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Whole-genome sequencing and gene network modules predict
gemcitabine/carboplatin-induced myelosuppression in
non-small cell lung cancer patients
Niclas Björn 1,9✉, Tejaswi Venkata Satya Badam 2,3,9, Rapolas Spalinskas 4, Eva Brandén5,6, Hirsh Koyi 5,6, Rolf Lewensohn7,
Luigi De Petris7, Zelmina Lubovac-Pilav 3, Pelin Sahlén4, Joakim Lundeberg 4, Mika Gustafsson 2,10 and Henrik Gréen1,4,8,10

Gemcitabine/carboplatin chemotherapy commonly induces myelosuppression, including neutropenia, leukopenia, and
thrombocytopenia. Predicting patients at risk of these adverse drug reactions (ADRs) and adjusting treatments accordingly is a
long-term goal of personalized medicine. This study used whole-genome sequencing (WGS) of blood samples from 96
gemcitabine/carboplatin-treated non-small cell lung cancer (NSCLC) patients and gene network modules for predicting
myelosuppression. Association of genetic variants in PLINK found 4594, 5019, and 5066 autosomal SNVs/INDELs with p ≤ 1 × 10−3

for neutropenia, leukopenia, and thrombocytopenia, respectively. Based on the SNVs/INDELs we identified the toxicity module,
consisting of 215 unique overlapping genes inferred from MCODE-generated gene network modules of 350, 345, and 313 genes,
respectively. These module genes showed enrichment for differentially expressed genes in rat bone marrow, human bone marrow,
and human cell lines exposed to carboplatin and gemcitabine (p < 0.05). Then using 80% of the patients as training data, random
LASSO reduced the number of SNVs/INDELs in the toxicity module into a feasible prediction model consisting of 62 SNVs/INDELs
that accurately predict both the training and the test (remaining 20%) data with high (CTCAE 3–4) and low (CTCAE 0–1) maximal
myelosuppressive toxicity completely, with the receiver-operating characteristic (ROC) area under the curve (AUC) of 100%. The
present study shows how WGS, gene network modules, and random LASSO can be used to develop a feasible and tested model for
predicting myelosuppressive toxicity. Although the proposed model predicts myelosuppression in this study, further evaluation in
other studies is required to determine its reproducibility, usability, and clinical effect.
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INTRODUCTION
Lung cancer is a common and deadly form of cancer. It represents
close to a fifth (18.4%) of all cancer deaths worldwide1. The
primary treatment of non-small cell lung cancer (NSCLC) includes
the use of PD-1 inhibitors or targeted therapies. However,
depending on their success, the continuation of the treatment
using a classical combination chemotherapy consisting of
gemcitabine and carboplatin is common. It is well known that
the use of classical chemotherapeutic agents is associated with
the induction of considerable adverse drug reactions (ADRs). This
is also the case for gemcitabine/carboplatin treatment, which
commonly induces severe myelosuppression (mainly expressed in
the form of neutropenia, leukopenia, and thrombocytopenia) that
may lead to non-optimal treatments in terms of postponements,
reduction, or discontinuation2–6. Severe myelosuppression of
Common Terminology Criteria for Adverse Events (CTCAE) grade
3–4 is roughly experienced by 50% of treated patients, while many
other patients exhibit no or mild symptoms. The underlying
germline genetic variation is thought to be a contributing factor to
the vast inter-individual differences in ADRs5–9.
Being able to predict patients at risk of ADRs using genetic

biomarkers and adjust doses and treatments accordingly before

the start of treatment would likely be beneficial for both patient
well-being and response to treatment9. Many studies preceding
this one have investigated chemotherapy-induced myelosuppres-
sion with the long-term goal of predicting patients at risk of
severe toxicity. These studies include candidate gene studies,
genome-wide association studies (GWASs), and exome sequen-
cing studies5,6,10–14. Although these studies have found various
genetic biomarkers that have shown some predictive power, they
have to date had low clinical impact and have been hard to
replicate.
In the present study, we expanded the use of genetic

information further by whole-genome sequencing (WGS) germline
blood sample DNA from 96 NSCLC patients treated with
gemcitabine/carboplatin. Transitioning to WGS not only allows
us to utilize the full genome, it is also suitable for high-quality
clinical sequencing approaches with more reliable genotype calls,
and it is now becoming more available at decreasing sequencing
prices15–17. Further, in this study, we applied graph-theoretic
clustering algorithms, such as molecular complex detection
(MCODE)18 for module inference and the random least absolute
shrinkage and selection operator (LASSO) for the reduction and
selection of genetic variants19. Module-based and network-based
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omic analyses as reviewed by Gustafsson et al.20 have previously
shown important roles for further understanding, for example, of
allergy21, asthma22, and multiple sclerosis23, where thousands of
genes and their interactions are affected and involved. The
involvement of multiple genes with complex interactions is likely
also a contributing factor to the vast inter-individual differences
seen in the commonly induced ADRs for patients undergoing
chemotherapy. To find these, we combined WGS, gene network
modules, and the random LASSO to predict high (CTCAE 3–4) and
low (CTCAE 0–1) myelosuppressive toxicity in gemcitabine/
carboplatin-treated NSCLC patients.

RESULTS
Patient characteristics, toxicity, and WGS
The characteristics of the 96 patients selected based on their
toxicity are listed in Table 1. The patient toxicity level categorized
using the CTCAE scale, for neutropenia, leukopenia, thrombocy-
topenia, and the maximal toxicity are listed in Table 2.
The WGS of the 96 samples passed the internal quality control

setup at the sequencing facility of Science for Life Laboratory
(SciLifeLab, Stockholm, Sweden). The sequencing outputted, on
average, 722 million reads/sample with the average median insert
size of 341 base pairs. On average, 99.37% of the reads were
aligned, and the average coverage was 34×. Further, 63% of the
reference genome was covered with ≥30×, and the average GC-
content was 41%. The raw VCF file included a total of 17,934,566
single-nucleotide variants (SNVs) and insertions/deletions
(INDELs), after filtering 15,751,023 bi-allelic loci remained on
chromosomes 1–22, X, and Y.

