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Abstract 

Increased use of data is influencing the existing practices in the engineering domain, 
including that of systems engineering. Complex products and systems (CoPS), along 
with its predominant methodology of development, Model-based systems engineering 
(MBSE), is no exception to this. This thesis explores the possible integration of the 
emerging data driven methods and the established model-based methods in the 
context of CoPS development. It also explores what the implications of such an 
integration could be for the organizations building such systems, the system 
integrators. To analyse the current state of the art in CoPS development and model-
based methods as well as the emerging trends in data driven methods, this research 
employs an integrative literature review method. The literature search concluded in 71 
selected articles to be reviewed. These articles where divided over three main 
categories, CoPS, Model-based systems engineering (MBSE) and data driven methods. 
The results of the analysis suggest that data driven methods and the model-based 
methods complement rather than compete throughout the innovation life cycle of 
CoPS. The findings indicate that an integration of the methods is beneficial to the 
architectural, systemic, and component level innovation in CoPS. MBSE and data driven 
methods could however have different levels of influence in these three types of 
innovation. The findings indicate that MBSE could have more influence in architectural 
innovations, while data driven methods could be more influential in systemic and 
component innovation. The continuous innovation in the use phase of system is also 
seen to be improved by this integration. The system integrators benefit from the 
improved project to project learning resulting from the integration which enhances 
their economy of repetition. An integrated method could also increase the speed of 
which decisions can be made while still maintaining reliability in the system. The results 
indicate that the number of iterations could increase due to the increased feedback of 
data and the learnings gained from it, which could pose some challenge to the existing 
project management methods. Further research is needed to find out what are the full 
benefits of an integrated method and identify other potential conflicts. 

 

Keywords:  Complex product systems, Model-based systems engineering, Literature 
review, Innovation, Project management. 
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1. Introduction 

This section presents the background of the thesis as well as presenting of the general 
theoretical areas that the thesis will cover. The background and problem formulation 
then lead into the purpose statement and two specific research questions that will be 
answered. The section closes with an outline for the rest of the thesis. 

 

1.1. Background 

Complex product systems (CoPS) are highly customised technical systems, with a 
hierarchical structure consisting of several interconnected subsystems (Hobday, 1998). 
According to Hobday (1998), it requires a large amount of knowledge and skill to 
develop them due to this high degree of interconnectedness. Telecommunication 
networks, control systems, capital goods, aircrafts are some examples of CoPS. When 
compared to the mass-produced goods, the development of CoPS is considerably 
different. It involves multiple stakeholders such as system integrators, suppliers, 
regulators, and users, spanning the organizational boundaries (Hobday & Rush, 1999). 
As CoPS are business critical for the users and mostly tailormade, the degree of user 
involvement in the development process is considerably high (Bonaccorsi & Giuri, 
2000) (Hobday, et al., 2000). The dynamics of innovation in CoPS is also unique when 
compared to that of mass-produced goods (Hobday, 1998). These special 
characteristics make the development of CoPS difficult, requiring special capabilities to 
manage various aspects of the system. According to Rhodes and Ross (2010), the 
dynamic nature of a CoPS poses a challenge to modelling, testing, validation, and 
evaluation of such systems. Understandably, CoPS development requires a holistic and 
multidisciplinary approach. 

According to Ramos et al. (2012), systems engineering (SE) is a methodology that is 
ideal for developing complex systems where there is a need to deal with different 
competencies, multiple stakeholders, interconnection between subsystems, etc., 
making it a preferred method. According to the International Council on Systems 
Engineering (INCOSE), origins of systems engineering (SE) practices can be traced back 
to the defence programs that were initiated in the US and the UK and later it emerged 
as a preferred methodology owing to its ability to handle complexity and manage the 
associated changes (INCOSE, 2015). Systems engineering can be defined as an 
interdisciplinary approach aimed at developing systems successfully by capturing the 
customer requirements and the functionality needed, early in the system development 
phase, documenting it, and subsequently performing activities such as design 
synthesis, verification and validation in relation to the whole system life cycle (INCOSE, 
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2015). Even though SE started as a document based method, as the complexity 
increased in system building, the use of models for conceptualization became a 
common practice and it started replacing the document driven method (Madni & 
Sievers, 2018).   

Ramos et al. (2012) define Model-Based SE (MBSE), as the process of formally applying 
the principles, tools and methods associated with modelling to the development of 
complex sociotechnical systems, that are interdisciplinary in nature, throughout its life 
cycle. In MBSE, in contrast to the document focused approach to systems engineering, 
the model is the true source of knowledge and the system model the prime artefact in 
the development of a system (INCOSE, 2015). According to Holland (2015), the 
development of computing power has enabled MBSE to capture the system 
characteristics using models which can subsequently be used for verification and 
validation. In the development of CoPS, MBSE maintains an ‘information model’ - 
visible to those involved in the development - from the identification of system 
requirement to the subsequent activities such as decomposition of requirements to 
components, system integration and verification and validation (Freidenthal, et al., 
2014) (Holland, 2015). In this way MBSE covers the whole development cycle of the 
system. The benefits of using MBSE are the enhanced communication between 
stakeholders, collaboration among specialists, knowledge capture, standardization, 
reduced risk, improved quality, traceability of changes to name a few (Freidenthal, et 
al., 2014) (Holland, 2015). 

Though MBSE is shown to have many advantages over the document-based systems 
engineering, it is not without shortcomings. The customers who are used to the 
document-based systems need a cultural transformation to adopt MBSE in their system 
development (Bonnet, et al., 2015). According to Madni and Sievers (2018), integration 
of the models could be difficult as the models are heterogenous as they originate from 
the different disciplines. Establishing and reviewing a baseline satisfying the interest of 
the multiple domains involved, could be challenging. Apart from solving such 
interoperability issues, MBSE also need to develop an approach to bridge the gap 
between the stakeholders, who have a non-technical/non-expert background, and the 
system engineers (Madni & Sievers, 2018).  

The emergence of new technologies based on data have started to affect the 
established engineering practices, including systems engineering.  Artificial intelligence 
(AI), big data analytics and internet of things (IoT) are some of the important 
technologies that have the potential to impact the current system development 
methodologies. The abilities of organizations to gain insights and take effective 
decisions have improved due to the access to large amount of data that can be 
analysed using specific techniques to gain insights (Marjani, et al., 2017).  According to 
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Gao et al. (2013), data driven methods, that based on the big data analytics and signal 
processing, do not necessarily require prior process knowledge. Though the output 
characteristics are different, data driven methods can process data and give output 
faster when compared to the model-based approaches (Geffner, 2018). However, the 
quality and accuracy of data becomes very important as the results would be affected 
greatly if these factors are overlooked (How, et al., 2019).  

According to Hybertson et al. (2018), the predominantly model based nature of systems 
engineering needs a new perspective which include emerging data driven methods in 
it. In the last few years there can be seen some attempts to create conceptual models 
that incorporate data driven methods with the established model-based approach. For 
example, the triple V model by Li et al., (2019), and framework on Evidence-based 
systems engineering by Hybertson et al. (2018). However, further studies are needed 
to realize all benefits that both model-based and data-driven methods brings in the 
development of complex systems and understand its impact on established 
management practices. 

 

1.2. Purpose 

The purpose of this thesis is to explore what implications the increase of data driven 
approaches may have on established MBSE methodologies in the context of complex 
product and systems and identify how these two areas could be integrated on a 
conceptual level. This includes what changes might be necessary in the technical 
processes of developing complex products and systems using an MBSE methodology, 
as well as its implications for the system integrators.  

The aim of this thesis is then to contribute to an integration of data-driven approaches 
and model-based approaches, where both types of methods together drive the 
progress. The thesis should also contribute towards the development of a conceptual 
model that utilizes the benefits of both methodologies. 

This purpose leads to two specific research questions for the thesis: 

i) How could data driven methods be integrated with MBSEs in the development of 
complex products and systems? 

ii) What could the implications of such an integration mean for the system 
integrators? 
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1.3. Structure of the thesis 

Chapter 2 outlines the methodology of the thesis, how the data was collected, analysed 
and why this methodology is the appropriate one. Chapter 3, theoretical framework, 
aims to give the reader a necessary understanding of Complex products and systems 
capabilities, innovation life cycle, organizational structure, and key capabilities. Chapter 
3 also presents the basics for model-based systems engineering and data driven 
methods. Chapter 4 gives a descriptive analysis of the chosen articles followed by 
Chapter 5 which presents an integrative analysis of complex products and systems, 
model-based systems engineering, and data driven methods. Chapter 6 presents the 
conclusions of the thesis and chapter 7 discusses the recommendations for future 
research. 
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2. Methodology 

In this section, the methodology used to perform the thesis is presented. First, a general 
research design is defined followed by a more detailed strategy. The strategy aims to first 
put the thesis in a broader context, making it more generalisable, to then in detail explain 
how the research was carried out, the data collected and analysed. 

 

2.1. Research Design 

As the purpose of this thesis is to analyse and synthesize how two different approaches 
to develop complex systems might be integrated, and what effects this could have on 
system integrators, this study will mainly take an exploratory approach. An exploratory 
approach fits well when the aim of the research is to get a better understanding of an 
area or phenomenon and is especially suited to answer questions stated in a “how or 
“what” fashion (Saunders, et al., 2019). Along with the exploratory approach, this thesis 
will mainly use a qualitative research design. In a qualitative methodology, in contrast 
to quantitative, the data collected focuses on words, meanings, concepts and 
relationships rather than numbers and quantifiable results (Bell, et al., 2017). A 
qualitative research approach is also connected with the researchers interpreting the 
data as they need to make sense of different meanings in the studied subject 
(Saunders, et al., 2019). As this thesis aims to develop a conceptual framework, where 
a conceptual framework can be considered a synthesis of relationships of concepts 
(Jabareen, 2009) which requires creativity (Torraco, 2016), a qualitative approach was 
deemed the preferred choice of research design. 

 

2.2. Research Strategy 

The research strategy was developed to put the thesis and its result in a broader 
context by placing it in an established theory building framework. The strategy was 
also made to incorporate a methodology that would support the understanding of 
both emerging, as well as more established fields. The methodology was also chosen 
to allow for the combination of different concepts in those fields. 

 

2.2.1. Theory building framework 

Even though this thesis is only meant to establish a conceptual model, and can 
therefore not claim to be building theory, it is the aim that by putting the conceptual 
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model in the context of a theory building framework, this can help establish a broader 
structure and support with more concrete definition of terms. This is done especially 
since the conceptual development is treated as a separate and necessary phase in 
several theory building frameworks (Storberg-Walker, 2003).  

For this thesis, the choice was made to use Lynham’s General method of theory building 
(Lynham, 2002). The reason for choosing Lynham’s method over other theory-building 
frameworks was for its general usage, that it is not restrictive to any specific 
philosophical view, research design,  or approach to the research (inductive/deductive) 
(Storberg-Walker, 2003). The framework was also specifically developed for applied 
disciplines (Lynham, 2002).  

The framework consists of a total of five stages. These phases are: 

i) Conceptual development – The purpose it to develop a conceptual model where the final 
output should be a conceptual framework that often is represented through a model or 
metaphor. 

ii) Operationalization - where the purpose is to establish a connection between the conceptual 
model and practice. 

iii) Confirmation or Disconfirmation - in this phase a research agenda or studies should be 
planned, implemented and then either confirm or disconfirm the theoretical framework for 
the specific area in which it applies. 

iv) Application - the confirmed theory then needs to be applied to the real world to address the 
issue or phenomenon which it was developed for. 

v) Ongoing refinement and development - the final stage of theory development process 
ensures that the theory is kept up to date with the latest findings in the area. It ensures that 
it is always reliable and when it is no longer accurate to its application, it is updated, changed 
or discarded as false. 

The phase of Lynham’s framework that this thesis aims to contribute towards is the 
conceptual development phase. Clarification on the definition of a conceptual 
framework and its necessary properties will be further defined in section 2.2.2. 

 

2.2.2. Conceptual development of a framework/model 

A conceptual framework or model can generally be described as a collection of 
interlinked concepts which together contributes to the understanding of the issue or 
phenomenon (Jabareen, 2009). A concept can then further be described as consisting 
of several distinct, but non separable components and can be understood as the 
accumulation of these components (Jabareen, 2009). 

With these definitions in mind, the conceptual development process can then be 
described as the process of gaining deeper understanding about a subject to depict 
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the current and best practice of the area of study, with the purpose of developing a 
conceptual model or framework (Lynham, 2002). There is no specific method that 
should be used to develop a conceptual model, rather, the method should be chosen 
in accordance to the purpose of developing the model. The method used in this thesis 
is the integrative literature review, which will be explained further in section 2.2.3. and 
2.2.4. However, whichever method is chosen to develop the conceptual model, there 
are some characteristics that needs to be defined and developed during the conceptual 
development. During the process, the key elements of the theory should be identified, 
the relationships between these elements needs to be mapped and the scope under 
which the model can be expected to function should be defined (Lynham, 2002). This 
process should then culminate to an informed conceptual model or framework which 
is not simply a collection of concepts or elements, rather an interpretation of both their 
relationships to each other and an interpretive understanding of the real world 
(Jabareen, 2009). This thesis will focus on identifying the key elements and mapping 
their relationships, which can contribute to further development of a conceptual model. 

 

2.2.3. Literature review 

This thesis focuses on the advancements in MBSE, data driven and CoPS. Hence it is 
important to look at the state of the art in these fields. Critical review of existing 
literature and synthesis of new knowledge, according to Torraco (2016), is one of the 
main purposes of conducting a literature review. According to Snyder (2019), to build 
new conceptual models or theories, it is important to know the gaps in research, which 
a literature review method can reveal. In case of emerging topics, it is likely that there are 
contradicting viewpoints which none of the individual literature discusses about (Torraco, 
2016). A literature review gives an opportunity to investigate different aspects and bring 
about a clear understanding of underlying issues. Keeping these factors in mind, a 
literature review method was found to be a suitable method for answering the research 
questions of this thesis.  

According to Snyder (2019), the literature review method can be broadly categorized 
into three type namely systematic literature review, semi systematic literature review 
and integrative literature review. 

i) Systematic literature review: it is aimed at collecting empirical evidence that is selected 
based on a pre specified inclusion criteria, often using statistical methods (e.g. meta-
analysis) to identify different patterns and relationships that emerge. This method 
reduces bias and provides reliable results. 

ii) Semi systematic literature review: it is aimed at studying topics that several groups have 
conceptualized differently involving diverse disciplines, which hinder the use of a 
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systematic review. It looks at how topics have evolved overtime across different 
research traditions, providing a historic overview.  

iii) Integrative literature review: this method is suitable for evaluating, critiquing, and 
synthesizing existing literature to aid the development of new theoretical frameworks 
and identification of emerging perspectives. 

For this thesis, an integrative literature review is found to be suitable as it aligns to the 
purpose of the research and seems appropriate to aid in answering the research 
questions. The details of which are discussed in the next section. 

 

2.2.4. Integrative literature review 

When developing a conceptual framework, it is important to look at the issues from 
multiple perspectives. This requires the researchers to be creative in collecting the data 
from diverse sources to get a holistic view of the topic and the integrative literature 
review, can be a suitable method for this type of research (Whittemore & Knafl, 2005) 
(Snyder, 2019). The integrative literature review is suitable for both mature as well as 
emerging topics. In mature topics, it can result in an upgrade of the existing concepts 
and in emerging topics, it can result in the creation of new concepts (Torraco, 2016). 
Model driven methods and complex systems both fall under a more mature topics and 
data driven methods is still an emergent field of research.  Though the integrative 
literature review is a suitable method, there are some key aspects that need to be taken 
into consideration to make it rigorous. According to Snyder (2019), the literature review 
should have a step by step approach and it is important to select the articles in a 
transparent manner to ensure the quality and reliability. Since this method allows 
creative ways of collecting data, such as combining experimental and non-
experimental data, such diversities arising out of the breadth, could result in higher 
complexity (Whittemore & Knafl, 2005). According to Whittemore and Knafl (2005), the 
strategies for extraction of primary data as well as the strategies for data analysis are 
of prime importance. Developing a right strategy is important in enhancing the rigour 
of the integrative review (Whittemore & Knafl, 2005). 

Whittemore and Knafl (2005) propose certain strategies which can act as counter 
measures to strengthen the scientific rigour of the integrative literature review. 

i) In the problem formulation stage, framing a purpose that is well defined is important. 
This can specify the variable which help in identifying if the information gathered is 
relevant or not. 

ii) In the data collection stage (literature search), having the right keywords is essential 
since inconsistent search can result in a loss of about 50 % of eligible literature. The 
search method should be explicit with keywords, databases, secondary search methods, 
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criteria for selection and rejection of literature. The use of a decision tree is highly 
recommended. 

iii) In the data appraisal stage, the defined quality criteria for the data is considered. 
Employing more than one criteria for the primary sources, can increase the quality of 
data. 

iv) In the data analysis stage, the focus is on interpretation and synthesis of the collected 
data using a methodical approach. In integrative reviews, methods such as 
categorization, grouping and coding are done before data reduction, comparison, 
conclusion, and verification. It is possible to use diverse methodologies to handle varied 
data in the integrative method. 

v) In the conclusion stage, the emergent patterns are subjected to interpretation. One 
challenge could be handling the conflicting evidences, if such a situation emerges. This 
can also be an indication of the need for future research. 

A thematic structure that Toracco (2016) suggests was used for this thesis to organize 
the sub-themes as it helps in building clarity on how the different topics are linked 
together as well as brining coherence to the different ideas. Table 3 in section 2.4.1 
shows the emergent sub-themes of the literature review. To ensure the quality and 
reliability of the research, recommendations from Whittemore and Knafl (2005), 
Torraco (2016) and Snyder (2019) were incorporated. These recommendations call for 
a transparent step by step approach supported by a sound strategy to conduct an 
integrative literature review, which were used as a guide. Section 2.4.1 describes in 
detail, how these recommendations were implemented in this thesis. 

 

2.3. Pre-study 

At the start of the thesis, a pre study was performed to gain further understanding 
about the subject. There was specific emphasis put on gaining understanding within 
the methodology of systems engineering as this was considered the outer boundary 
of the content of the thesis. The pre study then continued with a focus on what 
characterizes a complex system. Finally, focus was put on understanding the two main 
concepts of this thesis, model-based systems engineering, and data driven methods 
for systems engineering. To gain deeper understanding of these two concepts, 
different literature sources where studied, as well as working through a short practical 
case example. The short case was developed using a model-based system engineering 
methodology, and once done, reflected upon on how the system would be impacted 
if data driven methods would have been utilized. 

The various phases of the model-based system engineering activities were explored by 
using the example of a simple door access system that allows selective access based 
on identification such as a key card or tag. This case study helped the authors to 
understand how MBSE provides a robust way to decompose requirements to design 
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elements. The business and stakeholder requirements were converted into functional 
requirements. The system architecture was designed to fulfil these requirements. The 
architecture was mapped to the design definition and to the physical components. 
Verification and validation criteria were created and were mapped back to the system 
design. Since all the aspects ranging from requirements to verification and validation 
are linked together, traceability and impact analysis was made easy with the use of 
MBSE. It was reflected upon by the authors that the process of capturing the 
requirements from stakeholders and decomposing them to functions and components 
is in dependent on previous experience and knowledge. It was also reflected upon at 
how the incorporation of data driven methods could instead influence the system at 
various levels. 

The knowledge gained from this initial pre study contributed to the definition of the 
purpose for this thesis, the specific research questions, the themes of the thesis and 
the different keywords in the themes. In this sense, the pre-study can be viewed as the 
first of Whittemore & Knafl (2005) strategies for a strong integrative review. 

 

2.4. Data Collection 

From the pre-study, the main themes of this research were identified as complex 
products and systems, model-based systems engineering, and data driven methods, 
with systems engineering as the background. The articles from the pre-study phase 
were used to identify the keywords and key phrases to be used for the literature search.  

