 dT , df4 dT ...

]';
153

154 C = [eye(size(A));
155 dy da, dy dq, dy dVm, dy d∆];
156

157 D = zeros(size(C,1),size(B,2));
158

159 sys{i,j} = ss(A,B,C,D);
160

161 % Augmented system for LQI−control
162 Ai = [A, zeros(size(C(end,:)))';
163 C(end,:), 0];
164

165 Bi = [B;zeros(1,size(B,2))];
166

167 Ci = [C(end,:),0;
168 zeros(size(C(end−1,:))),1];
169

170 Di = zeros(size(Ci,1),size(Bi,2));
171

172 sysi{i,j} = ss(Ai,Bi,Ci,Di);
173

174 % Cost matrices Q & R (only 2 states to be penalized; n ...
and integral(nc − n))

175 Q = diag([10ˆ1.5 10ˆ2.5]);
176 R = diag([1 0.01]);
177

178 L{i,j} = lqr(Ai,Bi,Ci'*Q*Ci,R);
179 % L{i,j} = lqi(ss(A,B,C(end,:),0),Ci'*Q*Ci,R); % Built ...

in Matlab command for LQI.
180 end
181

182 end
183

184

185 for i = 1:length(a)
186 for j = 1:length(Vm)
187 Lda(i,j) = L{i,j}(1,1); % Feedback coefficient for ...

tain fin deflection (∆ c) to angle−of−attack (alpha)
188 Ldq(i,j) = L{i,j}(1,2); % Feedback coeff. ...
189 LdVm(i,j) = L{i,j}(1,3); % Feedback coeff. ...
190 Ld∆(i,j) = L{i,j}(1,4); % Feedback coeff. ...
191 Ldin(i,j) = L{i,j}(1,5); % Feedback coeff. ...
192

193 LTa(i,j) = L{i,j}(2,1); % Feedback coefficient for ...
(engine thrust) T to angle−of−attack (alpha)

194 LTq(i,j) = L{i,j}(2,2); % Feedback coeff. ...
195 LTVm(i,j) = L{i,j}(2,3); % Feedback coeff. ...
196 LT∆(i,j) = L{i,j}(2,4); % Feedback coeff. ...
197 LTin(i,j) = L{i,j}(2,5); % Feedback coeff. ...
198 end
199 end
200

201 [amesh,Vmmesh] = meshgrid(a,Vm);
202

203 %% Plotting of coefficients over operating domain

71

204 % Figure(1)
205 % surf(amesh,Vmmesh,Lda')
206 %
207 % Figure(2)
208 % surf(amesh,Vmmesh,Ldq')
209 %
210 % Figure(3)
211 % surf(amesh,Vmmesh,LdVm')
212 %
213 % Figure(4)
214 % surf(amesh,Vmmesh,Ld∆')
215 %
216 % Figure(5)
217 % surf(amesh,Vmmesh,Ldin')
218 %
219 % Figure(6)
220 % surf(amesh,Vmmesh,LTa')
221 %
222 % Figure(7)
223 % surf(amesh,Vmmesh,LTq')
224 %
225 % Figure(8)
226 % surf(amesh,Vmmesh,LTVm')
227 %
228 % Figure(9)
229 % surf(amesh,Vmmesh,LT∆')
230 %
231 % Figure(10)
232 % surf(amesh,Vmmesh,LTin')
233

234 % Figure(12)
235 % surf(amesh,Vmmesh,Cn')
236

237 %% Test (to see if a random sample of 10 linear systems from ...
'sys{}' are stabilized and tracks reference properly)

238 for i = 1:10
239 aa = 1 + round((length(a)−1)*rand(1,1),0);
240 bb = 1 + round((length(Vm)−1)*rand(1,1),0);
241

242 Open sys = sys{aa,bb};
243 A = Open sys.A; B = Open sys.B; C = Open sys.C(end,:); D = ...

Open sys.D(end,:);
244 LL = L{aa,bb}(:,1:end−1);
245

246 Closed sys = ss(A−B*LL,B,C,D);
247 s = tf('s');
248 Ki = L{aa,bb}(:,end);
249 I = Ki/s;
250 Closed sys Integral = feedback(Closed sys*I,1);
251