SNV/INDEL association analysis
Fisher’s exact test identified 4594 (5743), 5019 (6063), and 5066
(5959) autosomal (total numbers in parentheses) nominally
significant (p ≤ 1 × 10−3) genetic variants (SNVs/INDELs) for
neutropenia, leukopenia, and thrombocytopenia, respectively. All
these genetic variants are listed in Supplementary Tables 1–3.
There was some overlap between the genetic variants, as
visualized in Supplementary Fig. 1. PCA clearly showed that the
respective nominally significant autosomal germline genetic
variants have the potential for stratifying patients into high
(CTCAE 3–4), intermediate (CTCAE 2), or low (CTCAE 0–1) toxicity
for neutropenia (Fig. 1a), leukopenia (Fig. 1b), and thrombocyto-
penia (Fig. 1c). This was expected as the genetic variants used
were selected based on their association (p ≤ 1 × 10−3) with
toxicity (as determined by Fisher’s exact test). Interestingly, the
intermediates not included in the statistical tests ended up in
between, separated from both low and high toxicity samples.

Table 1. Patient baseline characteristics.

All patients
(n= 96)

Maximal myelosuppressive toxicity

High toxicity
(n= 54)

Intermediate
(n= 8)

Low toxicity
(n= 34)

Gender, N (%)

Male 47 (49.0%) 26 (48.1%) 3 (37.5%) 18 (52.9%)

Female 49 (51.0%) 28 (51.9%) 5 (62.5%) 16 (47.1%)

Age, in years, median (range)

All 65.5 (47–82) 67 (51–82) 64 (47–76) 63 (48–76)

Male 68 (51–82) 69 (57–82) 64 (56–74) 61 (51–76)

Female 63 (47–80) 64 (51–80) 64 (47–76) 63 (48–76)

Clinical stage, N (%)

Stage I 17 (17.7%) 12 (22.2%) 2 (25.0%) 3 (8.8%)

Stage II 11 (11.5%) 7 (13.0%) – – 4 (11.8%)

Stage III 34 (35.4%) 15 (27.8%) 2 (25.0%) 17 (50.0%)

Stage IV 32 (33.3%) 18 (33.3%) 4 (50.0%) 10 (29.4%)

Not specified 2 (2.1%) 2 (3.7%) – – – –

Histological classifications, N (%)

Adenocarcinoma (AC) 58 (60.4%) 34 (63.0%) 5 (62.5%) 19 (55.9%)

Squamous cell carcinomas (SCC) 19 (19.8%) 10 (18.5%) 1 (12.5%) 8 (23.5%)

Non-small cell lung cancer (NSCLC) 13 (13.5%) 8 (14.8%) – – 5 (14.7%)

Large cell carcinoma (LLC) 6 (6.3%) 2 (3.7%) 2 (25.0%) 2 (5.9%)

Smoking history, N (%)

Current 40 (41.7%) 18 (33.3%) 4 (50.0%) 18 (52.9%)

Former 46 (47.9%) 30 (55.6%) 4 (50.0%) 12 (35.3%)

Never 10 (10.4%) 6 (11.1%) – – 4 (11.8%)

Table 2. First cycle myelosuppressive toxicity graded according to the
Common Terminology Criteria for Adverse Events (CTCAE)
version 4.03.

CTCAE
grade

Neutropenia Leukocytopenia Thrombocytopenia Maximal
toxicity

0 44 45.8% 39 40.6% 27 28.1% 23 24.0%

1 0 0.0% 7 7.3% 12 12.5% 11 11.5%

2 6 6.3% 22 22.9% 14 14.6% 8 8.3%

3 18 18.8% 24 25.0% 23 24.0% 15 15.6%

4 28 29.2% 4 4.2% 20 20.8% 39 40.6%
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Further, when using all SNVs/INDELs for PCA, no apparent
clustering based on toxicity was seen (Supplementary Fig. 2).
Genome annotation enrichment analysis shows that most SNVs/
INDELs are distal intergenic variants, and a slight enrichment of
the proportion of distal intergenic variants for the nominally
significant genetic variants compared to the background was
found (Supplementary Fig. 3). Stronger association (p ≤ 1 × 10−5)
was found for only 55, 107, and 149 genetic variants for
neutropenia, leukopenia, and thrombocytopenia, respectively.
We therefore concluded that the WGS data needed to be
combined with other statistical testing to increase the power.
We proceeded to gene network analysis in order to prioritize
functionally relevant gene sets to the three toxicity phenotypes.

Gene network modules
The nominally significant SNVs/INDELs for the three toxicity
phenotypes were mapped to 896, 937, and 999 protein-coding
genes for neutropenia, leukopenia, and thrombocytopenia,
respectively. This was performed to understand the long-range
interactions across the entire genome, and they are referred to as
seed genes. After this, modules for each toxicity were constructed
using MCODE together with the String PPI network24, whereby
gene modules of size 350 (24 seed genes), 345 (21), and 313 (14)
were identified for neutropenia, leukopenia, and thrombocytope-
nia, respectively. All MCODE module genes are listed in
Supplementary Table 4. We also tested other relevant standard
methods for module construction, such as DIAMOnD25, Clique-
SuM26, and ModuleDiscoverer27. These modules yielded consis-
tently lower enrichment in our downstream analyses presented
below. Interestingly, 215 of the MCODE modules genes were
shared across at least two of the modules (Supplementary Fig. 4),
which hereafter is referred to as the toxicity module. The 95
genetic variants used as seeds are shown in Fig. 2, and the
complete gene network module is visualized in Fig. 3. We next
proceeded with functional enrichment analysis of the different
modules and seed genes using independent gene expression
data.

