
 International Journal of 

Molecular Sciences

Article

Does the Act of Copulation per se, without Considering
Seminal Deposition, Change the Expression of Genes
in the Porcine Female Genital Tract?

Manuel Alvarez-Rodriguez 1,† , Cristina A. Martinez 1,† , Dominic Wright 2 and
Heriberto Rodriguez-Martinez 1,*

1 Department of Biomedical & Clinical Sciences (BKV), BKH/Obstetrics & Gynaecology, Faculty of Medicine
and Health Sciences, Linköping University, SE-58185 Linköping, Sweden;
manuel.alvarez-rodriguez@liu.se (M.A.-R.); cristina.martinez-serrano@liu.se (C.A.M.)

2 Department of Physics, Chemistry and Biology, Faculty of Science and Engineering, Linköping University,
SE-58183 Linköping, Sweden; dominic.wright@liu.se

* Correspondence: heriberto.rodriguez-martinez@liu.se; Tel.: +46-13-186925
† These authors contributed equally to this work.

Received: 29 June 2020; Accepted: 29 July 2020; Published: 31 July 2020
����������
�������

Abstract: Semen—through its specific sperm and seminal plasma (SP) constituents—induces changes
of gene expression in the internal genital tract of pigs, particularly in the functional sperm reservoir at
the utero-tubal junction (UTJ). Although seminal effects are similarly elicited by artificial insemination
(AI), major changes in gene expression are registered after natural mating, a fact suggesting the act of
copulation induces per se changes in genes that AI does not affect. The present study explored which
pathways were solely influenced by copulation, affecting the differential expression of genes (DEGs)
of the pre/peri-ovulatory genital tract (cervix, distal uterus, proximal uterus and UTJ) of estrus sows,
24 h after various procedures were performed to compare natural mating with AI of semen (control
1), sperm-free SP harvested from the sperm-peak fraction (control 2), sperm-free SP harvested from
the whole ejaculate (control 3) or saline-extender BTS (control 4), using a microarray chip (GeneChip®

porcine gene 1.0 st array). Genes related to neuroendocrine responses (ADRA1, ADRA2, GABRB2,
CACNB2), smooth muscle contractility (WNT7A), angiogenesis and vascular remodeling (poFUT1,
NTN4) were, among others, overrepresented with distal and proximal uterine segments exhibiting the
highest number of DEGs. The findings provide novel evidence that relevant transcriptomic changes
in the porcine female reproductive tract occur in direct response to the specific act of copulation,
being semen-independent.
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1. Introduction

Copulation between a male and a female is definitory for sexual reproduction among species
with internal fertilization [1]. Copulation implies a species-specific deposition of semen, from the
placement of a spermatotheca in insects [2,3] to the ejaculation of a fluid built by the concerted secretion
of different accessory sexual glands, the seminal plasma (SP) (in which epidydimal spermatozoa
are suspended [4–8]) into different compartments of the internal genital tract (vagina to uterus).
Decades of using in vitro fertilization demonstrated that the fertilization event is a matter for two
gametes to interact at cell level [8]. However, semen has, by its specific sperm- and SP constituents
proven able to induce major changes in the expression of genes in tissues of the internal genital
tract alongside fertilization, in animal classes as disparate as insects or pigs [9]. Such changes
clearly indicate pathways governing sperm transport [10], ovulation [11], sperm storage [4,6,12],
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sperm capacitation [12,13] and gamete encounter [14], processes that apparently continue during
early embryo development and—for Eutheria—with placental development and pregnancy [11,15].
To complicate matters, while fertilization can be achieved without the intervention of immune responses,
immunity modulation is apparently crucial to tolerate the presence of a foreign cell (the spermatozoon)
and the proteins it and the accompanying SP carries in a female whose innate and adaptative immune
system is prompt in eliminating both pathogens and foreign antigens. Such a conserved mechanism is
overruled in internal fertilization by the attainment of a mechanism of maternal tolerance towards
spermatozoa/semen [4,5,16,17] which is prolonged in Eutheria for the entire pregnancy, with embryos
and placentae considered hemi-allogenic [15,18]. Semen elicit changes in gene expression changes in
the female both after natural mating and artificial insemination (AI). However, the major changes in
gene expression are elicited by natural mating [10]. This fact suggests that copulation acts per se differ
from AI, no matter how similar it may seem to mating [19,20].