252 % Plott step responses
253 Figure(100);
254 step(Closed sys Integral,linspace(0,10,5000))
255 hold on
256

257 end

72

Appendix D

Coefficients of linearized
equations

c11 =
Ixzωy0

− Ixyωz0
Ix

(D.1)

c12 =
(Iy − Iz)ωz0 + Ixzωx0

+ 2Iyzωy0

Ix
(D.2)

c13 =
(Iy − Iz)ωy0

− Ixyωx0
− 2Iyzωz0

Ix
(D.3)

c21 =
(Iz − Ix)ωz0 − Iyzωy0

− 2Ixzωx0

Iy
(D.4)

c22 =
Ixyωz0 − Iyzωx0

Iy
(D.5)

c23 =
(Iz − Ix)ωx0

+ Ixyωy0
+ 2Ixzωz0

Iy
(D.6)

c31 =
(Ix − Iy)ωy0

+ Iyzωz0 + 2Ixyωx0

Iz
(D.7)

c32 =
(Ix − Iy)ωx0 − Ixzωz0 − 2Ixyωy0

Iz
(D.8)

c33 =
Iyzωx0

− Ixzωx0

Iz
(D.9)

73

Appendix E

Inverse LQ-algorithm script

1 %% [Q,P,PerfInd,out,Kopt,X] = inv lqr(A,B,K,output,optgoal)
2 %−−−%
3 % A = state matrix 'A'
4 % B = input matrix 'B'
5 % K = state feedback matrix 'K'
6 % output = 1/0 (i.e. 'yes' or 'no')
7 % if 1 the program will output warnings before
8 % returning with empty variables 'Q' and 'P'.
9 %−−−%

10 % General info:
11 % This program solves the inverse LQR−problem
12 % given 'A','B' and 'K'. The program first makes
13 % inital checks to verify that 'K' indeed could
14 % be optimal for some 'Q', note that 'R' is
15 % fixed at unity! The Lyapunov matrix 'P' is
16 % solved for from 'K = B'*P' using the reduced
17 % row echelon form of 'B''. This creates a
18 % relation of the type 'P = V0 + Vn.*Pfree' which is
19 % represented in the script in function handle
20 % form. The state weighting matrix 'Q' is then
21 % solved for from 'Q = −(A−B*0.5*K)'*P + P*(A−B*0.5*K)',
22 % which is the algebraic Riccati equation (ARE).
23 % Note that this relation implies an infinite set
24 % of feasable 'Q's. To reduce this set, and to enforce
25 % the necessary positive semi−definitness of 'Q',
26 % the problem of finding 'Q' is reformulated as a
27 % nonlinear optimization problem in the free variables
28 % of 'P' ('Pfree'). The opt. goal is to create a 'Q'
29 % which is as diagonal as possible. This is achieved
30 % by defining the objective function as:
31 % f(x) = max(svd(abs(Q(Pfree)−diag(Q(Pfree))))).
32 % the only constraint is nonlinear and of the form:
33 % min(eig(Q(Pfree))) ≥ a, where 'a' is chosen in the
34 % script. Further note that 'Pfree', for simplicity,
35 % takes the name 'X'.
36

37 function [Q,P,PerfInd,out,Kopt,X] = ...
inv lqr(Ain,Bin,K,output,optgoal)

38 global VarStr n m A B
39 A = Ain;
40 B = Bin;
41 n = size(A,1);

74

42 m = size(B,2);
43

44 if isa(K,'double')
45 if m<n
46 ok = 1;
47 for run = 1:2
48 %Quick check!
49

50 I = real(eig(A−B*K))>0;
51 if sum(I) > 0
52 if output == 1
53 disp('The feedback matrix ''K'' is not stabilizing!')
54 disp('It can therefore not be LQ−optimal!')
55 pause(5)
56 clc
57 end
58 P = [];
59 Q = [];
60 PerfInd = inf;
61 out = [];
62 return
63 end
64

