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Abstract

When should a trial stop? Such a seemingly innocent question evokes concerns of type I and II errors among those who believe
that certainty can be the product of uncertainty and among researchers who have been told that they need to carefully calculate
sample sizes, consider multiplicity, and not spend P values on interim analyses. However, the endeavor to dichotomize evidence
into significant and nonsignificant has led to the basic driving force of science, namely uncertainty, to take a back seat. In this
viewpoint we discuss that if testing the null hypothesis is the ultimate goal of science, then we need not worry about writing
protocols, consider ethics, apply for funding, or run any experiments at all—all null hypotheses will be rejected at some
point—everything has an effect. The job of science should be to unearth the uncertainties of the effects of treatments, not to test
their difference from zero. We also show the fickleness of P values, how they may one day point to statistically significant results;
and after a few more participants have been recruited, the once statistically significant effect suddenly disappears. We show plots
which we hope would intuitively highlight that all assessments of evidence will fluctuate over time. Finally, we discuss the remedy
in the form of Bayesian methods, where uncertainty leads; and which allows for continuous decision making to stop or continue
recruitment, as new data from a trial is accumulated.
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Introduction

The (ab-)use of P values—the great divider of evidence, minds,
and hearts—is, despite a great deal of critique [1-4], still going
strong. It is remarkable that less than 60 years ago Hill wrote:
“Fortunately I believe we have not yet gone so far as our friends
in the USA where, I am told, some editors of journals will return
an article because tests of significance have not been applied”
[5]. The pendulum has unfortunately swung, as statistical
significance has become the arbiter in many scientific
disciplines, taking precedence over real-world impact of results,
model critique, data quality, etc.

But is it not of the upmost importance to science to have a
method to decide if an intervention has an effect? The answer
is, to some rather surprisingly, a resounding No. There is no
need to spend endless hours writing grant applications,
thoughtfully designing experiments, tirelessly recruiting
participants, and then chasing follow-up data to reduce

attrition—if all you want to know is if an intervention has an
effect, then the answer is Yes - all interventions have an effect
and you can prove it using P value dichotomization as long as
you have enough data [6]. The smaller effect you wish to
identify, the larger the required sample size will be [7]; and at
some point, the sample size required may be greater than the
population at hand, which makes the experiment impossible.
However, the null hypothesis will always fall given enough
data.

This viewpoint will present 2 real-world examples, which will
hopefully convince the reader that P value dichotomization is
not helping scientific discovery and that the praxis needs to be
reconsidered. The two trials discussed in this viewpoint have
received ethical approval: Regional Ethical Committee in
Linköping, Sweden (Dnr 2017/388-31 and Dnr 2018/417-31).
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If we Could Only Recruit Some More
People, This Smoking Cessation
Intervention Would Become Effective!

In our first example, we will look back at an experiment
conducted among high school students in Sweden [8,9]. The
effects of a text messaging intervention on smoking cessation
was being estimated, in comparison to a waiting list control
group. A 2-arm single blind trial design was used, with equal
probability randomization to both groups.

There were 2 outcome measures: prolonged abstinence of
smoking (not smoking more than 5 cigarettes over the past 8
weeks) and point prevalence of smoking cessation (not smoking
any cigarette the past 4 weeks). Findings suggested, 3 months
after randomization, that the effect of the intervention on
prolonged abstinence could not be distinguished from the null

(OR 1.25, 95% CI 0.78-2.01; P=.36); however, the effect on
point prevalence could be (OR 1.83, 95% CI 1.12-3.02; P=.017).

Recruitment was initially planned to last for 6 months [9].
However, after this time had elapsed, only 386 students had
been recruited, less than the prespecified goal of 558. Therefore,
it was decided to extend the recruitment period by another 6
months, after which recruitment stopped; and a total of 535
students were recruited.

What would our null hypothesis–focused analyses have looked
like had we decided to stop after recruiting 2 participants? 4?
50? 400? In Figure 1 and Figure 2 we have drawn plots, which
represent our analyses of prolonged abstinence (Figure 1) and
point prevalence (Figure 2) given a certain number of
responders. Follow-up attrition was relatively high in this trial,
however, for now we will use responders and participants
interchangeably.

Figure 1. Prolonged abstinence: odds ratios and P values calculated using actual data from trial, plotted over time (number of responders in the study).
Horizontal lines represent null value (OR 1) and the .05 statistical significance line. Vertical line represents where the first 6 months of recruitment
ended.