 

Complex products 
and systems 

Model-based systems 
engineering 

Data driven methods 

“Complex products 
and systems 

“Model based systems 
engineering” 

“Data driven” 

“Complex product 
systems” 

“MBSE” “Data analytics” 

 “Complexity” “Data based” 

 “Complex” “systems engineering” 

  “Complexity” 

  “Complex” 
Table 1. Keywords and key phrases for the literature search 
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The keyword search where structured in a way so that each article would be in the 
context of complex systems. The keyword/key phrase search was then divided into the 
three themes to identify the most relevant articles. The three different searches, 
labelled S1, S2, and S3, and the structure of the different keyword searches that were 
carried out can be viewed in table 2. 

 

S1 “Complex products and systems” OR “Complex product systems” 

S2 (“Model based systems engineering” OR “MBSE”) AND (“Complexity OR 
“Complex”) 

S3 (“Data analytics” OR “Data driven” OR “data based”) AND (“Complexity” OR 
“Complex”) AND (“Systems engineering”) 

Table 2. Strings for the literature searches S1, S3 and S3 

 

A comparison study of databases by Falagas et al. (2008) explored the capabilities of 
Scopus, Web of science and Google scholar. The study suggests that Scopus had 
several advantages when compared to Web of science and Google scholar owing to its 
wider journal and subject range. A trial search of databases (Scopus, Web of Science, 
ScienceDirect and Google Scholar) performed by the authors of the thesis showed a 
similar result. Google scholar returned the most results, but with a large portion being 
not relevant to the subject of the thesis. Scopus returned a good number of relevant 
articles while the return in ScienceDirect and Web of Science was low and returned 
several duplicates with Scopus. For these reasons, Scopus and Google scholar where 
chosen as the databases for the literature search. By finding and using keywords which 
will provide a reliable results, along with a search strategy involving the use of 
databases that has the potential to give the most relevant articles, part of the second 
strategy from Whittemore & Knafl (2005) is achieved. 

 

2.4.1. Article selection process 

The initial process for article selection started with the definition of criteria for the 
selecting an article in the sample. According the Snyder (2019), the design of the 
inclusion and exclusion criteria is critical to ensure the quality of the review. The initial 
criteria for the first stage of selection in the review where; The first 200 articles in the 
search, sorted by reference. If the search gave a result that was reasonably close to 200, 
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all articles in the search where selected. Only articles that where published in a peer 
reviewed journal or conference proceedings where included. There was one exception 
done for this criterion where a survey of MBSE methodologies published by INCOSE 
was included. This was done since the survey had a significant impact in the MBSE field. 
Further, only articles written in English where included. Finally, only articles published 
between 1993-2019 where included. The reason for having 1993 as the limit is because 
the early literatures describing CoPS were published that year. After the search with the 
criteria applied, 1023 articles where included in the initial selection. In the second stage 
of the selection, the abstracts of the 1023 articles where read and reviewed by the 
authors. At this stage focus was placed on the abstract’s connection to one of the three 
main themes as well as the overall purpose. After the abstract review stage, 94 articles 
remained in the selection. The final stage of the article selection process consisted of a 
full read of the 94 articles. The emphasis here was on the match between the article 
and the purpose of the thesis. After this final read, 71 articles where chosen to be 
included in the literature review with articles published between 1997-2019 with a 
distribution according to figure 1. With clearly established inclusion and exclusion 
criteria which the authors thoroughly considered throughout the process, the third 
strategy by Whittemore and Knafl (2005) is addressed. 

 

 
Figure 1. Distribution of articles per year 
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After the full read of the articles, subthemes where identified from each of the three 
major themes of the thesis. This was done to get a better structure of the review, as 
well as give a better understanding of the area based on the selected literature. The 
subthemes are presented in table 3. 

 

CoPS MBSE Data driven methods 

Characteristics of Complex 
products and systems 

Traditional Model-based 
systems engineering 

Data driven control and 
optimization 

Innovation life cycle of 
Complex products and 
systems 

Emerging cultural and 
technical challenges in 
Model-based systems 
engineering 

Data driven modelling 

Organizational structure 
in Complex products and 
systems suppliers 

Case studies on Model-
based systems 
engineering 

Data driven monitoring 
and fault diagnostics 

Key capabilities of 
developing Complex 
products and systems 

Model-based systems 
engineering and data 

 

 

Table 3. Subthemes of the literature search 

 

A representation of the article selection process can be viewed in figure 2 in the form 
of a process tree. 
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Figure 2. Process tree for the literature search 

 

After the articles had been selected for the literature review, a descriptive analysis was 
done for each article. The aim of the descriptive analysis was for the authors to identify 
and describe important concepts and perspectives from each article relative to the 
thesis purpose. Finally, the findings from the descriptive analysis where subjected to a 
critical review. In the critical review, the different concepts and perspectives where 
critiqued and compared to achieve an integrated analysis where complementary and 
opposite views where analysed to build the conceptual framework. In the analysis, the 
authors both critically review and synthesise the different concepts from the literature, 
therein addressing the fourth strategy for a strong integrative literature review by 
Whittemore & Knafl (2005). The fifth and final strategy by Whittemore & Knafl (2005) 
is achieved in the chapter 6. Conclusions, and in chapter 7. Future research areas, where 
the findings are interpreted, and gaps for further development are identified. 

 

2.5. Limitations 

While the integrated literature review method allows for more creative ways of 
identifying and combining different concepts, it may not give a full view of the different 
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fields. As the selection was done with focus on the purpose of this thesis, the selection 
is not meant to give an overview of either MBSE, data driven methods or CoPS. It is 
therefore possible that with the lack of a systemic review of the areas, concepts that 
could have been useful and influential to the research may have been missed in the 
selection. As the articles where sorted by relevance in the databases, it is also possible 
that more impactful articles within the field may not have been included in the 
selection. 
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3. Theoretical framework 

The theoretical framework chapter aims at giving a broad overview to the three different 
areas of analysis (Complex products and systems, model-based systems engineering, and 
data driven development). The main purpose of this chapter is to provide the necessary 
knowledge about the main categories to be further built upon in the more in-depth 
analysis of chapter 4 and 5. 

 

3.1. Characteristics of Complex Products and Systems 

The concept of Complex product and systems (CoPS) was first investigated by Miller et 
al. (1995) (Ranjbar, et al., 2018). Although at that point simply referred to as complex 
systems. Miller et al (1995), while investigating the development of the flight simulator 
industry, laid the foundation for CoPS by defining certain systems of products that are 
large scale, have a high degree of connectivity, high customization and often show 
emergent behaviour, as a specific group of product systems that do not follow the 
general innovation model of mass produced goods. Hobday (1998) continued the 
development of CoPS, establishing it as a specific research area, defining characteristics 
as well as providing examples of products and systems that can be classified as CoPS. 
The definition provided for CoPS as “high cost, engineering-intensive products, 
systems, networks and constructs” (Hobday, (1998, pg. 690)). Since then, this definition 
has been commonly used by other scholars (Ranjbar, et al., 2018).  

CoPS are high cost and are either produced in single unit, or small batches, and usually 
done through projects (Hobday, 1998). This high interoperability between stakeholders 
does however lead to an inherent issue in coordinating information to a higher degree 
than in mass produced goods (Hansen & Rush, 1998). 

As implied by the word “complex”, CoPS contain a high number of customized 
components and developing these components require a high amount of knowledge 
and skill (Hobday, 1998). The component architecture of these complex products and 
systems often become very large, difficult to manage, consisting of many 
interconnected, customized elements (Miller, et al., 1995). CoPS often also contain a 
high degree of technological novelty in its development (Ren & Yeo, 2006). Due to the 
architectural complexity and customized elements, technical uncertainty during 
development is a recurring issue in CoPS projects (Hansen & Rush, 1998). 

Even though most complex products and systems exhibit mainly the same 
characteristics, these characteristics are not represented to the same degree. The 
different characteristics run on a scale of complexity and it is therefore difficult to make 
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generalisable conclusions on different types of complex products and systems. 
(Hobday, 1998) 

 

3.2. Innovation life cycle of Complex Products and Systems 

According to Anderson and Tushman (1990), the industry life cycle of mass-produced 
goods is marked with the emergence of a technological discontinuity that causes a 
period of ferment in an industry, followed by the appearance of a dominant design 
that is accepted as the industry standard. After the selection of a dominant design, the 
industry enters a phase of incremental change till the appearance of the next 
technological discontinuity (Anderson & Tushman, 1990). Utterback and Suarez (1993) 
observed that the emergence of a dominant design results in an industrial shake out 
and shifts the focus from product innovation to process innovation.  

As CoPS differ from mass produced goods in various aspects, there are some striking 
differences in the innovation life cycle of CoPS as compared to the conventional model. 
Even when technological discontinuities emerge, there is stability in the industry (Miller, 
et al., 1995). There are considerable entry barriers for newcomers in CoPS, and the mass 
entry and mass exit of firms are not observed (Hobday, et al., 2000). The industry shake-
out following the emergence of a dominant design, a key aspect of the standard life 
cycle model, does not seem to hold good. A study of ‘turboprop industry’ by Bonacorsi 
and Guiuri (2000), found that even when there was a high concentration of competitors, 
the shake out did not occur. Instead, there was a stability resulting out of the 
coexistence of the competing firms. The technological changes affects the suppliers 
mostly as there can be entries and exists in the supply chain as a result (Miller, et al., 
1995). 

As CoPS are tailor made to specific requirements, the economies of scale do not apply 
and hence the shift of innovation from product to process is not seen (Peltoniemi, 
2011). There can be multiple feedback loops throughout the development of CoPS and 
the innovation often continues even after the product is delivered to the customers, in 
different forms such as upgrades to sub-systems, performance enhancements etc. 
(Hobday, 1998).The innovation process is affected not only by the product 
characteristics but also by the organisational structure in CoPS (Nightingale, 2000).  

 

3.3. Organizational structure in Complex Products and Systems 

Hansen and Rush (1998) highlight organization and project structure as one of the 
‘hotspots’ in CoPS. The high degree of innovation in CoPS warrants an organization 
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structure that creates a conducive environment. Since such system development entail 
a close collaboration of multiple actors, the coordination requirements are much higher 
(Hobday, 1998). According to Hobday (1998), when a greater number of firms get 
involved in the different phases, the complexity of coordination increases. For the 
customers, CoPS are business critical units and hence they have a deeper engagement 
in the various development phases of CoPS (Hobday, 2000) (Davies & Brady, 2000). 
CoPS customers are often few and are very demanding which is an important aspect 
(Davies, et al., 2011). As the customers of CoPS are of prime importance and source of 
input for the development and innovation process, the customer focus required is 
much greater as compared to mass produced goods (Hobday, 1998). These aspects 
highlight the need of a structure that is flexible, facilitates coordination and has a 
strong focus on the customer requirements. An organic structure rather than a 
mechanistic one is suited for CoPS development (Hobday, 1998) (Hobday, 2000). 

Clark and Wheelwright (1992) in their study, highlighted the advantage of ‘heavyweight 
project teams’ over the other type of development project teams in terms of 
specialization as well as integration in a new product development (NPD). A project is 
a temporary organizational form which strongly focuses on customer value while 
maintaining the close contact with the organizational members (Tonnquist, 2012).  A 
single firm may not have all the capabilities and domain knowledge to develop CoPS, 
hence a network style of functioning is often adopted to enable collaboration 
(Hardstone, 2004). The project is the main co-ordination mechanism that enables 
stakeholders to interact, agree upon and realize the system, while maintaining the 
effectiveness in resource/skill mobilization and deployment (Hobday, 1998) (Hobday, 
2000). The key issues in coordination are organizational structure, communication, 
technological competence development and customer interaction (Hansen & Rush, 
1998).  

The emergent properties in CoPS increase the degree of complexity and uncertainty, 
making the project management tools and techniques that are used by functional and 
matrix organizations ineffective when applied on CoPS (Davies, et al., 2011). Hobday 
(2000) emphasises on a ‘project-based’ organization structure which has dominant 
project lines, as opposed to the weaker ones in functional organization, for CoPS 
development. It is suited when there is need for a concurrent model of project 
management to promote innovation, ability to deal with uncertainties and ability to 
cope with emergent properties. It is also useful for resource sharing across firms when 
needed. The weak areas of this structure are interproject learning, coordination of 
resource across the different projects and reduced ability to exercise senior 
management control over the project (Hobday, 2000). While Hobday (2000) 
recommends a project led organization structure which is a balance between the 
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project based organisation and matrix organization for CoPS, Davies and Brady (2000) 
argue that companies can use different organizational structures at different stages of 
the  project as per the requirement. Davies and Brady (2000) observe that when it 
comes to the organizational structure, such firms adopt a project based form in the 
early phases such as proposal stage, a matrix form in later phases such as 
implementation stage and a functional form during operational support. 

 

3.4. Key capabilities in developing Complex Products and Systems 

As CoPS are mainly developed in projects, project management capabilities, such as 
risk management, scheduling and resource allocation are repeatably mentioned as key 
to succeed in the development process (Hobday, 1998) (Davies & Brady, 2000) 
(Nightingale, 2000) (Hardstone, 2004). Since issues discovered late in the process can 
cause feedback loops to earlier development stages and other parts of the project due 
to the complex and emergent aspects of CoPS, causing significant delays, costs and re-
work to the project, good project management practices are especially important in 
CoPS development (Nightingale, 2000). Davies & Brady (2000) argue that “project 
capabilities” should alongside strategic and functional capabilities be treated as 
essential to organisations supplying CoPS. Project capabilities are especially important 
in the bidding phase, to successfully win contracts, as well as in executing the project 
after a successful bid. During the bid phase some necessary project capabilities are to 
gather requirements from customers, cost estimation, project scheduling and risk 
management. During the execution organisations also need to allocate resources, 
integrate different organisational functions and team management (Davies & Brady, 
2000). 

Being able to manage the uncertainty that CoPS entails is a capability that any 
organisation developing and supplying CoPS need to develop. Nightingale (2000) 
outlines six different factors of uncertainty in CoPS that affect the project and cause 
costly feedback loops, and ways of mitigating these uncertainties.  

i) Technological traditions established: If the organization has established design 
processes that they are able to re-use, they are better prepared to handle 
uncertainty. 

ii) Intrinsic uncertainty of the technology: By fully understanding the technology and 
what effects changes will have, as well as using well established technology, an 
organization can decrease the uncertainty. 

iii) Complexity of the product: The complexity increases with the number of 
subcomponents included, as well as increasing the likelihood for emergent 
properties, putting pressure on the organization to have a good system for 
managing their “work in progress”. 



20 

 

iv) Systemic relationships between subsystems: The amount of interdependencies of 
different subsystems will increase the complexity and uncertainty. Changes to one 
part of the project can therefore cause feedback loops throughout the system. 
Being able to perform analysis on the system throughout the development and 
simulations can decrease the uncertainty. 

v) Fixed and unfixed problem: Changes to the problem caused by emergent 
properties, regulatory changes or customer specifications all increase the 
uncertainty and adds costs. Having good project management practices in place, 
contingency planning and risk management can all help in decreasing the 
uncertainty. 

vi) Organizational rigidities: Using inappropriate organizational structures for the 
project, culture and physical distance can increase the uncertainty of the 
development. Having clear communication channels both horizontal, and 
especially vertically is essential to decrease the uncertainty. 

Since developing CoPS require knowledge from several different domains, it is 
important that organizations develop their capabilities in building alliances with other 
organizations (Hardstone, 2004). Due to the amount of domains as well as stakeholders 
involved in supplying CoPS, two frequently mentioned capabilities that are core to any 
organization developing CoPS are systems engineering and systems integration where 
organizations are able to combine the knowledge and subcomponents/subsystems 
into the final CoPS (Hobday, 1998) (Hardstone, 2004) (Nightingale, 2000). 

 

3.5. Model-based systems engineering (MBSE) methodology 

Model-based systems engineering is based on the principle of using a common project 
model, or system model, throughout the development of the system (Ogren, 2000) 
(Ramos, et al., 2012). The system model is constructed by connecting different sub 
models. These sub models should contain all the relevant information about the 
systems and be an accurate representation of the requirements, functions and structure 
of the system (Ramos, et al., 2012). 
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Figure 3. Conceptual representation of the MBSE development process 

 

When moving from a document-based approach, towards an MBSE approach, there 
are four phases, or levels of advancement that an organization can choose to 
incorporate MBSE methods (Brown. B in (Holland, 2015)).  

i) The first level is when no system models are used, and documentations are free form 
and purpose created for each instance.  

ii) The second level, system models are used, and diagrams are drawn from them to 
support information from documents.  

iii) The third level, system models are the primary source of information and substantial 
information is drawn from the model to create documentation.  

iv) The fourth level, documentation is created automatically using information generated 
from the system model. Barely any editing is done.   

 

3.5.1. The model 

A model can be described as an abstraction or representation of an element of the 
physical world. The element can represent for example a system, a process, a product, 
or a phenomenon. The model is often used to describe certain aspects of these 
elements such as a function or geometry (INCOSE, 2015). Models should be developed 
for a specific purpose and to meet one or several established stakeholders needs 
and/or requirements. However, no one model can satisfy all the questions posed by 
the different stakeholders (Madni & Sievers, 2018). Inherently, no model can represent 
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the physical world with complete accuracy. There is always some degree of uncertainty 
in the models used (Holland, 2015) (Madni & Sievers, 2018). 

When working in a model-based approach it is necessary to establish the scope of a 
model so that it fits with the models purpose in addressing the relevant stakeholder 
needs and requirements (INCOSE, 2015). When a model can accurately address the 
purpose and the stakeholder questions imposed on it, it is said that the model is “fit 
for purpose” (Madni & Sievers, 2018).  

There are no specific rules on what type of model or set of models to be used to answer 
stakeholder questions (Sargent, 2015). Rather, the choice of type of models depend on 
the purpose of the use of the models, the characteristics of the system of interest and 
on what level of accuracy is needed (INCOSE, 2015), as well as, the resources that are 
available (Sargent, 2015). While there exists many different definitions and ways of 
sorting types of models, INCOSE (2015), presents a well-structured and relatively 
comprehensive taxonomy of model types. 

i) Physical model: A simplified model of the physical system or part of the system such as 
a wind tunnel or a prototype of the system. 

ii) Abstract model: An abstract model can be expresses in many various ways consisting 
of different informal and formal models. An abstract model acts as a representation of 
the system of interest or system element and can vary in degrees of how concrete the 
model is. 

iii) Informal model: An informal model can simply be a representation using simple 
drawings or be in text form. Although this can be useful, it must have a high degree of 
relevance so that it may be useful for the abstract model. 

iv) Geometric model: A geometrical model is used to show the geometric properties of the 
system of element and/or the connections in the system. 

v) Quantitative model (mathematical model): A quantitative model is based on 
mathematics to represent the system or parts of it to acquire a numeric result. 

vi) Logical model (conceptual model): A logical model, or conceptual model, is used to 
represent the relationships and interconnections between different parts in the system. 
The representation could be of for example, function, processes, or activities. The model 
often consists of diagrams, tables, graphs, etc. 

 

3.5.2. Model-based systems engineering and life-cycle stages 

Using a set MBSE methodology of processes, methods and tools can greatly reduce 
the risks in the system development project and increase the likelihood that the that 
the developed system fulfils all the different stakeholder requirements (INCOSE, 2015). 
While many organizations develop their own MBSE methodology and life cycle 
approach to develop systems, most of them are based in one for three life cycle models, 
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the Waterfall model, the “Vee” model or the Spiral model (Estefan, 2008). While the 
different parts in the methodologies vary in the sequence and amount of iterations 
each step is done, they mostly consist of the same stages (INCOSE, 2015). 