This study aimed to determine if the act of copulation in sows affected the differential expression
of genes in the pre/peri-ovulatory genital tract (endocervix, the endometrium and the UTJ), without
considering effects of semen or sperm-free SP. The study focused on DEGs not affected by AI with
semen (control 1), sperm-free SP harvested from the sperm-peak fraction (control 2), sperm-free
SP harvested from the whole ejaculate (control 3) or saline-extender BTS (control 4), 24 h past the
procedures, using a microarray chip (GeneChip® porcine gene 1.0 st array, Thermo Fisher Scientific)
containing 25,000 gene level probe sets, followed by bioinformatics for enriched analysis of functional
categories (GO terms) and restrictive bioinformatic analysis

2. Results

2.1. Total DEGs in the Peri-Ovulatory Uterine Tract

The microarray analyses showed that natural mating (NM) altered the expression of annotated
genes (950–2554) in the different anatomic uterine mucosal segments (Cvx-UTJ) when compared to the
different contents of cervical AIs (controls 1–4), 24 h after exposure (Figure 1).
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Figure 1. Differential expression of annotated genes in the mucosa of the uterus (endocervix (Cvx),
endometrium (distal: D-Endom or proximal: P-Endom) and the utero-tubal junction (UTJ)) of sows
induced by natural mating (NM) when compared to cervical AI of different contents; control 1: semen,
control 2: seminal plasma from the sperm-peak fraction, control 3: seminal plasma from the entire
ejaculate, control 4: sham–AI with BTS extender; negative control. The numbers represent the number
of differentially expressed genes (p-value < 0.05).
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2.2. DEGs in the Peri-Ovulatory Uterine Tract, Only Affected by Copulation

Figure 2 summarizes the numbers of up- and downregulated annotated DEGs solely affected by
copulation in the mucosa of the sow uterus, distributed per segments; endocervix (Cvx), endometrium
(distal: D-Endom or proximal: P-Endom) and the utero-tubal junction (UTJ). The highest number of
transcriptomic changes induced by copulation was registered in the Distal part of the endometrium
(D-Endom; DEGs = 356), followed by the Proximal part (P-Endom; DEGs = 307), endocervix (Cvx;
DEGs = 166) and the UTJ (DEGs = 148) (Figure 2). A complete list of these copulation-affected up- and
downregulated DEGs in the different mucosal segments appears in Supplementary Tables S1–S4.
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Figure 2. Differential expression (up- and downregulation) of annotated genes solely affected by
copulation in the mucosa of the sow uterus (endocervix (Cvx), endometrium (distal: D-Endom or
proximal: P-Endom) and the utero-tubal junction (UTJ)). The numbers represent the number of
differentially expressed genes (p-value < 0.05).

2.3. Copulation Altered Transcripts Common to All Uterine Segments (Cvx to UTJ)

The Venn diagrams in Figure 3A–C depict the numbers of copulation-induced, co-expressed DEGs
shared among uterine segments listed in Supplementary Tables S1–S4, including all four segments
(Figure 3A), excluding endocervix (Figure 3B) or excluding endocervix and distal endometrium
(Figure 3C). Only one DEG transcript was commonly upregulated while 8 were downregulated
among all four mucosal segments examined (Figure 3A). Excluding the endocervix, the number
of upregulated and downregulated transcripts were 2 and 21, respectively (Figure 3B). Lastly,
comparing the most proximal segments (P-Endom and UTJ), 2 genes were upregulated and 30 genes
were downregulated (Figure 3C).
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Figure 3. (A–C) Venn diagrams depicting in discontinuous rings the numbers and acronyms of
copulation-induced, co-expressed DEGs shared by the different mucosal segments of the sow uterus
(endocervix (Cvx), endometrium (distal: D-Endom or proximal: P-Endom) and the utero-tubal
junction (UTJ), as listed in Supplementary Tables S1–S4. The diagrams include (A) comparisons of
all four segments, (B) when endocervix was excluded or (C) when excluding endocervix and distal
endometrium. Upregulated genes in green and downregulated in red.

2.4. Biologic Meaning of Differentially Expressed Genes Induced by Copulation

From the general set of DEGs solely induced by copulation, listed in Supplementary Tables S1–S4,
we selected 92 DEGs significantly involved in different pathways, biologic and molecular processes,
with potential roles in reproductive processes, including neuroendocrine responses, hormone regulation,
uterine contractility, angiogenesis and vascular remodeling, among others. The gene acronyms of this
subset are listed in Table 1 while the biologic terms and pathways in which those genes are involved are
represented in Figure 4. The complete list of all copulation-induced DEGs, KEGG pathway-categorized
by Biologic processes and Molecular function are listed in Supplementary Tables S5–S7.



