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Abstract
The Cauchy problem for general elliptic equations of second order is considered. In a
previous paper (Berntsson et al. in Inverse Probl Sci Eng 26(7):1062–1078, 2018), it
was suggested that the alternating iterative algorithm suggested byKozlov andMaz’ya
can be convergent, even for large wavenumbers k2, in the Helmholtz equation, if the
Neumann boundary conditions are replaced by Robin conditions. In this paper, we
provide a proof that shows that the Dirichlet–Robin alternating algorithm is indeed
convergent for general elliptic operators provided that the parameters in the Robin
conditions are chosen appropriately. We also give numerical experiments intended
to investigate the precise behaviour of the algorithm for different values of k2 in the
Helmholtz equation. In particular, we show how the speed of the convergence depends
on the choice of Robin parameters.
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1 Introduction

Let � be a bounded domain in R
d with a Lipschitz boundary � divided into two

disjoint parts �0 and �1 such that they have a common Lipschitz boundary in � and
�0 ∪ �1 = �, see Fig. 1.

The Cauchy problem for an elliptic equation is given as follows:

⎧
⎪⎨

⎪⎩

Lu = Dja ji (x)Diu + a(x)u = 0 in �,

u = f on �0,

Nu = g on �0,

(1.1)

where ν = (ν1, . . . , νd) is the outward unit normal to the boundary �, Dj = ∂/∂x j ,
a ji and a are measurable real-valued functions such that a is bounded, ai j = a ji and

λ|ξ |2 ≤ ai jξiξ j ≤ λ−1|ξ |2, ξ ∈ R
d , λ = const > 0.

The conormal operator N is defined as usual

Nu = ν j a
ji Diu

and the functions f and g are specified Cauchy data on �0, with a certain noise level.
We are seeking real-valued solutions to problem (1.1). We will always assume that
there is only trivial solution to Lu = 0 in H1(�) if u = 0, Nu = 0 on �0 or u = 0,
Nu = 0 on �1. This is certainly true for the Helmholtz equation.

This Cauchy problem (1.1), which includes the Helmholtz equation [1,12,17,21],
arises in many areas of science and engineering related to electromagnetic or acoustic
waves. For example, in underwater acoustics [8], in medical applications [22], etc.
The problem is ill-posed in the sense of Hadamard [9].

The alternating iterative algorithm was first introduced by V.A Kozlov and
V. Maz’ya in [13] for solving Cauchy problems for elliptic equations. For the Laplace
equation, a Dirichlet–Neumann alternating algorithm for solving the Cauchy problem
was suggested in [14], see also [10,11].

It has been noted that the Dirichlet–Neumann algorithm does not always work
even if L is the Helmholtz operator � + k2. Thus, several variants of the alternating
iterative algorithm have been proposed, see, for instance, [2,7,18,19], and also [3,4]
where an artificial interior boundary was introduced in such a way that convergence
was restored. Also, it has been suggested that replacing the Neumann conditions by
Robin conditions can improve the convergence [6].

The alternating iterative algorithm has several advantages compared to other meth-
ods. Most importantly, it is easy to implement as it only requires solving a sequence
of well-posed mixed boundary value problems. In contrast most direct methods, e.g.
[16,23] or [12], are based on an analytic solution being available and are thus more
difficult to apply for general geometries or in the case of variable coefficients. On
the other hand, the alternating iterative algorithm, in its basic form, suffers from slow
convergence, see [4], and in the presence of noise additional regularization techniques

123



Bulletin of the Iranian Mathematical Society

Fig. 1 Description of the
domain considered in this paper
with a boundary � divided into
two parts �0 and �1

Γ0

Γ1

Ω

ν

have to be implemented, see, e.g. [5]. Thus, a practically useful form of the alternating
algorithm tends to be more complicated than the variant analyzed in this paper.

In this work, we formulate the Cauchy problem for general elliptic operator of sec-
ond order and consider the Dirichlet–Robin alternating iterative algorithm. Under the
assumption that the elliptic operator with the Dirichlet boundary condition is positive
we show that the Dirichlet–Robin algorithm is convergent, provided that parameters
in the Robin conditions are chosen appropriately. The proof follows basically the same
lines as that in [13] but with certain changes due to more general class of operators
and the Robin boundary condition.We alsomake numerical experiments to investigate
more precisely how the choice of the Robin parameters influences the convergence of
the iterations.