65 [RB,p] = rref([B',K]);
66 ind = 1:n;
67 np = ind(not(ismember(ind,p)));
68

69 Vn = RB(:,1:0.5*end);
70 V0 = RB(:,0.5*end+1:end);
71 Vn col sum = sum(abs(Vn),2);
72 row0 = find(Vn col sum==0);
73

74 if sum(abs(V0(row0)))>0
75 if output == 1
76 disp('The desired feedback matrix ''K'' cannot be ...

created by means of any real matrix ''P''!')
77 pause
78 clc
79 end
80 P = [];
81 Q = [];
82 PerfInd = inf;
83 out = [];
84 return % Optimal control allocation?
85 end
86

87 Vn(row0,:) = [];
88 V0(row0,:) = [];
89 Vn = [Vn;zeros(length(np),n)];
90 V0 = [V0;zeros(length(np),n)];
91

92 for i = 1:length(np)
93 if np(i)>1
94 pre = ind(1:np(i)−1);
95 else
96 continue
97 end
98

99 if np(i)<n*n
100 post = ind(np(i):end);
101 else
102 continue

75

103 end
104

105 ind = [pre,ind(end),post];
106 ind(end) = [];
107 end
108

109 Vn = Vn(ind,:);
110 V0 = V0(ind,:);
111 V0 vec = V0(:);
112 Vn block = kron(eye(n,n),Vn);
113

114 %Symmetry
115 LinearInd = reshape(1:n*n,n,n);
116 Sym mat = [];
117 for i = 1:n
118 for j = 1:n
119 Sym vec = zeros(1,n*n);
120 Sym vec(LinearInd(i,j)) = Sym vec(LinearInd(i,j)) + 1;
121 Sym vec(LinearInd(j,i)) = Sym vec(LinearInd(j,i)) − 1;
122 Sym mat = [Sym mat;Sym vec]; %#ok<*AGROW>
123 end
124 end
125 [Sym mat,p] = rref(Sym mat);
126 ind = 1:n*n;
127 np = ind(not(ismember(ind,p)));
128

129 for i = 1:length(np)
130 if np(i)>1
131 pre = ind(1:np(i)−1);
132 else
133 continue
134 end
135

136 if np(i)<n*n
137 post = ind(np(i):end);
138 else
139 continue
140 end
141

142 ind = [pre,ind(end),post];
143 ind(end) = [];
144 end
145 Sym mat = Sym mat(ind,:);
146

147 if run == 1
148 An = [Vn block;Sym mat];
149 bn = [V0 vec;zeros(n*n,1)];
150 else
151 An = Vn block;
152 bn = V0 vec;
153 end
154

155 if length(np) == n + n*(n−1)/2
156 %null
157 else
158 disp('Symmetry constraints are invalid! Please check code!')
159 pause(3)
160 clc
161 Q = [];
162 P = [];
163 PerfInd = inf;
164 out = [];

76

165 return
166 end
167 [AV,p] = rref([An,bn]);
168 AVn = AV(:,1:n*n);
169 AV0 = AV(:,end);
170

171 ind = 1:n*n;
172 np = ind(not(ismember(ind,p)));
173

174 AVn col sum = sum(abs(AVn),2);
175 row0 = find(AVn col sum==0);
176

177 if sum(abs(AV0(row0)))6=0
178 if output == 1
179 disp('Warning! Conflict between constraints. ...

Symmetry is enforced through optimization!')
180 disp('Q may therefore not be maximally diagonal!')
181 pause(3)
182 clc
183 end
184 ok = 0;
185 end
186

187 AVn(row0,:) = [];
188 AV0(row0,:) = [];
189 AVn = [AVn;zeros(length(np),n*n)];
190 AV0 = [AV0;zeros(length(np),1)];
191

192 for i = 1:length(np)
193 if np(i)>1
194 pre = ind(1:np(i)−1);
195 else
196 continue
197 end
198