 

 
Figure 4. Life cycle stages of MBSE methodologies 

 

The international standard ISO 15288 outlines some generic stages in the life cycle 
development of a system (concept, development, production, utilization/support and 
retirement) (INCOSE, 2015). While the focus from an MBSE perspective is on the 
concept and development stage, the developed models need to consider the other 
stages as well, such as how the system will operate or how the end of life process will 
look like. 

In the concept stage, a preliminary concept is first developed from the system 
requirements that are derived from the business needs and mission requirements and 
the stakeholder requirements (INCOSE, 2015). Models helps to synthesize, evaluate 
alternate concepts from the preliminary concept and aid in a clear definition of the 
system requirements (Freidenthal, et al., 2014). The system attributes can be linked to 
the objects in the model which helps in efficient management of requirements (Ogren, 
2000). The parameters that are critical to the system can effectively be communicated 
through the models (INCOSE, 2015). Models help in the validation of the system 
requirements against the stakeholder needs, acting as a checkpoint before proceeding 
to the next set of life cycle activities (Freidenthal, et al., 2014). 

The design development stage uses the outputs of the concept stage to create the 
system architecture and design (INCOSE, 2015). The system architecture is vital as it is 
a formal representation from which the logical, behavioural, structural and other 
related representations are derived (Madni & Sievers, 2018).  In the design stage 
models aid in converting the system requirements to functional and then the 
component level (Freidenthal, et al., 2014). Both top down and bottom up approaches 
can be applied in the design development phase, to distribute requirements to the 
objects and to find reusable objects for the requirements respectively (Ogren, 2000). A 
variety of models can be used to represent different aspects of the system design based 
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on the need to cover both functional (e.g. Interface, functionality, performance and 
physical requirement) as well as non-functional requirements (e.g. Reliability, 
maintainability, safety and security) (Freidenthal, et al., 2014).  

Verification and validation (V&V) are important steps in MBSE. Model verification and 
validation help to eliminate the flaws in the system and ensures that the system meets 
the external requirements and is close to reality (Madni & Sievers, 2018). In the system 
integration and verification stage, models support the hardware and software 
integration and  in the test phase, models can help to define various test cases (INCOSE, 
2015) (Ogren, 2000). Lower level components of both these categories are integrated 
to the higher-level system design which in turn aids the verification (Freidenthal, et al., 
2014). Validation ensures that the system modelled is dependable (Madni & Sievers, 
2018). 

According to Madni & Sievers (2018), there are various approaches to model-based 
V&V as mentioned below. 

i) Model appraisal: The domain experts from various disciplines evaluate the model. This 
method improves the quality of the design but is expensive. 

ii) Guided modelling: This aids the designers to effectively model the system. It uses 
pattern based method, which uses previously validated patterns as hints to design; 
template based methods, which use pre-verified information as a starting point; 
feedback enabled approaches, which use verified and validated standardized models 
and lessons learned from previous projects as a tool. 

iii) Simulation: It executes the model in a cost-effective way against the operating 
conditions, to understand the behaviour and take corrective measures. This is used 
especially if the other means of testing is hazardous or inaccessible for humans making 
the tests expensive. 

iv) Formal proof: This uses mathematical / logical methods to verify the system against the 
specifications. Model checking and theorem proving are two formal methods of system 
verification. 

v) Digital twin and digital thread: They are the digital equivalent of the system that can be 
used for verification, where digital twin is an accurate representation of the system that 
can be used throughout its life cycle and digital thread is a framework for sharing 
information among multiple stakeholders in the development activity. 

The factors affecting the choice of MBSE based V&V method are the domain, the 
design and development preferences and availability of tools. V&V method is 
indispensable as it ensures that the different stakeholder requirements are met, and 
that the system fulfils its purpose. (Madni & Sievers, 2018) 

The other life cycle activities such as training, maintenance / diagnostics, interactive 
simulations are also assisted by models depending on the requirement. By playing a 
crucial role in almost all the life cycle stages, models help in the system evolution by 
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capturing, applying, and reusing knowledge. This helps the organization in knowledge 
management and enhancement of its competitiveness in a changing environment. 
(Freidenthal, et al., 2014) 

 

3.6. Data driven methods 

Data driven methods make use of empirical models to derive relationships between 
system variables from a large set of data (Mosallam, et al., 2015) (Villarejo, et al., 2016). 
The relationships are modelled by applying methods such as machine learning and 
‘computationally intelligent algorithms’ to the complex datasets (Mount, et al., 2016). 
These methods have limited dependency on the domain specific background 
knowledge and hence can be useful at times when the hypothetical knowledge is 
limited due to increased system complexity (How, et al., 2019) (Mount, et al., 2016). 

Drawing from software engineering, Geffner (2018) classifies programs in either 
Learners or Solvers. In aggregated terms, Learners are model-free and utilizes data or 
experience to achieve the output. This data driven method is characterized by a slow 
training period but are fast after the learning period. Solvers are model-based and 
through a model automatically achieve an output. This model-based method is more 
general and can solve any problem if it fits the model. As Solvers use models, they 
require no preparation but are slower than Learners in achieving the output. 

Data driven methods in complex systems can roughly be categorized in either data 
driven modelling, data driven monitoring and fault diagnostics, or data driven control 
and optimization. One big benefit of using data driven methods is that it requires no 
previous information about the process. Data driven methods are instead based on 
signal processing, and data analytics. (Gao, et al., 2013) 

 

3.6.1. Big data analytics  

The term big data was initially made to capture the emergence of the vast amount of 
data being created from an incredibly diverse set of sources making it hard to handle 
for existing structures, with the amount of data approximately doubling every two years 
(Hu, et al., 2014). The definition of big data used in this thesis is adopted from Mauro 
et al., (2016, pg. 131) as: “Big data is the information asset characterised by such a high 
volume, velocity and variety to require specific technology and analytical methods for 
its transformation into value”. The area of big data can be categorized into one of four 
main themes; Information, technology, methods or impact (Hu, et al., 2014).  
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i) Information: information is structured data and is what drives big data. For organizations, 
information can be turned into knowledge and used to create value as per the data-
information-knowledge-wisdom hierarchy. 

ii) Technology: It is a necessary enabler to be able to gather and analyze big data. Big data puts 
a lot of pressure on technical systems due to the speeds in which it needs to be processes, 
and the amount of data that needs to be stored. 

iii) Method: The usual statistical methods used to process data is not enough to handle the 
amounts of data that big data entails, rather more complex methods with examples like, 
neural networks, regression models and cluster analysis are needed. The method change will 
also require a cultural change in the organization with a focus on proper data management 
and implementing data in the decision making. 

iv) Impact: big data is already having a large impact on the society and is continuously being 
adopted in an increasing number of domains. Big data is also impacting organizations 
internally where they must question their processes so that they are able to utilize the data 
in the most impactful way. 

It should be noted that big data and system specific data are different. System specific 
data can be data generated from models, simulation, tests and operational conditions 
that are related to the system, often used for taking decisions related to alternatives 
and to verify if the system model  meets the user requirements (INCOSE, 2015) (Madni 
& Sievers, 2018). Big data is much larger in comparison and need specific methods 
such as data analytics to gather system specific insights from it. 

3.6.2. Internet of things (IoT) 

Internet of things refers to the communication network between objects in an 
environment enabled by the information technology, aimed at harnessing the 
information/data from these objects for various purposes such as process 
enhancement, productivity improvement, decision making, trend prediction, pattern 
finding etc. (Marjani, et al., 2017) (Gubbi, et al., 2013) (Lee, et al., 2015). The 
development of sensors in the recent years along with the rise of technologies like 
digital technology, advanced telecommunication devices, wireless sensor networks 
have enabled the monitoring of a wide variety of applications (Gubbi, et al., 2013). The 
information collected in this manner is voluminous and can be analysed to gain insights 
which aid data driven decisions and can also be used for creating a common pool of 
information to trigger new applications (Marjani, et al., 2017) (Gubbi, et al., 2013).The 
applications of IoT cuts across industries such as home, transport, healthcare, defence, 
agriculture, enterprise, mobile to name a few  (Gubbi, et al., 2013). 

The transmission and storage of data is a critical part of IoT since the amount of data 
generated is huge. Intelligent storage and retrieval of data in a centralized manner 
enabled by cloud storage technologies will be prevalent in the industry (Gubbi, et al., 
2013). As the sensors gather all different types of data, the nature of IoT data is different 
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as compared to the other types of bigdata and hence suitable processes are needed 
to handle IoT data to eliminate some of the issues associated with them (Marjani, et al., 
2017).  

Big data analytics is crucial for supporting IoT as the structured, unstructured, and 
semi-structured data obtained from the different sources need to be transformed into 
homogenized data that can be analysed and interpreted. Analytical tools employ 
different algorithms and methods to achieve this, such as classification, clustering, 
association rule mining and prediction categories. (Marjani, et al., 2017) 

Classification, a supervised method, uses existing knowledge to train the system to 
handle the data and categorise them into groups (Marjani, et al., 2017). Deep learning 
(DL) is another supervised method where by minimizing the error function linked to 
the training data set, the system gains knowledge about the paraments and utilizes it 
when a bigger data set is given (Geffner, 2018). Clustering is an unsupervised method 
which categorizes data based on their distinct features (Marjani, et al., 2017). This is 
comparable to deep reinforcement learning (DRL), where the method learns on its own, 
by minimizing the error function which is not based on a training data set but based 
on the successive data sets given to it (Geffner, 2018). Association rule mining works 
by build meaningful relationships among different data types for predicting trends, 
behaviour and demand whereas prediction categories use historical data as a training 
data set to find out patterns and trends (Marjani, et al., 2017). 

 

3.6.3. Digital Twin 

Madni et al. (2019) discusses the benefits of digital twin supported by internet of things 
(IoT) for the system developers in the model-based system engineering context. Digital 
twins aim to integrate the physical and virtual systems to aid real time monitoring of 
systems, collection of data for various developmental and maintenance purposes, 
reduce downtime by preventive interventions explore new business opportunities and 
future system upgrades. Digital twins can bring down the cost of system verification 
and testing by using the information collected from the physical twin. With the 
advancements in IoT, the cost of implementing digital twin has come down, making it 
a viable option. With the support of IoT, a digital thread, which is an information chain, 
connects digital twin to its physical twin, throughout its life cycle, capturing all the 
necessary data. The models in digital twin gets updated accordingly. The relationship 
between the twins continue even after the product sales, throughout the service life of 
the product. According to Madni et al. (2019), a digital twin is considerably different 
from a CAD model, as it represents a specific instance of the system, reflecting the 
performance of the physical twin. It also maintains the traceability of the physical twin 
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during the life cycle phases and its age, through the operational data. The digital twin 
can be used for many different purposes including validation of the system model, 
predicting system changes, provide decision support, and discover the new possibilities 
in application. (Madni, et al., 2019) 
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4. Descriptive analysis 

The descriptive analysis aims at giving an overview of the selection of articles including 
the authors, distribution over time, where the articles where published and the citation 
count for the entire category, as well as for sub-categories. The section will also give a 
description of the main findings of the literature, giving a more through view of the 
different areas. 

 

4.1. Complex product and systems 

For the CoPS part of the review, 25 different articles where included. In this selection 
of articles, 44 unique authors contributed with 5 authors being included in more than 
one article. The articles where published in 15 unique journals or conference 
proceedings with 5 journals contributing with more than one publication. The selection 
was distributed between 1997 and 2019 according to figure 5. In total, the selection 
had a citation count of 3604 citations over all articles. 

The distribution of articles in the subthemes of Complex products and Systems are 
presented in table 4 with the number of articles in each section and number of total 
citations. 

 

 
Figure 5. Distribution of articles in subthemes of CoPS. 
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Subtheme Number of publications Number of citations 

Characteristics of Complex 
products and systems 

5 articles 959 citations 

Innovation life cycle of 
Complex products and systems 

5 articles 613 citations 

Organizational structure in 
Complex products and systems 
suppliers 

5 articles 792 citations 

Key capabilities of developing 
Complex products and systems 

10 articles 1240 citations 

Table 4. Article and citation count in subthemes of CoPS. 

 

4.1.1. Characteristics of Complex Products and Systems 

Hobday (1998) in his conceptual paper outlined many of the characteristics of CoPS 
which still holds true in industries today. Hobday (1998) found that a key contributor 
to the complexity of CoPS is its hierarchical nature and product architecture. Due to 
the size and complexity of CoPS, there tend to be a very large amount of design 
alternatives of the system architecture. The difficulty of these decisions is only made 
harder with increasing amounts of custom-made components and sub-systems in the 
system, which is a common characteristic of CoPS. In addition, feedback loops from 
later to earlier stages requiring architectural changes is a reoccurring issue in CoPS 
development and what could be viewed as an incremental change to the system at 
first, could later on show to have significant impact on the components functions 
(Hobday, 1998). Hobday (1998) also argues that due to that CoPS tend to be very high 
cost and only developed in unit or batch size, performing tests and experiments on 
these systems may be extremely costly, and in some cases impossible. Not being able 
to test the designs only makes it harder to identify issues and potential feedback loops 
in the system. For this reason, step-by-step continuous learning throughout the 
development process is an important aspect in CoPS industries. 

Owing to the size, complexity and importance of many CoPS, there is often a high 
number of stakeholders involved in the decisions made in the development. These 
stakeholders commonly involve major users, suppliers and regulatory bodies which all 
can affect the innovation path of the CoPS. Having efficient coordination between 
stakeholders is often key in establishing design paths for the architecture and during 



31 

 

development since it is uncommon that one firm internally have the necessary span of 
control of the project, or the breadth of knowledge required. (Hobday, 1998) 

Hansen & Rush (1998) in their multiple case studies found four general problem areas, 
or “hotspots”, where many of the problems seem to originate from the characteristics 
in technical uncertainty and coordination established by Hobday (1998). The first area 
was dependency on the suppliers and difficulty in the procurement systems, which 
proved to be prevalent in most projects. This could be due to poor performance in the 
reporting system, or lack of control mechanisms. Overdependence on key suppliers 
could also lead to delays in integration and delays from suppliers could in some cases 
cause delays for the entire projects. The second problem area was in technical 
uncertainty/difficulties. Some causes for this could be that possible technology reuse 
from previous generations is not communicated or that short cuts were made to satisfy 
short term projects constraints but adding uncertainty and risk in the long term. The 
third area is organisational and project structure, where the structure needs to facilitate 
knowledge transfer within the projects, as well as, with customers and between other 
projects, and facilitate learning. The final problem area is management of requirements 
capture. Requirements capture is often initially done under significant time pressure. 
Along with “knock on effects” from new technology, and changes in client’s needs, the 
management of requirements can often lead to difficulties for the project. 

Hobday & Rush (1999) suggest that an underlying characteristic to some of these 
issues may be the fast pace of technological change. This can cause capability gaps 
both within teams, as well as between firms. The complexity of CoPS also makes it hard 
to transfer knowledge from one sector to another, making it difficult to have set best 
practice and lead to very low learning across sectors. The fact that CoPS tend to be 
developed in projects also causes problems in learning between projects. This lack of 
project-to-project learning is a key reason for the variety in performance of CoPS 
projects (Hobday & Rush, 1999). 

The way that development and innovation in CoPS industries differs from traditional 
mass-produced industries where development happen in a more linear way. In CoPS 
actors work together in a “web of innovation” including users, buyers, suppliers, 
regulators, among others, who collaborates to develop and improve the systems. 
Central to this innovation network is the systems integrator (Hobday & Rush, 1999).  
Rutten et al. (2009) define the term Systems integrator as an organization that through 
systems integration adds value in project-based industries. There are, according to 
Rutten et al. (2009), two main tasks to be performed by the systems integrator. First, to 
establish the network of organizations that will be involved in the development of the 
CoPS. Second, to coordinate and delegate the work of these actors. Through these 
interorganizational networks, the system integrator collaboratively achieves innovation 
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with the actors by developing new components and/or new ways of linking 
components. 

How large of an impact of CoPS industries have on a nation is very difficult to measure 
and cannot be done through conventional methods since CoPS span through multiple 
sectors and due to the project network structures involved in CoPS innovation, 
measuring economic contributions is difficult (Hobday & Rush, 1999). However, Acha 
et al. (2004) did attempt to quantify the impact of CoPS industries in manufacturing 
and construction in the UK. The research found that, at that time, CoPS accounted for 
19% of overall production and total gross value of the UK economy as well as 21% of 
employment in manufacturing and construction. Acha et al. (2004) also found that 
CoPS tend to spend more on IT than other organisations, while they will spend less on 
advertisement. 

The main findings of this section are summarised in the table below. 

 

Key findings 

 CoPS have a hierarchical system architecture. 
 CoPS face technical uncertainties and emergent behavior. 
 Feedback loops from later to earlier stages can impact system 

development. 
 Capturing requirements is challenging. 
 High degree of coordination with stakeholders. 

Table 5. Key findings from characteristics CoPS 

 

4.1.2. Innovation life cycle of Complex Products and Systems 

Bonaccorsi & Giuri (2000) presents that there are two classes of industries that does 
not conform to the traditional industry life cycle theory and therefore will not show the 
pattern of shakeouts. Together they represent all previously known cases on non-
shakeout. Class I industries, where shakeouts do not occur because of the vertical 
separation between process or product research and development, and manufacturing. 
In these industries incumbents cannot build up large barriers of entry due to R&D 
investments, and large investments in process technologies is risky since they do not 
have control of the product-process connection. Class II Industries instead suffer from 
a lack of economy of scale, combined with customers with very specific needs. In these 
industries suppliers need a high amount of knowledge, which often tends to be tacit, 
to serve their customers. For such organisations it is often preferable to acquire 
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specialised knowledge and focus on serving one marketing segment. However, 
Bonaccorsi & Giuri (2000) showed that organisations operation in class II which are in 
“violations of increasing returns”, may serve several segments by using a multi brand, 
multi divisional structure and if the supplier’s market is highly independent, for example 
by subcontracting or purchasing strategies. In their case of the turboprop industry, 
there was a stable coexistence between a market leading generalist serving several 
segments, and specialised organisations. Bonaccorsi & Giuri (2000) argues that 
systemic industries, such as single or batch production complex products and system 
fits well in the class II discontinuity which suffers from a lack of increasing returns. 

Similar to that systemic industries such as CoPS does not show a pattern of shakeout, 
disruptive innovations do not cause the same changes to the industry as in mass 
producing industries. According to Dedehayir et al. (2014), the disruptive innovation in 
the context of CoPS have unique characteristics, which is also confirmed through a case 
study. Early adopters, policy makers and regulators play an important role in paving 
way for disruptive changes. CoPS are produced in limited volume based on specific 
customer need. Hence, the chances of a firm missing the performance mark is lower in 
CoPS industries. It is also difficult to interchange technology of sub systems within a 
CoPS network. Since it is difficult to find niche market for the nurturing of technology, 
the new technologies often must compete with the incumbent technologies directly. 
This means that the new technologies need to be superior to survive in CoPS 
marketplaces. As the disruptive technology tends to be superior, it increases the 
complexity of the further, making it costlier. However, in the absence of a clear 
superiority, the disruptive technology tends to co-exist with the incumbent technology. 
(Dedehayir, et al., 2014) 

Hobday et al. (2000) in their editorial paper emphasises the length of the innovation 
life cycle of CoPS. According to Hobday et al. (2000) it is common for the product life 
cycle to last for decades and even the decision from stakeholders to invest may take 
several months to years. A characteristic of CoPS, as compared to the conventional 
model, is that innovation to the system is on-going, even after implementation of the 
system with continued updates and upgrades throughout the life cycle (Hobday, et al., 
2000). 