Int. J. Mol. Sci. 2020, 21, 5477 5 of 16

Int. J. Mol. Sci. 2020, 21, x FOR PEER REVIEW 6 of 17 

 

 

Figure 4. Schematic representation of biologic terms and pathways of selected DEGs, among different 

mucosal segments of the sow endocervix (Cvx; (A)), endometrium (distal: D-Endom (B) or proximal: 

P-Endom (C)) and the utero-tubal junction (UTJ; (D) 24 h past copulation. The analysis of 

overrepresented functional categories was performed using the Cytoscape v3.0.0 application ClueGo 

v2.0.3. Terms are functionally grouped based on shared genes (kappa score) and are shown in 

different colors (green: up-regulated; red: down-regulated). The size of the nodes indicates the degree 

of significance, where the biggest nodes correspond to highest significance and the intensity of the 

nodes indicates the amount of genes involved in that specific term, where the more intense 

correspond to the highest number of genes found. The following ClueGo parameters were used: GO 

tree levels, 1–3 (first level = 0); minimum number of genes, 1; p-value correction, Benjamini–Hochberg, 

terms with p < 0.05, GO term connection restriction (kappa score), 0.4; GO term grouping, initial group 

size of 1. The resulting network was modified; that is, some redundant and non-informative terms 

were deleted and the network manually rearranged. 

Moreover, copulation induces, via the presence of the boar (pheromones) and the mechanical 

stimuli during mating, a release in oxytocin in the sow that increases uterine activity [24]. The levels 

of hypothalamic adiponectin and its receptors, present in the porcine hypothalamus in areas 

responsible for GnRH production and secretion, are highly dependent on the endocrine status during 

the various phases of the estrus cycle [27]. Steroid hormones play an important role in the regulation 

of cyclic changes in the uterus and preparation of intrauterine environment, inhibition of uterine 

contractions, cell proliferation and apoptosis and modulation of secretory activity of the uterus, 

among other events [28], including the action of glucocorticoids regulating intrauterine events [29]. 

We hereby report that the act of copulation in pigs, which involves the presence and mounting 

by the boar maintaining the standing reflex displayed by the sow, but also vagino-cervical 

stimulation and mechanical distention of the lumen, has the potential of inducing relevant neuro-

endocrine molecular responses that contributes to successful fertilization by favoring uterine 

contractions that control sperm transport to the sperm reservoir at the UTJ. 

Interestingly, a common upregulation of the α2-adrenergic receptor (ADRA2A) was found in D-

Endom and P-Endom in response to mating, while α1-adrenergic receptor (ADRA1A) was 

upregulated just in P-Endom. ADRA1A and ADRA2A encode G protein-coupled receptors (GPCRs) 

Figure 4. Schematic representation of biologic terms and pathways of selected DEGs, among
different mucosal segments of the sow endocervix (Cvx; (A)), endometrium (distal: D-Endom (B) or
proximal: P-Endom (C)) and the utero-tubal junction (UTJ; (D) 24 h past copulation. The analysis of
overrepresented functional categories was performed using the Cytoscape v3.0.0 application ClueGo
v2.0.3. Terms are functionally grouped based on shared genes (kappa score) and are shown in different
colors (green: up-regulated; red: down-regulated). The size of the nodes indicates the degree of
significance, where the biggest nodes correspond to highest significance and the intensity of the nodes
indicates the amount of genes involved in that specific term, where the more intense correspond to
the highest number of genes found. The following ClueGo parameters were used: GO tree levels,
1–3 (first level = 0); minimum number of genes, 1; p-value correction, Benjamini–Hochberg, terms with
p < 0.05, GO term connection restriction (kappa score), 0.4; GO term grouping, initial group size of 1.
The resulting network was modified; that is, some redundant and non-informative terms were deleted
and the network manually rearranged.

Table 1. Subset of selected differentially expressed genes (DEGs, p < 0.05, up- or downregulated) that
copulation in sows induced 24 h later in the endocervix (Cvx), the endometrium (distal: D-Endom
or proximal: P-Endom) and the utero-tubal junction (UTJ), classified by relevant biologic terms and
pathways according to DAVID database.