Looking at Figure 1, we can see that odds ratios for prolonged
abstinence fluctuate heavily when there are few responders, but
then seem to settle a bit as the number increases. We should
expect this from point estimates, as when there are few data,
each point plays a larger role in the estimate. The P values are
highly unstable, fluctuating even when the number of responders
is large, but never crossing the magic .05 significance line. The
vertical line represents the 6-month mark, when the trial was
initially planned to stop recruitment. Looking only at the P
value, our conclusions would not have been much different had
we decided to stop at this point. Since it was not significant, the

OR is irrelevant (or is it?). However, the estimated odds ratios
were different after 6 and 12 months (OR 1.00 vs OR 1.21).

Focusing instead on Figure 2, where point prevalence is
analyzed, we see a similar story early on, ORs and P values
fluctuate, but then things seem to settle a bit. Had the trial ended
at the 6-month mark (the left most vertical line), we would have
concluded that the effects of the intervention were not
distinguishable from the null, thus not rejected the null
hypothesis. However, at the end of 12 months, we can see that
the P value was below the .05 significance line, suggesting
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statistical significance and that the effect of the intervention
was distinguishable from the null. Finally! After respondent
366 (right most vertical line), we can look at our OR in new
light - the OR of 1.68 is statistically significant, there is an

effect! Sadly, had we stopped at the previous respondent
(number 365), the OR of 1.64 would not have been significant,
indistinguishable from the null and not a measure which we
should interpret as an effect of the intervention.

Figure 2. Point prevalence: odds ratios and P values calculated using actual data from trial, plotted over time (number of responders in the study).
Horizontal lines represent null value (OR 1) and the .05 statistical significance line. First vertical line represents where the first 6 months of recruitment
ended, second vertical line represents when point prevalence became statistically significant.

What if we had continued recruitment? What if we had another
400 students take part in our trial? Well, we cannot possibly
know exactly how these students would have responded; but
for the sake of this experiment, it is not strictly necessary. We
can pretend that the new 400 participants are similar to the
participants we already have, and therefore, sample 400
respondents from those already in our trial (with replacement).
The new OR and P value timeline can be seen in Figure 3 and
Figure 4.

As we can see in Figure 3, it turns out that the intervention
actually did have an effect on prolonged abstinence. We just

did not have enough respondents to distinguish it from the null
using the .05 threshold, but now we do. We could argue that
resampling from a sample with a nontrivial OR and recalculating
the P value will of course result in a lower P value, but that is
exactly the point! Statistical significance is a function of the
sample size, so any effect can be statistically significant if there
are enough participants; and all interventions have an effect
[6,7]. Note that there is a lot of crossing the significance line
between 600 and 800 respondents, many opportunities to end
the trial and cry wolf. In Figure 4, the P value has essentially
flatlined.
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Figure 3. Prolonged abstinence (with sampled data): odds ratios and P values calculated using actual and sampled data from trial, plotted over time
(number of responders in the study). Horizontal lines represent null value (OR 1) and the .05 statistical significance line. The vertical line represents
where the first 6 months of recruitment ended.

Figure 4. Point prevalence (with sampled data): odds ratios and P values calculated using actual and sampled data from trial, plotted over time (number
of responders in the study). Horizontal lines represent null value (OR 1) and the .05 statistical significance line. First vertical line represents where the
first 6 months of recruitment ended, second vertical line represents when point prevalence became statistically significant.
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So, should we simply continue recruiting until our P values
flatline, forgoing a prespecified sample size? That is likely a
bad idea if there are harms and costs involved, which would
make it ethically irresponsible. One may argue that if you cannot
reject the null given your prespecified effect and sample size,
then the value of flatlining the P value at some smaller effect
size is not worth the risk. However, such thinking may be
irresponsible, as we shall see.

But it was Statistically Significant
Yesterday!

Our second example concerns an experiment of estimating the
effects of receiving 1 of 2 different text messages with alcohol
and health information. This experiment was nested within a
larger (ongoing) trial of a digital alcohol intervention [10].
Participants who were randomized to the control arm of the trial
were randomized further into 2 arms. The first arm received a
public health message regarding alcohol, violence, and cancer.
The second arm also received information about alcohol,
violence, and cancer, but the information was worded in an
alcohol industry manner, focusing on responsible drinking and

downplaying the evidence on the risks of alcohol. At the end
of both text messages was a hyperlink, which lead to more
information about alcohol and health, and the experiment
outcome was whether or not participants pressed the hyperlink.

