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feasibility of free‑breathing 
quantitative myocardial perfusion 
using multi‑echo Dixon magnetic 
resonance imaging
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Marcel Breeuwer3,4, Amedeo chiribiri1 & Markus Henningsson1,5,6*

Dynamic contrast-enhanced quantitative first-pass perfusion using magnetic resonance imaging 
enables non‑invasive objective assessment of myocardial ischemia without ionizing radiation. 
However, quantification of perfusion is challenging due to the non-linearity between the magnetic 
resonance signal intensity and contrast agent concentration. furthermore, respiratory motion 
during data acquisition precludes quantification of perfusion. While motion correction techniques 
have been proposed, they have been hampered by the challenge of accounting for dramatic contrast 
changes during the bolus and long execution times. in this work we investigate the use of a novel 
free‑breathing multi‑echo Dixon technique for quantitative myocardial perfusion. the Dixon fat 
images, unaffected by the dynamic contrast-enhancement, are used to efficiently estimate rigid-body 
respiratory motion and the computed transformations are applied to the corresponding diagnostic 
water images. this is followed by a second non‑linear correction step using the Dixon water images to 
remove residual motion. the proposed Dixon motion correction technique was compared to the state‑
of-the-art technique (spatiotemporal based registration). We demonstrate that the proposed method 
performs comparably to the state-of-the-art but is significantly faster to execute. Furthermore, 
the proposed technique can be used to correct for the decay of signal due to T2* effects to improve 
quantification and additionally, yields fat-free diagnostic images.

Myocardial perfusion can be assessed using dynamic MRI during first-pass of a contrast  agent1. While the images 
are routinely reviewed visually in the clinic, quantification is desirable as it is user-independent2. Quantification 
of myocardial perfusion can be challenging mainly due to the non-linearity between the signal intensity and 
contrast agent concentration at concentrations necessary to observe potential perfusion abnormalities within 
the  myocardium3. Furthermore, respiratory motion makes the quantification of perfusion difficult, and may 
even preclude it.

Although most commonly used to mitigate respiratory motion, breath-holding for at least 40 s (to cover 
the full first pass of the contrast bolus) is challenging for many patients, particularly under stress conditions. 
Moreover, long breath-holds can lead to changes in heart rate, resulting in images being acquired at slightly dif-
ferent cardiac phases thus introducing cardiac motion. Conversely, if patients are allowed to breathe normally, 
respiratory motion tends to be more regular and shallower when compared to the large gasps that may occur 
when the patient can no longer hold their breath. Therefore, acquisitions in free-breathing are easier to correct 
for respiratory motion using image registration compared to breath-holding with intermittent breathing. The 
problem of registering myocardial perfusion MR images is, however, challenging due to the rapid change in signal 
intensity during the contrast bolus transit. The dynamic contrast-enhancement invalidates the assumptions of 
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constant intensity cost functions that are optimised in such schemes and as a result, intensity-based registration 
techniques may not be readily applied.

Several image registration methods have been proposed to correct for respiratory motion between time frames 
in myocardial perfusion  MRI4–7. However, to date, no consensus exists as to which method should be use clini-
cally. Some approaches correct for rigid motion only to mitigate for the most severe breathing artefacts, since a 
substantial part of the motion is due to respiratory motion in the head-foot  direction7–11. Rigid registration meth-
ods are computationally efficient, consistent and robust to noise. However, these do not capture more complex 
non-rigid deformations and hence, images are not precisely aligned. Non-rigid registration methods provide a 
better alignment of the heart during breathing, but are susceptible to noise and are computationally expensive, 
and thus, can be impractical for use in a clinical  setting12–17. In addition, non-rigid methods can cause blurring 
and non-physiological geometric deformation of the heart, hampering accurate myocardial perfusion quantifica-
tion. However, non-rigid registration performs better when correcting for small misalignments. Therefore, adding 
an initial rigid registration step results in a more effective registration than a purely non-rigid transformation 
in the presence of large  motion18. Tracking of respiratory motion may be facilitated by separating water and fat 
signal using multi-echo Dixon (mDixon) imaging, which has previously been implemented for renal perfusion 
 MRI19. Fat images may then be used to estimate rigid respiratory motion, as there is no local signal intensity 
change, and this facilitates the use of simple intensity-based registration methods. The transformations computed 
to correct the fat images can subsequently be applied to correct the corresponding diagnostic water images.

