
Master of Science Thesis in Electrical Engineering
Department of Electrical Engineering, Linköping University, 2020

Mapping an Auditory Scene
Using Eye Tracking Glasses

Alfred Fredriksson and Joakim Wallin



Master of Science Thesis in Electrical Engineering

Mapping an Auditory Scene Using Eye Tracking Glasses

Alfred Fredriksson and Joakim Wallin

LiTH-ISY-EX--20/5330--SE

Supervisor: Clas Veibäck
isy, Linköping University

Martin Skoglund
Eriksholm Research Centre
isy, Linköping University

Examiner: Gustaf Hendeby
isy, Linköping University

Division of Automatic Control
Department of Electrical Engineering

Linköping University
SE-581 83 Linköping, Sweden

Copyright © 2020 Alfred Fredriksson and Joakim Wallin



Abstract

The cocktail party problem introduced in 1953 describes the ability to focus audi-
tory attention in a noisy environment epitomised by a cocktail party. An individ-
ual with normal hearing uses several cues to unmask talkers of interest, such cues
often lacks for people with hearing loss. This thesis explores the possibility to use
a pair of glasses equipped with an inertial measurement unit (imu), monocular
camera and eye tacker to estimate an auditory scene and estimate the attention
of the person wearing the glasses. Three main areas of interest have been in-
vestigated: estimating head orientation of the user; track faces in the scene and
determine talker of interest using gaze. Implemented on a hearing aid, this solu-
tion could be used to artificially unmask talkers in a noisy environment.

The head orientation of the user has been estimated with an extended Kalman
filter (ekf) algorithm, with a constant velocity model and different sets of mea-
surements: accelerometer; gyrosope; monocular visual odometry (mvo); gaze
estimated bias (geb). An intrinsic property of imu sensors is a drift in yaw. A
method using eye data and gyroscope measurements to estimate gyroscope bias
has been investigated and is called geb. The mvo methods investigated use ei-
ther optical flow to track features in succeeding frames or a key frame approach
to match features over multiple frames. Using estimated head orientation and
face detection software, faces have been tracked since they can be assumed as
regions of interest in a cocktail party environment. A constant position ekf with
a nearest neighbour approach has been used for tracking. Further, eye data re-
trieved from the glasses has been analyzed to investigate the relation between
gaze direction and current talker during conversations.

Experiments have been carried out where a person wearing eye tracking glasses
has listened to or been taking part in a discussion with three people. The dif-
ferent experiments excited the system in different ways. Results show that the
solution performed well in estimating orientation during low angular rates but
deteriorated during higher accelerations. During these experiments, the drift in
yaw was reduced from 100◦/min to approximately ±20◦/min using geb and fully
mitigated during small movements using key frames. The tracker performs well
in most cases but during larger dynamics or when detections are to scarce, multi-
ple tracks might occur due to errors in the orientation estimate. The results from
the experiments shows that tracked faces combined with gaze direction from the
eye tracker can help in estimating the attention of the wearer of the glasses.
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1
Introduction

In this chapter the motivation of the thesis will be presented. Then the objective
and problem statement will be set forth as well as limitations and previous work.
Also, the contribution and outline will be presented.

1.1 Motivation

The cocktail party (CtP) effect, introduced by Cherry in 1953 [8] describes the
ability to focus one’s auditory attention in a noisy environment, such as a multi-
talker cocktail party. This is a complex issue and a wide research area. A healthy
person uses a plethora of different cues to segment an auditory scene of multiple
talkers. Spatial and spectral differences between talkers of interest and masking
sound highly influences the intelligibility [6]. Visual stimulus of the face of a
speaker also significantly improves hearing capability. This is particularly im-
portant under noisy conditions [61] such as in a CtP environment. The art of
ventriloquism is a classic example of when visual stimulus heavily influences au-
ditory perception [1].

According to the World Health Organization (WHO) approximately 466 million
people suffer from hearing loss with a prognosis of 900 million in the year 2050
[38]. A common complaint among people seeking help due to deficient hearing
is difficulty understanding speech. The difficulty often occurs in noisy conditions
such as in a cafe or restaurant with multiple talkers. Since the former mentioned
auditory cues to process a CtP environment are often lacking for people with
hearing loss [35], a traditional hearing aid does not help with this problem in a
satisfactory way resulting in people not using the hearing aid due to the ampli-
fied background noise. In [27] Kochin explains that one of the prevalent reasons
for people not to wear a hearing aid is due to background noise being annoying
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2 1 Introduction

or distracting.

This thesis is performed in cooperation with Eriksholm research center where the
main focus of research is on hearing aids. One field of research at Eriksholm is
how to determine the intention of listeners using eye tracking data.

1.2 Objective

The objective is to map an auditory scene. This is to be achieved using eye track-
ing glasses with a front camera to detect and track faces in the environment and
identify whether the user is attending any of the faces. If so, which face the user
is attending should be determined.

1.3 Problem Statement

A pair of eye tracking glasses will be used to gather measurements.
With the objective in mind, three research questions are put forth, each with a
couple of follow-up questions.

• What solution should be used to estimate glasses orientation?

– What kind of dynamic model should be used and how well can it de-
scribe the system?

– How well can measurement errors be mitigated?

• What solution should be used to detect and track faces?

– Can multiple faces be tracked simultaneously?

– What robustness can be achieved concerning data association and false
detection?

• How should the gaze data be interpreted?

– Can eye data be used to support yaw estimate?

– Can eye data be used to estimate a talker of interest?

For the orientation estimate, the goal is that the error in yaw should be minimized.
Furthermore, the tracking software should enable tracking of at least three faces
simultaneously in an indoor environment on distances that can be expected in a
general conversation.

A possible scenario is depicted in Figure 1.1, the dotted lines indicate the camera
field of view (fov). To start with, Figure 1.1a, three faces are in the fov and
all are tracked using direct measurements. The momentary focus based on gaze
direction is towards face 2. In a later moment, Figure 1.1b, the wearer of the
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glasses has turned their head, and face 1 has gone out of view. In this case, camera
measurements will be available for face 2 and 3 while only a priori knowledge
and the head orientation is used to predict where face 1 is.