2 The Alternating Iterative Procedure

In this section, we describe the Dirichlet–Robin algorithm and introduce the necessary
assumption.

The main our assumption is the following:

∫

�

(a ji DiuD ju + au2) dx > 0 for all u ∈ H1(�, �)\{0}, (2.1)

where H1(�, �) consists of functions u ∈ H1(�) vanishing on�. It is shown below in
Sect. 3.2 that condition (2.1) is equivalent to existence of two real-valued measurable
bounded functions μ0 and μ1 defined on �0 and �1, respectively, such that

∫

�

(a ji DiuD ju + au2) dx +
∫

�0

μ0u
2 dS +

∫

�1

μ1u
2 dS > 0, (2.2)

for all u ∈ H1(�)\{0}. Actually, we prove that for μ0 = μ1 to be a sufficiently large
positive constant, but we think that it can be useful to have here two functions (as
we will see in numerical examples the convergence of the Dirichlet–Robin algorithm
weakens when μ0 and μ1 become large).

With these two bounded real-valued measurable functions μ0 and μ1 in place, we
consider the two auxiliary boundary value problems
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⎧
⎪⎨

⎪⎩

Lu = 0 in �,

u = f0 on �0,

Nu + μ1u = η on �1,

(2.3)

and

⎧
⎪⎨

⎪⎩

Lu = 0 in �,

Nu + μ0u = g0 on �0,

u = φ in �1.

(2.4)

Here, f0 ∈ H1/2(�0), g0 ∈ H−1/2(�0), η ∈ H−1/2(�1) and φ ∈ H1/2(�1). These
problems are uniquely solvable in H1(�) according to [20].

The algorithm for solving (1.1) is described as follows: take f0 = f and g0 =
g + μ0 f , where f and g are the Cauchy data given in (1.1). Then

(1) The first approximation u0 is obtained by solving (2.3) where η is an arbitrary
initial guess for the Robin condition on �1.

(2) Having constructed u2n , we find u2n+1 by solving (2.4) with φ = u2n on �1.
(3) We then obtain u2n+2 by solving (2.3) with η = Nu2n+1 + μ1u2n+1 on �1.

3 Function Spaces, Weak Solutions andWell-Posedness

In this section, we define the weak solutions to the problems (2.3) and (2.4). We
also describe the function spaces involved and show that the problems solved at each
iteration step are well-posed.

3.1 Function Spaces

As usual, the Sobolev space H1(�) consists of all functions in L2(�)whose first-order
weak derivatives belong to L2(�). The inner product is given by

(u, v)H1(�) = (u, v)L2(�) +
d∑

j=1

(∂ j u, ∂ jv)L2(�), u, v ∈ H1(�) (3.1)

and the corresponding norm is denoted by ‖u‖H1(�).
Further, by H1/2(�), wemean the space of traces of functions in H1(�) on�. Also,

H1/2(�0) is the space of restrictions of functions belonging to H1/2(�) to �0, and
H1/2
0 (�0) is the space of functions from H1/2(�) that vanish on �1. The dual spaces

of H1/2(�0) and H1/2
0 (�0) are denoted by (H1/2(�0))

∗ and H−1/2(�0), respectively.

Similarly, we can define the spaces H1/2(�1), H1/2
0 (�1), (H1/2(�1))

∗ and
H−1/2(�1), see [20].
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3.2 The Bilinear Form a�

Lemma 3.1 The assumption (2.1) is equivalent to the existence of a positive constant
μ such that

∫

�

(a ji DiuD ju − a(x)u2) dx + μ

∫

�

u2 dS > 0 (3.2)

for all u ∈ H1(�)\{0}.

Proof Clearly the requirement (3.2) implies (2.1). Now assume that (2.1) holds and
let us prove (3.2). Let

λ0 = inf
u∈H1(�,�)
‖u‖L2(�)=1

∫

�

(a ji DiuD ju − au2) dx .

By (3.1) λ0 > 0. Let also

λ(μ) = inf
u∈H1(�)

‖u‖L2(�)=1

∫

�

(a ji DiuD ju − au2) dx + μ

∫

�

u2 dS.