Cvx D-Endom P-Endom UTJ

UP DOWN UP DOWN UP DOWN UP DOWN

FAM107A ABHD2 ADRA2A ABDH2 HSD11B1 ADRA1A ABDH2 OLFM3 CAMK1D ABDH2
HDAC9 ANXA5 BRINP3 ADAM22 HTR2A ADRA2A ADAM22 P2RX7 CD27 CALM2
MYLIP BRINP2 CACNB2 AGTR1 INPP5 F ASGR2 AGTR1 RARA EP300 CREB3 L2
NTN4 DLGAP2 CSF1R ALCAM MAGED1 CALM1 BRINP2 SDC2 JAK2 FBN1

PYGO1 GJA1 EHMT2 BRINP2 MAN2A1 DEAF1 COL3A1 SDC4 MAFB MAGED1
IL6ST GABRB2 COL3A1 ME1 MAPT CREB3L1 TAC3 MYLIP MAPK10
LRP12 NCKIPSD COL4A1 NPR2 PACSIN3 CREB3 L2 TCF7 L2 ZNF217 NPR2

MAN2A1 NIPSNAP1 CREB3 L2 OLFM3 RXFP4 EPHA4 VCAN TP23
NPC1 NTRK3 EPHA4 PTGFR VIPR1 FBN1 VNN1 VCAN
NPR2 POFUT1 FBN1 RCAN2 FRZB WNT2

NPY2R RARG FGFR1 RPS6KA6 GJA1
S1PR3 TBL1X FRZB S1PR3 GPX8
VCAN TENM2 GJA1 SDC2 HSD11B1

WNT7A GPX8 TCF7 L2 IRAK4
HIF1A VCAN MAGED1
HRH1 WNT2 MAN2A1
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3. Discussion

The present study explored the exclusive action of the act of copulation on gene expression
of different mucosal uterine segments (endocervix, distal or proximal endometrium and the sperm
reservoir UTJ) in pre-ovulatory estrous sows 24 h post mating. The total DEG-database compared
natural mating with a boar with each of the experimental control AI-procedures including cervical
deposition of semen, SP or the saline extender (BTS), in order to discriminate the effect of each of these
cells/fluids from the actual influence of act of copulation. Subtracting all genes present in each control
from the NM, resulted in a DEG-database including transcripts solely related to copulation.

After a 24 h period, copulation per se induced an overrepresentation of transcripts related to
neuroendocrine responses in the different segments of the uterus and the UTJ mucosae. The highest
amount of DEGs was found in the endocervix and the distal and proximal parts of the uterine horn
(D-Endom and P-Endom). These findings are not surprising since the uterus is widely known to
act as a sensory transducer, converting the mechanical exteroceptive stimulus of copulation into
neural electrical signals through the pelvic nerve [21]. To date, the literature points to vagino-cervical
stimulation—which also occurs during AI—as the main agent responsible for generating electrical
signals ascending from the cervix and reaching much of the limbic system and the hypothalamus,
where several areas containing neurons receptive to vagino-cervical input have been identified [22].
Moreover, pigs are reproductively known for the boar delivering a large ejaculate (150–300 mL),
which distends the lumen of the long (up to one meter each) uterine horns, stimulating the pressure
receptors present in the uterine sub-mucosa and between the layers of the myometrium [23]. In swine,
spontaneous uterine activity in sows increases naturally around estrus, with estrogens being key
triggers for increased frequency of contractions [24], as well as playing a role in the transport and
distribution of semen through the female genital tract [25,26].

Moreover, copulation induces, via the presence of the boar (pheromones) and the mechanical
stimuli during mating, a release in oxytocin in the sow that increases uterine activity [24]. The levels of
hypothalamic adiponectin and its receptors, present in the porcine hypothalamus in areas responsible
for GnRH production and secretion, are highly dependent on the endocrine status during the various
phases of the estrus cycle [27]. Steroid hormones play an important role in the regulation of cyclic
changes in the uterus and preparation of intrauterine environment, inhibition of uterine contractions,
cell proliferation and apoptosis and modulation of secretory activity of the uterus, among other
events [28], including the action of glucocorticoids regulating intrauterine events [29].

We hereby report that the act of copulation in pigs, which involves the presence and mounting by
the boar maintaining the standing reflex displayed by the sow, but also vagino-cervical stimulation and
mechanical distention of the lumen, has the potential of inducing relevant neuro-endocrine molecular
responses that contributes to successful fertilization by favoring uterine contractions that control sperm
transport to the sperm reservoir at the UTJ.

Interestingly, a common upregulation of the α2-adrenergic receptor (ADRA2A) was found
in D-Endom and P-Endom in response to mating, while α1-adrenergic receptor (ADRA1A) was
upregulated just in P-Endom. ADRA1A and ADRA2A encode G protein-coupled receptors (GPCRs)
that inhibit the activity of membrane-associated adenylyl cyclase (mACs) and their production of
cAMP [30]. Besides being relevant during estrous, the number of α1&2-adrenoreceptors increases
thereafter, under progesterone dominance in pigs [31] and several other species [32–35].