After having recruited 150 participants in the experiment, we
were curious to see how things were progressing. Interim
analyses were interesting. It turned out that participants in the
public health arm were far more likely to press the link (OR
2.26, 95% CI 1.18-4.42; P=.015). Figure 5 shows, as before,
ORs and P values given a certain number of participants. The
P value does at first glance look like it has flatlined.

However, as the trial progressed, and more participants were
recruited, the fickleness [11] of the P value became apparent.
After one year, 560 participants had been recruited, and the ORs
and P values plot (Figure 6) looked markedly different. Now,
there was no statistical significance (OR 1.14, 95% CI 0.82-1.59;
P=.43). However, there were plenty of times where the trial
might have ended, and a statistically significant result would
have been the result; and if the trial continues recruitment, we
will eventually have a significant result again (as discussed in
the previous example).

Figure 5. Pressed link in text message: odds ratios and P values calculated and plotted over time (number of participants in the study). Horizontal lines
represent null value (OR 1) and the .05 statistical significance line.
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Figure 6. Pressed link in text message: odds ratios and P values calculated and plotted over time (number of participants in the study). Horizontal lines
represent null value (OR 1) and the .05 statistical significance line. Vertical line represents when interim analyses were conducted.

There was no prespecified sample size for this exploratory
outcome, since it was nested within a larger trial. However,
think about the number of times you have read reports of trials,
and grant and ethics applications, where the power analysis has
concluded that recruiting approximately 150 participants will
suffice. Given a large enough effect size, this will hold for the
calculation; and if researchers are “lucky,” it will hold in their
experiment. How many reports have you read where statistically
significant results have led to a discussion about important
results based on 150 participants? What would have happened
if they continued recruiting another 50, 100, or 200 participants?

Letting Bayes be the Conductor

One of the core issues underlying the 2 examples given herein
is that point estimates and P values are very fickle when taking
the traditional approach. This fickleness is caused by assuming
that data alone is all we care about, and we take no action
towards tempering our expectations. That is, after collecting
data from 2 participants, 1 from the intervention group and 1
from the control group, the effect is estimated to be the
difference between these two. Put in another way, we are
susceptible to drawing conclusions from small sample sizes,
and we ignore our belief that our interventions will likely have
small to modest effects.

An alternative is to take a Bayesian approach to inference
[12-14]. While a full discussion about the details of Bayesian
inference cannot possibly fit here, the essentials can be captured
as follows: You count what you see (the data), and balance this

with what you expect (known as the prior). For instance, if you
believe that there may be both black and white swans (this is
your prior), then you do not make the conclusion that all swans
are white after having seen a single white swan. After having
seen thousands of white swans you may decide that it is more
likely that swans are white, but you do not say that it is
impossible for swans to be black.

From a Bayesian perspective, a trial is a series of repeated
experiments; and each time we collect data from a participant,
we can update our inference about the trial outcomes. This is
often referred to as a Bayesian group sequential design [15,16].
We use prespecified criteria to decide if a trial is a success, or
if it is futile to continue recruitment (and possibly also if it is
unethical [17] to continue due to harm). These criteria can be
evaluated as many times as we like. Using our second example
from before, where we studied prevalence of pressing on a link
in a text message, we may define our success criteria as: If there
is more than a 95% probability that the OR is greater than 1,
we end the trial and call it a success. A criterion for futility
may be as follows: If there is more than a 95% probability that
the OR is somewhere between 1/1.25 and 1.25, then we believe
that the groups are essentially equal, and there is no need to
further investigate the intervention. These 2 probabilities (for
success and futility) can then be calculated using what is
commonly referred to as a skeptical prior, which encodes a
strong a priori belief that the intervention has no effect, and that
the data needs to convince us otherwise.

In Figure 7, we have plotted the median OR (top plot), the
probability of success (middle plot), and the probability of
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futility (lower plot) given the criteria set above. A skeptical
prior for the intervention effect (normal distribution with mean
0 and SD 0.2) has been used for both the success and futility
criteria. While full details are scarce in this viewpoint, it should
be clear from these plots that by tempering our expectations,
we have avoided making conclusions early. The P value
approach (Figure 6) called for a statistically significant effect

after 150 participants (vertical line), which was later overturned.
We have avoided this by using a Bayesian approach; and it
looks like the experiment will be considered futile as new data
is collected, as the probability of an OR between 1/1.25 and
1.25 (lower plot) is gradually increasing towards 95% (our
predefined futility criteria).