(a) All faces inside camera fov and
measurements from face detection al-
gorithm of all faces should be avail-
able, face 2 is gazed at.

(b) The head of the user is turned,
face 1 is tracked outside FOV and di-
rection to face 2 and 3 are measured
using face detection. Face 2 is gazed
at.

Figure 1.1: An overview of a possible scenario, dotted lines indicate the fov,
which is 82 ◦ horizontally. Gaze vectors are illustrated with arrows.

1.4 Limitations

The hardware available which will be used in this thesis are a pair of Tobii Pro
2 glasses, further referred to as the glasses. They are equipped with sensors for
eye tracking, orientation estimation, a camera and a microphone. The wearer of
the glasses is assumed to be stationary and is only allowed to rotate their head.
The translation of the glasses due to rotation is neglected as well as translational
movement of faces in the scene. A direction of where to amplify sound will be es-
timated, but a solution to amplify sound in a specific direction is not to be found.
On the topic monocular odometry, existing functions and algorithms available in
OpenCV for Python will be used.

1.5 Related Work

The CtP problem has been under extensive research since it was introduced.
Within the field of hearing aids a multitude of approaches aiming to solve the
CtP problem exist, all with the intent of amplifying a target talker. One is to use
directional microphones controlled by head direction [22], another to manually
input the direction via a remote, either by pointing in the desired direction or
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button input [22]. A third approach, tested in [22] and [13] is to use eye gaze
direction to estimate a desired direction. Eye gaze direction results are promis-
ing with faster response time, better recounts of conversations and easier to use
compared to the alternative methods [22]. In [36], two ways to use gaze data
for sound source selection are analyzed, a “hard steering" which means that the
talker which is looked upon at every specific moment, is amplified, while the
amplification of other talkers are reduced. The other solution is a “soft steering"
which, with a Bayesian approach explained in [24] can amplify several sources
depending on the latest couple of seconds of gaze data. Results from [36] point
towards that hard steering is preferred. However, more experiments in more var-
ied situations might be needed to get better knowledge of when each kind of
steering would be to prefer.

Conversation dynamics are intrinsically fast [46] and a steered hearing aid must
be able to, in real time, follow the dynamics and amplify a talker of interest.
Consequently, a natural extension to gaze steering is to predict listener focus
using more information than just the gaze data. For the CtP problem, talkers are
assumed to be of interest and thus face detection and tracking can be used.

Object detection is an extensively researched subject for which face detection is
a subgroup. Some of the most popular detection algorithms are based on convo-
lutional neural networks (CNN) such as R-CNN [17], Fast R-CNN [16] and Faster
R-CNN [45], versions of you only look once (yolo) [42–44] and MobileFaceNets
(mfn) [7]. mfn is developed as a real time face detector for mobile use [7] whilst
the other mentioned methods are general object detectors that can be trained to
detect faces.

To be able to steer efficiently, the direction to sound sources out of sight can be
tracked. In a general setting, this requires that the pose of the glasses is estimated
but due to the limitation of no translational movement, only rotation is of interest
for this thesis. Still, prior work on full pose estimation can be used. Since both vi-
sual and inertial measurements are available, they can be fused to improve pose
estimation compared to using only visual or inertial measurements. Multiple
solutions to fuse these kind of measurements exist, in [11] six visual-inertial al-
gorithms are evaluated in how well they can estimate the pose of a flying robot.
Three of the algorithms are based on Kalman filters and three of them are opti-
misation based. Results in [11] show that tightly coupled solutions perform best
with the cost of a higher computational burden. A loosely coupled Kalman filter
approach was most efficient in terms of low computational power, but had the
lowest accuracy among the evaluated algorithms. In [60], combination of visual
and inertial measurements from sensors worn by a human to track their motion
is performed. In the mentioned study, movements are classified as combined
translation and rotation or only rotation.
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1.6 Contributions

We have worked together and discussed problems and ideas during the whole
duration of the project. The work has been broad with several subjects result-
ing in a natural division of the work. Alfred has been more responsible for the
monocular visual odometry and face tracking while Joakim has worked more on
the orientation estimation foundation and gaze estimation. Other work such as
general report writing and experiments has been done by both of us.

1.7 Outline

For continued reading the outline of the thesis will be presented, starting with
Chapter 2 where the prerequisites are put forth. The theory was used for the
system implementation in Chapter 3. The experimental setup used for evaluation
of the system is presented in Chapter 4 and the results from the experiments will
be presented and discussed in Chapter 5. In Chapter 6, the research questions
will be answered and future work is suggested by the authors.





2
Theory

In this chapter, theory needed to approach the stated problem is presented. To
start, representation of orientation is explained and then sensor characteristics
and filtering theory is discussed. Algorithms for monocular odometry are pre-
sented and theory of eye movements and gaze tracking is briefly explained.

2.1 Orientation Representation

One way to represent orientation is the unit quaternion. The quaternion repre-
sentation was first introduced in [52]. In [30], orientation is described using the
quaternion vector q = [q0, q1, q2, q3]T , where q0 is scalar and q1, q2, q3 are com-
plex with one imaginary axis each. One strength of this representation compared
to the commonly used Euler representation is that it is not affected by gimbal
lock which is a phenomenon were a degree of freedom is lost.
In [51], the time derivative of orientation expressed in unit quaternion given the
angular velocity ω = [ωx, ωy , ωz]T is given by

q̇ =
1
2
S(ω)q =

1
2
S̄(q)ω, (2.1)

where

S(ω) =


0 −ωx −ωy −ωz
ωx 0 ωz −ωy
ωy −ωz 0 ωx
ωz ωy −ωx 0

 , (2.2)

S̄(q) =


−q1 −q2 −q3
q0 −q3 q2
q3 q0 −q1
−q2 q1 q0

 . (2.3)

7



8 2 Theory

The rotation matrix expressed in q is

R(q) =


q2

0 + q2
1 − q

2
2 − q

2
3 2(q1q2 + q0q3) 2(q1q3 − q0q2)

2(q1q2 − q0q3) q2
0 − q

2
1 + q2

2 − q
2
3 2(q2q3 − q0q1)

2(q1q3 − q0q2) 2(q2q3 + q0q1) q2
0 − q

2
1 − q

2
2 + q2

3

 . (2.4)

Let s = q0 and v = [q1, q2, q3], then an orientation in unit quaternion [s1, v1] can
be rotated by a rotation expresed in unit quaternion [s2, v2] with

q =
[
s1s2 − v1 · v2, s1v2 + s2v1 + v1 × v2

]
. (2.5)

A downside using unit quaternions instead of Euler angles for orientation is that
it is not as intuitive. Thus, within this thesis, the orientation will be visualized
using Euler angles where roll, pitch and yaw, annotated with φ, θ and ψ, are
positive rotation around the x-, y- and z-axis respectively.