The mDixon MRI acquisitions also provide fat-free diagnostic images, thereby avoiding the need for a 
fat-suppression pulse to null the signal from (epicardial) fat. In myocardial perfusion MRI fat suppression is 
 important2,20 to minimise potential partial volume effects at the myocardial-epicardial border and to improve 
the accuracy of myocardial blood flow quantification. Moreover, accurate myocardial perfusion quantification 
depends on the accurate measurement of the arterial input function (AIF). However, the true AIF is affected by 
the non-linear response of the saturation recovery signal and T2*-related losses at high contrast agent concen-
trations in the blood pool. To ameliorate these effects, the dual-bolus21 and dual-sequence2 imaging strategies 
have been proposed. The dual-bolus method uses a low dose bolus to measure the AIF and a high dose bolus for 
myocardial analysis. In the dual sequence method, a low-resolution AIF image is acquired using very short echo 
times to minimise T2*-related signal loss. In addition, a dual-echo acquisition has been used to further correct 
the effect of T2* losses on the  AIF22. However, these techniques require multiple injections and/or acquisitions.

In this work, we investigate the merits of quantitative perfusion with mDixon for respiratory motion correc-
tion, fat suppression and T2* correction of the AIF. For the respiratory motion correction, a two-step approach 
is proposed, whereby first the fat images are used to estimate the bulk rigid-body motion of the heart, with the 
transformation then being applied to the diagnostic water images. This is followed by a second step to minimise 
residual motion with a non-rigid correction using only the water images. The new technique is evaluated in 14 
patients with normal myocardial perfusion during rest.

Methods
MRi acquisition. The proposed acquisition consisted of a spoiled gradient echo readout with three echoes 
per excitation pulse to enable T2* estimation and water-fat separation using Dixon  reconstruction23. All MRI 
acquisitions were performed on a 3.0 T Achieva scanner (Philips Healthcare, Best, The Netherlands) using a 
32-channel cardiac coil. Imaging parameters included spatial resolution: 2.5 × 2.5 × 10  mm3, flip angle: 14°, FOV: 
360 × 310 mm, TR/TE1/ΔTE: 3.6/1.0/0.9 ms, SENSE: 2, partial Fourier: 0.63, profile order: linear, acquisition 
window: 127 ms, saturation delay: 75 ms, three slices (base, mid, and apical) per heart-beat. A WET pulse was 
used for signal  saturation24. Example water-fat separated perfusion images are shown in Fig. 1 demonstrating 
constant fat signal despite dramatic changes in water signal due to contrast agent bolus passing. Example vid-
eos of corresponding water and fat image series are provided in the supplementary material as Supplementary 
Videos S1–S4.

Respiratory motion correction. The proposed motion correction approach, which is conducted in two 
stages, is illustrated in Fig.  2. First, water and fat images were generated using mDixon  reconstruction23. A 
rectangular region of interest surrounding the left ventricle was automatically computed using our previously 
described deep learning-based processing  pipeline25 and the fat images were then registered in an iterative man-
ner using a rigid (translation and rotation) transformation to optimise the mean squared error (MSE) cost func-
tion. The reference frame was taken to be the mean frame of the image series. Each image in the series was 
registered to the reference image and this process was repeated for three iterations. The computed transforma-
tions were then applied to the corresponding water image series in order to correct for the rigid body respiratory 
motion.

The second step involved using a non-linear registration algorithm and was applied to the water image series 
to minimise residual respiratory motion. This stage was based on the observation that after the rigid body motion 
correction the remaining motion consists only of random fine misalignments. Hence, this motion appears only 
in the later components of a principal component analysis (PCA)  decomposition26,27. This is because a princi-
pal component represents the feature which accounts for most of the variance in the data set that has not been 
accounted for by a previous principal component. Since the residual motion after rigid body correction will be 
small, it will not appear in the early principal components. It is thus possible to create a motionless synthetic refer-
ence image series using only the early principal components that has the same dynamic contrast-enhancement as 
the original series. In this work, the number of principal components used was chosen, empirically, to be three. 
This is a natural choice due to the structure of the data as first three principal components represent the largest 
modes of variation in the dataset. In the case of a myocardial perfusion image series, these are the enhancement 
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of the left ventricle, the enhancement of the right ventricle and the perfusion of the myocardium. It is required to 
include all three of these components in order to retain enough information so that the synthetically generated 
image series has the same dynamic contrast-enhancement pattern as the original image series. This step would 
not be feasible without the earlier rigid body motion correction as in this case the motion would be significant 
enough to appear in these early principal components. Each image in the water image series is then registered to 
the corresponding PCA-based synthetic image using free-form  deformations28, optimising the residual complex-
ity cost  function29. The motion correction was implemented in Matlab (The MathWorks, Natick, MA, USA) using 
software developed in-house with the Medical Image Registration Toolbox for  Matlab30. Videos demonstrating 
the image series at different stages of the motion correction pipeline (water/fat images before motion correction, 
water/fat images after rigid motion correction and water images after both rigid and non-rigid motion correc-
tion) are shown in the supplementary material as Supplementary Videos S3–S7.