The function λ(μ) is monotone and increasing with respect to μ and λ(μ) ≤ λ0 for
all μ. Therefore, there is a limit λ∗ := limμ→∞ λ(μ) which does not exceed λ0.
Furthermore, λ0 is the first eigenvalue of the operator −Lwith the Dirichlet boundary
condition and λ(μ) is the first eigenvalue of −L with the Robin boundary condition
Nu + μu = 0 on �.

Our goal is to show that λ(μ) → λ0 as μ → ∞ or equivalently λ∗ = λ0. We
denote by uμ an eigenfunction corresponding to the eigenvalue λ(μ) normalised by
‖uμ‖L2(�) = 1. Then

λ0 ≥ λ(μ) =
∫

�

(a ji DiuμDjuμ − au2μ) dx + μ

∫

�

u2μ dS.

Therefore,

‖uμ‖2H1(�)
+ μ

∫

�

u2μ dS ≤ C,

where C does not depend on μ. This implies that we can choose a sequence μ j ,
1 ≤ j < ∞, μ j → ∞ as j → ∞ such that uμ j is weakly convergent in H1(�),
uμ j is convergent in L2(�) and μ j uμ j is bounded. We denote the limit by u ∈
H1(�). Clearly, ‖u‖L2(�) = 1 and, therefore, u 
= 0. Moreover, u ∈ H1(�, �) since
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∫

�
u2μ dS ≤ C

μ
. We note also that lim j→∞ λ(μ j ) = λ∗. Since

∫

�

(a ji DiuμDjv − auμv) dx = λ(μ)

∫

�

uμv dx,

for all v ∈ H1(�, �) we have that

∫

�

(a ji DiuD jv − auv) dx = λ∗
∫

�

uv dx .

Therefore, λ∗ is the eigenvalue of the Dirichlet–Laplacian and u is the eigenfunction
corresponding to λ∗. Using that λ∗ ≤ λ0 and that λ0 is the first eigenvalue of −L
with the Dirichlet boundary condition we get λ∗ = λ0. This argument proves that
λ(μ) → λ0 as μ → ∞. ��

According to Lemma 3.1, we can choose two functions μ0 and μ1 such that (2.2)
holds. Let us introduce the bilinear form on H1(�)

aμ(u, v) =
∫

�

(a ji DiuD jv + auv) dx +
∫

�0

μ0uv dS +
∫

�1

μ1uv dS.

According to our assumption (2.2), aμ(u, u) > 0, for u ∈ H1(�)\{0}. The corre-
sponding norm will be denoted by ‖u‖μ = aμ(u, u)1/2.

Let us show that the norm ‖ · ‖μ is equivalent to the standard norm on H1(�).

Lemma 3.2 There exist positive constants C1 and C2 such that

C1‖u‖H1(�) ≤ ‖u‖μ ≤ C2‖u‖H1(�), for all u ∈ H1(�). (3.3)

Proof Suppose that u ∈ H1(�). Then

aμ(u, u) ≤ C
(
‖u‖2H1(�)

+ ‖u‖2L2(�0)
+ ‖u‖2L2(�1)

)

≤ C‖u‖2H1(�)
.

This proves the second inequality of (3.3).
To prove the first inequality, we argue by contradiction and, assume that the inequal-

ity does not hold. Thismeans that we can find a sequence {vk}∞k=1 of non-zero functions
in H1(�) such that

‖vk‖2H1(�)
≥ kaμ(vk, vk).

Let uk = ‖vk‖−1
H1(�)

vk and note that the sequence of functions (uk)∞k=0 in H1(�)

satisfies

‖uk‖2H1(�)
= 1. (3.4)
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Therefore,

aμ(uk, uk) <
1

k
. (3.5)

Since the sequence {uk}∞k=0 is bounded in H1(�), there exists a subsequence, denoted
by {ukn }∞n=0, of {uk}, and a function u in H1(�) such that ukn converges weakly
to u in H1(�). Since H1(�) is compactly embedded in L2(�), the subsequence
{ukn }∞n=0 converges strongly in L2(�). Moreover, the trace operator from H1(�) to
L2(�) is compact; hence, the restrictions of ukn to �0 and �1 converge strongly to the
corresponding restrictions of u in the L2-norm. Finally,∇ukn converges weakly to∇u
in L2(�) and

‖∇u‖L2(�) ≤ lim inf
n→∞ ‖∇ukn‖L2(�).

Thus, we get that

aμ(u, u) ≤ lim inf
n→∞ aμ(ukn , ukn ).