2.2 Inertial Measurement Unit

An inertial measurement unit (imu) is a set of sensors consisting of an accelerom-
eter and a gyroscope. The accelerometer is used to measure proper acceleration,
the gyroscope measures angular velocity. The imu is often complemented with
a magnetometer, measuring magnetic fields, which allows estimation of a full
3D orientation. To estimate orientation of the imu relative to an earth reference
frame, two linearly independent vectors, mutual in earth and imu coordinate sys-
tems have to be identified. Using the accelerometer, the gravity vector can be
identified and using the magnetometer, the magnetic field of earth can be identi-
fied. Knowing these two vectors, the orientation of the imu relative to earth can
be derived [15].

The imu measurements contain errors which, for simplicity, can be split into
two parts, one independent white noise part and one bias part [57]. For the ac-
celerometer, the bias is assumed to be constant and would lead to an offset in the
orientation estimate. The gyroscope bias is assumed to vary and since the angular
velocity from the gyroscope is integrated to estimate orientation, the gyroscope
bias leads to a drift in orientation. This drift can be compensated for with the
absolute orientation estimate retrievable using accelerometer and magnetometer
[34]. If using an imu only, some drift in yaw will occur if no additional measure-
ments can be used.

2.3 Extended Kalman Filter

The Kalman filter (kf), introduced 1960 in [26], is used to optimally estimate
states in a linear model by minimizing the estimation error. Real processes are
seldom linear, therefore some modifications to the original kf is needed. A non-
linear state-space model for a system without input signals and additive noise
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can be described by

xk+1 = f (xk) + Nkwk , (2.6a)

yk = h(xk) + ek , (2.6b)

where f is the dynamic model and h relates the states to the measurements. N
is a linear matrix relating the process noises and states. Time is indicated with
subscript k and the states, xk , are the quantities to be estimated. Measurements
are denoted yk , wk are process noises and ek are measurement noises. The noises
are assumed to be Gaussian, i.e, wk ∼ N (0, Q) and ek ∼ N (0, R) for a kf. In 1962,
Smith et al [53] introduced the extended Kalman filter (ekf) for nonlinear mod-
els. An ekf implementation requires a linearization of the nonlinear model for
each instance of time.

The ekf algorithm consists of a prediction and a measurement update. The pre-
diction step is

x̂k+1|k = f (x̂k|k), (2.7a)

Pk+1|k = FkPk|kF
T
k + NkQN

T
k , (2.7b)

where ˆ{ · } indicates that the value is estimated. Pk+1|k and Pk|k are covariances of
the prediction and estimate, respectively. Subscript k1|k0 indicates that the value
in time k1 is evaluated based on values in time k0.

The measurement update step is performed by

Sk+1 = Hk+1Pk+1|kH
T
k+1 + R, (2.8a)

Kk+1 = Pk+1|kH
T
k+1S

−1
k+1, (2.8b)

ỹk+1 = yk+1 − h(x̂k+1|k), (2.8c)

x̂k+1|k+1 = x̂k+1|k + Kk+1ỹk+1, (2.8d)

Pk+1|k+1 = (I − Kk+1Hk+1)Pk+1|k , (2.8e)

where R is the measurement covariance matrix, yk is the vector containing mea-
sured signals and

Fk =
∂f

∂x

∣∣∣∣
x̂k|k ,uk+1

, (2.9a)

Hk+1 =
∂h
∂x

∣∣∣∣
x̂k+1|k

. (2.9b)

2.4 Monocular Visual Odometry

Monocular visual odometry (mvo) is a collective term for methods to estimate
translation and rotation using measurements from a monocular camera. The
essential matrix, obtained using intrinsic parameters of the camera and image
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correspondences, is used to estimate the translation vector t = [tx, ty tz]T and
rotational matrix R between frames. The translation can only be extracted up
to an unknown scale through monocular odometry [23]. Calibrated cameras are
primarily used to reduce the complexity of the problem. Seven point correspon-
dences are needed to obtain a relative pose from two uncalibrated images, leading
to up to three solutions. Stated by Kruppa in [29] (translated from German to En-
glish in [14]), the use of camera intrinsic parameters introduces two constraints
reducing the number of points needed to five. Kruppa [29] also proved that up
to eleven different solutions can be obtained from the five point problem which
was later reduced to ten [37]. The primary steps in estimating the orientation
between two frames are shown below and theory for each step will be presented
later in the section.

1. Detect features in the first frame.

2. Find matching features in the subsequent frame.

3. Estimate the essential matrix using the matched features.

4. Decompose the essential matrix.

The steps are similar to those mentioned in [50] but simplified since only the
rotation is of interest.

2.4.1 Feature Detectors

In the scope of this thesis, a feature is defined as a local pattern distinguishable
from its immediate neighbours. Image properties often used to extract features
are texture, color and intensity [56]. There exists a multitude of different feature
detectors. Some of the more popular detection algorithms, included in Open
source computer vision (OpenCV), are

• Harris Corner Detector introduced in [21].

• Shi-Tomasi Corner Detector introduced in [25].

• Scale-Invariant Feature Transform (sift) introduced in [32].

• Speeded-Up Robust Features (surf) introduced in [4].

• Features from Accelerated Segment Test (fast) introduced in [47].

• Oriented fast and Rotated brief (orb) introduced in [48].