in vivo experiments. The proposed perfusion technique was performed in fourteen patients referred 
to our CMR centre for function and viability assessment. No perfusion defects were expected. The study was 
approved by the North of Scotland Research Ethics Committee, United Kingdom (ethics approval number 15/
NS/0030). All patients gave written informed consent prior to participation and all experiments were carried out 

Figure 1.  The fat–water separation of three example frames. The arrows indicate the time points of the main 
bolus of contrast agent that the dynamics are taken from (peak enhancement in the right ventricle (divided by 
3), peak enhancement in the left ventricle (divided by 3) and peak myocardial enhancement). The fat images are 
free of the dynamic contrast-enhancement that precludes image registration, while retaining enough structural 
information to allow rigid correction of the respiratory motion.
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in accordance with relevant guidelines and regulations. Perfusion scans were performed at rest over 1 min and 
20 s during free-breathing with a dual-bolus contrast injection of 0.05 mmol/kg21. The pre-bolus was diluted to 
10% concentration of the main bolus.

Quantitative MBF maps were computed with no motion correction (no MoCo), after motion correction using 
the mDixon fat images (Dixon MoCo) and after motion correction with a state-of-the-art  approach12,31, using 
the water images. This algorithm iteratively registers the image series to a spatio-temporal denoised reference 
image series with the aim of progressively removing the motion (S-T denoising). The open-source implementa-
tion of this approach was  used12.

Due to the absence of ischaemia and scar in the patients and the fact the perfusion imaging was performed 
under resting conditions, no perfusion defects should be observed, resulting in uniform quantitative perfusion 
maps. This is not the case in the presence of motion as this introduces artefacts in the time-intensity curves. In 
order to assess the efficacy of the motion correction, the temporal smoothness of the time-intensity curves was 
analysed. To this end, the second derivatives of the pixel-wise time-intensity curves were computed in the myo-
cardium. The standard deviation (SD) of this is then computed for each curve and the mean value is computed 
over all curves from an individual slice, as previously  suggested32. In the absence of motion the intensity changes 
in the curves should be smooth and thus lower values of this metric are associated with lower variations in the 
curves and more effective motion correction.

Perfusion quantification. The perfusion images generated with the different methods were processed 
automatically using our deep learning processing  pipeline25 and MBF is quantified using the dual-bolus AIF. 
Pixel-wise time signal intensity curves were then extracted from the myocardial mask. Signal intensity curves 
were subsequently split into the time intervals corresponding to the pre bolus injection and the main bolus 
injection for quantification. Quantitative myocardial blood flow (MBF) was estimated on a pixel-wise level by 
fitting the observed AIF and myocardial tissue curves to a two-compartment exchange  model33, as proposed for 
quantitative myocardial perfusion analysis by Jerosch-Herold1 and as described by the pair of coupled ordinary 
differential equations (ODEs):

Figure 2.  A flow chart which describes the proposed two-step motion correction scheme. The fat images 
obtained from the multi-echo Dixon reconstruction are used to correct for the rigid body bulk motion. This 
is done in an iterative fashion. For three iterations the fat images are registered to the mean fat image, which 
updates on each iteration, resulting in transformations T1(t),T2(t) and T3(t) for each time dynamic t  . The 
composition of these three transformations T1−3(t) is then applied to the diagnostic water images. The water 
image which have been rigidly corrected are then refined through non-rigid registration to a synthetic PCA-
based image series.
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In Eqs. (1) and (2), Cp(t) and Ce(t) are the concentration of contrast agent in the plasma and interstitial 
space at time t  , respectively (in units of M). Fb = Fp/(1−Hct) is the myocardial blood flow (mL/min/g), vp is 
the fractional plasma volume (dimensionless), ve is the fractional interstitial volume (dimensionless) and PS is 
the permeability-surface area product (mL/min/g). Hct is the haematocrit level and was taken to be 0.4234. The 
kinetic parameters were estimated from the observed data using hierarchical Bayesian  inference35.In order to 
facilitate the conversion of signal intensities to concentration of gadolinium ([Gd]), a linear relationship was 
assumed, although this does not hold in regions of high concentrations.