Davies (1997) argues through his case study on the telecommunications industry, that 
CoPS industries, which are engineering intensive, low volume products and system that 
serve individual business, go through two life cycle phases, the architectural phase and 
the new product generation phase. The architectural phase is characterized by a high 
amount of architectural innovation. Architectural innovation concerns the function of 
the components and subsystems, and their interconnections. The architectural phase 
concludes when the core components are selected and there is agreement on technical 
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standards. The new product generation phase then starts once the new product system 
architecture is commercialised. The new product generation phase is instead 
characterised by a high amount of component and systemic innovation. Component 
innovations are technical changes to components in the system where the change only 
affects that component and no modification to other parts are necessary. Systemic 
innovations are technical changes to a component or its functions that also affects 
other parts of the system, requiring changes to other parts of the system as well. 
According to Davies (1997) one of the largest challenges for suppliers of CoPS is 
managing the life cycles of individual components. While the system may have a 
lifespan of several decades, technology in individual components may have be 
changed, or become obsolete within years. Davies (1997) also suggest that one 
limitation of this framework is that it may only apply to infrastructure networks such as 
telecommunication or transportation systems and not to standalone products such as 
aircrafts or smart buildings. However, Huenteler et al. (2016) in their study on 
technological change in the life cycle of solar photovoltaics and wind power, found 
that the life cycle of wind turbine technology, which is arguably a more standalone 
product than a network, more closely followed Davies (1997) model than the traditional 
mass production industry life cycle. Huenteler et al. (2016) does however argue that 
products may lie on a scale of industrial life cycles where the traditional mass 
production industry life cycle, and the CoPS life cycle by Davies (1997) are two extremes 
on the scale which is based on complexity of the product architecture and scale of 
production. 

The main findings of this section are summarised in the table below. 

 

Key findings 

 Innovation can be architectural / systemic / component in nature. 
 Innovation continues even after system becomes operational 

through updates and upgrades. 
 Industrial phases consist of architectural and new product 

development phases. 
 Innovation is a collaborative effort with stakeholder involvement. 
 Incumbent technologies can coexist with disruptive technologies. 

Table 6. Key findings from innovation life cycle of CoPS 
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4.1.3. Organisational structure of Complex Products and Systems suppliers 

Hobday (2000) compared two companies developing CoPS, one company using a pure 
project-based structure (PBO) and one company using a matrix structure, to look at the 
process differences, advantages, and disadvantages of the structures in the 
development of CoPS. Hobday (2000) contrasts the PBO with more established 
structures used in mass produced markets, such as the matrix structure, and claims that 
the PBO structure is effective in dealing with emergent issues, respond to changes in 
requirements, respond to uncertainty, etc. The reason being PBO having a concurrent 
approach that is external focused as compared to the inward focused approach of 
functional/matrix structure. This makes it effective form in developing CoPS and fits 
best in large, high risk projects where all the resources of the firm revolve around that 
single project.  

However, Hobday (2000) identifies that the PBO structure is less effective in areas such 
as coordination of resources and capabilities across projects, routine production or 
engineering tasks and project to project learning. The challenge in choice of structure 
in the developing CoPS is to balance the need for the current project, and to develop 
the organisations capabilities for future projects and markets opportunities. To 
overcome this, the company case showed how they took a step back from the PBO 
structure to a project led organisation, where the project manager is still in power but 
there is now task coordination in functional units to capture the learnings and gain 
technical expertise.  

According to Hobday (2000), PBO uses project as a vehicle for integrating and 
coordinating key business functions covering the broad spectrum - R&D, new product 
development, engineering, production, marketing, and finance – of activities spanning 
the organizational boundaries in CoPS. They are also used for exploring new strategic 
opportunities in terms of technology development, market expansion as well as for the 
revival of the organization (Davies, et al., 2011).  

According to Davies et al. (2011), the ability to provide project-based customer centric 
solutions requires organizations to develop capabilities in areas such as system 
integration, operational services, finance, and consulting.  This can be achieved through 
changing the organizational structure, having new performance parameters, and 
engaging in longer life cycle of projects. A long-term strategic engagement with the 
network players is required, to solve customers’ problems. Right organization 
structures are vital for organizations to ensure horizontal collaboration across the 
network of CoPS. Concepts like co-located organizations for enhancing cooperation 
can be rewarding. 
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Roehrich et al. (2019), focuses on the impact of organizational structure on the 
innovation in CoPS, in the context of the inter organizational functioning and explores 
the effectiveness of the concept of integrated project teams (IPT), a form of 
management innovation. IPT is characterized by cohesiveness, cross functional 
integration, relationship focus and strategic project related activities. The increased 
product service integration demands management innovations to support the related 
activities. IPT is a suitable form of collaboration between organizations bringing the 
knowledge and expertise on the same table resulting in integration, trust building and 
improved relationships. By combining complementary skills from both the 
organizations, integrated solutions could be developed in an efficient manner. 

Moddy and Dodgson (2006) analyses a case of technology transfer in a small satellite 
project and gives insights on the issues faced in the project. The authors found two 
major areas of issues in the project. Varied and changing goals and objectives, where 
a large number of stakeholders had high ambitions, but low engagement, and, external 
relationships, where the communication and trust with the physically distant supplier 
started breaking down as well as issues. Issues also emerged between other actors due 
to a difference in management approaches, leading to a breakdown in collaboration. 

According to Moddy and Dogson (2006), one of the main contributions to the eventual 
success of the project was how the organisational structure evolved as the project 
proceeded. The structured moved from an initially more relaxed and organic structure 
to a more hierarchical one. This changing structure provided the flexibility to deal with 
new and changing conditions while the risk of feedback loops was high, as well as, 
providing safety and division of responsibility towards the critical period of project 
delivery. By changing the organizational structure from organic to hierarchical, the 
project succeeded in benefitting from both flexibility and discipline as per the 
requirement. 

Geraldi (2009) explored how multi project firms deal with chaos and order because of 
the environmental change, through a study carried out in a large CoPS developing 
organization. Organizations often need to adapt to order and chaos because of the 
demand from multi project environment and associated heterogeneity. Even though 
order and chaos are diametrically opposite, the same organization often faces them 
due to the changing environment. Geraldi (2009) identifies two strategies that 
organizations adopt: i) organizations respond with flexible structures when faced with 
inflexible customer demands ii) they respond with internal rigidities to compensate the 
external chaos.  This is how the balancing between chaos and order in response to 
external changes take shape. A conceptual model developed by Geraldi (2009) which 
consists of two dimensions, complexity of project portfolio and flexibility of 
organization structure, suggests the ideal path for organizational transformation. 
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The main findings of this section are summarised in the table below. 

 

Key findings 

 Project led organizations are suitable for CoPS. 
 Integrated / co-located project teams can be beneficial. 
 Organizational structure evolves throughout the project. 

Table 7. Key findings from organizational structure of CoPS 

 

4.1.4. Key capabilities in developing Complex Products and Systems 

Park & Kim (2014) through their analysis of CoPS literature to identify all the main 
capabilities of CoPS development. The study found that there are three comprehensive 
capabilities in CoPS development needed. Close networking among actors, broad, 
deep and integrated skills and, the ability to leverage institutions and policies. Park & 
Kim (2014) validate their findings through a case study of Korean e-government, 
showing that Korea utilized these capabilities to successfully implement their e-
government system. 

Davies & Brady (2000) in their multiple case study found that in addition to strategic 
and functional capabilities, organizations that operate in CoPS industries also require 
project capabilities. Project capabilities are essential in both product development and 
implementation, which within CoPS are both project-based activities. Project 
capabilities are especially important in the preparation for a bid as well as in the 
execution of the project. Some examples of project capabilities include, requirements 
gathering, risk management, defining conceptual components, resource allocation 
integrating organisational functions etc. The way that organizations in CoPS industries 
develop their capabilities is through what Davies & Brady (2000) call economics of 
repetition, where organizations focus on their project effectiveness to be able to, more 
effectively execute, a greater number of similar projects. When learning from repetition 
organizations go through four phases. In the first phase, new knowledge and routines 
are created and the organization must acquire new functional capabilities and project 
capabilities. In the second phase organizations transfer this new knowledge and 
experience to other current or upcoming bids where more knowledge is captured and 
again applied to succeeding bids. In the third phase the organization implements the 
lessons learned from the projects into the functional organization, transforming their 
process and embedding the learning into the routines. In the final stage organizations 
may create completely new business units dedicated to specific areas such as project 
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management and system integration which utilizes the learnings from the previous 
phases. 

Gann and Salter (2000) observed through their study of the firms producing complex 
systems in the construction industry, that project groups often operate at the 
boundaries of the firm, working with other network players, creating value and 
generating profits. Integrating the continuous business process and projects activities 
becomes important in this context. Business activities result in creation of routines that 
aid standardization, process improvements and economies of scale while projects 
usually deal with non-routine activities, limiting the scope of benefits of routinization.  

According to Gann and Salter (2000), effective integration of business process and 
projects is essential for the firm’s ability to manage project portfolio and increase the 
competitive advantage. The learnings from the project need to be incorporated into 
the business process through feedback loops, to achieve synergy between the two. The 
increased demand for services related to the various aspects of the product is an 
opportunity for organizations to enhance the value proposition. These can include 
financial structuring, consultancy, customer support, training, and facilities 
management. The services tend to be offered between supply networks and project-
based firms as well as between project-based firms and customers. Service enhanced 
capabilities are the result of successful linkage of project learnings and the continuous 
business process. 

Nightingale (2000) identifies six main areas of uncertainty in CoPS development, 
established technological traditions, using uncertain technologies, the complexity of 
the product, the systemic relationship between subsystems, changes in requirements 
and regulations, and organisational rigidities. The reason why these uncertainties are 
more prevalent in CoPS is due to the high potential of feedback loops from later to 
earlier phases of development which can cause significant delays. To decrease the 
uncertainties in the projects, organizations need to be able to match the design to the 
requirements, and make sure that the specifications for the design are correct. 
Organizations that can be flexible in their resource allocation should also be able to 
reduce uncertainty. Nightingale (2000) also gives some examples of practices that can 
help reduce uncertainty such as reuse of technology, using already established 
technologies, contingency planning and analysis throughout the design process. 

According to Liu & Su (2014), during the R&D process organizations developing CoPS 
need a mix of technology and market orientation to eventually succeed in the project. 
A market-based approach will allow organizations to identify customers and their 
requirements. However, with too much focus on market-based activities, an 
organization may lose its ability to develop new products with novel and complex 
technology. To be able to stay innovative, organizations should, according to Liu & Su 
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(2014), adopt a market orientation with strong technological values. Balancing market 
pull with technology push to identify and satisfy customer needs, while still being able 
to innovate in new complex technologies. 

Rush (1997), identified requirements gathering as a hotspot. Requirements are 
gathered under time pressure by a team which may not consist of senior technical 
members, communication between technical staff and customer may be limited. This 
result in a lack of clarity in capturing the needs. There could be requirements arising as 
the projects progress, incorporation of which could cause ripple effects on the project. 
It is important to maintain a continuity in the flow of information from the bid phase 
to the implementation phase. According to Rush (1997), Isolated efforts by firms cannot 
make the projects successful. Rather, an optimization of the whole network is needed 
to deliver CoPS projects where the network players are well integrated.   

According to Naghizadeh et al. (2017), the case study of IR-150 aircraft development, 
a first of passenger aircrafts designed by Iranian firms, showed that CoPS projects face 
challenges in integration which are often context dependant. For example, experience 
of developed countries with CoPS may not be sufficient to ensure success of another 
CoPS development in a developing country. The structure of CoPS integration itself can 
be imagined as an integrated system where every part of it need to work effectively 
and efficiently to make the project a success. Integration structure changes throughout 
the development phase due to the inclusion of more network players and hence it can 
be observed that integration structure is dependent on project life cycle. 

Zhang and Igel (2001) studied the evolution of stored program control (SPC) switch 
manufacturing industry in China, as it is an emerging CoPS industry. It gave insight into 
the current state of strategies, industry structure, product development and innovation. 
The SPC switches and the industry did not fully demonstrate CoPS characteristics and 
the organizations did not adapt many strategies that are commonly adopted by CoPS 
developing firms. Zhang and Igel (2001) foresee that as the market gets more complex, 
SPC switch manufacturers will need to adapt more of CoPS strategies such as 
development of potential suppliers, integration of inhouse research with external 
parties, competence building for external networked players, horizontal management 
style with employee empowerment, improving innovativeness of users etc. According 
to Zhang and Igel (2001), as the external environment becomes complex and 
challenging, the emerging CoPS developing firms will have to adopt new capabilities. 

Hardstone (2004) found that, along with traditional systems capabilities such as project 
management and systems integration, alliance building, and collaboration was 
especially important in systemic industries. When new technology emerged, market 
capabilities seemed to become even more important for organisations. With the variety 
and complexity in CoPS, the development projects seem to support a diverse set of 
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capabilities, structures and strategies. According to Hardstone (2004), core capabilities 
of CoPS organisations do not act as rigidities and does not hinder organizations from 
adopting new technology as it may in commodity markets. Due to already established 
market connections and built up capabilities, it is more likely that incumbent firms, 
rather than new entrants will lead the development of the new technology (Hardstone, 
2004). 

Lehtinen et al. (2009) found that when working with many external stakeholders, 
engagement can be crucial, however, stakeholder disengagement might be just as 
important. Organizations should therefore not follow a strategy of being fully 
transparent or closed off, rather a strategy of calculated engagement and 
disengagement. Disengagement towards external stakeholders showed to be more 
effective in earlier phases where uncertainty in the project is higher and increase 
engagement as parts of the projects are fixed. Lehtinen et al. (2019) also find that when 
internal stakeholders consider engaging with external stakeholders, they should do so 
with a systemic view of what is optimal for the outcome of the CoPS rather than what 
is optimal for the individual organization. 

The main findings of this section are summarised in the table below. 

 

Key findings 

 System integration capability and stakeholder management are 
critical. 

 Economics of repetition is an important capability. 
 Service enhanced capabilities can be developed by linking project 

learnings and business process. 
 Capabilities to balance between market pull and technological push 

is desirable. 

Table 8. Key findings from capabilities in developing CoPS 

 

4.2. Model-based systems engineering 

For the MBSE part of the review, 23 different articles where included. In this selection 
of articles, 79 unique authors contributed with 11 authors being included in more than 
one article. The articles where published in 18 unique journals or conference 
proceedings with three journals with more than one publication. The selection was 
distributed between 2000 and 2019 according to figure 6. In total, the selection had a 
citation count of 1110 citations over all articles. 
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The distribution of articles in the subthemes of Model-based systems engineering are 
presented in table 5 with the number of articles in each section and number of total 
citations. 

 

 
Figure 6. Distribution of articles in subthemes of MBSE. 

 

Subtheme Number of publications Number of citations 

Traditional Model-based 
systems engineering 

3 articles 898 citations 

Emerging cultural and 
technical challenges in Model-
based systems engineering 

7 articles 86 citations 

Case studies on Model-based 
systems engineering 

5 articles 20 citations 

Model-based systems 
engineering and data 

8 articles 106 citations 

Table 9. Article and citation count in subthemes of MBSE. 

 

4.2.1. Traditional Model-based systems engineering 

Ramos et al. (2012) presents an overview of the current state of MBSE which is emerging 
as the suitable method for systems engineering. According to Ramos et al. (2012) MBSE 
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is becoming a standard practise among system building industries and the trend shows 
that the system engineering is evolving towards a more unified practice in the future, 
in which MBSE plays a major role. According to Ramos et al. (2012), SE is an activity 
where the holistic, multidisciplinary, and complex visualisation is required. The 
interrelationship between the systems is very critical when it comes to SE, even if the 
individual silos are well developed. 

According to Ogren (2000), “waterfall” or “big bang” methodologies have previously 
been common ways of developing system where stages and activities are planned out 
beforehand and sequentially executed. However, with complex systems it is not 
possible to plan and specify the system completely before the project, many activities 
are more concurrent rather than sequential as well it is very difficult to know the real 
and all the requirements in advance, sometimes even impossible. Ogren (2000) instead 
suggests that a more incremental approach should be used where stages are 
performed concurrently, especially “requirements management”, “development” and 
“verification with test”. This should according to Ogren (2000) be done through a 
central model based on design objects where requirements and test cases are 
connected to the objects. When the central system model’s subsystems are integrated 
and functions in such a way that allows for a common understanding of the system, it 
can then be classified as a “common project model (Ogren, 2000). A common project 
model will according to Ogren (2000) increase the quality as well as the possibility for 
project success. The “common project model should evolve as the project goes on and 
could be seen as the projects backbone (Ogren, 2000). 

Estefan (2008) claims that three of the most commonly used life cycle development 
models for large scale systems are the “waterfall” model, “spiral” model and the “vee” 
model where the “spiral” model is often used in software intensive projects and the 
“vee” model is commonly used in systems engineering. These life cycle development 
models provide a framework for organisations to build their methodology of processes, 
methods and tool is their project and domain specific environment.  

Estefan (2008) goes on to emphasise that a central notion of model-based engineering 
is to elevate the models of the system to a governing role where the system model 
grows and get more detailed as the projects proceeds. 

Estefan (2008) promotes the use of a “information model” in the development of 
systems through model-based engineering. The “information model” is according to 
Estefan (2008), a very important part in the development and allows stakeholders to 
view the information that is to be used in the development of the system and their 
relationship to each other. The “information model” should show the requirements of 
the project, where requirements may be decomposed into new requirements. The 
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requirements should specify components in the system where components may be 
decomposed into other components. The model should show design alternatives 
which represent the components and satisfy the requirements and finally the models 
should represent the components and be able to execute the design alternatives 
(Estefan, 2008). 

According to Ramos et al. (2012), the development of standards is critical for 
advancement of this field as it will establish benchmark practices in the different areas 
within the MBSE domain.  There are different standards by groups such as standard 
committee of INCOSE, seventh committee of international organization for 
standardization (ISO), international electro-mechanical commission (IEC), institute of 
electronics and electrical engineers (IEEE) and Object management group (OMG). Apart 
from the core standards, there are other standards such as AF group that focuses on 
support systems architecture standards. The methodologies are also an emergent 
category where object-oriented SE methods (OOSEM), Harmony SE, Rational unified 
process for SE (RUPSE) and Object process methodology (OPM) represent some of the 
informal emerging methods. The informal and formal standards together represent the 
core set of norms that help the SE evolve. The modelling languages are an important 
subset of the modelling which help in moving across the different level of abstraction 
in the system. When it comes to languages, the SySML by OMG and Object process 
diagrams (OPD) and Object process language (OPL) by the OPM represent the present 
state of the art. The MBSE methodology offers many benefits owing to its integrated 
nature and is poised to expand its boundaries. But it has to overcome the cultural and 
technical challenges to be successfully deployed. According to Ramos et al. (2012), the 
future areas that need to be addressed will be more agile based MBSE methodologies, 
as well as the effective use of graphical modelling language to aid the collaboration of 
stakeholders. MBSE will have to evolve further to match the increased expectations 
from the stakeholders. 

The main findings of this section are summarised in the table below. 

 

Key findings 

• MBSE is suitable for developing CoPS. 
• System development is more concurrent than sequential. 
• In MBSE, the system model has a governing role. 

Table 10.  Key findings from traditional MBSE 

 



44 

 

4.2.2. Emerging cultural and technical challenges for MBSE 

Bonnet et al. (2015) capture the learnings from the MBSE implementation by Thales, an 
organization that focuses on engineering solutions for aerospace, defence, 
transportation, space, and security markets. Thales were developing Arcadia® and 
Capella®, which is an MBSE tool and its corresponding workbench for its clients. During 
a workshop conducted, it found that the obstacles and enablers to the implementation 
of MBSE are closely linked. According to Bonnet et al. (2015), cultural change is very 
important when it comes to adopting a new methodology like MBSE. Top management 
commitment is essential as the lack of it could create a risk for the other stakeholders. 
The existing tools, techniques and IT policies could slow down the implementation, if 
they are incompatible. The difficulty in measuring the return on investment (ROI) also 
could be an obstacle. Bonnet et al. (2015) found that the enablers in the MBSE 
deployment are the expected benefits arising out of the consistency of data, a good 
deployment strategy, coaching, and improved communication between the 
stakeholders. Bonnet et al. (2015) observe that the deployment of MBSE has its 
complexities and associated costs and must be carefully tackled to succeed in the 
transformation to MBSE. 