Since features are to be compared between frames, the ability to repeatably detect
the same features is one of the most important properties of a feature detector.
One parameter influencing the repeatability is the feature invariance [56].

Within mathematics, an invariant is a property unchanged when a specific trans-
formation or operation is performed. For features, this is important to know if the
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feature will be detectable after a change in pose. Typical transformations that oc-
cur between frames, in a static environment, are rotation and translation leading
to scale and perspective changes in the image. For use cases such as mvo, ro-
tations are assumed small enough for a generic feature detector to be rotational
invariant but change in scale might degenerate the repeatability to much [56].
To provide better scale invariance, a descriptor that normalises the features is
needed, such detectors are called scale invariant. Scale invariant detectors should
be used where large movements might occur between frames but rotational in-
variant detectors might be enough for applications with smaller movements [56].

From the mentioned detectors, sift, surf and orb have a descriptor that nor-
malizes the features, thus, making them scale invariant [48, 56]. The detectors,
Harris, Shi-Tomasi and fast does not have any descriptor [21, 25, 47], thus mak-
ing them invariant only to rotation.

After features have been extracted in the first frame the corresponding features
should be found in subsequent frames. This can be done either by tracking or
matching features. Feature matching uses the descriptions of features in two
frames to extract matches between the features, thus feature matching needs de-
scriptions of the features in each frame, implying that non-descriptor based de-
tectors cannot be used directly without an external descriptor. The computation
of a feature descriptor can be computationally expensive [9].

2.4.2 Optical Flow

Another method for finding the primary features in the subsequent frame is to
track the features. Unlike when using a feature matching approach, as described
in Section 2.4.1, for which features need to be detected and described in each
frame. Tracking of features only require detection when the number of tracked
features are below a certain threshold. This occurs when too many features get
out of frame or are obscured. One method of visual tracking of features is to use
optical flow which is defined as the pattern of apparent motion. The underlying
assumption for use of optical flow is that the pixel intensities do not change be-
tween consecutive frames [33].

The problem formulation for optical flow is as follows. I(x, y, t) is an arbitrary
pixel in an image at time t. I(x, y, t) moves a distance of (dx, dy) in the next frame
in time t+dt [33]. Under the assumption of constant intensity the following holds

I(x, y, t) = I(x + dx, y + dy, t + dt). (2.10)

A Taylor series expansion of the right side of (2.10) results in

I(x + dx, y + dy, t + dt) ≈ I(x, y, t) +
∂I
∂x
dx +

∂I
∂y
dy +

∂I
∂t
dt. (2.11)
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Insertion of (2.11) in (2.10)

∂I
∂x
dx +

∂I
∂y
dy +

∂I
∂t
dt ≈ 0, (2.12)

which can be written as

∂I
∂x

dx
dt

+
∂I
∂y

dy

dt
+
∂I
∂t
≈ 0. (2.13)

Redefining (2.13) as

Ixu + Iyv + It ≈ 0,

where

Ix =
∂I
∂x
, Iy =

∂I
∂y
, It =

∂I
∂t
,

and the (x, y) components of optical flow are defined as

u =
dx
dt
, v =

dy

dt
.

One equation and two unknowns, (u, v) are obtained which gives an undeter-
mined system. There exists a multitude of methods to solve this problem, one
provided by Bruce D. Lucas and Takeo Kanade introduced in [33] assumes an
equal flow of the pixels within an m × m window, where each pixel is numbered.
The assumption of an equal flow limits the method to be used where movements
between frames are small. The resulting system of equations is

Ix1 Iy1
Ix2 Iy2
...
IxN IyN

︸        ︷︷        ︸
A

[
u
v

]
︸︷︷︸

x

+


It1
It2
...
ItN

︸︷︷︸
b

= 0, (2.14)

for pixel In, n ∈ [1, 2 . . . N ], N = m × m, within the window. The result of the as-
sumption of neighbouring pixels is an overdetermined system that can be solved
using a least squares approach

x = (ATA)−1AT (−b) (2.15)

for the searched window. Thus, (2.15) is a solution to the optical flow prob-
lem given the image derivatives in x, y and t [5]. Using the Lucas-Kanade (LK)
method for optical flow, a feature can be tracked in subsequent frames given two
images and feature points of the first frame.
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2.4.3 Essential Matrix

A natural interpretation of a feature could be a point P = [X, Y , Z]T in 3D space
projected on an image as p = [u, v] and the essential matrix relates 3D points
projected on two images using epipolar geometry [23]. The essential matrix is
given by

E = [t]xR,

where R is the orientation of the camera and [t]x is the skew-symmetric matrix.
The skew-symmetric matrix is defined as

[t]× =

 0 −tz ty
tz 0 −tx
−ty 0 tx

 ,
and is a result of a property of the cross product of two vectors. An example with
vectors a = [ax ay az]T and b = [bx by bz]T is

a × b =

 0 −az ay
az 0 −ax
−ay 0 ax


bxby
bz

 = [a]xb.

Below is a derivation and explanation of the essential matrix.

Use extended vectors p̄ = [p 1]T and P̄ = [P 1]T , commonly known as homoge-
neous coordinates, to express a 3D point projection as

λp̄ = K[R|t]P̄ , (2.16)

where K is the pinhole camera intrinsic matrix defined using the focal lengths
(fx, fy) and the optic center (cx, cy) as

K =

fx 0 cx
0 fy cy
0 0 1

 .
Furthermore, t = [tx, ty , tz]T is the translation vector up to an unknown scale
and λ is a scale factor. Additionally, M = K[R|t] is called the camera projection
matrix [23] where [R|t] is the column stacked 3 × 4 matrix of R and t as

[R|t] =

R11 R12 R13 tx
R21 R22 R23 ty
R31 R32 R33 tz

 .
With a known camera intrinsic matrix, the projection in (2.16) can be expressed in
normalized camera coordinates by multiplication of K−1 from the left, resulting
in

p̃ = [R|t]P̄ , where p̃ = λK−1p̄ (2.17)
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with a normalized projection matrix M̃ = [R|t]. Given a point correspondence
in two images, the epipolar geometry can be expressed, visualised in Figure 2.1.
The plane Π spanned by the two camera centers (O1, O2) and point P is called the
epipolar plane. The line defined by (O1, O2) is called the baseline and the points
(e1, e2) where the baseline and the image planes intersect are called the epipoles
[23].