Functional enrichment: gemcitabine/carboplatin-treated bone
marrow from rats and humans
To statistically validate the relevance of the different modules,
based on human WGS data, we first performed enrichment
analysis using genes differentially expressed upon stimulation
specifically from gemcitabine and carboplatin. For this purpose,
we used homologous genes from rat bone marrow data
(GSE59894) that included 208 carboplatin and 673 gemcitabine

differentially expressed genes upon 72 hours of exposure. Enrich-
ment analysis showed that the toxicity module showed the
highest enrichment for both gemcitabine (Fisher’s exact test p=
3.9 × 10−9, odds ratio (OR)= 4.4) and carboplatin (p= 0.02, OR=
3.1) (see Fig. 4). This enrichment was consistently higher than all
other modules and the seed gene lists independently. The full
comparison is available in Supplementary Table 5. We also found
significant overlaps for carboplatin (p= 2.0 × 10−3, OR= 5.3, n=
5) and gemcitabine (p= 1.0 × 10−3, OR= 5.9, n= 5) with the
human bone marrow and kidney meta-analysis gene expression
data. This ensures that the module is effectively translated back to
a human level. However, to strengthen and increase the resolution
of this finding we also performed a human cell line RNA-seq study.

Functional enrichment: RNA-seq of gemcitabine/carboplatin-
treated human cell lines
The RNA-seq yielded, on average, 26 million reads/sample, of
which, on average, 17 million reads (65%) mapped uniquely. From
this, featureCounts uniquely summarized, on average, 15 million
reads to gene regions for each sample. Of the 215 genes in the
toxicity module, 152 were found to be expressed in the cell lines
(TPM > 1 in ≥2 samples) listed in Supplementary Table 6. This
overlap was significantly greater than expected by chance, as
proven by both Fisher’s exact test (OR= 1.6, p= 4.2 × 10−15, n=
152) and 10,000 permutations found, on average, 95.5 genes
expressed at the same level (Supplementary Fig. 5). Of the 152
expressed genes, 17 were module seed genes.
Further, differential expression analysis showed that, compared

to the respective untreated cell lines, some module gene
expressions were altered (p ≤ 0.05). In total, 18 genes from the
toxicity module were differentially expressed, as visualized in Fig.
5a, b for carboplatin and gemcitabine, respectively. The differen-
tially expressed genes are also listed in Supplementary Table 7.
Two of the differentially expressed genes, DAB2 and PLK1, were
module seed genes. Interestingly, carboplatin mainly affected the
expression of genes in K562; in contrast, gemcitabine mainly
affected the expression of genes in MOLM-1.

Functional enrichment: KEGG pathway and GO enrichment
The top 30 most enriched KEGG pathways (FDR adjusted
p-values ≤ 3.55 × 10−10) and GOs (FDR adjusted p-values ≤ 1.02 ×
10−12) are shown in Fig. 6a, b, respectively, and are listed in
Supplementary Table 8. The top KEGG pathways were mainly
cancer-related, where the pathways “Non-small cell lung cancer”
and “Chronic myeloid leukemia” stuck out as the first is related to
the disease of the patients in the present study, and the second
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Fig. 1 Principal component analysis (PCA). PCA using all nominally significant (p ≤ 1 × 10−3) SNVs/INDELs for a neutropenia, b leukopenia,
and c thrombocytopenia. Plotting principal component 1 against principal component 2 shows that these genetic variants can separate the
patients into clusters of high (red) and low (green) toxicity with the intermediates (yellow) in-between.
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possibly share many genes that might be of importance for the
development of myelosuppressive toxicities and malignancies. Of
the GO terms found, several were related to the myelosuppressive
toxicities investigated, for example, “hemostasis”, “regulation of
leukocyte activation”, “leukocyte cell–cell adhesion”, “blood coagula-
tion”, and “platelet activation”.

Toxicity prediction models
Lastly, we aimed to test the capability of the toxicity module to
separate and predict the toxicity. For this purpose, we started from
the 123 nominally significant genetic variants that mapped to
genes in the toxicity module. We utilized random LASSO
permutation (n= 100,000) analyses to reduce the number of
genetic variants into a smaller set that would still predict the
maximal toxicity experienced by patients. After the permutations,
sets of genetic variants, based on quantiles of the number of times
the genetic variants were randomly selected by the LASSO, were
evaluated further by running LASSOs without shrinkage to
determine the genetic variants’ final coefficients for predictions.
By checking the ROC and AUC, we constructed a model that can
predict both the training and the test data perfectly, with a ROC
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AUC= 1.0. The prediction model is based on 62 genetic variants,
the 50th percentile most selected genetic variants, listed in Table
3, from the toxicity module. The maximal toxicity predictions of
this model are shown in Fig. 7a, and the ROCs in Fig. 7b. The eight
intermediate samples (were only used for predictions not for
training or testing) are shown in Fig. 7a to have both high and low
toxicity characteristics. By applying the model, 3–4 intermediate
patients would be predicted to have a high and 4–5 intermediate
patients would be predicted to have a low probability of toxicity,
although the mean intermediate probability of toxicity ends up in
between at roughly 50%. Two of the low toxicity test samples
were predicted to have a quite high probability of toxicity using
the toxicity module, however, they remain classified as low toxicity
samples as they are separable from the red high toxicity cluster in
the right-hand upper corner of Fig. 7a. Further, by applying the
genetic variants from the toxicity module maximal toxicity
prediction models to neutropenia, leukopenia, and thrombocyto-
penia, Supplementary Fig. 6 shows that these models are fairly
good in determining the specific high and low toxicities, however,
not as accurate as the prediction of maximal toxicity. Supplemen-
tary Table 9 lists all genetic variants and their respective prediction
model coefficients used for the prediction models visualized in
Fig. 7 and Supplementary Fig. 6. This test shows that the identified
module is both functionally and statistically sound and therefore a
good candidate for clinical testing.