As the systems get more complex and MBSE becomes the method of choice, managing 
the models and model life cycles in the context of the multidisciplinary environment 
becomes important. Fisher et al. (2014) argue that the convergence of engineering 
disciplines to create complex and smart cyber physical systems, decreased time to 
market, increased regulation, higher product quality requirements, etc., require a 
holistic system design methodology. This drives the system developing firms to build 
more multidisciplinary modelling and analysis techniques. According to Fisher et al. 
(2014), the integration of different modelling tools, advancement of standards and 
collaboration across the value chain are some of the important challenges that the 
industries are facing. As a result, the system data is spread across different platforms. 
Bajaj et al. (2016), claim that the main challenge for MBSE implementations is that they 
must deal with heterogenous models and the need for a model that serves as ‘single 
source of truth’. In the development of intelligent systems, as the functionalities 
increase, the interactions become unmanageable due to complexities which makes it 
important to have effective cooperation and communication of inter disciplinary 
activities (Gausemeier, et al., 2013).  

Bajaj et al. (2016) focuses on the needs that drive the next generation model-based 
systems engineering and tried to address them by developing an approach named 
‘MBSE++’ which proposes an integrated model called Total System Model (TSM) that 
takes the role of a blueprint throughout the system life cycle. TSM uses SysML language 
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as the supporting tool to bring together the heterogenous models. The TSM must be 
able to handle this heterogenous mix of tools and repositories and should be able to 
spot inconsistencies across them and fix them. Model transformation capability is 
needed to achieve this, where the version control and model-based connection 
between sources and target model elements are well developed, ensuring integrity of 
the TSM. TSM should be able to handle inter model connections (connection within a 
model) and intra model connections (connections between the models). Traceability is 
a key feature of TSM where user can review impacts, prioritise connections for 
exploration etc. According to Bajaj et al. (2016), an integrated model which is 
transparent despite the underlying heterogeneity is required and the system model 
needs to be connected to the project management. A concept like TSM shall facilitate 
functionalities like timeline views of the system, workflow management, verifying 
requirement against simulation, impact analysis, report publishing etc. Bajaj et al. 
(2016) recognizes some of the potential tensions associated with TSM. The need to 
have diverse tools to support the engineering breadth while being able to have a 
transparent and unified model is challenging. Similar is the case where the TSM need 
to have different type of connections for different disciplines while being able to create 
and visualize them through a unified framework. Ensuring traceability at a unified 
system level while still being able to prioritise impacts at individual connection level is 
also another challenge. (Bajaj, et al., 2016) 

According to Fisher et al. (2014), model life cycle management (MLM) is set to be an 
important aspect in the further development of MBSE. MLM is about integrating and 
synchronising the information’s related to the models that constitute the system 
design, where it has to handle multi-dimensional issues such as different tools, users 
in different geographies, tool revisions, maintenance of system consistency, validation 
of system design information etc. It also must handle the variants, product families, 
commonalities, and unique features to satisfy the various requirements. MLM face a 
big challenge due to a lack of robust APIs and standard/custom metamodels that can 
handle the different modelling and simulation tools and repositories in the market 
(Fisher, et al., 2014). 

Gausemeier et al. (2013) developed a discipline spanning specification technique called 
CONSENS®, to manage the system engineering, in line with MBSE methodologies. The 
conceptual design specification technique consists of the following aspects: 
environment, application scenarios, requirements, functions, active structure, shape, 
and behaviour. CONSENS® employs a software support tool called mechatronic 
modeller. It uses a metamodel that defines the relevant models linked to the principal 
solution as well as their relationships. It can also handle complex dependencies in the 
system and can perform operations like tracing requirements, checking consistency, 
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etc. In CONSENS®, the method by Gausemeier et al. (2013), the information used for 
the system model can also be used for the management of the development process. 
(Gausemeier, et al., 2013) 

Ramos et al. (2013) has the criticism that the current MBSE are too complex and lack 
focus on the human-system integration. Ramos et al. (2013) also argues that the 
current standard for systems engineering (IEC 15288) is too flexible and lack solidity 
and that the systems engineering process should be intuitive, easy to use, easy to tailor, 
universal and logical. According to Ziegler et al (2018), even though MBSE has seen 
success in many disciplines that are based on traditional systems engineering practices, 
the methodology is not yet developed to handle issues in complex systems 
engineering such as emergent behaviour, especially in the case of complex adaptive 
systems of systems. 

The Agile Systems Modelling Engineering (LITHE) methodology is a MBSE 
methodology developed by Ramos et al. (2013) emphasising more agile principles such 
as continuous communication, feedback and short iterations, while still following 
traditional systems engineering processes, using common system languages and using 
a systems model as main artefact. To achieve this the LITHE model, follow the SIMPLE 
(State the problem, investigate alternatives, Model the system, Integrate, Launch the 
system, assess performance, and Re-evaluate) process model. These stages include 
process steps such as; Characterize the operational domain, Identify/evaluate 
alternative design, develop software/hardware units and install the system. This is done 
with specific focus on human-systems integration on each step follow a systematic 
approach and are performed in an iterative and integrative fashion as per the agile 
methodology and similar to a spiral methodology. The functions, assess performance, 
re-evaluate and model the system, are performed transversal along the systems 
engineering process continuously supporting the other functions. 

Zeigler et al. (2018) argues that with the increase in big data and IoT that incorporates 
multiple domains, experimentation with models is necessary to understand functions 
of the system, as well as engineer the system itself. Zeigler et al. (2018) claim that the 
existing MBSE methodology lack the simulation capabilities of analysing such system, 
especially emergent behaviour which is an inherent characteristic of any complex 
system. Zeigler et al. (2018) suggest that to overcome these restrictions, MBSE must 
evolve to handle human machine interaction analysis and resilient system design. 
Zeigler et al. (2018) suggests that discrete event system specification (DEVS), together 
with MBSE could bridge this gap in developing complex systems with MBSE. A 
workflow that according to Zeigler et al. (2018) could incorporate the use of simulation 
and MBSE would start with the development of a systems entity structure (SES). The 
SES forms the structure of families of simulation models, defining what is needed and 
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how they interact. Due to the number of components in complex systems, there can 
be a large number of potential configurations of the SES. The SES then needs to be 
“pruned” into a Pruned Entity Structure (PES) which is a specific configuration of the 
SES. Different PES is then simulated in parallel using DEVS simulation protocol, where 
the results is analysed using AI, which under human supervision improves the PES 
based on the simulation results. 

Model-based systems engineering has according to Rhodes & Ross (2010) developed 
into a mature practice and was made and used in projects to enhance requirements, 
design practice and connect structural aspects to structural aspects of the systems. 
However, Rhodes & Ross (2010) argues that when it comes to more complex systems, 
to fully represent the system it is not enough to connect the structural aspects and 
behavioural aspects of the system. Due to the complexity, uncertainty, dynamic nature, 
and accelerating pace of change in these systems Rhodes & Ross (2010) suggests that 
along with the structural and behavioural aspects, the engineering method needs to 
address contextual, temporal, and perceptual aspects as well. The contextual level 
concerns the external environmental factors of the system. Rhodes & Ross (2010) 
argues that these factors are generally not fully considered but influences decisions in 
the system, especially over a longer period where the context of the system may 
change. The temporal aspects of the system are needed to characterise changes to the 
system over time and asses its adaptability to different contextual changes (Rhodes & 
Ross, 2010). The final aspect, perceptual, is according to Rhodes & Ross (2010) needed 
to identify and represent different perspectives of the system to different stakeholders. 
It is also needed to identify how the different stakeholder preferences could change 
over time as the context changes. 

The main findings of this section are summarised in the table below. 

 

Key findings 

• Management commitment is important in transformation from a 
document-based system to MBSE. 

• Integration of heterogenous models are challenging. 
• Agile methodology can be used in the MBSE process. 
• Dealing with emerging behaviour is challenging for MBSE. 

Table 11. Key findings from emerging cultural and technical challenges for MBSE 
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4.2.3.  Case Studies on MBSE 

Kaslow et al. (2017), based on the existing MBSE methodologies, tries to frame a 
generalizable step by step approach to develop CubeSats to improve the mission 
success rate. Cubesats are small satellites built by students that are inexpensive and 
faster to develop (Kaslow, et al., 2017). Kaslow et al. (2017) captures the developmental 
activities in an eight-step approach, which is generalizable and not tool dependent. 
The starting point is capturing the CubeSat mission requirement. In the first step, 
requirements were used to identify the use cases in the enterprise level. The second 
step is to build the relationship between use cases and requirements. In the third step, 
the use cases are captured along with the participating stakeholders. In the fourth step, 
the use case descriptions are further developed to include aspects like primary actors, 
supporting actors, preconditions, triggers, and post conditions. In the fifth step, the use 
case descriptions are captured into the models. In the sixth step, the use case scenarios 
are built, which capture the functionality that the system need to fulfil.  In the seventh 
step, all the identified activities are linked to the use cases. In the step eight, the 
decomposition of activities is completed for all the subsystem level to cover the full 
functional decomposition. According to Kaslow et al. (2017), this approach is helpful in 
maintaining traceability and is recursive. 

Aleina et al. (2016) and Fusaro et al. (2017), in their cases studies, followed a structure 
of stakeholder analysis, mission and objective definition from which an initial 
requirements list is derived and relationships between them are established through 
the MBSE approach. The process was then followed by the identification of necessary 
functions and the identification of all possible products that would be able to perform 
these functions. 

In the case study by Aleina et al. (2016), on the development of a space tug  which is a 
re-usable space vehicle for moving objects between orbits, explore the benefits of 
using systems engineering processes with MBSE, especially in the initial conceptual 
stages. Aleina et al. (2016) especially emphasises the selection of tools to be used in 
the development of the system. According to Aleina et al. (2016), these steps should 
all be performed iteratively. Aleina et al. (2016) put special focus on the selection of 
software to be used throughout these stages and it was decided in the case to use 
Doors® for requirement management and Raphsody® for functional and structural 
design and analysis. The reasoning behind the choice of the toolchain was based on 
the possible level of interaction between the tools and potential for traceability. In the 
space tug case, Aleina et al. (2016) ensured proper traceability and verifiability by 
choosing software with well-established interactive capabilities, allowing for allocation 
and verification across the different platforms. 
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The case study on a hypersonic and suborbital transportation system by Fusaro et al. 
(2017) aims at establishing a baseline for the system through MBSE methods with the 
implementation of Quality Function Deployment (QFD). To achieve the best 
combination of alternative solutions, Fusaro et al. (2017) in this case applied the use of 
a QFD. Fusaro et al. (2017) argue that by using a QFD with weighed criteria derived 
from the stakeholder analysis, a baseline that will fulfil the requirements and perform 
the maximum amount of mission scenarios can be identified. After the most relevant 
high-level system structure has been identified through the QFD, the individual 
elements of the system were then improved upon in further detail, both in functional 
and structural aspects. Fusaro et al. (2017) argues that the use of an MBSE 
methodology, with the integration of a QFD, together supported the development of 
different mission alternatives and allowed the project to select the most optimal system 
baseline to perform the mission alternatives. 

Claver et al. (2014) describes a successful case study of the Large Synoptic Survey 
Telescope (LSST) and the methodology developed in the process. The project group 
choose to develop a methodology based on MBSE principles using the systems 
engineering language SysMl. One of the main reasons for using MBSE in the project 
was due to the members being geographically separate, and MBSE and the common 
system model allowed them to work, document and share information on the same 
interface (Claver, et al., 2014). The development model is based on a triangulation 
between the systems requirements, the system structure and the system behaviour 
where the structure and behaviour should satisfy the requirements and the behaviour 
is allocated to the structure of the system (Claver, et al., 2014). According to Claver et 
al (2014) the development the model also consists of three views which is the 
requirements, the logical view where high level logical structure are and functions are 
defined to increasing levels of details until they can be allocated to the final view, the 
physical view. The project group call the view structure the LSST System Architecture 
(SysArch) model. By ensuring both traceability within the views, and through the 
triangulation of the requirements, structure and functions, the SysArch model keeps 
the system consistent throughout development and was according to Claver et al 
(2014) a very effective method of developing the complex system LSST. 

Do & Cook (2014) through their case study on a ground-based air missile system, which 
used a methodology of the object-oriented systems engineering methodology 
(OOSEM) with SysMl, identifies a set of research challenges for the development of 
complex systems using MBSE. Do & Cook (2014) found three key areas where further 
development is needed when developing complex system with MBSE and especially 
with SysMl. The three areas are, model-based requirements engineering, model-based 
systems engineering design and analysis, and model integration and integrated tool 
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environment development. According to Do & Cook (2014), modelling requirements 
in SysML lack the necessary traceability required for large projects and inconsistent 
requirements will eventually arise. According to Do & Cook (2014), MBSE practice with 
SysML mostly catalogues the different requirements and more research is needed to 
improve modelling and mapping of requirements. Do & Cook (2014) argue that MBSE 
with SysML is capable of “capturing system design”, it mainly does so, based on designs 
that have been developed outside the SysML infrastructure and then built in SysML. 
According to Do & Cook (2014) the capabilities of MBSE with SysML to design and 
analyse systems needs further development to better support engineers needs as well 
as to build executable models that where trade-off analysis can be performed, and 
designs can be better evaluated. Finally, Do & Cook (2014) argue that further research 
on integration between tools is necessary. In MBSE tools mainly focuses on one aspect 
of systems engineering and integrating them can lead to more executable models and 
better incorporation of “artificial reasoning”. 

The main findings of this section are summarised in the table below. 

 

Key findings 

 Limitations are seen in tool / model integration due heterogeneity. 
  SysML language needs to evolve to better support MBSE.  
 Traceability, and identification of inconsistencies is challenging. 

Table 12. Key findings from MBSE case studies 

 

4.2.4. Model-based systems engineering and data 

According to Zhan et al. (2015), even though MBSE has been growing in use to develop 
complex systems, the major MBSE methodologies put too much focus on the 
representation of the models themselves and not enough focus is placed on the data 
elements of which the models are build, verified and analysed. The systems engineering 
process can be structured according to three core phases, requirements analysis, 
functional analysis and architectural design, and while the models may visualise these 
phases, it is the data elements which are the drivers for the process (Zhan, et al., 2015). 
Zhan et al. (2015) suggests a data centric approach to MBSE. This approach is based 
on the notion that to fulfil all the system requirements, the system with its subsystem 
needs to fulfil specific capabilities. This can according to Zhan et al. (2015) be done by 
building a high-level data meta model which is based on answering questions that can 
be grouped according to 5W1H (What, When, Where, Who, Why and How). By making 
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connections between the 5W1H, answering questions such as who does what when, 
and mapping the subsystems to what function needs to be performed and how it will 
be performed to fulfil what capabilities, therein fulfilling the requirements, the data 
elements are driving the systems engineering process and the models act as a 
visualisation of the data (Zhan, et al., 2015). 

Lindblad et al. (2018) suggests that a reason for MBSE not yet being a widespread 
common method, at least in the aerospace industry, is because the method itself 
becomes too complex as well as being too inflexible. In the aerospace industry, MBSE 
is mainly used in the initial project phases and not iterated upon throughout the life 
cycle. This is according to Lindblad et al. (2018) because when underlying engineering 
data is changed, if that change is not connected throughout the system, in MBSE the 
effect on the system as a whole may not be clearly recognized, leading to 
inconsistencies in the underlying assumptions of the system. Lindblad et al. (2018) 
suggests that by basing the development on a structure and consistent database, 
where the engineering data are connected will allow for better traceability, make it 
easier to spot inconsistencies early and allow for automation and optimization of the 
system structure. By using a structured database with clear relationships between the 
data, optimizer tools can be used to automatically come up with optimal solutions and 
thereby according to Lindblad et al. (2018) MBSE can become “more than a 
visualisation tool” and become a tool to support engineers in their decision making. 

Li et al. (2019) presents an iteration to the established “V” life cycle model for systems 
engineering based on the inclusion of a big data driven section to the model. Li et al. 
(2019) argue that the “V” and the “double V” model, which is the “V” model with the 
addition of a MBSE branch, still lack in its performance in several aspects when 
developing complex systems. According to Li et al. (2019), MBSE still faces challenges 
in verification, where verifying the consistency of the model against the physical system 
and verifying the simulation accuracy continues to be an issue, leading to the continued 
need of physical tests. There are also challenges for new fields, or fields with low 
accumulated knowledge. In these areas it is difficult to claim how relevant the model 
actually is. There is also no way of integrating domain models in a holistic way, causing 
domain models to be analysed separately, dividing the relationships between them. 
This is because the development of models take place in their respective domains and 
they inherit the characteristics of those perspectives, which limits the scope of a 
collaborative analysis. Li et al. (2019) propose adding another “V” to the model, 
consisting of a big data life cycle, making it the “triple V” model. With the “triple V” 
model the product, its model and the data are all integrated. The data in the in the 
“triple V” provides the connection between verification and validation with the model 
and the product, supporting each other throughout iterations in the process. By adding 
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the data branch in the model, data generated by simulations as well as the physical 
product can be used to learn about the model and the product, as well as improve 
upon them. In the model by Li et al. (2019), data will be at the centre of the interaction 
between the model and the product. 

Herzig et al. (2014) claims that complexity in technical systems is often managed by 
understanding the system from different viewpoints that consists of factors such as 
concerns of interest, different levels of abstraction, variety of factors and context. In a 
complex system, there may be several inter-relations due to the different viewpoints 
and this can result in inconsistencies in the system given that there are heterogenous 
models present in the system. According to Herzig et al. (2014), identifying and 
resolving inconsistencies is important for the verification and validation. Identifying the 
inconsistencies is important as early detection can save the developmental cost. 
Inconsistencies arise in many different forms such as mismatch between model and 
test data, violation of well-formedness rules (rules related to modelling language), not 
following guidelines etc. Herzig et al. (2014) proposes a way to identify the 
inconsistencies through a graph method, where all models are represented in a graph. 
Pattern matching method is used to identify the inconsistencies, which is similar to 
identifying inconsistencies through deductive reasoning. 

Herzig et al. (2014) builds on the previous theories on handling inconsistencies and 
proposes that a triplet can represent a relationship – a subject, predicate, and object – 
at the basic level, in the form of a graph. Herzig et al. (2014) argues that by searching 
for a sub-graph, it is possible to identify the presence of an inconsistency. Herzig et al. 
(2014) proposes an architecture concept which represents the key elements of the 
inconsistency management apparatus. With the aid of machine learning and heuristics, 
it is possible to improve the performance of pattern matching. The automated 
identification of inconsistencies can aid the verification and validation phase. Some 
limitation of the method proposed by Herzig et al. (2014) could be that pattern 
matching may not work in certain cases where relationships are missed. Instead of 
deductive reasoning, abductive reasoning could be used to overcome this. 

Heber & Groll (2017) reasons that traceability in the development of a system is a 
crucial aspect, especially with an increase in complexity. By connecting Product Data 
Management (PDM) and Product Lifecycle Management (PLM) with MBSE, and 
integrating digital twin and blockchain technology, Heber & Groll (2017) suggests that 
the traceability throughout the life cycle can be solidified. By using a blockchain, where 
a new block is created whenever a new element is created or updated, and having the 
information in the block connected to MBSE artefacts, this chain can according to 
Heber & Groll (2017) act as the “backbone” of the PLM system and enable traceability 
of elements and their relationships throughout the life cycle. The digital twin adds 
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usability and manageability to the system by being an easy to interact with 
representation of the system at each stage in time of the development from the point 
of sale. The digital twin is also connected to a blockchain containing all necessary 
information needed by the engineers about the system and the parts such as geometry 
or source code. 