Figure 2.1: The plane spanned by the two camera centers (O1, O2) and the
3D point P is called the epipolar plane, Π. The line through O1 and O2 is
the baseline. The epipoles (e1, e2) defined by the intersection of the baseline
for respective image and the projected points (p1, p2) all lie on the epipolar
plane. Thus the lines on the image planes through px and ex also lie in the
epipolar plane and are called epipolar lines.

Let M̃1 = [I |0] and M̃2 = [R|t] be normalised projection matrices for subsequent
frames and

p̃1 = M̃1P , p̃2 = M̃2P .

p̃2 expressed in the first camera coordinate system, i.e the global coordinate sys-
tem, can be written as

p̃
g
2 = RT p̃2 − RT t.

p̃
g
2 and O1O2 = RT t both lies in Π, thus

RT t × (RT p̃2 − RT t) ⊥ Π

RT (t × p̃2) ⊥ Π and p̃1 ∈ Π⇒
(RT (t × p̃2))T p̃1 = 0⇔ (t × p̃2)T Rp̃1 = 0

which can be written as
p̃T2 [t]xRp̃1 = p̃T2 Ep̃1 = 0 (2.18)

which is called the epipolar constraint equation where [t]xR is the sought essen-
tial matrix. To estimate the essential matrix, the five point problem mentioned
in Section 2.4 needs to be solved. In [37], Nistér introduced an efficient way
of solving the five point problem using using a RANdom SAmple Consensus
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(RANSAC) scheme [12]. In the ransac scheme, multiple five point samples of
tracked points are randomly extracted and each sample yields a set of hypotheti-
cal orientation estimates. Each hypothesis is then statistically tested and scored
over all matched points and the best scoring hypothesis is further improved by
iterative refinement.

2.4.4 Pose Estimation

From an essential matrix four different compositions of rotation matrices can be
extracted [23]. Assuming M̃1 = [I |0] is the first camera matrix and M̃2 the second
camera matrix, the translation and rotation to the second frame be expressed as
one of the following

M̃2 = {[R|t], [R| − t], [Rb |t], [Rb | − t]}.

Where M̃22 = [R|t] is the true rotation and translation. M̃2 = [R|−t] has a reversed
translation vector compared to the true, M̃2 = [Rb |t] and M̃2 = [Rb | − t] is called
the “twisted pair” solutions for M̃2 = [R|t] and M̃2 = [R| − t] respectively. The
twisted pair solutions have a 180◦ rotation about the line joining the two camera
centers [23].

2.5 Eye Movements and Gaze Tracking

In this section, theory behind eye movements and gaze tracking is explained. Eye
movement theory is presented to get an understanding of how eyes move. A
short background to gaze tracking is included to give an overview of how it can
be performed.

2.5.1 Eye Movements

Movements of the eye can generally be divided into four different types. Sac-
cades, smooth pursuit movement, vergence movement and Vestibulo-ocular re-
flex (vor) movement [10]. Saccades being rapid, balistic movement of the gaze
between points. Both voluntary and non-voluntary. Both the velocity and du-
ration of a saccade are highly dependent on the distance covered, a 2◦ saccade,
typical for reading, lasts for about 30 ms whereas a 5◦ saccade, typical for scene
perception, last about 30-40 ms [39]. Smooth pursuit movements are voluntary
movements to fixate on and follow objects. Vergence movement is the fixation of
both eyes based on distance, i.e, the disjunctive movement to fixate objects closer
or further away from the observer. vor is a reflex to stabilize the eyes due to head
movements [31]. The effect results in eye movement opposing the head move-
ment. Fixation to a point is the most common state for eyes and thus, knowledge
of when one fixates is important for accurate classification of eye movements.

To determine which kind of eye movement an individual is performing there are
several solutions available. A commonly used method is velocity threshold iden-
tification (i-vt) [49]. In [28], several methods to determine eye movement based
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on gaze data are evaluated and it is concluded that i-vt is performing well in
terms of saccade identification. The threshold used significantly affects the per-
formance of the classification and can be varied depending on hardware and sit-
uation. A threshold somewhere between 30°/s and 70°/s performs well in terms
of identifying saccades in [28].

2.5.2 Gaze Tracking

To measure eye movements in wearable eye trackers, video-oculography (VOG) is
often used. In most VOG applications, infrared light is used to provide contrast
between the pupil and the rest of the eye and enable tracking in most light con-
ditions [18]. There are two main methods for eye tracking using infrared light,
dark pupil and bright pupil tracking. For dark pupil tracking, the camera and
light source are offset in angle leading to that none of the light passing through
the pupil is reflected back to the camera. With bright pupil tracking, the infrared
light source is placed coaxial with the camera causing much of the light passing
through the pupil to be reflected into the camera [20]. Both methods aim to mea-
sure the position of the pupil which is further used to estimate gaze direction.
Figure 2.2 depicts the two methods.

Figure 2.2: Explanation of bright and dark pupil tracking. Image rights:
Tobii Pro AB.

When the position of the pupil is known, parameters which differ between indi-
viduals are needed to estimate gaze direction. These are often obtained through a
calibration procedure where the user focuses their gaze to at least one point [58].



3
Implementation

In this chapter, the design steps for implementing the system are presented. To
start, the frames of reference are stated, then, solutions based on computer vision
and face detection are presented. After that modeling of the different subsystems
is explained.

The full system to be implemented can briefly be described by Figure 3.1. The
hardware at hand is, as mentioned earlier, a pair of Tobii Pro 2 glasses. The input
signals to the system are measurements from eye tracker, imu and frames from
the scene camera. The outputs are estimated gaze direction and estimated direc-
tion to surrounding faces. The purpose of the system is to provide data which can
be used to determine where a user directs their attention. To predict attention,
face tracking is to be performed. To enable efficient tracking when faces cannot
be detected using the camera, an orientation estimate is needed. Combining imu
supported face and gaze tracking, estimates of a users attention can be evaluated.