Additional validation analysis
Using 80% of the samples for Fisher’s exact test yielded 4359,
5328, and 4467 autosomal nominally significant genetic variants
mapping to 879, 821, and 846 protein-coding genes for
neutropenia, leukopenia, and thrombocytopenia, respectively.
Subsequently, these genes were used to identify gene modules
of size 316, 322, and 321 for neutropenia, leukopenia, and
thrombocytopenia, respectively. Here we used the more stringent
criteria that genes had to overlap all three toxicities leading to a
final set of 108 genes. We then used the 104 nominally significant
genetic variants mapping to these 108 genes for the random
LASSO permutations, which showed that the 50th percentile of
the most selected genetic variants yielded the best predictions.
Figure 8 shows that this prediction model using 52 genetic
variants predicts the training samples with a ROC AUC of 99.6%
and the validation samples with a ROC AUC of 73.3%.

DISCUSSION
Patients undergoing treatment that includes gemcitabine/carbo-
platin commonly experience myelosuppressive ADRs. These
severe toxicities are dose-limiting, often rendering the treatment
to be non-optimal. Even though the treatment is currently
adjusted to body surface area and renal function, there still is
significant variation in the toxicity experienced by patients. Being
able to predict patients at risk of severe toxicity and adjusting
treatments accordingly would likely improve both patient well-
being and response to the treatment. This is a major cornerstone
needed for personalized medicine. For this purpose, we whole-
genome sequenced 96 NSCLC patients homogeneously treated
with gemcitabine/carboplatin. The cohort was carefully selected
and monitored closely in a controlled manner according to the
treatment protocols used at the time of inclusion. The study
focused on finding new means for predicting the risk of
myelosuppressive toxicities using germline genetics in models
that can be used for implementing personalized medicine and
predicting toxicity in the future.
The initial association of SNVs/INDELs using Fisher’s exact test

identified 4500–6000 nominally significant (p ≤ 1 × 10−3) genetic
variants, depending on the toxicity phenotype. Using all these
genetic variants for predicting toxicity is not easily implementable
at a clinical level as it requires considerable genotyping and
computational infrastructure. There is a need for smaller predic-
tion models that use a reduced number of genetic parameters
while still predicting toxicity. A complex phenotype, such as
toxicity, can be an interplay of multiple genetic parameters rather
than a consequence of an abnormality in only one gene or SNV/
INDEL. However, all the nominally significant genetic variants are
reported along with their individual p-values in Supplementary
Tables 1–3, because they could be important and of interest to the
research community.
The nominally significant SNVs/INDELs were mapped to their

nearest protein-coding gene to obtain a functionally annotated
framework for identifying the highly interacting components of
the genetic variants underlying myelosuppressive toxicity. The p-
values obtained from the WGS were attributed as the mapped
protein-coding gene’s weight input on the interactome con-
structed from the String PPI version 10.524. We initially tested four
different gene network module algorithms: MCODE18, DIA-
MOnD25, CliqueSuM26, and ModuleDiscoverer27. Interestingly, we
found that modules constructed using MCODE had stronger
enrichment for genes affected by carboplatin and gemcitabine
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Fig. 7 Toxicity module prediction model. Shows the best maximal toxicity prediction model based on the toxicity module. It consists of 62
genetic variants (the 50th percentile most used variants in the random LASSO permutations). a Patients (separated by registered maximal
toxicity) and their predicted probability of maximal toxicity. b ROC curve of the model’s predictions of high and low maximal toxicity. Note
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median; box limits, upper and lower quartiles; whiskers, 1.5× interquartile range.
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exposure (Supplementary Table 5). Though there are several
algorithms available for identifying gene network modules,
MCODE18 performed best in the presented study in terms of
significant functional enrichments, because it is solely based on
the connectivity topology in the network and is not affected by
false positives in high-throughput sequencing data. This reduced
the number of mapped genes for the prediction model
considerably, from roughly a 1000 to 300 for each toxicity
phenotype. Using gene network modules as biomarkers have
shown promising results20–23, but they have previously not been
used for chemotherapy-induced toxicity. We propose the gene
network module called the toxicity module for the prediction of
maximal myelosuppressive toxicity.
For demonstrating that the toxicity module is hypothetically

built up by functional elements likely affected by gemcitabine/
carboplatin, we performed several independent enrichment
analyses using differential expression of the toxicity module
genes. This confirmed that the toxicity module was enriched for
functional elements consisting of both human and rat–human
homolog genes targeted specifically by carboplatin and gemcita-
bine. The RNA-seq analysis of human myelogenous cell lines
showed that 70% of the toxicity module genes were expressed, of
which 18 were differentially expressed after exposure to
gemcitabine and carboplatin in line with the results stated above.
Next, the analyses of KEGG pathways and GOs provided more
support for the toxicity module genes relevance through the
significant enrichment of both cancer-related KEGG pathways and
hemostasis, platelet, and leukocyte-related GOs. The enrichment
of hemostasis, platelet, and leukocyte-related GOs is well in line
with our previously published study6, which showed that genetic
variation in genes involved in hematopoiesis-related pathways is
important for gemcitabine/carboplatin-induced thrombocytope-
nia. The enrichment of cancer-related KEGG pathways could stem
from that the study participants might have an underlying
predisposition for cancer, and thus possibly also underlying
genetic variation in genes associated with cancer. Further, cancer
pathways also to a great extent include genes and effects that are
important for cell growth and proliferation, which are mechanisms
known to be important for myelosuppressive toxicity. Proliferation
is also the underlying target of the drugs. So that the gene
network modules identified in the presented analysis are
constituted of genes involved in cancer and proliferation-related
KEGG pathways and GOs is not farfetched and speaks in favor of
the gene network modules relevance. Though functional