Madni et al. (2019) categorizes four levels of maturity for ‘digital twins. Level 1 is pre 
digital twin, which is equivalent to a virtual prototype. It only helps in validating key 
aspects of the system. Level 2 is a ‘Digital twin’ that captures the performance, health, 
and maintenance data from the physical twin, through batch updates. These updates 
support the conceptual design and development for the product. At this level, the aim 
is to use the digital twin to find the ‘what-if’ scenarios, so that it can aid in supporting 
the physical twin in the right way. Level 3 is the ‘adaptive digital twin’, where the system 
incorporates the user behaviour in addition helping to understand various contexts. In 
this level, supervised machine learning algorithms can be of help to understand and 
predict the patterns. Real time update of digital twin is desired in this level. Level 4 is 
the ‘intelligent digital twin’, which uses unsupervised machine learning to understand 
and predict patterns from the operational data. High autonomy of the digital twin is 
the highlight here, where it can analyse various type of real-world data. Digital thread 
can help in the knowledge transfer across the value stream of MBSE, making the digital 
twin a sole source of truth. The systems engineering using MBSE can be transformed 
greatly by incorporating the digital twin as the data and analytics improves the system 
knowledge. (Madni, et al., 2019) 

Schluse et al. (2017) identifies that there is a gap between the systems engineering and 
the simulation technology. The simulations lack a framework that can combine the 
different simulations of various domains, due to the complexities of the models. MBSE 
methodology, already consist of model preparation and simulation, but lacks an 
integrated approach when it comes to simulation. According to Schluse et al. (2017), 
experimentable digital twins (EDT), which has its beginning in the eRobotics 
methodology, could be the possible way to integrate the simulation methods using the 
digital twin concept supported by internet of things (IoT). As the models get more 
complex, classical methods of simulation could become less effective. EDT can 
intelligently improve the model generation time and transition between modelling and 
simulation using an ‘understandable structuring element’. For the system engineers, 
EDT takes away the burden of running the simulation for the whole system as it 
intelligently chooses the needed simulations from the EDT networks and runs the 
required algorithms to produce the results. EDTs could act as an effective link between 
the various aspects of MBSE and simulation (Schluse, et al., 2017). 
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According to Schluse et al. (2017), interoperability issues between simulations prevent 
the engineers from having a holistic view, which is a blockade in achieving the synergy 
of the simulation methods.  An EDT essentially combines a simulated data processing 
system (DPS) and simulated human machine interface (HMI). EDT and virtual test bed 
(VTB) make it possible to handle the modelling, simulation and verification of a 
dynamic system at a micro level including the possible interactions. Simulation based 
optimization can benefit from EDT by evaluating the parameters between the 
simulation runs through a cost function. EDT can help MBSE to achieve its full potential 
where models support the full life cycle by integrating simulation and modelling, 
leading to better designs and cost-effective solutions.  As EDTs and VTB link simulation 
with reality, they can become vital in the development of intelligent systems.  

According to Di Maio et al. (2018), MBSE models are usually too abstract, leading to 
difficulties in complex analysis. MBSE models also commonly cannot easily integrate 
domain models (for example CAD models) making it more difficult to perform analysis 
on the systems configuration or advanced “in the loop” simulation, leading to lower 
confidence in the decision making. Di Maio et al. (2018) argues that the methodology 
Closed-Loop Systems Engineering (CLOSE) can help overcome these weaknesses. 
CLOSE is based on a previously developed methodology, the Model Driven Engineering 
Process (MDEP). The MDEP model is based on separating the development in three 
areas, the client & environment, product realisation and system design where product 
realisation and system design is coupled through a functional matrix. By separating the 
system design from product realisation, the process can according to Di Maio et al. 
(2018) decrease the amount of feedback loops in the development. CLOSE adds to this 
by incorporating EDTs which are a virtual one-to-one representation of the system, at 
the centre of these three areas of MDEP. With the EDTs interacting and connecting the 
areas, this could allow for analysis and verification throughout development with more 
and more detail as the domain models developed. The EDTs can according to Di Maio 
et al. (2018) provide a holistic executable model of the entire system and not simply 
aspects of it. The CLOSE model with the incorporated EDTs should also decrease cycle 
time in development, allow for a high degree of re-use of model elements and with its 
decoupling of the system design and domain specific product realisation decrease the 
amount of feedback loops in the development (Di Maio, et al., 2018). 
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The main findings of this section are summarised in the table below. 

 

Key findings 

• Linking data to models using a structured database can help 
optimization. 

• Data can help in verification and validation and can improve 
simulation accuracy. 

• Concepts like digital twin can link MBSE and data and help in 
simulation optimization. 

Table 13. Key findings from MBSE and data 

 

4.3. Data driven methods 

For the data driven methods part of the review, 23 different articles where included. In 
this selection of articles, 80 unique authors contributed with 8 authors being included 
in more than one article. The articles where published in 23 unique journals or 
conference proceedings. The selection was distributed between 2007 and 2019 
according to figure 7. In total, the selection had a citation count of 1380 citations over 
all articles. 

The distribution of articles in the subthemes of Data driven development are presented 
in table 6 with the number of articles in each section and number of total citations. 

 

 
Figure 7. Distribution of articles in subthemes of data driven methods. 



56 

 

 

Subtheme Number of publications Number of citations 

Data driven control and 
optimization 

6 articles 827 citations 

Data driven modelling 7 articles 69 citations 

Data driven monitoring and 
fault diagnostics 

10 articles 465 citations 

Table 14. Article and citation count in subthemes of data driven methods. 

 

4.3.1. Data driven control and optimization 

According to Uraikul et al. (2007), There are three general approaches, analytical, data 
driven, and knowledge based, to support intelligent decisions in monitoring, control, 
and diagnostics. The analytical approach uses theories and mathematical models. The 
models generate outputs in the form of state estimations, parameter estimation and 
residuals. The data driven approach bases their results on process data. The 
knowledge-based approach on the other hand uses heuristics and reasoning based on 
artificial intelligence technologies to achieve the results. In a survey of what according 
to Uraikul et al. (2007) where four of the most comprehensive frameworks dealing with 
intelligence controls and diagnostics, Uraikul et al. (2007) found several general 
characteristics that were common between the frameworks, however, they varied in 
their execution. In all four frameworks the three different approaches were integrated, 
although with different priority. All four frameworks also use different methods of 
integrating the solutions. The frameworks did however also show some weaknesses. 
For example, one framework showed that scaling up the system could be an issue while 
another showed issues in coordination between tasks and a third framework was 
shown to be too rigid and could have issues in dealing with changes. From the survey, 
Uraikul et al. (2007) identify six desirable general attributes of intelligent frameworks. 
The framework should be able to coordinate between different control tasks. It should 
be capable of integrating the three different approaches (analytical, data driven, 
knowledge based). The framework should be able to coordinate between different 
representative views like models or cases. It should be able to support a global 
database and management of process knowledge. It should have a hierarchical 
structure for data models at different levels of abstraction. Finally, the framework 
should have capabilities to deal with change according to its environment.  
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Ren et al. (2019), discusses the effect of vibration factor in the life of downhole drilling 
tool and explores how field reliability big data (FRBD) can aid in the analytics, tool life 
prediction, prognostic health monitoring, condition-based monitoring, maintenance 
planning and optimization. FRDB can be a huge set of data collected from all over the 
world, with sizes amounting to Terabytes (TB) and Petabytes (PB), containing covariate 
and time varying information as well as reliability related information. This data is 
obtained from sensors that measure, monitor, and record the downhole - axial, lateral, 
and torsional – vibration data. Traditionally, the reliability data is obtained from 
population data from real world testing experiments and the analytics uses empirical, 
probabilistic, and statistical data. In comparison, FRBD can help to minimize in service 
failure and life cycle cost by provide more insights. It can also aid decision making in 
the areas of design, testing, operation, maintenance, and warranty.  FRBD can be 
analysed to measure the actual usage information of drilling tool and prolong its life 
by modifying the chosen parameters as per the recommendation. It can be used for 
prognostics for short- and long-term predictions of the remaining useful life (RUL) of 
the tool. FRBD should be integrated including information for various source such as 
product design, testing, manufacturing, quality, and field to enhance the breadth of 
reliability analytics. (Ren, et al., 2019) 

Liu and Goebel (2018) discusses the learnings from the NASA University Leadership 
Initiative (ULI) which is a five-year project aimed at addressing the safety needs and the 
corresponding technological requirements for the next generation National Airspace 
System (NAS). The project is to develop an integrated fusion methodology to be used 
for the prognostics and safety assurance for NAS which needs to be capable of 
ensuring safe operation in a complex airspace by proactively detecting and resolving 
threats as well as providing prognostics. To develop a new algorithm for aircraft 
dynamics simulation, a hybrid approach, combining the physics of the dynamic system 
and the data driven learning is used which enhances the learning and prediction. It 
provides additional constraints for learning and predicting the system behaviour when 
the physics-based models are integrated into the data driven learning models. It also 
enhances the extrapolation capabilities. In this way, the training cost of the purely data 
driven method could be reduced. Liu and Goebel (2018) suggest that a rigorous 
information fusion, using both data driven, and physics-based, is needed for the 
complex system prognosis, where a huge amount of data that is hierarchical and 
dynamic in nature, both at spatial and temporal scales are involved. Big data analytics 
can enhance the capabilities of the organization by developing new insights leading to 
better decisions. (Liu & Goebel, 2018) 

Norman et al. (2018), focuses on the use of big data analytics in the testing and 
evaluation of aircraft in the Joint Strike Fighter (JSF) program. Though, the complexity 
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of the systems in the department of defence (DoD) evolved, the evaluation 
infrastructure, according to Norman et al. (2018), has not caught up with it. By making 
use of data driven methods, this can be bridged, making decision making faster, better, 
and smarter. In the DoD, there was an issue with knowledge management as the 
program managers used to conduct tests without realizing that the same tests where 
conducted in other programs and that they can learn from them.  To reuse the 
knowledge, the new knowledge management model was conceptualised with four 
functional areas: data gathering, warehousing of data to make it available to users, 
providing analytics capability and visualization of the data.  The Test Resource 
Management Center (TMRC) of DoD aims to use big data analytics and cloud 
technology to improve the evaluation efficiency and reduce the decision-making time. 
According to Norman et al. (2018), data analytics can help to identify issues earlier in 
the life cycle, saving cost and time, lowering the risk. It can also identify patterns that 
humans might miss, help the developers to discover ‘unknown-unknowns’ which is one 
of the highest risks in complex products acquisition. (Norman, et al., 2018) 

Qin (2014) in his perspective article on process systems in chemical systems, claim that 
while process systems gather a vast amount of data from sensors and indirect 
measurements, this data is mainly stored to be used by control systems after an 
incident, in a reactive manner. According to Qin (2014), the current data analytics 
methods are also mainly based on “clean” and structured data, limiting the potential 
benefits from big data. Qin (2014) instead argues that process system development 
should incorporate data driven methods like data mining and machine learning 
methods which can make use of unstructured data, detect root-cause faults faster and 
identify quality related faults sooner than conventional techniques. To make the shift 
towards more data driven development, Qin (2014) takes the perspective of the 
different ‘V’ of big data. For variety, more heterogeneous sources of data should be 
utilized to gather data to gain information. To increase value and veracity, process 
system development needs to adapt more machine learning methods. To gain volume, 
data mining of historical data based on time series should be done to better analyse 
events, make decisions and identify root-causes. For velocity, system architecture 
should adapt to a “data-friendly” information system, which could complement rather 
than replace the current “control-centric” systems (Qin, 2014). 

Wang (2010) presents concepts and methods that together forms the methodology of 
Parallel transportation Management Systems (PtMS) in the field of Intelligent 
Transportation Systems (ITS). The parallel management and control of systems is meant 
to be a data driven approach to systems development and decision making and since 
it is developed within the area of ITS, it considers both engineering and social aspects 
(Wang, 2010). According to Wang (2010), parallel, in this context, is the interaction of 
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the “real” system, and one or several virtual or artificial versions of the system. PtMS by 
Wang (2010) is based on the ACP approach (artificial societies, computational 
experiments and parallel execution). The artificial societies are used for modelling as 
well as representation of the systems, the computational experiments are used to 
perform analysis and evaluations, and control and management is achieved through 
parallel execution between the real-world system and the virtual system. According to 
Wang (2010), the artificial systems approach can better support a complete approach 
to representing the system while the computational experiments can support the 
adaptability to solve complex problems and, learn and improve upon the solutions. The 
parallel execution of the system helps in the implementation of the system, as well as 
provide validation and evaluation on different solutions on a system level as there often 
in complex system is not one optimal solution to a given problem (Wang, 2010). 

The main findings of this section are summarised in the table below. 

 

Key findings 

• Data can provide insights and aid decision making. 
• Decision making is faster compared to model-based methods. 
• Data helps to identify unknown relationships. 

Table 15. Key findings from data driven control and optimization 

 

4.3.2. Data driven modelling 

Within the area of automotive systems engineering (ASE), Bach et al. (2017) argue that 
the increase of advanced technology, complexity and dependencies between features 
cause traditional descriptive and conceptual models to no longer be adequate on their 
own. Bach et al. (2017) suggest that data driven development should be incorporated 
together with the current practice of using the V model in ASE. Bach et al. (2017, pg.285) 
defines data driven development as “approaches, which utilize data and data analytics 
to substantially influence business or design decisions” and proposes that the use of 
data from real world testing, as well as from contextual data, such as in this case 
weather data or traffic data, can help overcome challenges in ASE. Within the 
requirement solicitation and analysis phase, data can provide answers to simple 
questions such as who, what, when, how, to whom questions. Data can also provide a 
better understanding of the system, the environment and the context as well as even 
uncover connections between parameters not previously thought of (Bach, et al., 2017). 
In the design phase, data can support the determination of desired characteristics of 
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the system and provide a better understanding of dependencies, uncertainties and 
potential outlier errors, supporting design decisions and decreasing errors in the 
implementation phase. The real-world data can also help narrow down testing 
scenarios on a unit or subsystem level and provide initial values for further testing and 
analysis (Bach, et al., 2017). In implementation and validation, the recorded data and 
contextual data can support realistic simulation of the whole system for a multitude of 
different scenarios. The simulations can help focus the real-world testing and give 
experts an overview and a good base to validate the behaviour of the system (Bach, et 
al., 2017). 

Bach et al. (2017b) argues that the increase in complexity especially causes difficulties 
for the verification and validation of the systems. Bach et al. (2017b) proposes a 
combination method to address these challenges. The method is called the reactive 
replay method, which combine dynamic simulations of the system, including the 
dynamic behaviour of the system and its environment, and real-world prototype-based 
testing, with both parts feedbacking to each other. This way, specific aspects of the 
system can be simulated, combined with real world data, simplifying the simulation 
models. According to Bach et al. (2017b), as the testing scenarios are then based on 
real world data, they would not require further validation. However, Bach et al. (2017b) 
claims that there are still issues in determining when scenarios cover the testing 
requirements, or with simulations, doing an excessive amount of testing. Currently, 
scenario selection is done based on expert knowledge. Bach et al. (2017b) instead 
proposes a two-step method of scenario selection to achieve sufficient coverage with 
the fewest amount of scenario testing. In the first step, specification-based selection, 
scenarios are partitioned based on system requirements, enabling the generation and 
combination into many sets of scenarios. However, the generated scenarios can still 
contain a substantial amount of overlap in situations and information. Therefore, the 
second step of data driven reduction is necessary. By utilizing the data from the reactive 
replay method, scenarios based on real world data can be generated that will 
sufficiently cover the testing requirements with minimum parameter overlap (Bach, et 
al., 2017b). 

Huang et al. (2011) proposes a data driven approach for the automated selection and 
re-use of the model components which are pre-build and validated. Building validated 
models are costly as it takes time, effort, and expertise.  Automatic model generation 
(AMG) method generates simulation models from data gathered from several sources 
by using data analysis and data structuring algorithms which configure the models and 
create them. Complex systems have a hierarchical structure where it can be 
decomposed into subcomponents and further into components. The behaviour of a 
model depends on the subcomponents and its structure. If this information can be 
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gathered from data sources, it can aid in AMG, facilitating the re-use of pre-validated 
model components. Though a big model-component library would be required for 
AMG, it is justified according to Huang et al. (2011), considering the long-term benefits. 
Model-components are the building blocks which are self-contained, interoperable, 
reusable, and replaceable units that have a well-defined interface. A model generation 
algorithm, capable of selecting, structuring, and configuring the model-components is 
employed by AMG with the help of model selection heuristics. There are two types of 
applicability conditions used, behavioural and structural. Structural pre-condition is 
associates model component with objects whereas behavioural pre-condition define 
the dynamic conditions to determine the expected behaviour of the model. These 
conditions together define the logic of model component selection and structuring. 
According to Huang et al. (2011), AMG has two parts: the first part consists of using 
data and models for AMG and the second part consist of analysing the simulation 
output with available data for automatic model calibration. The data sources can be 
describing geometry, geomatics or topology related to the system. It can also be 
describing resources, orders, or demands, processes or operations, products, or 
services. The data is subjected to selection, pre-processing, mining, and post 
processing to build knowledge from it (Huang, et al., 2011). 

To deal with the increasing complexity in systems Hybertson et al. (2018) proposes a 
shift of focus to increase the use of evidence in systems engineering drawing from 
areas such as law and medicine. Hybertson et al. (2018) classifies evidence as “any 
information or artefact that helps objectively evaluate the validity of an assertion, 
answer a question or resolve an issue” and argues that an evidence based process can 
support decisions better connected to the core issue more consistently. According to 
Hybertson et al. (2018), many different fields and approaches supports and contributes 
in the evidence-based systems engineering. Areas such as knowledge management to 
capture and distribute already known information including expert knowledge, model 
based approaches which supports analysis reasoning and learning from evidence and, 
analytics where through methods in data analytics, big data and IoT new evidence can 
be gathered which is specific for a given situation. The framework of evidence-based 
systems engineering by Hybertson et al. (2018) is based on five major steps. In the first 
step, setting the stage, a question to be solved should be stated. However, Hybertson 
et al. (2007) argue that before stating a question the situation must be fully understood 
which is not always a straightforward path in complex systems. Hybertson et al. (2018) 
here promotes the use of systems thinking to capture a holistic view. In the second 
step the evidence is gathered. This is done through both to use of a knowledge base 
containing experiences, theories etc. and collecting new data using models and data 
analytics methods. The third step of mediating the evidence supports the development 
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of the best solution for this specific situation. Here, contextual factors are considered 
as well as norms and preferences. The fourth step is to apply the evidence generated 
to answer the initial question. The final step is to learn and evolve. This step is iterative 
and is carried out throughout the framework. For example, the situational data can 
feedback to the knowledge base or the application can feedback to research to raise 
new questions to be investigated (Hybertson, et al., 2018). 

Opiyo (2015) proposes a framework for a pipeline for data analytics aimed at 
supporting the decision making in the development of complex product systems. The 
idea is to use the insights from data, that was unavailable before, to predict aspects 
like cost, assembly time etc. which can aid product development. As the systems 
become more complex, it is difficult to predict the aspects like performance, reliability, 
and cost. If the developers can predict these aspects early by accommodating the 
knowledge gained and resolve issues before they occur, it can result in a successful 
product. According to Opiyo (2015), the developmental phase consists of i) need 
analysis ii) component and feature identification iii) modelling and representation iiii) 
exploration (engineering analysis and data analysis). The data for the analysis is first 
acquired from many different sources, the raw data is then subjected to pre-processing 
and transformation and then analysed. In the acquiring and storing of raw product 
data, traditional data gathering methods can be combined with the latest methods 
such as sensor data, IoT device data etc. Once the data is received a broker hands it 
over to an analytics system for further processing and transformation. The pre-
processed and transformation phase enriches and re-represents the data. A key 
requirement of this phase is to have low latency characteristics. The final step in the 
pipeline, the data analytics phase which captures the trends and patterns of the data. 
Opiyo (2015), breaks down the component and feature identification phase to three 
sets of features, low end complexity manifestation (CM), high end CM, and basic system 
manifestation features connected to the components. Advanced analytics, machine 
learning and statistical methods employed in the pipeline, can be used to gain insights 
which can be inputs for designers to influence the earlier mentioned features. It shall 
be noted that the predictions depend on availability of historical data sets. Opiyo (2015) 
suggests that the pipeline and strategies discussed will aid the developers to acquire 
data and insightfully explore the design space to come up with superior products. 