17
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Figure 3.1: System overview with measurement signals consisting of gaze
data, imu data and frames from the scene camera. The outputs are gaze
direction and direction to tracked faces.

3.1 Coordinate Systems

Representing the system, several coordinate systems are used to represent differ-
ent entities of the system. Figure 3.2 visualises the coordinate systems. Which
coordinate system a vector or matrix is expressed in is indicated with subscript
where needed to clarify.
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Figure 3.2: Visualisation of global, body, camera and image coordinate sys-
tem. The transformation between global to body is defined by the rotational
matrix R and the translation vector t. The relationship between the camera
and the body is defined by the constant rotational matrix Rcb and translation
vector tcb.

• Camera: Depicted by (xc, yc, zc) in Figure 3.2 with origin in the center
of the camera, it is a right handed system with the z-axis in the camera
direction and the y-axis in the downward direction. It will be called the
c-frame.

• Gaze and imu: The gaze and IMU coordinate system has its origin in the
center of the c-frame. The coordinate axes are defined as in Figure 3.3 and
will henceforth be called imu-frame.

• Image: The image coordinate system is defined with origin in the top left
corner of a frame with u-axis to the right and v-axis downwards as depicted
in Figure 3.2.

• Body: The body coordinate system, represented by (xb, yb, zb) in Figure 3.2
is defined as the right hand system with origin in the center of the camera,
tcb = 0̄. The x-axis is directed as the z-axis of the imu-frame and the body
z-axis is directed upwards. Hereafter it will be called the b-frame.

• Global: An earth fix right hand global coordinate system with the z-axis
parallel to gravity in opposite direction. The x-axis is initialised parallel to
the projection of the body frame x-axis onto the plane perpendicular to the
global z-axis. In Figure 3.2 it is represented by (xg , yg , zg ). Henceforth, it
will be called the g-frame.
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Figure 3.3: The coordinate system used by the Tobii Pro Glasses 2 [55]. Im-
age rights: Tobii Pro AB.

The origin of the c-frame and imu-frame coincide with the b-frame, thus, tcb =
[0, 0, 0]T in Figure 3.2. Coordinates in the c-frame can be expressed in the b-
frame through

Rcb =

 0 0 1
−1 0 0
0 −1 0


and the gaze and imu data is rotated to the b-frame using the rotational matrix

Rimu =

0 0 1
1 0 0
0 1 0

 .
The relationship between the g-frame and the b-frame is defined by the rota-
tional matrix R and the translation vector t. Since the offset between b-frame
and g-frame is neglected, the origin of the two coordinate systems is assumed to
coincide, thus t = [0, 0, 0]T .

3.2 Computer vision

A solution based on mvo processes the visual information from the camera to
retrieve orientation measurements and pixel coordinates for faces.

3.2.1 Odometry

The pipeline for obtaining the rotational matrix uses the OpenCV API and fol-
lows the general steps described in Section 2.4. The “true” and the twisted pair
rotational matrices, R1 and R2, are retrieved as described in Section 2.4.4 but the
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hypothesis testing performed is described in Section 3.3.1. Two different methods
were considered for estimating rotation using the camera.

1. Use lk optical flow for tracking features between consecutive frames.

2. Iteratively match descriptors in each frame with a key frame until the num-
ber of matches to the key frame is smaller than a certain threshold, whereas
the most recent frame is used as key frame. In the new key frame, new
features have to be found and descriubed.

The primary reason for using lk optical flow is the computational cost. The op-
tical flow approach does not need a descriptor based detector, moreover, small
translation movement can be assumed since the features are tracked for subse-
quent frames, reducing the need for scale invariant features. Due to the compu-
tational cost of describing features only the three rotational invariant detectors
mentioned in Section 2.4.1 are considered with the optical flow method. Accord-
ing to [2], the fast detector is sensitive to noise and is therefore excluded. For
the two remaining detectors, Harris and Shi-Tomasi, [3] describes the Shi-Tomasi
detector as a modified and improved Harris detector, therefore, the Shi-Tomasi
detector is used. The algorithm used for pose estimation using optical flow is
described as pseudo code in Algorithm 1.

Algorithm 1: Pose estimation using optical flow
Result: R1, R2
Retrieve frame;
Detect features;
while Got Video do

Retrieve new frame;
Track features from previous frame to new frame;
if # Tracked features>ε then

Estimate Essential Matrix;
Retrieve R1 and R2;
previous frame = new frame;
features = tracked features;

else
Detect new Features;

end
end
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The second method implemented requires a descriptor based detector. This re-
duces the number of choices to three, sift, surf and orb. From these, both sift
and surf are patented and not included in the specific OpenCV package used,
therefore they are not considered any further. Algorithm 2 describes the key
frame based method in pseudo code.

Algorithm 2: Pose estimation using feature matching with key frame
Result: R1, R2
Retrieve frame as key frame;
Detect and describe features;
while Got Video do

Retrieve new frame;
Detect and describe features;
Match features;
if # Matched features>ε then

Estimate Essential Matrix;
Retrieve R1 and R2;

else
Set new frame as key frame;
Detect and describe New features;

end
end

Compared to the optical flow approach, this will be much more computationally
expensive. Primarily due to the fact that features need to be detected at each
frame and those features require a description. One advantage of using a descrip-
tion based approach is that it is more robust in terms of that larger movements
can be handled and thus a lower sampling rate than when using optical flow can
be used. Thus, a combination of them might be preferred. Combining both is
investigated in [9], but due to time constraints it is not investigated in this thesis.

Feature detection using Shi-Tomasi corner detection and tracking features using
lk optical flow is visualized in Figure 3.4. Each line in the figure corresponds to a
tracked feature and the different colours indicate how the feature moved between
two consecutive frames. Rotation is made in negative yaw direction.
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Figure 3.4: Visualisation of tracking features using optical flow over multi-
ple frames. The long straight lines in the figure indicate poor results from
the optical flow method since they do not relate well to the estimated move-
ment of most other tracked features.