Another neuroendocrine mechanism controlling uterine contractility is the γ-Amino-butyric acid
(GABA) signaling pathway. GABA, an inhibitory neurotransmitter in the mammalian brain, is alongside
GABA G protein-coupled receptors (GPCRs), playing relevant roles in ovaries [36–39], oviducts [38],
oocytes [39], the uterus [40] and the placenta [41]. Stimulation of GABAB receptors, which control Ca2+

and/or K+ channels [42], have been reported to tonically enchase contractions of uterine strips [43,44].
In the present study, GABA receptor subunit β2 gene (GABRB2) was upregulated in D-Endom after
copulation, indicating relevance in porcine.
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Moreover, the calcium channel, voltage-dependent, β2 subunit (CACNB2), a neuroendocrine-related
gene, was also upregulated in the D-Endom tissue in response to copulation. CACNB2 is one of the
four homologous genes coding for the auxiliary Cavβ subunits, which are important modulators of
the Ca(2+) channel activity, implicated in smooth muscle contraction [45]. Their upregulation suggests
that 24 h after copulation, mechanisms related to sperm transport to the oviduct or even cleansing of
surplus semen are activated, mostly in the distal region of the pig uterus. Other genes involved in
uterine contractility were found overexpressed in response to mating, e.g., WNT7A (upregulated in
D-Endom) a ligand of the WNT family that plays a critical role in the development and morphogenesis
of uterine smooth muscle and mucosal glands [46] during the crucial sperm transport, respectively
blastocyst nurture and implantation in the adult uterus [47]. WNT7A is also responsible for changes
in the levels of sex steroid hormones in the female reproductive tract [48,49]. Lower myometrial
proliferation is associated with a downregulation of WNT7A [46] and total ablation of WNT7A in the
uterus has been shown to alter uterine development [50,51]. For instance, adult WNT7A-null mice are
viable, but infertile and exhibit malformations in the female reproductive tract, including shortened
and uncoiled oviducts, hypoplastic uterine horns and a vaginal septum tract [50].

Smooth muscle contractility is not the only relevant mechanism to be addressed. Protein fucosylation,
which is a type of protein glycosylation, is one of the most common and important post-translational
modifications involved in uterine angiogenesis and vascular remodeling, major during the receptive
metestrus period, when embryos are transported to the uterine cavity. Impaired angiogenesis results
in pregnancy pathologies or pregnancy failure [52,53]. Fucosylation is incorporated as two major
forms: N-fucosylation and O-fucosylation, which are catalyzed by fucosyltransferases (FUTs) and
protein O-fucosyltransferases (poFUTs), respectively. The accumulated evidence shows that FUTs
participate in sperm–oocyte recognition, uterine receptivity formation and trophoblast invasion at the
fetal–maternal interface [54]. The gene encoding protein O-fucosyltransferase 1 (poFUT1) presented
a higher expression in response to copulation in the D-Endom region of the uterus. poFUT1 has
been closely related with endometrial angiogenesis and vascular remodeling [55]. Previous studies
showed that, the expression of poFUT1 was higher in the endometrium of women during the secretory
compared to the proliferative phase and in the endometrium of early pregnant women than in that
of miscarriage patients [55,56]. An elevated level of poFUT1 was also observed in impregnated
uteri compared to the non-impregnated uteri in mice [55,56]. Previous studies also demonstrated
that poFUT1 expression was decreased in placental villi from miscarriage patients and silencing
poFUT1 suppressed the proliferation and invasion of JAR cells through inactivating MAPK and
PI3K/Akt-signaling pathways [57–59]. Thus, the upregulation of poFUT1 registered in the present
study may relate to an increased uterine capillary irrigation of the uterine lamina propria in order to
increase uterine blood flow under the epithelial lining, which will ultimately be delivering oxygen and
nutrients to the epitheliochorial pig placenta [60].

Furthermore, Netrin 4 (NTN4), which was found to be upregulated in the Cvx after mating, is a
member of the heterogeneous family of laminin-related proteins that also participates in the regulation
of angiogenesis in several tissues including embryos [61,62]. In addition, Netrins functions include
essential contributions to regulating cell–cell and cell-matrix adhesion, tissue morphogenesis and the
maintenance of appropriate cell–cell interactions [63] all of which are implicated in gamete interaction
and early embryo development [64,65]. All these findings pose the idea that, although fertility after
AI is comparable to that achieved by natural mating, the latter appears to induce physiological
mechanisms of endometrial receptiveness more efficiently, not necessarily through semen influence,
but even initiated by copulation stimulus.