Ding et al. (2015) claim that due to the complexity in wind power turbines it is not 
possible to explain the behaviour through analytical expressions, rather data driven 
methods are crucial in the development. By using large amounts of data generated 
from sites of interest for wind power, it is then possible for developers to give an 
accurate estimation of variables. The data can also support prediction of in this case, 
the power production of the turbine as well as the effects of changes in the 
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environment on the system (Ding, et al., 2015). Ding et al. (2015) also discusses the 
concept of local and global models for data analytics. Local models use many 
parameters and are very useful for capturing features of a specific portion of the data. 
However, local data models only look at the data within one portion, ignoring 
characteristics and strengths of other portions of the data which, according to Ding et 
al. (2015), is an issue with current methods in the wind industry. Global data models 
instead require fewer parameters and, opposite from local models, when a change is 
made somewhere in the data model, it will have an effect in other areas as well. Global 
models are also easier to scale but lack the flexibility of local models. Ding et al. (2015) 
suggest that data analytics models should fall between local and global models, being 
able to utilize benefits from both. 

Mount et al. (2016) explores the opportunities that data driven methods offer for the 
socio-hydrology and the associated challenges. Socio-hydrology model is an emerging 
model from the traditional hydrology model where human, social, economic and 
infrastructure components are added. Due to these factors, the complexity is 
associated with the total system increases which results in the system’s transformation 
from the conventional model to a socio-hydrologic model.  The hydrological modellers 
face a challenge due to this, but it also provides them with opportunities to analyse 
new type of information to understand how interactions happen between the social 
domain and the hydrology domain. Mount et al. (2016) suggests that in the future, the 
data driven methods will find more use in the socio hydrology field. As data driven 
models can discover the model structure from the data, dependency of a priori model 
is minimized, if not completely avoided. The conventional physical models focus on 
hypothetical knowledge which is assembled from several hypothetical models. In the 
hydrology models, some amount of data is used as it is one of the constituents of the 
model itself. However, in the new generation of hydrology models, a more 
comprehensive representation, improved estimation, and prediction capabilities are 
desired. According to Mount et al. (2016), the capacity to develop complex socio-
hydrology models can surpass the hypothetical knowledge that is available at hand. 
Here the data driven methods can help in hypothesis development. This is because 
they can identify the influence of the variables on the system responses. The hybrid 
methods which combine the advantages of both data driven and hypothetical models, 
deliver better predictions. It also helps to gain more hypothetical insights through 
heuristic explorations as well as data driven structures and behaviours (Mount, et al., 
2016). Mount et al. (2016) identifies some challenges in adopting the data driven 
methods. A need for rigorous model development protocols and a shift in perspective 
of the data driven modelling community from the software solution-based thinking. 
Generation of large number of training data is expensive and simulation efficiency is 
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reduced when a full emulation model is used. Despite the limitations, Mount et al. 
(2016) finds that data driven methods are complementing the conceptual/physical 
models and are set to be essential in socio-hydrologic systems owing to the increased 
system complexity and decreased system understanding. 

The main findings of this section are summarised in the table below. 

 

Key findings 

• Building validated models require expertise, effort and consume time. 
• For model-based methods, complexity causes difficulty in verification and validation. 
• Data driven methods can provide better understanding of the system behaviour. 
• Data can give feedback and insights to earlier phases of development. 
• Generation of large set of training data can be expensive. 

Table 16. Key findings from data driven modelling 

 

4.3.3. Data driven monitoring and faults diagnostic 

As a result of the increasing complexity of systems and the cost of these systems, the 
demand on safety and failure prevention is increasing, placing higher requirements on 
fault detection and diagnosis (FDD) methods (Dai & Gao, 2013). Dai & Gao (2013) 
describe in the analysis of literature that there are three different categories of FDD 
methods. Model-based FDD methods which are based on online data, Signal-based 
FDD methods based on sensor data or online data, and knowledge based FDD methods 
which use historical data and smart computing. There are also many FDD methods 
using an integration of methods. All three categories are according to Dai & Gao (2013) 
considered data driven as data and the understanding of the data are fundamental 
parts of the process and they are all based on the notion of information redundancy. 
The redundancy is based on either checking the data against a model, knowledge or 
checking the consistency of the data. The model based FDD is based on identifying 
inconsistencies in state variables (Dai & Gao, 2013). These variables are commonly 
related to physical values of the system, making it rather simple the check for changes 
from the nominal value, if the data fits the model. However, building the model to 
process the data takes considerable effort (Dai & Gao, 2013). The signal based FDD 
methods instead do not require a model to process the input data. These methods 
identify faults through the analysis of patters from the data, from sensors or from online 
sources. Faults can then be found through the correlation of specific patters to certain 
faults in the system (Dai & Gao, 2013). When the system is too complicated to use 
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explicit models, or analyse patterns from signal, Dai & Gao (2013) argue that 
knowledge based FDD methods are necessary. Knowledge based methods identify 
faults and the health of the systems by “learning” from a large amount of data, using 
AI to uncover the knowledge of which the data consists and identify inconsistencies in 
the system. However, Dai & Gao (2013) argues that for complex systems, the best 
solution is some combination of the three categories. 

According to Mosallam et al. (2015), the increased demand on maintenance has paved 
way for a strategy which focuses on predictive maintenance capabilities and estimation 
of remaining useful life (RUL). A data driven approach is gaining popularity in this field 
when defining the system through accurate physical models is not possible. Mosallam 
et al. (2015), discusses the path towards data driven prognostics and builds a generic 
component based prognostic methodology. The data driven methods try to map the 
relationship between variables and can also represent uncertainty in a probabilistic 
form. RUL mapping can be done both cumulative way and direct way. In cumulative 
model, the RUL is predicted using the empirical models which map out the degradation 
evolution aiding the calculation of health status. In direct method, the sensor data is 
collected to calculate the end of life (EOL) directly without calculating the health status. 
Monitoring can be done at system level and component level. The first step in adopting 
data driven approach is to identify the critical components. Qualitative/quantitative 
hazard analysis, failure mode effect analysis (FMEA) and fault tree analysis (FTA) are 
some tools that are used in this regard. Physical parameters are selected based on 
criteria such as speed, temperature, position etc. Selection of monitoring sensors are 
important. Aspects such as parameter to measure, accuracy, reliability, range, 
resolution, characteristics, and cost are the important factors here. Sensors can be used 
to capture both event data as well as condition monitoring data. After data acquisition 
from the sensors, data pre-processing must be conducted to prepare it for better 
analysis. Handling missing data, noise reduction, normalization and smoothing are the 
different categories in this phase. Health indicators are constructed from the 
component degradation evolution model and the health status generated in a 
probabilistic format help in decision making. According to Mosallam et al. (2015), this 
method is quite generalizable for prognostics of complex systems. 

Galar et al. (2015) argue for a more context aware approach to assess the health of a 
system, and to predict future faults and maintenance needs. According to Galar et al. 
(2015), to accurately assess the health of complex systems, data collected from 
independent systems needs to be integrated to form an aggregated data set. This 
aggregated data can also be used to gain new insights about the system. A context 
aware system is according to Galar et al. (2015) commonly very complicated, including 
information and data from many various sources such as data gathered from the 
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internet, internal work orders, sensor data, external monitoring systems, etc. Galar et 
al. (2015) argues for a hybrid modelling approach to a context aware health diagnosis 
and prediction. The hybrid model consists of symbolic models, physics-based model 
and data driven models. The symbolic models are used to capture expert knowledge, 
the physics-based models capture the mathematical degradation of the system and, 
the data driven models utilize sensory and historical data. Through the combination of 
models, the data driven models can find and confirm physics-based issues in the 
system, and previous knowledge from the symbolic models can support the data driven 
models when sufficient data cannot be provided (Galar, et al., 2015). 

Earlier, Galar et al. (2013) proposed a methodology that predicts railway vehicle 
breakdown by using the information from track side (infrastructure side) and from the 
onboard systems side (equipment side). Empirical relationships described in words are 
the basis of the symbolic model, which can be found in work orders and maintenance 
reports, mostly handwritten by the maintenance personnel. However, they are less 
effective in building complicated dependencies and time varying behaviour. Work 
orders from both rolling stock and infrastructure need to be integrated to build the 
scenarios under which the breakdowns occur. Data driven methods depend on the 
relationships built using a training data taken from the system. Mathematical models 
or physical models are based on physics of failure, first principles or empirical 
relationships. Physics based models are useful in understanding dynamics of the 
system in time varying conditions. Building relationships between the variables in 
system degradation context is challenging. However, in the railway engineering, there 
are physical models for rolling stock and track degradation, e.g. models for degradation 
of wheel and track. By combining these methods, the accuracy of fault prediction 
improves. (Galar, et al., 2013)  

Villarejo et al. (2016) follows the hybrid model by Galar et al. (2013), to develop a 
contextual awareness hybrid model to calculate RUL to manage the life cycle of railway 
equipment. The disparate data sources are integrated using a software called 
OPTIRAIL® which interfaces with the other connected systems, storing data in a 
configured database. Data collected consist of data from assets as well as from events, 
along with the timestamp. The context engine makes use of this to build relationships 
between events and assets. (Villarejo, et al., 2016) 

According to Villarejo et al. (2016), data driven fault diagnostic models are time 
invariant, i.e. the deterioration of system do not vary with respect to time. This is a 
limitation for the method which can be overcome to an extend by using more data to 
increase the accuracy of the model. Due to the complexity of the railway systems, it is 
difficult to base it on a single model and hence data driven methods are suitable. The 
physics-based methods are capable to handle dynamic and time varying nature of the 
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system but the effort to validate the model can be costly. Developing constitutive 
relationships among the complementary variables is a challenge for the physics-based 
degradation models. Physics based models are also weak in handling unknown failure 
modes. Hybrid models can bring the strengths of both methods, including that of 
symbolic models.  Villarejo et al. (2016) argues that the hybrid models are ideal for 
prognosis when the historic data is low and expert classification is limited.  

Liu et al. (2018), proposes a framework to implement AI in high speed railway (HSR) 
systems, by creating a cyber twin for the physical systems/subsystems to enable real 
time condition monitoring and improve the decision making. According to Liu et al. 
(2018), the connection between the cyber space and physical space is made by using a 
cyber physical interface (CPI) which makes it possible to have a cyber twin model. 
Advanced signal processing is employed for failure prediction and prevention, which is 
robust and capable of incorporating domain expertise. Heterogeneous data is made 
into a structured entity for further processing, through a concept called ‘time machine’, 
where the snapshots of data is taken only at discrete time. A method called adaptive 
clustering is used to structure data into similar categories to generate the awareness 
about the physical system status. Edge computing is employed, which extends the 
traditional cloud-based computing to the edge of the network, as it is suitable to the 
transport sector. In edge computing, the less complex / urgent activities are performed 
at the edge and less urgent / resource demanding processes are performed in the 
cloud. A peer to peer comparison step helps to prioritize maintenance activities within 
the fleet where there are many networked machines. (Liu, et al., 2018) 

Xu et al. (2013) argues that the method with highest probability to be able to solve 
issues in reliability, maintainability, and availability of systems, is Prognosis and Health 
Management (PHM). PHM includes the functions, condition monitoring, health 
assessment, faults diagnostics, failure progression analysis, prognosis, and 
maintenance decision support. According to Xu et al. (2013), within the aircraft industry, 
the prognosis, and the estimation of the systems Remaining Useful Life (RUL) is the 
most important task of PHM. Xu et al. (2013) believes that for a complex system, such 
as an aircraft engine, for prognostics and estimation of the RUL, it is not suitable to use 
a model-based approach owing to the non-linearity and difficulty in representing the 
behaviour of the system through analytical models. However, neither using experience-
based methods based on previous analysis, or data-based methods alone is according 
to Xu et al. (2013) enough. Rather, it requires an integrated approach of these methods. 

Brown et al. (2007) present the concept and methodology used in the joint strike fighter 
air vehicles for health management and prognosis in the system. The concept by Brown 
et al. (2007) is based on using an on-board system on the vehicle and an off-board 
system which is based on data gathered from the on-board system. The off-board 
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system is also integrated with the maintenance and logistics systems to seamlessly be 
able to produce work orders which minimizes the systems downtime based on the 
data. The onboard system for PHM is developed to, based on sensor data, 
automatically identify and isolate faults in the system which are critical to system 
function (Brown, et al., 2007). Through the integration with behavioural models of the 
system, the onboard PHM system can track fault and events in the system to each 
component. The off-board system handles noncritical functions and has a larger focus 
on making improvements to the system. According to Brown et al. (2007), the 
collaboration between the on-board and off-board systems, coupled with the 
maintenance and logistics systems, allows for effective health management of the 
system. The integration with data analytics methods in the on and off-board systems, 
together with a systems model, will according to Brown et al. (2007), increase the 
diagnostics capabilities of the system, as well as, provide better prognosis capabilities 
of the RUL and the assessment of component conditions through modelling of fault 
progression. 

Elattar et al. (2018) discusses about the prognostic health monitoring using data driven 
methods through a case study of aircraft turbofan engine. Data driven method is used 
to calculate the useful remaining life of the engine in this case from the data collected 
using several sensors. The model-based approach uses mathematical methods to study 
the physics of the failure mode to predict the wear and tear in the system. However, 
the availability of high-fidelity models is very important, and it is costly and time 
intensive activity to create them. In comparison, data driven methods using historical 
data can create models for predicting the remaining useful life (RUL). There are offline 
and online approaches to the calculation of RUL (Elattar, et al., 2018). Offline 
approaches are used when the computation is resource intensive and cannot be done 
onboard. Collecting data from sensors and predicting RUL in real time is resource heavy 
and hence a challenge if it is to be incorporated onboard due to the intensive resource 
requirements. Though model-based prognostics have their advantages, creating the 
model of a complex system is according to Elattar et al. (2018) difficult. Data driven 
prognostic model is resource intensive and requires a robust algorithm to process the 
huge amount of data to give accurate RUL estimation.  It should be noted that the data 
used in training stage and testing stage are different. In the testing stage the accuracies 
of HI prediction and RUL prediction are evaluated. The last stage consists of 
implementation of the algorithm and its deployment on Raspberry Pi 2, single board 
computer. Elattar et al. (2018) shows through this case how this method can give 
accurate results without being heavy on computational resources which is beneficial 
for real time onboard applications. 
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Sankavaram et al. (2009) Propose a process for diagnostics and prognostics, specifically 
with focus on automotive and electronic systems. The process uses both model-based, 
and data driven methods for determining there are RUL of the system. The general 
methodology of Sankavaram et al. (2009) consist of 6 steps; modelling the system with 
both graphical and analytical models; sensing, to ensure accurate diagnostics and 
prognostics, develop different test procedures and updating the tests with feedback to 
the system model; infer, Where different sensors/reasoners integrate; adaptive learning 
where the model is updated with new faults from the infer stage, and finally; predict, 
where the remaining in service life is determined. According to Sankavaram et al. 
(2009), the methodology is made to have the ability to experiment with either model 
based, or data driven methods, especially in the predict stage.  

The main findings of this section are summarised in the table below. 

 

Key findings 

• Hypothetical methods are based on physics of failure / degradation and are weak 
in handling unknown failure modes. 

• Data driven methods are gaining popularity in predicting Remaining Useful Life 
(RUL) of systems. 

• Data driven methods are resource intensive. 
• Hybrid methods can combine advantages of physics based and data driven 

methods. 

Table 17. Key findings from data driven monitoring and faults diagnostics 
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5. Integrated analysis 

The purpose of the integrated analysis is to use aspects from different categories of the 
descriptive analysis to integrate and contrast different viewpoints. While there was no 
focus on from which category the arguments and points where taken from, it was the 
goal to attempt and include aspects of different perspectives in the integrated analysis. 
While all articles analysed in the descriptive framework will not make an appearance in 
the integrated analysis, all articles helped add towards an understanding, validation and  
holistic view of the different concepts and methodologies on the three main topics, 
complex products and systems, model-based systems engineering and data driven 
methods. 

 

5.1. MBSE, Data driven methods and CoPS innovation 

MBSE has emerged as a suitable methodology to develop CoPS as it provides a holistic 
view of the system, captures the system characteristics using models, enables 
traceability and handles the whole system development life cycle (Ramos, et al., 2012). 
By using the ‘system model’ MBSE captures the system requirements and subsequently 
aids in their decomposition to the lower levels, till the component level, while helping 
in finding design alternatives (Estefan, 2008).  

However, the findings of the literature review highlight some limitations of MBSE. 
When it comes to data driven methods, the findings suggest several challenges and 
opportunities. The pros and cons associated with both the methods can influence their 
integration and the role they play in the innovation life cycle of CoPS. These issues will 
be discussed in the following sections. 

 

5.1.1 Future challenges of MBSE. 

With the use of MBSE methodologies, CoPS development has become more efficient 
when compared to the document-based methods. Though many authors highlight the 
benefits of applying MBSE methodology (Eg. Kaslow et al. (2017), Aleina et al. (2016), 
Fusaro et al. (2017) and Claver et al. (2014)), it faces several challenges as the 
complexities increase in CoPS development. According to Do and Cook (2014) there is 
a need for integration between tools. This integration is vital for building more 
executable models. Fisher et al. (2014), Bajaj et al. (2016) and Li et al. (2019) also 
highlight that the integration of models and tools is among one of the key challenges 
due to the multidisciplinary nature of CoPS development. Lindblad et al. (2018) 
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highlights the lack of a structured data base might be limiting the ability of model-
based methods to look at optimal solutions using engineering data and optimization 
tools. Rhodes and Ross (2010) argue that MBSE addresses only the structural and 
behavioural aspects of CoPS. To capture the dynamic nature of system and 
uncertainties that it  faces, additional - contextual, temporal and perceptual- 
dimensions need to be considered (Rhodes & Ross, 2010). 

As CoPS become more complex, there is a strong indication that MBSE needs to evolve 
from its present state. According to Huang et al. (2011), it takes time, effort, and 
expertise to build validated models. Mount et al. (2016) found that the hypothetical 
knowledge has limitations when the complexity increased. According to Opiyo et al. 
(2015), the prediction of several key performance aspects of the system becomes 
difficult as the system becomes more complex. Bach et al. (2017) observe that 
verification and validation can become difficult in such a situation. According to Li et 
al. (2019), the V&V still is a challenge for MBSE due to lack of verification of 
inconsistencies and accurate simulations, and that the simulations are still carried out 
in separate domains, creating dependency in physical tests. Schluse et al. (2017) and 
Fisher et al. (2014) also observe that simulations of various domains are not well 
integrated which affects the verification and validation. Zeigler et al. (2018) argue that 
simulations have limitations in predicting the emergent behaviour seen in CoPS and 
that integration of big data with models and experimentation could improve this 
ability. Li et al. (2019) also highlight the need to incorporate data through the ‘triple v’ 
model. 