T2* correction. Typically, the AIF is affected by high concentrations of Gd, partially due to the associated 
T2*-related signal loss. Though the dual-bolus approach is used in this work to quantify MBF in order to negate 
the effects of both T1 and T2*-related signal loss, it is shown that the echo images can be used to correct the 
T2* effects in the main bolus. This could be used in conjunction with a dual-sequence approach in the future to 
account for both T1 and T2* signal loss.

The time-varying T2* was estimated in the left-ventricular (LV) blood pool by fitting the mean signal mag-
nitude (S) from the three echo images to the equation:

for each time point, where TE is the echo time and M0(t) is the signal at TE = 0 which can be considered as the 
T2* corrected signal. The effect of T2* correction on the AIF estimation was investigated by performing T2* 
correction on the AIF and comparing the peak bolus signal relative to the post-peak baseline, calculated as a 
percentage. This was compared to the AIF without T2* correction. The process of the T2* correction, including 
the three echo AIFs and the T2* corrected signal, can be visualised (for the main-bolus) in Fig. 3.

Statistical analysis. The distribution of quantitative values computed with no MoCo were compared to 
those computed with Dixon MoCo and S-T denoising using the Mann–Whitney U test. This non-parametric 
test was chosen to avoid assumptions on the distribution of the data. A p-value cut-off level of 0.05 was chosen 
to indicate statistical significance.

Results
Motion correction. The mean (± SD) temporal smoothness values for the three motion correction states 
(no MoCo, S-T denoising and Dixon MoCo) were 0.076 (± 0.02), 0.047 (0.01) and 0.045 (0.01) (normalised sig-
nal intensity units), respectively. The distributions of these values are shown for the three states in Fig. 4. Both 
S-T denoising and Dixon MoCo yielded significantly smoother myocardial time-intensity curves than no MoCo 
(both p < 0.01). S-T denoising and Dixon MoCo do not differ significantly (p = 0.17). The absence of motion arte-
facts in the time-intensity curves is shown as increased sharpness in the temporal maximum intensity projection 
(tMIP) images and this is visualised in Fig. 5, before and after Dixon MoCo. The mean registration time per slice 
(± SD) for the S-T denoising method was 171.9 (± 44.6) seconds while the proposed Dixon MoCo method took 
104.6 (± 19.7) seconds.

Example quantitative MBF maps are shown for slices from three patients for no MoCo, S-T denoising and 
Dixon MoCo images in Fig. 6. The effect of motion is visible in the spurious areas of large MBF values, particu-
larly in the no MoCo images. This evidences the increased non-uniformity (standard deviation) of MBF maps 
with the presence of motion. The equivalent mean (± SD) standard deviation of the quantitative MBF maps were 

(1)vp
dCp

dt
= Fp

(

Caif (t)

1− Hct
− Cp(t)

)

+ PS
(

Ce(t)− Cp(t)
)

(2)ve
dCe

dt
= PS(Cp(t)− Ce(t))

(3)S(t) = M0(t)e
−

TE
T2∗(t)

Figure 3.  The (main-bolus) arterial input functions (AIFs) after Dixon MoCo for the three echo images with 
the T2* corrected AIF obtained through the fitting of the three echo AIFs to Eq. (3).
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0.82 (± 0.43), 0.66 (± 0.3) and 0.66 (± 0.28) mL/min/g for the no MoCo, S-T denoising and Dixon MoCo, respec-
tively. The distributions of these values are visualised in Fig. 7. The MBF maps for the S-T denoising and Dixon 
MoCo images were statistically more uniform than the corresponding no MoCo maps (p = 0.046 and p = 0.044, 
respectively). The S-T denoising and Dixon MoCo maps were not significantly different (p = 0.44). Figure 8 shows 
MBF maps calculated with the water images as well as maps generated with water plus fat images. The latter 
image approximates the scenario where no fat suppression is used and the improved MBF maps obtained with 
the water only images in Fig. 8 demonstrate the value of fat suppression for MBF quantitation.