enrichment analyses show the presence of genes and pathways
affected by carboplatin and gemcitabine, we must keep in mind
that the modules were constructed using only high confidence
interactions from the STRING PPI network. Owing to the
interactome incompleteness and limited knowledge of toxicity-
associated genes, it was not obvious if the available data in
STRING have enough coverage to map out modules associated
with each toxicity phenotype. However, previous studies using
overlapping gene network modules were able to predict
molecular commonality among distinct phenotypes28. Simulta-
neously, our findings show that a gene network module approach
can be used on high-throughput sequencing data to extract a
module consisting of genes that are not only expressed in relevant
tissues, pathways, and gene ontologies, but genes that are also
differentially expressed after exposure to the drugs in question.
These results suggest that if the regulation of the module gene

expression is disrupted by genetic variation, patients drug
sensitivity and probability of developing toxicity could possibly
be affected. Strikingly, the random LASSO prediction model based
on the toxicity module could classify and predict maximal
myelosuppressive toxicity with a ROC AUC of 100% (see Fig. 7b),
utilizing only 62 genetic variants. While interpreting the results it
should be noted that the prediction model cannot classify
intermediates, as it is binomial and can only distinguish between
the high and low toxicity for which it is trained and designed,
therefore, the intermediates are not (and cannot) be used for
calculating the ROC. However, they were included to show how
they would be classified in the predictions and from it we saw (Fig.
7a) that they have characteristics of both high and low toxicity.
Compared to using all nominally significant genetic variants for
the predictions, we have shown that the refined model was robust
enough to predict both the training and test data while increasing
the model’s clinical feasibility by reducing the number of used
parameters. We believe that predicting the risk of maximal toxicity
is of the greatest importance. However, the toxicity module could
also, to some extent, predict the individual risks of neutropenia,
leukopenia, and thrombocytopenia. However, these predictions
with, an average, ROC AUC of 98.8% for the individual toxicity
phenotypes, were not as accurate as the maximal toxicity
predictions. Using a gene network module approach and random
LASSO, we not only reduced the number of parameters for the
prediction model, but we also showed that there is an underlying
functional interplay of the module genes supposedly relevant for
myelosuppression.
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In the additional validation analysis with 20% of the samples as a
validation (withheld through the whole analysis), we were able to
show that the resulting prediction model was still accurate enough
to predict the validation samples with a ROC AUC of 73.3%. This
gives an indication of how well the finalized toxicity module can
perform in upcoming studies when trying to predict never seen
validation samples. We are aware that the initial toxicity module
approach could have imposed some overfitting problems, how-
ever, it makes the most sense to use all of the 96 samples for the
gene network module construction. This enabled us to build robust
and valid modules with a higher likelihood of reflecting the true
underlying genes (which was also confirmed using functional
enrichment) and genetic variants of importance to gemcitabine/
carboplatin-induced myelosuppression.
As introduced, there are several previous studies on

chemotherapy-induced myelosuppression and genetics5,6,10–14,
When comparing the genes and genetic variants in the toxicity
module with the previously reported genes and genetic variants
only a few of the genes and none of the genetic variants have
been previously reported with respect to chemotherapy-induced
myelosuppression. These include NCK2 and PRKCZ in Low et al.13,
SERPINA5 in Björn et al. 6, and SEMG2 and PLG in Gréen et al. 5. That
the overlap with our previous studies5,6, partly based on the same
patient material, is small is likely dependent on the use of different
sets of the patients, different toxicity parameters, different
statistical approaches, but mainly because this study used WGS
as opposed to WES in our previous studies. The other studies10–14

are based on different patient populations, were the underlying
treatment schedule and disease is not always coherent, and some
are candidate gene studies, while some are GWAS which are all
factors that can affect the results and their similarity with our
results. However, the main reason applies to both our and others’
studies which is the fact that the presented study is a WGS study
applying a new strategy combining gene network modules and
random LASSO.
Deeper into the analysis, to derive where in the genome the

genetic variants were located, we used the annotations visualized
in Supplementary Fig. 3. Interestingly, none of the 62 genetic
variants in the toxicity module were exonic: 16 were distal
intergenic, 42 were intronic, and 4 were found in promoter
regions. Though mapping SNVs/INDELs to their nearest gene is
debatable in terms of functional annotation, the reduced random
LASSO model rendered using the gene network module approach
in the presented study, we were able to predict toxicity. Among
the module genes, PDGFRA, in which somatic mutations can lead
to hematological malignancies29,30, contributed with over 20
nominally significant genetic variants that were included in the
final prediction model. The only differentially expressed gene
represented in the prediction model was DAB2. Interestingly,
DAB2’s promoter is known to be methylated in oral carcinomas31,
low DAB2 expression promotes esophageal squamous cell
carcinoma tumor progression and poor prognosis32, and DAB2 is
functionally linked to thrombin signaling and platelet activation in
humans33. The gene PLG involved in the presented prediction
model and found in our previous study5 is an important enzyme
known to have functions related to blood cells34–36. Further, the
tyrosine kinase-encoding genes LYN and SYN were also repre-
sented by genetic variants in the prediction model. LYN is in many
ways involved in cancer as an oncotarget in cervical cancer37,
associated with poor prognosis in renal cancer38, and as a
response predictor to dasatinib in lung adenocarcinoma sub-
populations39. SYN is a candidate oncogene and biomarker in
some small-cell lung cancers40, increased SYN activity has also
been linked to worse outcome in acute myeloid leukemia
patients41, and it is known to be involved in agglutination and
aggregation of platelets in humans42. This together with the
functional enrichment, KEGG, and GO analyses show that the non-
coding genetic variants in the prediction model identified using