199 if np(i)<n*n
200 post = ind(np(i):end);
201 else
202 continue
203 end
204

205 ind = [pre,ind(end),post];
206 ind(end) = [];
207 end
208

209 AVn = AVn(ind,:);
210 AV0 = AV0(ind,:);
211

212 AVn = −(AVn−eye(n*n));
213

214 VarStr = [];
215 nonp = length(np);
216 for i = 1:nonp
217 VarStr = [VarStr,' ','X(',num2str(i),')'];
218 end
219 VarStr = ['[',VarStr,']'];
220 P1 = @(X) reshape(AV0 + ...

sum(AVn(:,np).*repmat(eval(VarStr),n*n,1),2),n,n);
221 Ac = A−B*0.5*K;
222

223 Q = @(X) Ac'*P1(X) + P1(X)*Ac;
224 if strcmp(optgoal,'svd')

77

225 fun = @(X) max(svd(abs(Q(X)−diag(diag(Q(X))))));
226 else
227 fun = @(X) sum(sum(abs((Q(X)−diag(diag(Q(X)))))));
228 end
229

230 if run == 2
231 fun = @(X) sum(sum(abs(P1(X) − P1(X)')));
232 end
233

234 options = optimoptions('fmincon','Display','iter',...
235 'MaxFunctionEvaluations',1e7,'MaxIterations',500,...
236 'ConstraintTolerance',1e−9,'OptimalityTolerance',1e−9,...
237 'FunctionTolerance',1e−12);
238

239 a = 0;
240 nonlcon = @(X) min eig con(X,Q,P1,a);
241 e = 1e−2;
242

243 if nonp6=0
244 if ((ok==1)&&(run==1)) | |((ok==0)&&run==2)
245 x0 = ones(nonp,1);
246

247 [X,¬,¬,out] = ...
fmincon(fun,x0,[],[],[],[],[],[],nonlcon,options);

248 P = P1(X');
249 if run == 2
250 P = 0.5*(P + P');
251 end
252 Q = −(Ac'*P + P*Ac);
253 Ktest = lqr(A,B,Q,eye(size(B,2)));
254 PerfInd = sum(sum(abs(Ktest−K)))/numel(B);
255 end
256 else
257 P = reshape(AV0,n,n);
258 Q = −(Ac'*P + P*Ac);
259 try
260 Ktest = lqr(A,B,Q,eye(size(B,2)));
261 PerfInd = sum(sum(abs(Ktest−K)))/numel(B);
262 catch
263 PerfInd = inf;
264 end
265 out = [];
266 end
267

268

269 if (output == 1)&&((ok==1) | |(run==2))
270 if PerfInd > e
271 disp('Warning! The feedback matrix ''K'' has been ...

recreated within a higher tolerance than what ...
might be acceptable!')

272 end
273 end
274

275 if ok == 1
276 break
277 end
278 end
279 else
280 Q = K'*K − (pinv(B)'*K*A + A'*pinv(B)'*K);
281 try
282 [Ktest,P] = lqr(A,B,Q,eye(m));
283 PerfInd = sum(sum(abs(Ktest−K)))/numel(B);

78

284 out = [];
285 X = [];
286 catch
287 PerfInd = inf;
288 Q = [];
289 P = [];
290 out = [];
291 X = [];
292 end
293

294 end
295 Kopt = [];
296 elseif isa(K,'function handle')
297 Q = @(X) K(X)'*K(X) − (pinv(B)'*K(X)*A + A'*pinv(B)'*K(X));
298 fun = @(X) Perf(X,Q,K);
299 options = optimoptions('fmincon','Display','iter',...
300 'MaxFunctionEvaluations',1e7,'MaxIterations',1500,...
301 'ConstraintTolerance',1e−9,'OptimalityTolerance',1e−9,...
302 'FunctionTolerance',1e−12);
303