Example videos of image series before and after motion correction are provided in the supplementary mate-
rial as Supplementary Videos S8 to S13.

T2* correction. The correction for the signal loss caused by the T2* decay at high concentrations of contrast 
agent was achieved by fitting the three echo images to the exponential decay model given by Eq. (3) to solve for 
the original signal amplitude. The mean (SD) increase in peak signal intensity was 6.2% (± 5.95%) compared to 
the uncorrected arterial input function with a maximum increase of 20.13%.

Figure 4.  The boxplots distributions of the temporal smoothness metric for the no MoCo, S-T denoising and 
Dixon MoCo images respectively. As expected, the S-T denoising and Dixon MoCo images are significantly 
smoother than the images without motion correction. The Dixon MoCo images are seen to be marginally 
smoother than the S-T denoising images. The top row shows the time-intensity curves from an example image 
series, in the same order.
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Discussion
In this study a multi-echo Dixon acquisition was used for first-pass myocardial perfusion, which allowed the 
separation of the water and fat signals. The separation of the fat image series was used to mitigate the difficulties 
of the dynamic contrast-enhancement when motion correcting myocardial perfusion MRI data. The proposed 
motion correction scheme provides a significant improvement compared with no motion correction and it per-
forms similarly to the state-of-the-art  methods12, as assessed by both the temporal smoothness of the myocardial 
time-intensity curves and the uniformity of the rest MBF parameter maps. The motion correction facilitates the 
computation of significantly more uniform perfusion maps after the correction of free-breathing image series, as 
expected for patients without perfusion defects under resting conditions. The benefit of the Dixon-based motion 
correction is that the fat images allow the initial estimation of the rigid body motion prior to the non-rigid cor-
rection. This is important as non-rigid corrections are computationally more expensive than rigid corrections 
and the initial rigid correction leads to a reduction in total registration time compared to the state-of-the art 
method. Increased sharpness in the tMIP images is also shown in Fig. 5 after both rigid and non-rigid Dixon 
MoCo as compared with the rigid only correction. This indicates that a rigid-only motion correction scheme is 
sub-optimal. A further benefit is that it allows direct registration to a template image rather than using an itera-
tive approach such as the spatio-temporal  denoising12,31.

The approach can also efficiently provide an initial estimate of rigid body motion, as it explicitly accounts for 
the dynamic contrast-enhancement by using the fat images. A number of other methods exist for the motion 
correction of myocardial perfusion  data12–16,26. However, these either rely on assumptions on the data and pre-
processing steps to account for the dynamic contrast-enhancement or do not explicitly account for it. The benefit 
of the proposed method is that the separation of the dynamic contrast-enhancement comes directly from the 
multi-echo Dixon reconstruction as the contrast agent does not affect the magnetisation of fat. This reduced 
reliance on data decomposition techniques or specific pre-processing steps is likely to mean that the proposed 
method is also more robust to the variations in different centres or acquisition parameters. Interestingly, the 
proposed motion correction approach benefits from larger amounts of fat, which is commonly encountered in 
patients with heart disease where obesity is often a comorbidity. These patients are typically more challenging to 
scan using conventional perfusion techniques and are a patient cohort for which the proposed mDixon approach 
may prove particularly beneficial compared to conventional perfusion acquisition techniques.

Although we have demonstrated good performance with this technique to estimate rigid body motion from 
the fat images, due to the sparse and unpredictable fat signal surrounding the heart, it may be difficult to achieve 
robust non-linear motion estimation using the fat images. To this end, in the second step we use the already 
rigid motion corrected water image series to estimate the non-rigid motion. To avoid registering images of vastly 

Figure 5.  The temporal maximum intensity projection of the image series of two patients. The images shown 
are the basal slice from two different patients. The first column shows the corresponding fat image that was 
used for the rigid correction. The increased sharpness and clearly defined features that are evident after motion 
correction indicate a lack of motion. The arrows indicate regions where the fat images are lacking structural 
information and hence the second, non-rigid stage of the correction is required to accurate delineate the 
anatomy.