Figure 7. Pressed link in text message: median posterior odds ratios and probability of success and futility plotted over time (number of participants
in study). Horizontal line represents null value (OR 1), and 95% probability of success and futility respectively. Vertical line represents interim analysis.
A skeptical prior (mean 0, SD 0.2) was used for all inference.

Discussion

The 2 examples herein are not fictive, and they are by no means
unique. We invite readers to plot effect estimates and P values
in a similar fashion as we have and reflect on the robustness of
their past conclusions. If such plots were commonplace in
scientific papers, would readers' or reviewers' interpretations
of the findings change? There is no finger pointing here, we are

all as a collective responsible to ensure that the scientific method
is sound.

The replication crisis in the social sciences is proof that methods
built on dichotomization of evidence are not scientific [18]. It
needs to stop. However, if researchers, journals, reviewers,
funding agencies, media, and the general public, continue to
crave statements of true and false—effect or no effect—then
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there is no silver bullet, which will make the line dancing cease
[19]. Consulting confidence intervals is veiled hypothesis
testing, and reducing the P value threshold to .005 [20] is just
kicking the can down the road and opening the door for new P
value–hacking and selective reporting issues [1]. Add to this
that P values (and confidence intervals) are consistently being
misinterpreted [4,21], and even highly respected journals are
allowing nonsignificance to be interpreted as an absence of
effect [22]. A recent example was the conclusion that
lopinavir–ritonavir treatment for COVID-19 “was not beneficial
in comparison to standard care” [23], backed by a hazard ratio
for clinical improvement of 1.31 with a 95% CI 0.95-1.80, which
is not statistically significant, but which cannot rule out a hazard
ratio of 1.80.

What is the alternative? Well, as Gelman and Carlin put it [19],
“...resist giving clean answers when that is not warranted by
the data. Instead, do the work to present statistical conclusions
with uncertainty rather than as dichotomies.” Doing so is natural
from a Bayesian perspective, as posterior distributions can
directly describe the relative compatibility of different models
given the data (rather than the other way around). In fact,
Bayesian inference answers the question that researchers want
to ask (but have been told that they cannot): What is the
probability that an intervention had a positive effect?
Interventions should not be dismissed because the design of an
experiment did not allow the P value line to be crossed, as we
have seen, it may be sheer luck that an experiment stopped
exactly when it could show significance.

We recognize the importance for careful planning of trials,
including giving estimates on the number of individuals
necessary to recruit. However, prespecifying sample sizes based
on type I and type II errors is not only ignorant to the fact that
it is not possible to know how many individuals are necessary
to recruit (it may be considered a random variable itself), but

may also be considered unethical as it may lead to
over-recruitment, detecting harm and benefit later than necessary
[16]. Using multiple looks at the data throughout the trial and
making judgments based on null hypothesis tests is not only
problematic due to its reliance on fickle point estimates (as
demonstrated herein), but also inflates type I errors due to
multiplicity if not handled correctly [24]. Instead, a Bayesian
group sequential design [15,16] allows for continuous
monitoring as data is collected, utilizing target posterior
probabilities for success and futility, such that a decision can
be made to stop or continue recruitment each time new data is
available without concern for multiplicity [25].

It should be noted that all assessments of evidence will fluctuate
over time, as we have shown in the enclosed examples. One
aspect of this is that smaller samples may not represent the study
population well. Another is that changes may occur in the
underlying study population as we recruit over time, which
means that we may be sampling from different regimes [26-28]
in the data (for instance, due to seasonal differences). However,
in a Bayesian group sequential design we can use a skeptical
prior which will draw back the posterior probability of effect
and posterior median, which will automatically correct for too
early looks at the data [25]. This goes some way towards
protecting from small sample sizes and regimes that may be
misrepresentative of the population we wish to study.

Uncertainty is the driving force of science, and uncertainty in
can never result in certainty out. Uncertainty leads in Bayesian
methods, and it allows us to more clearly judge our findings in
light of it. Convoluted rules for sample size estimation, P value
spending, or correction for multiplicity are all artifacts from
thinking that certainty can be the result of uncertainty. We can
increase our understanding of the uncertain through repeating
experiments, as was Fisher's intention, which ultimately is the
goal of science [29].
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