304 try
305 K(ones(1,numel(B)));
306 R = rand(size(B));
307 RR = R'*R;
308 x0 = 0.01*B'*RR;
309 x0 = x0(:);
310 catch
311 count = 0;
312 while true
313 count = count + 1;
314 try
315 K(ones(1,count));
316 x0 = 0.01*ones(1,count);
317 break
318 catch
319 %null
320 end
321 end
322 end
323 a = 0;
324 nonlcon = @(X) min eig con2(X,Q,a);
325 [X,¬,¬,out] = fmincon(fun,x0,[],[],[],[],[],[],nonlcon,options);
326 Q = 0.5*(Q(X)'+Q(X));
327 Kopt = K(X);
328 [Ktest,P] = lqr(A,B,Q,eye(m));
329 PerfInd = sum(sum(abs(Ktest−K(X))))/numel(B);
330 else
331 disp('Unrecoginzed class of input ''K''')
332 Q = [];
333 P = [];
334 PerfInd = inf;
335 out = [];
336 Kopt = [];
337 return
338 end
339 end
340

341 function [c,ceq] = min eig con(X,Q,P1,a)
342 c(1) = max(eig(0.5*(Q(X)+Q(X)')))+a;
343 c(2) = −min(eig(0.5*(P1(X)+P1(X)')))+a;
344 ceq = [];
345

79

346 end
347

348 function [c,ceq] = min eig con2(X,Q,a)
349 c(1) = −min(eig(0.5*(Q(X)+Q(X)')))+a;
350 ceq = [];
351

352 end
353

354 function val = Perf(X,Q,K)
355 global m A B
356 try
357 Ktest = @(X) lqr(A,B,Q(X),eye(m));
358 val = sum(sum(abs(Ktest(X)−K(X))))/numel(B);
359 catch
360 val = 1e6;
361 end
362 end

80

Appendix F

LQ-optimal eigenstructure
assignment script

1 function [Q,Kreal,w val,Xopt] = MyPlace(Ain,Bin,P,x0opt,output,N)
2 global VarStr m n A B w %#ok<*NUSED>
3 A = Ain;
4 B = Bin;
5

6 n = size(A,1);
7 m = size(B,2);
8

9 if (output == 1)&&(m>1)
10 disp('Warning! As the system has multiple inputs an ...

optimization has to be performed in order to find K.')
11 disp('This means that the process of finding K might take ...

time! The task of finding the Hessian in the matlab ...
function')

12 disp('fmincon(...) runs in polynomial time, O(Nˆ2), where N ...
is the number of optimization variables (equal to ...
numel(B)).')

13 disp('If the program is "hot started" (given a near optimal ...
starting point) the time consumption will be ...
substantially lower!')

14 pause
15 clc
16 end
17

18 Lambda = eigdiag(P);
19 I = eye(n,n);
20

21 T = kron(I,A) + kron(−Lambda',I);
22

23 if rank(T)==nˆ2
24 XG = T\kron(I,B);
25 else
26 Kreal = [];
27 return
28 end
29 VarStr = [];
30 for i = 1:numel(B)
31 VarStr = [VarStr,' ','X(',num2str(i),')']; %#ok<*AGROW>
32 end

81

33 VarStr = ['[',VarStr,']'''];
34 V = @(X) reshape(XG*eval(VarStr),n,n);
35 K = @(X) reshape(eval(VarStr),size(B'))/V(X);
36 Kfun = K;
37

38 Klqr = lqr(A,B,eye(n),eye(m));
39

40 if isempty(x0opt)
41 x0 = 0.01*ones(numel(B),1);
42 else
43 x0 = x0opt;
44 end
45 syms w
46

47 if rank(A) == n
48 start = 0;
49 else
50 start = 0.01;
51 end
52

53 MaxIt = 200;
54

55 if m > 1
56 ItStr = 'iter';
57 else
58 ItStr = 'off';
59 end
60

61 w val = [linspace(start,50,N),100,150,200];
62

63 options = optimoptions('fmincon','Display',ItStr,...
64 'MaxFunctionEvaluations',1e7,'MaxIterations',MaxIt,...
65 'algorithm','interior−point','FunctionTolerance',1e−12,...
66 'StepTolerance',1e−9);
67

68 fun = @(X) optfun(X,K,V,w val,Klqr,P,1,0);
69 [X,fval] = fmincon(fun,x0,[],[],[],[],[],[],[],options); ...