By (3.5), this tends to zero as n → ∞ and hence ‖u‖2μ = 0, which implies u = 0.
Therefore, ukn → 0 in L2(�), ukn |�0 → 0 in L2(�0) and ukn |�1 → 0 in L2(�1).
Using these facts and (3.5), we find that

lim sup
n→∞

∫

�

|∇ukn |2 dx = 0,

which contradicts (3.4). This proves the first inequality in (3.3). ��
We define the following subspaces of H1(�). First, H1(�, �) is the space of

functions from H1(�) vanishing on �. Second, H1(�, �0) and H1(�, �1) are the
spaces of functions from H1(�) vanishing on �0 and �1 respectively. The bilinear
form defined on H1(�, �0) will be denoted by a1(u, v) and the bilinear form aμ

defined on H1(�, �1) is denoted by a0(u, v). They are defined by the expressions

a0(u, v) =
∫

�

(a ji DiuD jv + auv) dx +
∫

�0

μ0uv dS

and

a1(u, v) =
∫

�

(a ji DiuD jv + auv) dx +
∫

�1

μ1uv dS.

3.3 Preliminaries

Let u ∈ H2(�) satisfy the elliptic equation,

Lu = 0 in �. (3.6)
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By Green’s first identity, we obtain

∫

�

(a ji DiuD jv + auv) dx =
∫

�

(Nu)v dS. (3.7)

We add
∫

�0
μ0uv dS and

∫

�1
μ1uv dS to both sides and obtain

aμ(u, v) =
∫

�0

(Nu + μ0u)v dS +
∫

�1

(Nu + μ1u)v dS.

Definition 3.3 A function u ∈ H1(�) is a weak solution to equation (3.6) if

∫

�

(a ji DiuD jv + auv) dx = 0

for every function v ∈ H1(�, �).

Let H denote the space of the weak solutions to (3.6). Clearly it is a closed subspace
of H1(�). Let us define the conormal derivative of functions from H . We use identity
(3.7) to define the conormal derivative Nu on �. By the extension theorem [15], for
any function ψ ∈ H1/2(�), there exists a function v ∈ H1(�), such that v = ψ on �

and

‖v‖H1(�) ≤ C‖ψ‖H1/2(�), (3.8)

where the constant C is independent of ψ . Moreover, this mapping ψ → v can be
chosen to be linear.

Lemma 3.4 Let u ∈ H. Then there exists a bounded linear operator

F : H → H−1/2(�),

such that

〈F(u), ψ〉 =
∫

�

(a ji DiuD jv + auv) dx,

where ψ ∈ H1/2(�), v ∈ H1(�) and v|� = ψ . Moreover,

F(u) = Nu if u ∈ C2(�) and the coefficients ai j are smooth.

Proof Consider the functional

F(ψ) =
∫

�

(a ji DiuD jv + auv) dx . (3.9)
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Let us show that the right-hand side of (3.9) is independent of the choice of v. If
v1, v2 ∈ H1(�) and v1|� = v2|� = ψ , then the difference v = v1 − v2 belongs to
H1(�, �) and, since u ∈ H , we have

∫

�

(a ji DiuD jv + auv) dx = 0,

and, therefore,

∫

�

(a ji DiuD jv1 + auv1) dx =
∫

�

(a ji DiuD jv2 + auv2) dx .

Hence, the definition of F(ψ) does not depend on v. Next by the Cauchy–Schwartz
inequality, and (3.8), we obtain

|F(ψ)| ≤ C‖u‖H1(�)‖ψ‖H1/2(�).

Thus, F is a bounded operator in H1/2(�). Therefore,

F(ψ) = 〈F(u), ψ〉, F(u) ∈ H−1/2(�)

and

||F(u)||H−1/2(�) ≤ C‖u‖H1(�).

��
Remark 3.5 We will use the notation Nu for the extension of the conormal derivative
of functions from H . For the distribution Nu ∈ H−1/2(�), the restrictions Nu|�0 and
Nu|�1 are well defined and

||Nu
∣
∣
∣
�0

||H−1/2(�0)
+ ||Nu

∣
∣
∣
�1

||H−1/2(�1)
≤ C ||Nu||H−1/2(�).

3.4 Weak Solutions andWell-Posedness

In this section,we defineweak solution to the twowell-posed boundary value problems
(2.3) and (2.4) and we show that the problems are well posed.