Feature detection and description using orb and matching the descriptors for
each frame with a key frame which is visualized with one frame as an example in
Figure 3.5 where rotation is made in negative yaw direction.

Figure 3.5: One frame visualizing matching of features using key frames.
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3.2.2 Face Detection

This thesis is not a survey of different face detectors, thus, not much focus has
been in finding the optimal face detector for the task but several detectors have
been considered, mainly those described in Section 1.5. The main parameters
considered when choosing face detector was speed and accuracy. In [59] several
face detectors were tested for speed and accuracy. Two of the detectors in the test
were themfn and a version of the yolo detector. mfnwas faster by a factor of 10
compared to yolo, but had lower accuracy. Even though it had lower accuracy
than the yolo detector, mfn was picked due to the significant speed difference.
The output from the mfn detector is a bounding box. In this thesis, the center
pixel coordinates (u, v) of the bounding box is set as a measurement of the posi-
tion of face. An example frame where three faces are detected is shown in Figure
3.6. Red rectangles indicate bounding boxes and the cyan circles indicating the
center of a bounding box.

Figure 3.6: An example frame of three successful face detections with center
of box indicated by the cyan colored circles.

3.3 Estimation

To filter measurements, two ekf’s are implemented to estimate orientation and
gaze direction. Their measurements are signals from the eye tracker, imu and
estimated rotation from the computer vision module. The outputs are estimates
of orientation and angular velocity of the glasses and the direction and angular
velocity of the gaze. Everywhere quaternions are modified, e.g., in the measure-
ment update, they are normalised to represent proper orientation.
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3.3.1 Dynamic Models

Orientation Model

To estimate the orientation of the glasses, a nearly constant angular velocity
model is used. The use of a constant angular velocity model is also used in [54]
where wearable sensors are used to estimate pose. The model is extended with a
constant gyroscope bias model,qk+1

ωk+1
b
gyr
k+1

︸ ︷︷ ︸
xattk+1

=


I4×4 T s

2 S̄(qk) 04×3

03×4 I3×3 03×3

03×4 03×3 I3×3

︸                        ︷︷                        ︸
Fattk

 qkωk
b
gyr
k

︸︷︷︸
xattk

+


04×3 04×3

Ts
2 I3×3 03×3

03×3 I3×3

︸            ︷︷            ︸
N att
k

[
wωk
wbiask

]
︸  ︷︷  ︸
wattk

. (3.1)

In (3.1), the state vector consists of the unit quaternion qk = [q0 q1 q2 q3]T repre-
senting the orientation of the b-frame relative the g-frame, the angular velocity
ωk = [ωx ωy ωz]T , in radians per second of the b-frame and the gyroscope bias
b
gyr
k = [bgyrx bgyry bgyrz ]T in radians per second. The matrix S̄(q) is defined in

Section 2.1.
The process noises wωk = [wωx wωy wωz ]T and wbiask = [wbiasx wbiasy wbiasz ]T in
angular velocity and gyroscope bias are distributed, wωk ∼ N (0, Qω) and
wbiask ∼ N (0, Qbias).

Inertial Measurement Models

The imu placement is visualised in Figure 4.1, but as mentioned in Section 3.1
the imu origin is assumed to coincide with the b-frame origin. The resulting
measurement model for the accelerometer is defined as

yacck = R(qk)
(
ak −

00
g

 ) + eacck , (3.2)

where R(qk) is the rotational matrix from the g-frame to the b-frame, param-
eterised using the unit quaternion. Furthermore, ak defines the acceleration
of the glasses, g the gravitation and eacck the measurement noise, distributed
eacck ∼ N (0, Racc). Since the use of the imu is to estimate orientation only, ||a|| � g
will be assumed, the measurement model for the accelerometer is reduced to

yacck = −R(qk)

00
g

 + eacck . (3.3)

Furthermore, the influence of large accelerations is mitigated using accelerome-
ter measurements satisfying |g − ||yacc ||| < εa, where εa is a threshold. The gyro-
scope measurements are defined as

y
gyr
k = ωk + bgyrk + egyrk , (3.4)
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where ωk is the angular velocity of the glasses, bgyrk the gyroscope bias and egyrk

the measurement noise which is distributed egyrk ∼ N (0, Rgyr ).

Bias Measurement Model

The use of gaze data to estimate gyroscope bias (geb) is investigated. Measure-
ments from the gyroscope when the gaze vector is assumed stationary in the b-
frame, i.e., when the gaze direction is fix relative to the head, are used as bias
measurements. A gaze direction, fix in the b-frame indicates that the head is sta-
tionary in the g-frame, if it is assumed that one does not follow a moving object
with synchronised eye and head movements. Such a scenario is assumed rare
enough to be disregarded. A measurement model for gyroscope bias would be
expressed

ybiask = b
gyr
k + eGEBk , (3.5)

where ybiask consists of gyroscope measurements, bgyrk would be the gyroscope
bias and eGEBk is the corresponding measurement noise, distributed
eGEBk ∼ N (0, RGEB). Measurement updates are performed after each gaze sample
that indicates a fix head.

To determine that the gaze is fix in relation to the b-frame, the angular veloc-
ity of the gaze vector between every two eye samples is calculated. If this velocity
is below a threshold, εGEB, the head is assumed to be stationary and the average
of the gyroscope measurements between the samples is used as a bias measure-
ment. This method is similar to i-vt presented in Section 2.5.1 and a threshold
is to be chosen. It is of importance that small eye movements are identified and
thus, this threshold will have to be chosen low in comparison to when saccades
are to be identified as the case is in Section 2.5.1.

Camera Measurement Models

Section 3.2 describes the method used for retrieving the two hypotheses to esti-
mate rotation between frames. Let δqa and δqb be the hypotheses expressed in
unit quaternion and q̂−1 be the estimated orientation at the time of the first frame.
Each measurement is generated by rotating q̂−1 with (δqa, δqb) using (2.5), result-
ing in two hypotheses of the current rotation as measurements, denoted qa and
qb respectively. Hypothesis testing is performed within the ekf to decide which,
if any, of the measurements should be used.