A significant downregulation of ABHD2 was found in all tissues examined (Cvx-UTJ) in relation to
the sole act of mating. ABHD2 is a serine hydrolase that belongs to the subgroup of the α,β-hydrolase
fold-containing proteins involved in the control of the sperm hyperactivation via progesterone and
CatSper Ca2+ channels [13,66–72]. The fact that this sperm-hyperactivating gene was downregulated
along the entire uterus suggests that these molecular signals are essential for reproduction in a
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spatiotemporal specific manner, being partially regulated by the endometrium to perhaps avoid
premature sperm capacitation.

Another gene found downregulated in response to copulation was the erythropoietin-producing
hepatocellular receptor A4 (EPHA1), downregulated in D-Endom and P-Endom tissues. EPHA1 is
expressed by endometrial epithelial cells and blastocysts, playing an important role facilitating embryo
implantation [73]. In domestic animals, expression of EPHA1 increases in the endometrium during the
peri-implantation period of pregnancy [74,75], and it seems hereby affected by the act of copulation;
alongside Colony-stimulating factor-1 receptor gene (CSF1R) which on the other hand appeared
upregulated in D-Endom. The gene also appears to play key roles in cell-to-cell interactions, gamete
receptivity and embryo implantation [76]. Although it seems reasonable that mechanisms ruling
embryo implantation are kept downstream as early as 24 h post insemination, we found that copulation
(rather that only the entry of semen or SP in the female genital tract), is capable of eliciting a robust
response regarding the physiological mechanisms during the reproductive process.

Copulation also downregulated the expression of FGFR1 gene in D-Endom. The secretion of
gonadotropin-releasing hormone (GnRH), which regulates the synthesis and release of the gonadotropin
hormones (LH and FSH) from the pituitary, depends upon multiple signaling mechanisms, including
sex-steroid feedback regulation and fibroblast growth factor (FGF)-signaling [77]. FGFR1 encodes for
type 1 FGF receptor, which is a cell surface receptor of the tyrosine kinase family, expressed in several
reproductive tissues [78]. Transgenic mice with specific gain-of function mutations in FGFR1 exhibit
delayed puberty and decreased number of GnRH neurons in the hypothalamus [79]. These findings
suggest that pregnancies not achieved by natural mating may be prone to long-term impairment
in reproductive performance. Longitudinal comparisons of sows being repeatedly bred via natural
mating vs conventional AI over many pregnancies are thus required to disclose whether the above
comment can be true. Unfortunately, most pigs today are only bred via AI, with the exception of the
extensive, field managed pigs (i.e., Iberian pigs) or wild boar, which display high fertility.

There was an interesting co-expression of several transcripts within different segments of the genital
tract. For instance, ALDH2 (Aldehyde dehydrogenase) was upregulated in D-Endom, P-Endom and
UTJ. ALDH is a detoxifying enzyme that plays a fundamental role in determining sperm longevity and
motility [80]. ALDH2 has been determined as the most important isoform of this family responsible
for reducing reactive-oxygen species (ROS) generation by sperm mitochondria, thus reducing cell
apoptosis [81–83]. Its presence has been reported in several cells/tissues as spermatozoa, placenta or
cervix [84–86], but, to the best of our knowledge, this is the first report to demonstrate ALDH2 gene
expression in the entire endometrium and UTJ of pigs and its activation in response to the act of
copulation, indicating that a reduction of ROS-generation induced by an upregulation of ALDH2
could be triggered as early as 24 h after copulation independently of the presence of the well-known
antioxidant seminal plasma [87].

A general downregulation of ACKR3, COL1A2 (D-Endom-UTJ), B4GAT1 and VCAN (all segments)
was found in response to mating. The expression of atypical chemokine receptors (ACKRs) has
been reported at the maternal–fetal interface in humans and mice [88,89] and in the bovine and
porcine endometrium during the estrus cycle and early pregnancy [90,91], specifically displaying high
expression during the estrous cycle to be dramatically downregulated during early pregnancy [91]. It is
thus logical to suggest, based on the results of the present study, that uterine ACKR3 may be responsible
of reducing chemokine activity in the pig endometrium towards the establishment of a state of maternal
sperm tolerance [92]. By the same line of reasoning, a downregulation of collagen alpha-2 (I) chain
(COL1A2) may contribute to prepare the endometrium to the presence of hemi-allogeneic embryos, as it
occurs in other species [93,94]. The fact that copulation downregulated β-1,4-galactosyltransferase 1
(B4GALT1) during this period should not be surprising. Although detected in uterine epithelial cells [95],
B4GALT1 is upregulated in relation to cell adhesion [96], including pre-implantation embryos [97] or
ectoplacental cone cells [98], events occurring far later than the period explored in the present study.
A downregulated Versican (VCAN) would reduce, probably under the action of steroid hormones
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during estrus [99], the display of inflammatory responses post mating by a generic alteration of the
expression of cytokines and chemokines [100], a downregulation that could be favoring maternal
sperm tolerance.