Several authors propose the need for an integrated model that can manage the model 
heterogeneity and model life cycle (E.g. Bajaj et al. (2016); Fisher et al. (2014); 
Gausemeier et al. (2013)). This is comparable to the ‘central model’ proposed by Ogren 
(2000). Although the concept looks ideal, the benefits arising from the integration of 
models is debatable as it still has weakness associated with models-based methods. 
According to Li et al. (2019), because the models are developed in specific domains, 
they inherit domain specific characters which makes it difficult to integrate them. Also, 
the lack of a robust API or standard/ custom meta models that can interface with tools, 
as highlighted by Fisher et al. (2014), limit the scope of tool integration in modelling 
and simulation. These issues are reflected in the observations of Bajaj et al. (2016) as 
potential tensions while creating an integrated model, the most important one being 
the need to have flexibility of a multi-disciplinary approach while maintaining the 
rigidity of a complete system model. Though Bajaj et al. (2016) proposes the ‘Total 
System Model’ as a possible way to integrate the models using SysML language as the 
key integrator, the inherent weaknesses of SysML could affect Total System Model. 
According to Do and Cook (2014), SysML has weaknesses related to tool integration, 
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design and analysis, and traceability. Given these findings, accomplishing a complete 
integration of tools and models appear to be difficult. 

 

 5.1.2 Data driven methods and MBSE 

The challenges faced by MBSE in the face of increased complexity highlight its need 
for an upgrade and, as per many authors, data driven methods could potentially 
complement MBSE. The data driven method proposed by Wang (2010) in the case of 
intelligent management systems can be considered as an early step in the direction of 
maintaining a virtual representative of the system, providing multiple solutions to 
complex issues. The concept of digital twins, as discussed by Madni et al. (2019) and 
Schluse et al. (2017), highlight the new possibilities of bringing models and data 
together while creating synergy between simulations. It can also make use of 
environmental data to bring the simulations closer to the real-world scenario. Data 
driven methods can increase the feedback and according to Bach et al. (2017), they can 
help in identifying previously unknown relationships. According to Nightingale (2000), 
one of the main reasons for uncertainties in CoPS development is the inability to 
predict the emergent properties. With the support of data driven methods, the 
increased feedback may result in uncertainties reduction. This can also address, to 
some extent, the additional dimensions – contextual, temporal, and perceptual - in 
CoPS that Ross and Rhodes (2010) discuss. 

According to Ren et al. (2019) big data can influence the design and testing of 
components. A similar observation is made by Bach et al. (2017), that data driven 
methods can contribute in the design of system characteristics and identify previously 
unknown relationships. Opiyo (2015), in the pipeline concept aims to gain design 
related insights from the data analytics for product superiority. Ding et al. (2015), 
Huang et al. (2011) and Norman et al. (2018) highlight the benefit of data analytics and 
visualization in aiding the re-use of knowledge in the design and development 
activities. As data driven approaches are less dependent on expert knowledge as 
compared to model-based methods, they can be useful in situations when building a 
physical model is costly or challenging or time consuming (Villarejo, et al., 2016) 
(Elattar, et al., 2018). From the above discussions, it can be deduced that data driven 
methods help to bring specifications and requirements closer, at the same time 
improve the feedback loops and reduce the uncertainties. 

Though data driven methods have benefits, several authors highlight their limitations. 
According to Galar et al. (2013), data driven methods build the relationships using the 
training data while Mount et al. (2016) and Xu et al. (2013)  highlight the need of a 
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large set of training data for the methods to be effective. Villarejo et al. (2016) add that 
most of the data driven methods are time invariant and depend on training data to 
overcome this limitation, whereas the physics-based methods are capable of handling 
time varying dynamic system analysis. In a situation where training data is not readily 
available or is very limited, the data driven methods can be less effective as they cannot 
learn from it. According to Hobday (1998), the degree of customisation in CoPS is high. 
A key question about the data driven methods, in this context, could be about the data 
availability, especially in the early developmental phases. It would be challenging to 
gather system specific data before the system is implemented. Hence, data driven 
methods can be viewed as a reactive way of gaining insights and may not be able to 
contribute to the initial phase of system development where important decisions 
regarding system architecture needs to be taken.  

According to the opinion of several authors, instead of adopting a data driven method, 
a hybrid method is a better option. Bach et al. (2017) suggests that the use of real-
world data for testing and for contextual purposes can complement existing model-
based methods. Uraikul et al. (2015) and Xu et al. (2013) consider the integration of 
methods as a beneficial.  Liu and Goebel (2018) and Mount et al. (2016) found that 
when physics-based methods and data driven methods were combined, the learning 
and prediction capabilities increased, while the training cost of data driven methods 
reduced. Brown et al. (2007), Galar et al. (2013), Galar et al. (2015) and Villarejo et al. 
(2016) highlight that integrated methods / hybrid methods are effective in prognostics 
and in RUL assessment.  Hence it can be deduced from the literature that as stand-
alone method, data driven methods have their limitations, but they can be 
complimentary to the model-based methods.    

 

5.1.3. Innovation in CoPS and role of data driven and model-based methods 

According to Nightingale (2000), the product characteristics affect the innovation 
process in CoPS. Innovation life cycle in CoPS is different as compared to the mass-
produced goods and so are the CoPS design rules and decision criteria (Bonaccorsi & 
Giuri, 2000) (Hobday, et al., 2000). Hobday (1998) attributed the complexity of CoPS 
development to its architecture and hierarchical product structure and highlighted that 
the ability to manage architectural changes is crucial. Hobday (1998) also observes that 
due to the complexity, the system architecture can have many design alternatives. An 
important capability of MBSE is the ability to capture the system requirements from 
the business, mission and stakeholder requirements and construct the architectural 
model, from which the behavioural and structural models are developed (Estefan, 2008) 
(Madni & Sievers, 2018). This aids in providing a holistic system view as well as the 
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traceability within the system. According to Davies (1997), architectural innovation is 
one important type in the CoPS innovation, which concerns the interconnection of 
subsystems and components and their functions. There is a strong indication from the 
literatures that in the architectural innovation, model-based methods could be vital. As 
the system specific data may not be ready at the early phases of development, the 
influence of data driven methods could be limited.  

The component and systemic innovation, as per Davies (1997), are limited to changes 
in the technical aspects at component level and functional aspect in a subsystem level, 
respectively. As CoPS tend to show nonlinear behaviour from one generation to other, 
the impact of change of one part/subsystem can be profound on the connected 
systems (Hobday & Rush, 1999). Data driven methods are shown to contribute to this 
type of innovation as they gather information that can be used to gain useful insights 
for the design and development, as discussed by Opiyo (2015) and Brown et al. (2017). 

From the findings, the data driven / integrated methods contribute in predictive health 
and maintenance activities which are important in the operational phase of CoPS. 
According to Hobday et al. (2000), the product life cycle lasts for a very long period for 
CoPS and the innovation continues even after the CoPS becomes operational. The data 
driven methods and the integrated methods have the potential to support the 
continued innovation through the insights gained from data analysis. This is shown by 
Ren et al. (2019) on how the data can aid in conditional monitoring, potential failure 
detection, economic tool replacement, etc. Xu et al. (2013) explains that PHM is crucial 
for availability of the systems as they do a variety of connected activities such as 
function-condition monitoring, fault prediction, failure progression analysis, decision 
support etcetera. As CoPS are business critical for the customers according to Hobday 
(2000), the PHM activities are crucial for their functioning and profitability. Though data 
driven methods have limitations to influence the architectural phase, in the subsequent 
systemic, component as well as the continued innovation, they can be valuable. Thus, 
having the integration of model based and data driven methods can be beneficial to 
the innovation life cycle of CoPS as the methods can complement each other.  

 

5.2. Management implications for systems integrators 

The role of the systems integrator is twofold. They must first create the network of 
stakeholders that will develop the CoPS, and they must manage the tasks between 
them (Rutten, et al., 2009). To perform these tasks, the system integrator must have 
strong project capabilities (Davies & Brady, 2000) and an outward, market focus, while 
still maintaining technical capabilities (Liu & Su, 2014). 
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The integration of data-driven methods with MBSE will bring several managerial 
implications to system integrators. Both challenges and opportunities. Through the 
review of the literature, three different management areas in the development of CoPS 
where identified where the integration of data and models could potentially have an 
impact on current methods. These areas are general project management, decision 
making and project to project learning. 

 

5.2.1. Project management 

The findings indicate that the integration of data-driven methods with MBSE will not 
require a completely new project management approach. Rather, both Bach et al. 
(2017) and Li et al. (2019), suggest the continuous use of the ‘V’ model even with the 
increase of data-driven method, which is already an established model for CoPS 
development (Estefan, 2008). Although, there seem to be more emphasis on the 
iterative aspects with the integration of data driven methods. Hybertson et al. (2018) 
argue for increased iterations from the knowledge base and data analytics, to the 
derived solution, which could reduce uncertainties in development. Bach et al. (2017) 
argue for shorter iteration cycles, especially within software development and testing. 
However, there are also indications that an integration of methods could lead to an 
overall reduction of iterations in development. For example, the objective of CLOSE by 
Di Maio et al. (2018) is similar to Bach et al. (2017), to reduce cycle times, but also to 
decrease the amount of iterations. Bach et al. (2017b) also showed how, with the 
influence of data driven methods, they managed to reduce the number of real-world 
scenario testing. With the integration of model based and data driven methods, there 
appears to be potential for increased and/or shortened iteration cycles in certain parts 
of development. At the same time, there appears to be an opportunity for an overall 
decrease of iterations. Further studies are needed to establish the iterative aspect of an 
integrated method. 

The iterative aspect of development phases could potentially draw project 
management closer to the “spiral method” described by Estefan (2008) and closer to 
an agile model, such as LITHE that was proposed by Ramos et al. (2013), along with an 
integration of data driven methods. 

MBSE has so far proven to be a holistic method of developing complex systems (Ramos, 
et al., 2012), however, several limitations persist which hinders the methodology from 
representing all aspects of the system accurately (Fisher, et al., 2014). Several authors 
have mentioned how data driven methods can increase the holistic view of the system. 
Li et al. (2019) argue that the addition of a big data section to the ‘V’ model could 
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better support a holistic representation in the development. Both Schluse et al. (2017) 
and Di Maio et al. (2018) suggest that the integration of simulation capabilities through 
tools such as digital twins, supports a holistic model of the system. It would therefore 
seem from the findings that data driven methods together with MBSE can add towards 
a more holistic representation of the system. 

 

5.2.2. Decision-making 

MBSE arguably supported managers in their decision making by showcasing a more 
holistic view of the system. By creating relationships between both the structural and 
the behavioural aspects of the system through a common systems model as described 
by Ogren (2000) and Ramos et al. (2012), both traceability and reliability of the 
development was increased. However, several points of criticism still exist for MBSE 
when it comes to managers abilities to use the methodological aspects for making 
decisions. The poor integration capabilities between domain knowledges identified in 
MBSE can lead to a lack of confidence in the decision making (Di Maio, et al., 2018). 
Developing verified models which are of high fidelity is also considered very time 
consuming, as well as requiring a high amount of expertise within the specific industry 
(Huang, et al., 2011) (Elattar, et al., 2018). MBSE has also shown to struggle in areas 
where there is low accumulated knowledge or in newly established fields (Li, et al., 
2019). MBSE methodologies and the system model itself often becomes very complex 
to manage in the development of complex systems (Ding, et al., 2015) (Lindblad, et al., 
2018). 

Data driven methods can according to Liu & Goebel (2018) support finding new 
insights as well as aid manager in making better decisions. However, data driven 
methods still suffer some drawbacks. Data driven methods can become very resource 
intensive in terms of computing power required for them to operate (Elattar, et al., 
2018). The data driven methods are often limited by the amount of available data to 
give an accurate result (Opiyo, 2015) (Villarejo, et al., 2016). Still, both Norman et al. 
(2018) and Qin (2014) suggests that data driven methods often decreases the decision-
making time compared to model-based methods.  

The findings therefore seem to support that data driven methods can enable managers 
to make timelier decision, based on a more accurate representation of the system. If 
there is an abundance of data, managers can base their decision on the data with 
support from the MBSE methodology and the system model. However, this is based on 
the computational resources and ability to gather, process, and analyse the data. If 
there is not a sufficient amount of data, decisions could be based on the MBSE 
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methodology and system model, with support from the data driven methods. Although 
this would require higher knowledge and experience of the system. The need for such 
a large amount of data for data driven methods to be reliable may cause them to be 
less effective in earlier stages of development. As CoPS are heavily customized systems 
(Hobday, 1998), gathering data early in development could prove difficult. At later 
stages when more data can be gathered, especially through tools such as digital twins 
as suggested by Heber & Groll (2017), Madni et al., (2019), Schluse et al., (2017) and Di 
Maio et al., (2018), data driven methods could be more influential for decision making 
in CoPS development. 

 

5.2.3. Project-to-project learning 

The potential for an integrated methodology to feedback new knowledge and 
learnings from the data driven methods to MBSE and the system model, as suggested 
by Brown et al. (2007) and Sankavaram et al. (2009), could lead to higher potential for 
project-to-project learning. By utilizing the new knowledge from the data driven 
methods in the model-based methods, new generations of CoPS, or as previously 
mentioned, updates to the current systems, can be improved. This is especially 
important in CoPS as Hobday (2000) show that project based, or project lead 
organisational structures are the best suited structures for CoPS development. 

The increased collection and use of contextual/environmental data as proposed by 
several authors (e.g. Bach et al., (2017); Ding et al., (2015); Galar et al., (2015); Villarejo 
et al., (2016)) could also have the potential to improve project-to-project learning. The 
findings from the contextual data could be utilized in new product generations. The 
data could as well potentially be used in other CoPS and potentially even in cross sector 
learning as several different CoPS and sectors could benefit from, for example, terrain 
data. However, the gathering and use of contextual data also places a need for system 
integrators to develop their project-to-project learning capabilities to achieve the 
potential benefits from an integrated method.  

The feedback from data driven methods to model-based methods, with the increase 
of contextual and environmental data, could better support economics of repetitions 
which Davies & Brady (2000) argue, is how organisations improve their ability to 
execute CoPS projects. An integrated method could therefore better support CoPS 
projects and the potential learning that system integrators can gain from them. 
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5.3. Data as the baseline 

The change in focus from models to data is promoted by several authors. By instead 
creating relationships between the data rather than the models, Lindblad et al. (2018) 
suggest that changes to the system will be more accurately portrayed and MBSE will 
be more than a “visualisation” of the system and will more accurately represent the real 
system. The concept by Hybertson et al. (2018) instead shifts focus to “evidence” 
produced through data as well as mode-based methods, achieving a more objective 
result. Li et al. (2019) suggest that a big data branch to the ‘V’ model would act as the 
connection between MBSE and the real system. Zhan et al. (2015) argue that a focus 
on the data elements of which the models are built on will give a more accurate 
representation of the system.  

As Bonnet et al. (2015) argues that with the introduction of a new methodology, a 
cultural change is often important, as shown in the change from the document focused 
system development to MBSE. It is therefore not unlikely that a similar cultural change 
would take place with the implementation of a new methodology of data driven 
methods along with MBSE.  
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6. Conclusion 

As the development of CoPS becomes more complex, the existing MBSE 
methodologies face new challenges. With the advent of data driven methods 
supported by technologies such as IoT and big data, new possibilities are emerging for 
developing CoPS. The findings of the literature review show certain limitations of 
model-based methods as well as data driven methods when used independently. As it 
takes time to develop validated models, decisions in the early phases may be delayed 
due to the dependency on model-based methods. The lack of integration among 
models / simulations of different disciplines can increase the chances of missing vital 
information. This can also affect the subsequent verification and validation phase. In 
data driven methods, lack of training data can reduce the usefulness of the method. 
Dependence on data driven methods solely without the expert knowledge can increase 
the associated risks.  

Data driven methods are faster in comparison to model-based methods but in the early 
phases of development, when the availability of system specific data is often limited, 
the development depends mostly on model-based methods. In capturing the 
requirements and decomposing them to the component level designs, MBSE plays a 
crucial role. An integration of the methods can be advantageous to the development 
process, according to the analysis, where the methods can complement each other. 
Design as well as simulations are found to benefit from the data driven methods, due 
to the increased feedback as well as insights about the external conditions. This can 
improve the system reliability through improved verification and validation. It can also 
contribute to reduction in uncertainties. As model-based methods are weak in 
predicting emergent behaviour, integrating data driven methods can improve its ability 
to anticipate such behaviour.  

An integrated method could better support a holistic decision making in CoPS 
development and, with the implementation of data driven methods, more timelier 
decisions. However, to fully utilize both methods, a high amount of expert knowledge 
is needed for the model-based methods. For the data driven methods, a substantial 
amount of data is needed to reliably base decision on them. In an integrated 
methodology, when either resource is missing, the other could be used as the main 
input for the decision, with support of the other. 

Among the different types of innovation in CoPS, model-based methods play a major 
role in the architectural innovation while the data driven methods have the potential 
to contribute to the component and systemic innovations. The findings suggest that in 
the continued innovation, data driven methods play an important role by gathering 
insightful information during the use phase of the system. Considering the longer 
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lifespan of CoPS, this is area where data driven methods can be very valuable. 
Integration of methods can aid in transferring the insights generated by data driven 
methods to the system model. Considering the whole innovation life cycle in CoPS, 
both model-based and data driven methods can complement each other, though their 
influence is varied in degree depending on the development phases. 

The findings also seem to support that an integrated methodology could increase 
project-to-project learning capabilities in system integrators. This is especially 
important as the organisation structure of CoPS suppliers are predominantly project 
based. With the mentioned feedback of learnings from data driven methods in the use 
phase, to the model-based methods, system integrators have the opportunity to also 
transfer learnings to new projects, and, in doing so, build their economy of repetition. 
However, this will certainly create challenges for system integrators to develop their 
project-to-project learning capabilities, as well as identify how, and when in the 
development of new projects, to incorporate the data driven learnings with MBSE. 

The general project management methodologies applied in CoPS with MBSE, do not 
appear to be substantially altered while applying an integrated methodology of MBSE 
and data driven methods. However, the project management process could become 
more iterative at certain stages than it currently is, more aligned with an agile 
methodology. System integrators may therefore need to develop their capabilities to 
handle shorter iteration cycles which could be a challenge specifically in a CoPS context 
where projects may last decades. Although, even with the increased capability 
challenges, the findings support that data driven, and model-based, methods can 
complement, rather than impede, each other in several aspects in the development of 
CoPS. 

 

  



81 

 

7. Future research areas 

One aspect that the findings support is that in order to fully achieve the benefits from 
an integrated method, the models in MBSE need to be based on data. Several authors 
from the findings point towards this need and proposes different concepts on how to 
drive the models with data. However, more research is needed to identify how this 
could be achieved in practice. 

Though large amounts of system specific data may not be available in the early phases 
of development, the project-to-project learning and accumulated data may still be 
useful in contributing to the development. However, the analysis shows a lack of 
research on how data driven methods can be utilized in early stages of development. 
More research is therefore needed to explore how effectively data driven methods can 
contribute to the early development phases as it can result in faster decision making. 

Although the established project management processes may not drastically change, 
the integration of model-based and data driven method may require new ways of 
collaboration to facilitate innovation in CoPS development. This might require new 
ways of organizing the work and new types of organizational structures. Further 
research could look more in depth of how organisational and project structures could 
be optimised when using an integrated methodology.  

The effect of iterations within the development of CoPS have been addressed by some 
authors pointing towards shorter and increased iteration cycles at different part of the 
process. However, authors also suggest that the integration of methods could lead to 
an overall reduction of iteration. More research is needed to identify the impacts of 
iteration in certain stages, and overall, in CoPS development. 

Data driven methods are shown to be complementing the model-based methods. 
However, the impact of incorporating them on the system development cost needs to 
be studied along with the overall system life cycle cost. It would be interesting to see 
if the integrated methods result in a higher or lower development cost as compared to 
the present developmental costs. More research is required to find out the economic 
benefits of the integrated methods. 

Though this thesis has added toward the conceptual development phase of Lynham’s 
general method of theory framework by identifying the key elements and their 
relations, more research is needed to achieve a fully informed conceptual model. 
Further research could also start looking towards the second phase of the framework, 
operationalize, where the focus instead would lie on establishing a connection of the 
conceptual aspects, and practices within CoPS. 
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