MCODE are associated with genes active and expressed in systems
that are relevant for the treatment, cancer, and myelosuppression
investigated in this study.
If the final toxicity module genes account for the underlying

mechanism of action of gemcitabine and carboplatin, we expect
interactors of the model genes or variants to be involved either
with toxicity or the mechanism of action of the drugs. Interest-
ingly, others have shown that cell lines with functional TP53 show
increased anti-proliferative effect when treated with carboplatin43,
which indicates a possible direct interaction leading to toxicity.
Further, pancreatic duct adenocarcinoma cells showed increased
resistance to gemcitabine following CBL knockdown44, which
suggests that CBL is important for the mechanism of action of
gemcitabine. Another chemotherapeutic drug, bosutinib, in
combination with gemcitabine, demonstrated antitumor activity
in biliary tract carcinoma cells by inhibition of SRC, a known non-
receptor tyrosine kinase45. In addition, another study showed that
massively parallel sequencing coupled with dose-adjusted gemci-
tabine/carboplatin treatment of metastatic cancers with mutations
in PDGFRA, SMAD4, and CDKN2Amay lead to improved outcome46.
Together with this, we have shown that the toxicity module genes
are involved in cancer and hematopoiesis-related KEGG pathways
and GOs. Based on this we hypothesize, in line with our previous
publication6, that the underlying genetic differences captured in
the toxicity module are likely affecting how patients bone marrow
is affected by gemcitabine/carboplatin. The genetic variation
might make cells in the bone marrow more sensitive to
gemcitabine/carboplatin, or alter the proliferation and quality of
mature blood cells, which in the end render some patients to be
easily and/or harder affected by the drugs.
The proposed prediction model is solely based on germline

genetics and does not utilize patient characteristics or patient
baseline blood status. The patient characteristics of the high and
low maximal myelosuppressive toxicity groups are homogenously
distributed and listed in Table 1. This indicates that there is a
significant genetic component behind the risk of chemotherapy-
induced toxicity that likely includes genetic differences that affect
drug pharmacokinetics and pharmacodynamics, along with the
regulation, formation, and function of blood cells.

Conclusions
The present study is, to the best of our knowledge, the most
comprehensive WGS study focused on myelosuppressive toxicity
induced by gemcitabine/carboplatin treatment. To conclude, we
propose the toxicity module, which is associated with maximal
myelosuppressive toxicity, and a model for predicting this toxicity
based on 62 genetic variants. This study showcases the capability
of using WGS data together with a gene network-based approach
as a personalized medicine tool for the prediction of complex
phenotypes, such as toxicities and ADRs. At the same time, this
approach suggests an important role for the distal intergenic
variation underlying myelosuppressive toxicity. We have shown
that our proposed model predicts toxicity in this study, however,
the model requires further evaluation and replication in other
studies and in a clinical setting to be able to determine its
reproducibility, usability, and clinical effect. Our presented
approach and results support the usage of genetic markers for
prediction of gemcitabine/carboplatin-induced myelosuppression
in NSCLC patients. However, this approach is not limited to the
specific toxicity, drugs, and disease, it can potentially be used for
many other complex phenotypes.

METHODS
Patient inclusion and ethical approval
A total of 215 patients diagnosed with NSCLC between 2006 and 2008 at
Karolinska University Hospital, Stockholm, Sweden, were recruited for the
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study and included after providing written informed consent, in
accordance with the Helsinki Declaration. The study received ethical
approval from the regional ethics committee in Stockholm (DNR-03-413
with amendment 2016/258-32/1). These patients are part of the material
included in previously published studies5,6.

Treatment schedule
All patients received at least one cycle of the standard treatment protocol
for NSCLC patients at the time and place of the study. Specifically, this
consisted of carboplatin (target area under the concentration versus time
curve= 5, on day 1) together with gemcitabine (1250mg/m2 on day 1 and
day 8).

Toxicity
Neutrophil, leukocyte, and platelet counts were registered at baseline and
monitored on days 8, 15, and 21 throughout the first cycle. The Nadir
values of neutrophils, leukocytes, and platelets were graded according to
the CTCAE version 4.03 (CTCAE grade: 0—no adverse event, 1—mild, 2—
moderate, 3—severe, 4—life-threatening, 5—death related to the adverse
event). The CTCAE grades were then used as the toxicity endpoint
parameters for neutropenia, leukopenia, and thrombocytopenia together
with the maximal toxicity registered.

Patient selection
From the whole cohort of 215 included NSCLC patients, a subset of 96
patients were selected and used for the present study. These 96 samples
were selected based on toxicity (low or high) that they experienced during
the first chemotherapy cycle. In order to maximize the number of patients
with low toxicity (CTCAE 0–1) or high toxicity (CTCAE 3–4) all three toxicity
phenotypes, neutropenia, leukopenia, and thrombocytopenia, were
considered simultaneously. During this procedure, we controlled for the
distribution of the patient characteristics to be as similar as possible
among the 96 selected patients to that of the whole cohort.