4. Materials and Methods

4.1. Ethics Statement

Animal handling was performed in compliance with the European Community (Directive
2010/63/EU) and current Swedish legislation (SJVFS 2017:40). It followed the reduction principle
of the 3Rs on animal experimentation (replacement, reduction and refinement) while maintaining
enough numbers of biologic replicates from distinct animals, reliable estimates of variation among
samples within procedures that could distinguish true differences between conditions. The experiments
were approved in advance by the “Regional committee for ethical approval of animal experiments”
(Linköpings Djurförsöksetiska nämnd) in Linköping, Sweden (permits no. 75–12, no. ID1400 and Dnr
03416-2020 (26/03/2020)).

4.2. Experimental Design

This study aimed to investigate the molecular patterns of the pre/peri-ovulatory porcine mucosa of
the uterus (endo-cervix, endometrium and UTJ) in response to the act of copulation per se, e.g., isolated
from the effects of semen or sperm-free SP, using microarray technology (Figure 5). Multiparous
sows displaying standing estrus in the presence of a boar (n = 20), were randomly subjected to:
Natural mating (NM; n = 4) or selective cervical AIs; of the sperm-peak ejaculate fraction (control 1;
n = 4, 50 mL), of sperm-free SP from the sperm-peak ejaculate fraction (control 2; n = 4, 50 mL),
of sperm-free SP from the entire ejaculate (control 3; n = 4, 50 mL) or of Beltsville thawing solution;
BTS (control 4; n = 4, 50 mL, sham–AI). Mucosal samples of specific segments of the uterus: endocervix
(Cvx), distal endometrium (D-Endom), proximal endometrium (P-Endom) and the utero-tubal junction
(UTJ), were retrieved during surgery under general anesthesia 24 h after each procedure, snap-frozen
in liquid nitrogen (LN2) and stored at −80 ◦C until further analysis [4,9,16].

4.3. Animal Management

Weaned sows (parity 1–3) and young mature boars (9–11 months) of proven fertility, were recruited
from a controlled breeding farm (Swedish Landrace breed). Throughout all experiments, animals were
handled carefully to avoid any unnecessary stress. The animals were individually kept in separate
pens at the translational medicine center (TMC/CBR-3) of Linköping University under controlled
temperature and light regimes (12 h: 12 h light/dark cycle). Pigs were fed with commercial feedstuff

(Lantmännen, Stockholm, Sweden) according to national standards provided with water ad libitum
and receiving the same management. Detection of estrus of the sows was performed twice daily,
beginning one day after weaning. Sows were tested by experienced personnel for standing estrus reflex
by applying back-pressure while sows had snout-to-snout contact with adjacent located mature boars.
When sows showed standing estrus reflex they were considered to be on the first day of behavioral
estrus and then used in this study. Boar ejaculates and the specific sperm-peak ejaculate fraction (the
first 10 mL of the sperm-rich fraction), were both collected using the gloved-hand method. Only semen
with at least 70% motile and 75% morphologically normal-looking spermatozoa immediately after
collection was used.

4.4. Natural Mating and Artificial Insemination of Semen, Sperm-Free SP and BTS-Extender

Sows were at the onset of estrus and randomly allowed to be mounted by an individual boar or
cervically inseminated/infused with the sperm-peak ejaculate fraction (containing 25% of the total
spermatozoa of the ejaculate, control 1) or SP-harvested after double centrifugation at 1500× g for
10 min and microscopically checked for absence of spermatozoa, either from the sperm-peak fraction
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(control 2) or from the whole ejaculate (control 3). Cervical infusions of BTS-extender constituted
control 4 (sham–AI).Int. J. Mol. Sci. 2020, 21, x FOR PEER REVIEW 10 of 17 
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Figure 5. Graphical illustration of the experimental design. Experimental sow groups compared natural
mating (NM) with cervical artificial insemination (AI) of semen of the sperm-peak fraction (control 1),
of sperm-free SP from the sperm-peak fraction (control 2), of sperm-free SP from the whole ejaculate
(control 3) or of saline BTS semen extender (control 4, sham–AI). Mucosal samples from the endocervix
(Cvx), endometrium (distal: D-Endom or proximal: P-Endom) and the utero-tubal junction (UTJ) were
surgically retrieved 24 h later and analyzed. NM was first compared to all experimental controls
to isolate those DEGs not affected by semen, SP or AI-vagino-cervical stimulation, e.g., those being
exclusively affected by copulation.