Definition 3.6 Let f0 ∈ H1/2(�0) and η ∈ H−1/2(�1). A function u ∈ H1(�) is
called a weak solution to (2.3) if

a1(u, v) =
∫

�1

ηv dS,

for every function v ∈ H1(�, �0) and u = f0 on �0.

We now show that problem (2.3) is well-posed.

123



Bulletin of the Iranian Mathematical Society

Proposition 3.7 Let f0 ∈ H1/2(�0) and η ∈ H−1/2(�1). Then there exists a unique
weak solution u ∈ H1(�) to problem (2.3) such that

‖u‖H1(�) ≤ C
(‖ f0‖H1/2(�o)

+ ‖η‖H−1/2(�1)

)
, (3.10)

where the constant C is independent of f0 and η.

Proof The proof presented here is quite standard. Let w ∈ H1(�) satisfy w|�0 = f0
and

‖w‖H1(�) ≤ C‖ f0‖H1/2(�0)
. (3.11)

Again let u = w + h, where h ∈ H1(�, �0), then

a1(h, v) =
∫

�1

ηv ds − a1(w, v), (3.12)

for all v ∈ H1(�, �0). The right-hand side of (3.12) is a continuous linear functional.
Thus, we can write

a1(h, v) = G(v) :=
∫

�1

ηv ds − a1(w, v). (3.13)

By applying the trace theorem, the Cauchy–Schwartz inequality, and (3.11), we obtain

|G(v)| ≤ C(‖η‖H1/2(�1)∗ + ‖ f0‖H1/2(�0)
)‖v‖H1(�).

According to Riesz’ representation theorem, there exists a unique solution h ∈
H1(�, �0) of (3.13) such that

‖ h‖H1(�) ≤ C(‖η‖H−1/2(�1)
+ ‖ f0‖H1/2(�0)

).

One can verify that u = w + h by triangular inequality and (3.11) satisfies (3.10). ��
Definition 3.8 Let g0 ∈ H−1/2(�0) and φ ∈ H1/2(�1). A function u ∈ H1(�) is
called a weak solution to (2.4) if

a0(u, v) =
∫

�0

g0v dS,

for every function v ∈ H1(�, �1) and u = φ on �1.

In the same manner, one can show that problem (2.4) is well posed. We will state
the last result without a proof.
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Proposition 3.9 Let g0 ∈ H−1/2(�0) and φ ∈ H1/2(�1). Then there exists a unique
weak solution u ∈ H1(�) to problem (2.4) such that

‖u‖H1(�) ≤ C
(
‖φ‖H1/2(�1)

+ ‖g0‖H−1/2(�1)

)
,

where C is independent of g0 and φ.

4 Convergence of the Algorithm

We now prove the convergence of the Robin–Dirichlet algorithm. We denote the
sequence of solutions of (1.1) obtained from the alternating algorithm described in
Sect. 2 by (un( f0, g0, η))∞n=0. The iterations linearly depend on f0, g0 and η.

Theorem 4.1 Let f0 ∈ H1/2(�0) and g0 ∈ H−1/2(�0), and let u ∈ H1(�) be the
solution to problem (1.1). Then for η ∈ H−1/2(�1), the sequence (un)∞n=0, obtained
using the algorithm described in Sect. 2, converges to u in H1(�).

Proof Lemma 3.4 together with Remark 3.5 shows that Nu + μ1u|�1 ∈ H−1/2(�1).
Since

u = un( f0, g0, (N + μ1)u
∣
∣
�1

)

for all n, we have

un( f0, g0, η) − u = un(0, 0, η − (N + μ1)u|�1 ).

Therefore, it is sufficient to show that the sequence converges in the case when f0 = 0,
g0 = 0 and η is an arbitrary element from H−1/2(�1). To simplify the notation, we
will denote the elements of this sequences by un = un(η) instead of un(0, 0, η).

Then u0 solves (2.3) with f0 = 0, u2n is a solution to (2.3) with f0 = 0 and
η = Nu2n−1 + μ1u2n−1, and u2n+1 satisfies (2.4) with g0 = 0 and φ = u2n . From
the weak formulation of (2.3) , we have that

aμ(u2n−1, u2n) =
∫

�1

(Nu2n−1 + μ1u2n−1)u2n dS

=
∫

�1

(Nu2n + μ1u2n)u2n dS = aμ(u2n, u2n).