DNA extraction and WGS
The QIAamp DNA Mini Kit (Qiagen) was used according to the
manufacturer’s protocol to extract DNA from patient blood samples
collected at baseline before treatment start. Sequencing libraries were
then prepared with the TruSeq DNA PCR-Free Library Preparation kit
(Illumina), according to the manufacturer’s protocol, before the samples
were whole-genome sequenced at the Science for Life Laboratory
(SciLifeLab, Stockholm, Sweden) using the HiSeq X Ten platform (Illumina).

Alignment and variant calling of WGS data
Initially, cutadapt version 1.9.147 was used for quality and adapter
trimming the raw sequencing reads. The reads were then mapped to
the human reference genome, GRCh37, using BWA aligner version 0.7.1248.
Then Picard Tools (http://www.picard.sourceforge.net/) was used to discard
any duplicate reads and SAMtools version 0.1.1949 was used to filter out
reads not primary aligned or not in proper pairs. Thereafter, variants were
called using the Genome Analysis Toolkit (GATK) version 3.3.050 applying
their best practices51. Quality was monitored throughout the process using
QualiMap version 2.052. After variant calling, VCFtools version 0.1.1453 was
applied to filter out variants not labeled as PASS, with a genotyping rate
<0.95, a coverage <5, or a mean coverage <10 across all samples.

SNV/INDEL association analysis
Case/control implementation of two-sided Fisher’s exact test in an allelic
fashion54 was performed using PLINK version 1.9055 for association analysis
between bi-allelic SNVs and INDELs to neutropenia, leukopenia, and
thrombocytopenia. For these analyses, patients with CTCAE grades 0–1
were used as controls, and patients with grades 3–4 were used as cases.
This means that patients with intermediate toxicity (CTCAE grade 2) were
left out of the respective statistical analyses.
Principal component analysis (PCA) was performed with the function

snpgdsPCA in the package SNPRelate version 1.16.056 for R version 3.5.257

using all SNVs/INDELs and only the nominally significant (p ≤ 1 × 10−3)
SNVs/INDELs. Further, the VCF file was annotated using the R-package
ChIPseeker version 1.18.058. The same package was also used for mapping
all genetic variants to their respective closest genes. Plots were

constructed using the R packages ggplot2 version 3.1.1 and ggpubr
version 0.2.

Gene network modules
All autosomal nominally significant SNVs/INDELs were mapped to their
nearest protein-coding gene within a 3000 kilobase distance upstream and
downstream. The mapped genes were used as seeds to identify gene
network modules. The background network used was the STRING
protein–protein interactions (PPI) network version 10.524 with all the high
confidence (combined score >700) interactions. The graph-theoretic
clustering algorithms MCODE18, DIAMOnD25, CliqueSuM26, and Module-
Discoverer27 were implemented for overlaying the seeds on the network
and inferring the modules. These algorithms are seed based but use
different network properties for module inference. DIAMOnD is an iterative
algorithm which uses connectivity significance to infer the large connected
component in the background network starting from the input seed
genes25. MCODE is an algorithm based on vertex weighting and k-means
clustering allowing cluster interconnectivity to infer modules18. CliqueSuM
and ModuleDiscoverer are clique-based algorithms in which the maximal
cliques from the network are identified and compared against random
subgraphs of equal size for calculating significance26,27. The analyses were
performed using the R package MODifieR version 0.1.4 (https://gitlab.com/
Gustafsson-lab/MODifieR)59 for module inference.

Analysis of bone marrow from rats and humans
For validating the different gene network modules relevance for
myelosuppressive toxicities we performed enrichment analysis using genes
differentially expressed in rat bone marrow upon exposure to gemcitabine
and carboplatin. Specifically, we used bone marrow gene expression data
from rats treated with 78 drugs available under the accession number
GSE59894 in the NCBI Gene Expression Omnibus database (https://www.
ncbi.nlm.nih.gov/geo/). In order to identify differentially expressed genes
(DEGs) affected by drugs, we implemented Tukey’s post hoc analysis on the
timepoint with 72 hours of drug exposure, independently comparing
gemcitabine and carboplatin with all other drugs. From the findings of this
step, the specific effects of carboplatin and gemcitabine were obtained by
combining all the p-values of comparisons with the other drugs at the
72-hour timepoint using Fisher’s method. Next, the genes significant after
Bonferroni correction (adjusted p-values with false discovery rate (FDR) <
0.05) were mapped to their human homologous genes using the R package
Biomart version 2.40.360,61. The resultant list of DEGs for gemcitabine and
carboplatin were then used to test their overlap with the constructed gene
network modules using two-sided Fisher’s exact test.
In addition to rat bone marrow data, we also compared the enrichment

of the gene network modules with our previous meta-analysis gene
expression data from human bone marrow and kidney concerning
treatment with platinum analogs and/or gemcitabine, as described and
obtained in refs. 5,62.

Cell lines for RNA-seq
Two human cell lines exhibiting megakaryocyte-like properties, CMK (ACC-
392)63,64 and MOLM-1 (ACC-720)65–67, both from the Leibniz-Institute
DSMZ—German Collection of Microorganisms and Cell Cultures, and the
myelogenous cell line K562 (CCL-243)68–70 from the American Type Culture
Collection were used.

Cell culturing
The cell lines were cultured using RPMI 1640 supplemented with 10% FBS
and 2% penicillin/streptomycin, all from Gibco, Life Technologies. They
were passaged every 3–4 days and kept at 37 °C in a humidified
atmosphere containing 5% CO2 and the passage numbers were kept
below 15 from the acquisition. The cells were tested (negative) for
mycoplasma infections utilizing the service Mycoplasmacheck (GATC
Biotech) following the manufacturer’s instructions.