8

Vol:.(1234567890)

Scientific RepoRtS |        (2020) 10:12684  | https://doi.org/10.1038/s41598-020-69747-9

www.nature.com/scientificreports/

Figure 6.  Example quantitative MBF maps for one image slice from three representative patients (columns) are 
shown for the three motion correction states (no MoCo, S-T denoising and Dixon MoCo, respectively) (rows). 
The presence of motion in the images without motion correction (no MoCo) manifests itself as spurious areas of 
large MBF values. This is eradicated to a certain extent in the S-T denoising images and almost completely in the 
Dixon MoCo images. Further MBF maps are shown in the supplementary material Fig. S1.

Figure 7.  The distribution of the MBF spatial uniformity metric for the three motion correction states. The 
quantitative MBF maps become more uniform after motion correction due to the eradication of the motion-
related artefacts in the myocardial time-intensity curves. Similar performance is reported for the S-T denoising 
and Dixon MoCo images with both being significantly more uniform that then no MoCo images.
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different contrast, each image from the water image series is registered to the image of corresponding contrast 
from a synthetic motionless image series created using a PCA  decomposition26,27. This stage would not be pos-
sible without the earlier rigid correction as with a free-breathing acquisition the persistent motion would appear 
in these early principal components.

Furthermore, the three echoes were used to correct for the attenuation of the main bolus of the arterial input 
function caused by the T2* effects. Even though an increase in AIF peak signal intensity was observed after the 
T2* correction, this does not impact the quantitative MBF values obtained in this study as a dual-bolus acquisi-
tion is used. Although correction of both T1 saturation and T2*-related signal losses of the AIF are required for 
accurate perfusion quantification, the multi-echo design of the mDixon pulse sequence facilitates T2* correc-
tion directly from the imaging data. In the future mDixon could be combined with a dual sequence acquisition 
 approach20 to allow single bolus acquisitions and in this case the T2* correction of the AIF would be relevant.

A further benefit of using Dixon-water fat separation for myocardial perfusion is that the epicardial fat signal 
is eliminated from the diagnostic water images. The effect that the epicardial fat signal can have on quantitative 
MBF maps is also demonstrated. Conventional fat suppression can be performed using fat suppression pre-
pulses. However, this increases the specific absorption rate, is susceptible to B1 inhomogenities, and is more 
challenging to achieve with a linear profile order where the centre of k-space is acquired further away in time 
from the fat suppression pulse.

Limitations. There is a lack of a consensus methodology for the evaluation of motion correction schemes as 
it is not feasible to have a ground-truth to compare with. In this work, the endpoint of the quantitative perfusion 
map was used to assess the success of the motion correction. There is however no ground truth values and it is 
difficult to compare with the existing literature on this topic. The imaging in this study is in 2D and as such it is 
not possible to account retrospectively for any through plane motion, this may influence the quantitative MBF 
values reported.

This feasibility study was performed in patients without ischaemic heart disease, at rest. The acquisition of 
three echoes leads to an increase in acquisition time. In order to still acquire the three requisite slices within 

Figure 8.  The MR images and corresponding quantitative MBF maps for a representative patient computed 
with both the water-only and the water and fat images. The benefit of the fat suppression is evident in the water 
and fat images. The fat, which appears as areas of high signal intensity (yellow arrows), leads to corresponding 
areas of spurious MBF values that are not present on the water-only images.
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one RR interval, a partial Fourier (factor = 0.63) reconstruction was employed. Dixon water-fat separation may 
be achieved using two echoes and other accelerations techniques, such as compressed sensing. Although this 
would reduce signal-to-noise ratio, it would also reduce the acquisition time, and will be investigated in further 
studies. Shortening the acquisition time will be important to enable the proposed approach in patients undergo-
ing stress perfusion and will be the focus of future work. This will also allow a follow-up study in patients with 
suspected coronary artery disease.

conclusion
We have proposed a method which allows motion correction of free-breathing image series. The motion correc-
tion proved to be fast and robust as it negates the difficulties of the dynamic contrast-enhancement. It was shown 
that it is feasible to quantify the free-breathing image series in a reproducible manner after motion correction. 
Free-breathing acquisitions make the acquisition easier for both the scanner operator and the patient and have 
the potential to aid the clinical integration of quantitative perfusion analysis. The motion correction has the 
potential to be used as part of a fully-automated pipeline and is robust so it could be performed inline on the 
scanner. The echo images can be further used to estimate T2* related signal loss and the water-only images may 
be of higher diagnostic quality in patients with significant amounts of fat.

Data availability
The datasets generated during and/or analysed during the current study are available from the corresponding 
author on reasonable request.
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