Similarly u2n+1 solves problem (2.4)with Nu2n+1+μ0u2n+1 = 0 on�0, u2n+1 = u2n
on �1. Again, it follows from the weak formulation of (2.4) that

aμ(u2n+1, u2n) =
∫

�1

(Nu2n+1 + μ1u2n+1)u2n dS

=
∫

�1

(Nu2n+1 + μu2n+1)u2n+1 dS
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= aμ(u2n+1, u2n+1).

From these relations, we obtain

aμ(u2n+1 − u2n, u2n+1 − u2n) = aμ(u2n, u2n) − aμ(u2n+1, u2n+1)

and

aμ(u2n − u2n−1, u2n − u2n−1) = aμ(u2n−1, u2n−1) − aμ(u2n, u2n),

which implies

aμ(u2n−1, u2n−1) ≥ aμ(u2n, u2n) ≥ aμ(u2n+1, u2n+1). (4.1)

We introduce the linear set R consisting of functions η ∈ H−1/2(�1) such that
un(η) → 0 in H1(�) as n → ∞. Our goal is to prove that R = H−1/2(�1). Let
us show first that R is closed in H−1/2(�1). Suppose that η j ∈ R and η j → η ∈
H−1/2(�1). Since a

1/2
μ is a norm and un(η) is a linear function of η, we have

aμ(un(η), un(η))1/2 ≤ aμ(un(η − η j ), un(η − η j ))
1/2 + aμ(un(η j ), un(η j ))

1/2.

By squaring both sides, we have

aμ(un(η), un(η)) ≤ 2aμ(un(η − η j ), un(η − η j )) + 2aμ(un(η j ), un(η j )). (4.2)

Since aμ(un, un, )∞n=0 is a decreasing sequence, we obtain that

aμ(un(η − η j ), un(η − η j )) ≤ aμ(u0(η − η j ), u0(η − η j )).

Since u0 is a solution to problem (2.3), we obtain that

aμ(un(η − η j ), un(η − η j )) ≤ C‖η − η j‖H−1/2(�1)
.

Therefore, the first term in the right- hand of (4.2) is small for all n if j is sufficiently
large and the second term in (4.2) can be made small by choosing sufficiently large
n. Therefore, the sequence (un(η))∞n=0 converges to zero in H1(�) and thus η ∈
H−1/2(�1).

To show that R = H−1/2(�1), it suffices to prove that R is dense in H−1/2(�1).
First, we note that the functions (N+μ1)u1(η)−η belong to R for any η ∈ H−1/2(�1).
Indeed, uk((N + μ1)u1(η) − η) = uk+2(η) − uk(η) and

aμ(uk+2(η) − uk(η), uk+2(η) − uk(η)) ≤ 2(a(uk+2(η), uk+2(η)) − a(uk(η), uk(η))).

Due to (4.1), the right-hand side tends to zero as k → ∞,which proves (N+μ1)u1(η)−
η ∈ R.
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Assume that ϕ ∈ H1/2
0 (�1) satisfies

∫

�1

(
(Nu1(η) + μ1u1(η)) − η

)
ϕ dS = 0, (4.3)

for every η ∈ H−1/2(�1). We need to prove that ϕ = 0. Consider a function v ∈
H1(�) that satisfies (2.4) with g0 = 0 and φ = ϕ. From Green’s formula

∫

�1

(Nu1(η) + μ1u1(η))v dS = aμ(u1, v) =
∫

�1

(Nv + μ1v)u1(η) dS.

Therefore, (4.3) is equivalent to

∫

�1

(Nv + μ1v)u1 dS −
∫

�1

ηϕ dS = 0.

Since u0 = u1 on �1, we have

∫

�1

(Nv + μ1v)u0 dS −
∫

�1

ηϕ dS = 0. (4.4)

Now let w ∈ H1(�) be a solution of (2.3) with f0 = 0 and η = Nv + μ1v. Using
again Green’s formula, we get

∫

�1

(Nw + μ1w)u0 dS = aμ(w, u0) =
∫

�1

(Nu0 + μ1u0)w dS,

which together with (4.4) and Nw + μ1w = Nv + μ1v on �1 gives

∫

�1

(Nu0 + μu0)w dS −
∫

�1

ηϕ dS = 0.