Drug incubations
Experiments were initialized by seeding 10 million cells in 15ml of RPMI
1640 with 10% FBS without antibiotics and treating them for 24 hours with
gemcitabine (Toronto Research Chemicals), carboplatin (Toronto Research
Chemicals), or no drug (as a control). The drug concentrations used for the
24-hour treatments of K562, CMK, and MOLM-1 were the 72-hour
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half-maximal inhibitory concentration (IC50) concentrations for each
respective cell line, which were specifically determined, using the MTT
assay (Molecular Probes, Life Technologies), to be 14.29 ng/ml, 24.84 ng/
ml, and 34.67 ng/ml for gemcitabine, and 29.58 µg/ml, 1.61 µg/ml, and
14.27 µg/ml for carboplatin, for K562, CMK, and MOLM-1, respectively. All
treatments were carried out in duplicate, resulting in 18 samples. Duplicate
samples were run at different times to ensure biological replication.

RNA extraction and sequencing
After the drug incubations, RNA from 1ml of cell suspension of each
sample was extracted using the RNeasy Mini Kit (Qiagen) and QIAshredder
(Qiagen) according to the manufacturer’s protocol. Ribosomal RNA was
depleted using RiboCop rRNA Depletion Kit version 1.2 (Lexogen), and
sequencing libraries were prepared with SENSE Total RNA-Seq Library Prep
Kit (Lexogen) following the manufacturer’s protocol. Libraries were
sequenced at Science for Life Laboratory (SciLifeLab, Stockholm, Sweden)
using the HiSeq 2500 (Illumina) with HiSeq Rapid SBS Kit v2 chemistry and
a 1 × 51 setup.

Alignment and read summarization of RNA-seq data
The raw RNA-seq reads were quality and adapter trimmed using
TrimGalore! version 0.4.4 (http:// www.bioinformatics.babraham.ac.uk/
projects/trim_galore/) and cutadapt version 1.1347. STAR version 2.5.3a71

was used for aligning the reads to the human reference genome, GRCh37.
Thereafter, the aligned sam files were converted to bam files and sorted
using SAMtools version 1.9. Only uniquely mapping reads were used in the
subsequent analyses, and read summarization was conducted using
featureCounts, which is available in the software package Subread version
1.5.272, to summarize the number of reads per gene region. Only reads
spanning one gene region were counted. The quality of the data was
monitored through all steps using FastQC version 0.11.5, QualiMap version
2.252, and MultiQC version 1.673.

Gene expression analysis
The output matrix with read/transcript counts from featureCounts was
used as input to R version 3.5.257. Transcripts per million (TPM) were
calculated, and differential expression analysis was conducted separately
for the three cell lines and their respective treatments, using edgeR version
3.18.174,75. Only fragments with TPM > 1 in ≥2 samples were used for the
differential gene expression analysis, and they were normalized using the
TMM method76.
Both the TPM and differential expression results were filtered to only

output data on the genes included in the finally obtained toxicity module
from MCODE (see the results in the section “Gene network modules”). We also
performed 10,000 permutations by randomly taking genes (n= 215) equal to
the size of the toxicity module (after fragments with TPM= 0 in all 18 samples
had been removed) and counting how many genes were expressed with
TPM> 1 in ≥2 samples for all permutations. This was compared to see if more
module genes were expressed than expected by chance.

KEGG pathway and Gene Ontology (GO) enrichment analysis
The R package clusterProfiler version 3.12.077 was used for KEGG pathway
and GO-enrichment analyses of the toxicity module genes.

Prediction of toxicity using random LASSO
To categorize the patients as high or low toxicity based on their genetics,
the random LASSO19 was implemented for variable selection in general-
ized linear models using the function cv.glmnet in the R package glmnet
version 2.0-16. To do this, all nominally significant genetic variants (SNVs/
INDELs) that mapped to the genes in the gene network modules found
using MCODE18 were used. The function cv.glmnet used 10-fold cross-
validation, a randomized normally distributed penalization factor, α= 1,
and nlambda= 100. It was permuted 100,000 times against the binomial
traits low or high myelosuppressive toxicity using the model fits with the
lowest cross-validation error (lambda.min). For validating the model, 20%
of the samples with high toxicity and low toxicity were withheld as test
data. The numbers of low and high toxicity samples, along with the
numbers of training and test samples, are listed in Supplementary Table
10. Sets of the quantiles of the genetic variants (based on their selection
frequency) from the random LASSO permutations were evaluated further

to determine their specific lambda values using the same function as
above, however, with α= 0 (i.e. no further shrinkage). The set of genetic
variants with the best predicting capacity, determined by evaluating the
receiver operating characteristic (ROC) and AUC when predicting the
training and test data, is presented as the final prediction model for
maximal toxicity.

Additional validation analysis
In this analysis the 96 samples were independently of the previous analysis
split up into 80% training and 20% validation based on maximal toxicity:
44/10 (training/validation) high toxicity (CTCAE 3–4), 0/8 intermediate
(CTCAE 2), and 28/6 low toxicity (CTCAE 0–1). The training samples were
taken through Fisher’s exact test, before gene network module construc-
tion using MCODE and STRING PPI. Since the training data now has a little
lower power due to smaller number of samples, the module generation
using MCODE required a change of a parameter called vertex weight
percentage (VWP) from the default value (0.5) to 0.1. The density and size
of the module will be defined by this parameter18. We tuned this
parameter to have optimal size of the module that is comparable with the
previous analysis. After this the nominally significant genetic variants
overlapping between all three toxicity phenotype modules were used for
100,000 random LASSO permutations to elucidate the set of genetic
variants with the best prediction capacity. Lastly, the best prediction model
using this approach was used to predict the never seen validation samples.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.
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