4.5. Collection of Samples of the Internal Genital Tract

All sows were subjected to mid-ventral laparotomies to collect mucosal tissue samples 24 h after
the procedures (pre/peri-ovulation period), as previously described [101]. Briefly, sows were sedated
by the i.m. administration of a mixture of 5 mg dexmedetomidine (dexdomitor, Orion Pharma Animal
Health, Sollentuna, Sweden) and 100 mg tiletamine hydrochloride/zolazepam hydrochloride (Zoletil
vet, Virbac A/S, Kolding, Denmark) followed by anesthesia induced IV with sodium thiopental (Abbot
Scandinavia AB, Solna, Sweden, 7 mg/kg BW) and maintained with isoflurane (3.5%–5%, Baxter Medical
AB, Kista, Sweden) administered via a tracheal cuffed tube by a close-circuit PVC-ventilator (Servo
ventilator 900 D, Siemens-Elema AB, Solna, Sweden). Peripheral blood plasma was analyzed (ELISA)
for progesterone (P4) and estradiol 17ß (E2) contents, confirming the sows were in peri-ovulatory estrus
(P4 = 0.77 ± 0.35 pg/mL; E2 ranging 294.2–376.50 ± 27.76 pg/mL, p > 0.05 among sows/groups). Mucosal
samples were immediately retrieved from the endocervix (Cvx), distal uterine horn (D-Endom),
proximal uterine horn (P-Endom) and the utero-tubal junction (UTJ), plunged in LN2 and stored at
−80 ◦C in RNAlater (Ambion, Thermo Fisher Scientific Baltics UAB, Vilnius, Lithuania) until analyzed.
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4.6. Total Transcriptome Analysis

Total RNA was isolated from tissue samples using Trizol reagent (Invitrogen, Carlsbad, CA, USA)
and quality assessment was performed using an Agilent 2100 Bioanalyzer (Agilent Technologies,
Santa Clara, CA, USA) according to the manufacturer’s instructions. The RNA integrity number (RIN)
values obtained were in the range of 8 to 10, which guarantied the homogeneity and high quality
of the samples. Equal amounts of total RNA (250 ng) from each sample were used to make cDNA
using GeneChip® whole transcript plus reagent kit (Affymetrix, Santa Clara, CA, USA, 25,000 probes)
following the manufacturer protocol. cDNA was then hybridized and loaded on the array chip
(GeneChip® porcine gene 1.0 st array, Affymetrix, Inc., 3420 Central Expressway, Santa Clara, CA 95051,
USA), incubated at 45 ◦C under 60 rotations per min, for 16 h. The hybridized cartridge array chip
was then unloaded and subjected to washing and staining using a GeneChip® Fluidics Station 450
(Affymetrix), to be finally scanned using the Affymetrix GeneChip® scanner GCS3000 [101].

4.7. Microarray Data and Enrichment Analyses of the Degs Unrelated to Semen or SP Influence

The array data were examined using Partek Genomics Suite 7.0 (Partek, St. Louis, MO, USA),
following normalization using the robust multichip average RMA method [102]. Differentially expressed
genes (DEGs) for NM and control groups (1–4) were compared in between by a one-way ANOVA,
setting fold changes (FC) >1 or <−1 and p-value < 0.05 to identify those DEGs exclusively affected
by copulation and not affected semen, SP or vaginal–cervical stimulation. To obtain a biologically
meaningful overview of the significantly modified transcripts, an enrichment analysis was performed.
Analysis of overrepresented gene ontology (GO) terms and pathways were performed with the DAVID
(database for annotation, visualization and integrated discover) and KEGG (Kyoto encyclopedia of
genes and genomes) databases. Graphic illustration of overrepresented GO terms was produced with
the Cytoscape v3.0.0 application CluePedia v2.0.3 [103].

5. Conclusions

Altogether, the present findings point out that copulation enhances, per se—and even when
isolated from the known effects of semen influence—reproductive processes related to sperm transport,
but also to sperm tolerance, uterine receptivity and fertilization success. Most relevant is the finding
that these influences may be different from those triggered by the simple deposition of semen or
seminal plasma as mimicked by cervical artificial insemination.

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/1422-0067/21/15/
5477/s1.
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