Since Nu0 + μu0 = 0 on �1, we obtain

∫

�1

η(w − ϕ) dS = 0 for all η ∈ H−1/2(�1).

This implies w = ϕ on �1. On the other hand, Nw +μ1w = Nv +μ1v on �1 and by
uniqueness of the Cauchy problem we get w = v on �. But from the fact that w = 0
on �0, it follows that w = v = 0 on �0. Thus, ϕ = 0. This shows that R is dense in
H−1/2(�1) and, therefore, R = H−1/2(�1). This means that for any η ∈ H−1/2(�1),
the sequence (un(η))∞n=0 converges to zero in H1(�). ��
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5 Numerical Results

In this section, we present some numerical experiments. To conduct our tests we need
to specify a geometry � and implement a finite difference method for solving the two
well-posed problems that appear during the iterative process. For our tests, we chose
a relatively simple geometry. Let L be a positive number and consider the domain

� = (0, 1) × (0, L), with �0 = (0, 1) × {0} and �1 = (0, 1) × {L}.

For our tests, we consider the Cauchy problem for the Helmholtz equation in �, i.e.

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

�u(x, y) + k2u(x, y) = 0, 0 < x < 1, 0 < y < L,

uy(x, 0) = g(x), 0 ≤ x ≤ 1,

u(x, 0) = f (x), 0 ≤ x ≤ 1,

u(0, y) = u(1, y) = 0 0 ≤ y ≤ L.

(5.1)

Due to zero Dirichlet boundary condition on a part of the boundary, where x = 0 or
x = 1 we keep them to be zero on each iteration. Therefore, our theoretical result
gives convergence of the Dirichlet–Robin iterations for

k2 < π2 + π2

L2

and for the Dirichlet–Neumann iterations for k2 < π2.
In our finite difference implementation, we introduce a uniform grid on the domain

� of size N ×M , such that the step size is h = N−1, and thus M = round(Lh−1), and
use a standardO(h2) accurate finite difference scheme. In the case ofRobin conditions,
on �0 or �1, we use one sided difference approximations. See [4] for further details.
For all the experiments presented in this section, a grid of size N = 401 and M = 201
was used.

To test the convergence of the algorithm,we use an analytical solution.More specif-
ically, we use

u(x, y) = sin πx
(
cosh

√
π2 − k2y + sinh

√
π2 − k2y

)
,

which satisfies both the Helmholtz equation in � and also the conditions u(0, y) =
u(1, y) = 0. The corresponding Cauchy data, for the problem (5.1), are

f (x) := u(x, 0) = sin πx, and g(x) = uy(x, 0) =
√

π2 − k2 sin πx .

We also find that the unknown data, at y = L , is

u(x, L) = sin πx
(
cosh

√
π2 − k2L + sinh

√
π2 − k2L

)
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Fig. 2 k2 = 20.5 and L = 0.5, is shown (left, graph). Also the Dirichlet data f (x) = u(x, L) (right, solid)
and g(x) = u(x, 0) (right, dashed)

and

uy(x, L) =
√

π2 − k2 sin πx
(
sinh

√
π2 − k2L + cosh

√
π2 − k2L

)
.

The analytical solution is illustrated in Fig. 2. Note that the solution depends on both
L and k2.

Example 5.1 In an initial test, we use Cauchy data f (x) and g(x) obtained by sampling
the analytical solution, with k2 = 20.5 and L = 0.5, on the grid. Previously it has
been shown that the Dirichlet–Neumann algorithm, e.g. the case μ0 = μ1 = 0, is
divergent [4] for this set of parameters. To illustrate the properties of the Dirichlet–
Robin algorithm, we pick the initial guess φ(0)(x) = η(0) = 0 and compute a sequence
of approximations φ(k)(x) of the exact data f (x), as illustrated in Fig. 2.

For this test, we used the same value for the Robin parameters, i.e. μ := μ0 = μ1.
The results show that for small values ofμ, the Dirichlet–Robin algorithm is divergent
but for sufficiently large values ofμ, we obtain convergence. The results are displayed
in Fig. 3. To see the convergence speed, we display the number of iterations needed for
the initial error ‖φ(0) − f ‖2 to be reduced, or increased, by a factor 103. We see that
for small values of μ, we have divergence and the speed of the divergence becomes
slower as μ is increased. At μ ≈ 2.6, we instead obtain a slow convergence. As μ

is increased further, the rate of convergence is improved up to a point. For very large
values of μ, we have slower convergence. It is interesting to note that the transition
from divergence to convergence is rather sharp. The optimal choice forμ is just above
the minimum required to achieve convergence.