%#ok<*ASGLU>
70 Kreal = K(X);
71 Xopt = X;
72

73

74 [Q,¬,PerfInd,¬,¬,¬] = inv lqr(A,B,K(X),0,'svd');
75 if PerfInd < inf %change
76 Kreal = K(X);
77 Xopt = X;
78 return
79 end
80

81 % Last resort
82 try
83 [Q,¬,PerfInd,¬,Kreal,X] = inv lqr(A,B,Kfun,0,'svd');
84 if PerfInd < inf %change
85 Xopt = X;
86 return
87 end
88 catch
89 if output == 1
90 disp('No feasable solution found!')
91 Kreal = [];
92 Xopt = [];
93 return

82

94 end
95 end
96 end
97

98 function val = optfun(X,K,V,w val,Klqr,P,a,b) %#ok<*INUSL,*INUSD>
99 global A B n m

100

101 if m>n
102 c = 0;
103 else
104 c = 1;
105 end
106

107 if a > 0
108 T = @(X,w) eye(m,m) + K(X)*((eye(n,n)*1i*w − A)\B);
109 TT = @(X,w) ctranspose(T(X,w))*T(X,w) − eye(m,m);
110 fpp = @(X,w) min(eig(TT(X,w)));
111

112 Tlqr = @(w) eye(m,m) + Klqr*((eye(n,n)*1i*w − A)\B);
113 TTlqr = @(w) ctranspose(Tlqr(w))*Tlqr(w) − eye(m,m);
114 flqr = @(w) min(eig(TTlqr(w)));
115

116 % fpoly = @(w) 1/(wˆ2 + 1);
117

118 count = 0;
119 for i = w val
120 count = count + 1;
121 eig real(count) = fpp(X,i);
122 eig des(count) = flqr(i);
123 end
124 else
125 eig real = 0;
126 eig des = 0;
127 end
128

129 Ac = @(X) A − B*K(X);
130 off diag = @(X) sum(sum(abs(Ac(X)−diag(diag(Ac(X))))));
131

132 val = a*rms(abs(eig real − c*eig des)) + b*off diag(X);
133 end
134

135 function Lambda = eigdiag(P)
136 if length(P)6=numel(P)
137 warning('''P'' must be a vector!')
138 Lambda = [];
139 return
140 end
141

142 Base = diag(real(P));
143

144 I = imag(P);
145 ind = find(I6=0);
146 I(I==0) = [];
147

148 if sum(I)6=0
149 warning('The complex poles must conjugate!')
150 Lambda = [];
151 return
152 end
153

154 for i = 1:length(I)
155 col shift = mod(1:length(I),2) − 1*not(mod(1:length(I),2));

83

156 Base(ind(i),ind(i)+col shift(i)) = I(i); %#ok<*FNDSB>
157 end
158

159 Lambda = Base;
160 end

84

	Introduction
	Purpose
	Background
	Approach
	Limitations
	Thesis outline

	Linear quadratic control
	LQI-control
	Prescribed degree of stability

	Gain scheduling
	Introduction to hidden coupling
	Handling hidden coupling terms
	A small mathematical example

	Slow variation requirements

	Gain scheduling example
	Modeling and design goals
	Design procedure
	Results
	Discussion

	Modelling of aircraft dynamics
	Rigid body dynamics
	Current aircraft layout
	Linearized flight mechanical model
	Servo dynamics
	Validation

	Tuning of weighting matrices
	The inverse LQ-problem
	Solution to the inverse LQ-problem

	Eigenstructure assignment
	Solution to the eigenstructure assignment

	A small example

	Actuator redundancy
	Optimal control
	Control allocation
	Control allocation and servo dynamics

	Results
	Program description
	Linear simulation results
	Nonlinear simulation results

	Conclusions
	Appendices
	Non-linear missile dynamics
	Linearized missile dynamics
	Missile guidance system script
	Coefficients of linearized equations
	Inverse LQ-algorithm script
	LQ-optimal eigenstructure assignment script