Example 5.2 For our second test we use the same analytical solution, with λ = 20.5
and L = 0.5. We test the convergence of the Dirichlet–Robin algorithm for a range of
values 0 ≤ μ0, μ1 ≤ 15. As previously, we find the number of iterations needed for
the magnitude of the error to change by a factor 103. In Fig. 4 we display the results.
We see that both μ0 and μ1 need to be positive for the iteration to be convergent. We
also see that the effect of μ0 and μ1 is slightly different.
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Fig. 3 We illustrate the error during the iterations for the case μ = 2.5 (right, red curve) and for μ = 2.7
(right, blue curve).We see that the rate of convergence is clearly linear.We also show the specific dependence
on the parameter μ in the Robin conditions (left graph). Here we show the number of iterations needed for
the magnitude of the error to change by a factor 103
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Fig. 4 We illustrate the convergence speed for different values of μ0 and μ1 (left graph). The graphs
represents level curves for the number of iterations needed to change the error by a factor 103. The cases
where the iteration diverges are illustrated by negative numbers (blue curves) and the cases where the
iteration is convergent correspond to positive values (black curves). We also show the convergence speed
as a function of the Robin parameter where either μ0 or μ1 is fixed. The case when μ0 = 5 is displayed
(right,black curve) and the case when μ1 = 5 (right,blue curve). Here we see that the curves are similar in
shape but not identical

Example 5.3 In the third test, we keep L = 0.5 but vary λ in the range 12.5 < λ < 45.
Recall that k2 ≈ 12.5 is where the Dirichlet–Neumann algorithm stops working [4].
For this experiment, we use the same value for the parameters μ := μ0 = μ1 in the
Robin conditions.We are interested in finding the smallest value forμ needed to obtain
convergence as a function of λ. The results are shown in Fig. 5. We see that a larger
value for k2 also means a larger value for μ is needed to obtain convergence. We also
fix k2 = 35 and display the number of iterations needed for the initial error ‖φ(0)− f ‖2
to be reduced, or increased, by a factor 103. This illustrates the convergence speed of
the iterations. In this case, μ ≈ 12.7 is needed for convergence. A comparison with
the results of Example 5.1 shows that the shape of the graph is similar in both cases.
We have very slow convergence, or divergence, only in a small region near μ ≈ 12.7.
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Fig. 5 We display the minimum Robin-parameter μ required for convergence as a function of k2, for the
case L = 0.5, and μ = μ0 = μ1 (left graph). We also show the number of iterations needed to change the
initial error by a factor of 103 for the case k2 = 35 (right graph). Here negative numbers mean divergence
and positive numbers correspond to convergent cases

6 Conclusion

In this paper, we investigate the convergence of a Dirichlet–Robin alternating iterative
algorithm for solving the Cauchy problem for general elliptic equations of second
order. In the Dirichlet–Robin algorithm, two functions μ0 and μ1 are chosen to guar-
antee the positivity of a certain bilinear form associated with the two well-posed
boundary value problems, (2.3) and (2.4), that are solved during the iterations.

For theHelmholtz equation, we have shown that if we setμ = μ0 = μ1 is a positive
constant then for small values of μ, the Dirichlet–Robin algorithm is divergent but for
sufficiently large values of μ, we obtain convergence. However, for very large values
ofμ, the convergence is very slow. We also investigated howμ0 andμ1 influences the
convergence of the algorithm in detail. The results show that both μ0 and μ1 need to
be positive for the iteration to be convergent. Finally, we investigated the dependence
of μ on k2 for convergence of the algorithm, i.e the smallest value of μ needed to
obtain convergence as a function of k2. The results show that a larger value for k2 also
means a larger value for μ is needed to obtain convergence.

For future work, we will investigate how to improve the rate of convergence for
very large values of μ0 and μ1 using methods such as the conjugate gradient method
or the generalized minimal residual method. We will also investigate implementing
Tikhonov regularization based on the Dirichlet–Robin alternating procedure, see [5].
Also a stopping rule for inexact data will be developed. It will also be interesting to
study the convergence of the algorithm in the case of unbounded domains.
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