The hypothesis test is conducted by performing the prediction step in (2.7a) and
comparing q̂k|k−1 with both hypotheses

yMVO = arg min
q∈{qa, qb}

{||q̂k|k−1 − q||}. (3.6)

If ||yMVO − q̂k|k−1|| < εMVO, where εMVO is a threshold, a measurement update
is performed. Otherwise only the prediction step is performed. The resulting
measurement model is
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yMVOk = qk + eMVOk , (3.7)

where eMVOk is camera measurement noise which is distributed
eMVOk ∼ N (0, RMVO).

Gaze Direction Model

A nearly constant angular velocity model is used to estimate gaze angle and ve-
locity of the gaze vector in the b-frame,

αk+1
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k

]
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w
eye
k

. (3.8)

The angle between the gaze direction vector and the b-frame xy-plane is denoted
α and the angle between the gaze vector and the b-frame xz-plane is denoted β.
The velocity of α is denoted γ and the velocity of β is denoted δ. Physical limits
restrict gaze direction, thus α and β are limited to values between ±90◦. The pro-
cess noises are distributed, wαk ∼ N (0, Qα) and wβk ∼ N (0, Qβ).

Since gaze direction is highly unpredictable and the velocity can vary fast. A
constant velocity model might not be the optimal dynamical model to predict
gaze. With this in mind, the process noise of the model is set high in comparison
to the measurement noise.

Gaze Measurement Model

As measurements in the gaze model, eye angles are used. Direction α and β are
calculated from the gaze direction vector (gv) expressed in the b-frame. The gaze
direction vector is depicted as gaze position 3D in Figure 3.3. The measured
depth of gaze is highly uncertain why only the direction of gaze is used as mea-
surement. Measurements are calculated by

yα = arctan(gvz , gvx), (3.9a)

yβ = arctan(gvy , gvx), (3.9b)

y
eye
k =

[
yαk
y
β
k

]
. (3.9c)

The measurement model is

y
eye
k =

[
αk
βk

]
+ eeyek . (3.10)
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Measurements will be restricted to less than ±90◦ by physical limits. The mea-
surements noise is distributed eeyek ∼ N (0, Reye).

Saccade/Fixation Classification

To be able to analyse and possibly predict gaze patterns of a user, the type of eye
movement they perform is of advantage to know. To classify whether the user is
in a fixation or in a saccade an i-vt filter described in Section 2.5.1 is used and a
threshold of gaze velocity in the g-frame is to be set. If the threshold is exceeded,
the movement is classified as a saccade, otherwise it is classified as a fixation. The
velocity of the eyes in the g-frame is divided into one horizontal and one vertical
angular velocity. The vertical velocity is calculated as the difference between γ
and ωy and the horizontal velocity is calculated as the difference between δ and
ωz . It is assumed that ωx does not affect neither γ nor δ significantly.

3.3.2 Face Tracking

The tracking module estimates the position of faces in the g-frame using an ekf
given the estimated head orientation from Section 3.3.1 and the position of de-
tected faces obtained as described in Section 3.2.2.

Dynamic Model

The output from Section 3.2.2 is an image projection of a 3D point. Since no
depth data is available and the origin of the g-frame and c-frame are assumed to
coincide, a face position is parameterised as a unit vector, f = [fx, fy , fz], in the
g-frame. Each face is assumed to be moving at speeds low enough for a constant
position model described by

fk+1 = fk + wfk , (3.11)

with the process noise wf distributed wfk ∼ N (0, Qf ).

Measurement Model

A calibrated camera with camera intrinsic matrix K will be used. Using a cali-
brated camera, normalised camera coordinates mc, defined as

mc = K−1

uv
1

 , (3.12)

can be used. Where u and v are pixel coordinates of a detected face. From this, a
three dimensional unit vector can be obtained as

mcnorm =
mc

||mc ||
=

XY
Z

 ,
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and the corresponding measurement is

y
f
k = Rcb

XY
Z

 .
This results in a measurement model for a face as

y
f
k = R(qk)fk + efk , (3.13)

where R(qk) is the rotational matrix from the g-frame to the b-frame, Rcb the ro-
tational matrix from the c-frame to the b-frame and ef the camera measurement
noises. The measurements noise is distributed efk ∼ N (0, Rf ).

Track Management

All object detection software will have some degree of false detection. To sup-
press the impact of these, a couple of data association methods were implemented.
The tracking solution was derived in a pragmatic way until it was considered
good enough for the situations in which it was to be used. For each detected face
in a frame, a measurement yf is generated. Linking yf to a face is done using the
nearest neighbour method where the angle

αf = arccos(f ·R(qk)
T yf ) (3.14)

is calculated for all currently tracked faces. Nearest neighbour is one of the sim-
plest ways of associating measurements with tracks [19] and is assumed to be
enough for the application. αf is used as a distance measurement and if αf > Ef
for all tracked faces a new track is initiated. If not, the measurement step of
nearest neighbour, i.e the track with smallest αf is performed. Furthermore, to
reduce the number of false detections tracked, a counter for each new track is
introduced. For each frame a track does not get any associated measurement, the
counter for that track ticks down. If the counter decreases below zero the track is
deleted and if the counter increases to a threshold the track is confirmed. Tracks
are also deleted if no measurements can be associated to the track during a set
time.





4
Experiments

This chapter will outline the experiments performed, including hardware and
ground truth. The purpose of the experiments was to validate the system. The ar-
eas to be validated were: yaw drift compensation, dynamical response, face track-
ing and overall system performance. Overall system performance is thought of
as the possibilities of using the system to estimate the attention of the user. Based
on validation areas mentioned, four experiments including several subjects and a
couple of experiments to validate gaze estimation and investigate eye movements
were constructed.

4.1 Hardware

The glasses used were a pair of Tobii Pro 2 glasses, seen in Figure 4.1.

31
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Figure 4.1: Front view Tobii of Pro Glasses 2 [41]. Image rights: Tobii Pro
AB.

They are equipped with one front facing monocular camera, eye tracking sensors
to record the direction of the eye gaze, an inertial measurement unit (imu) and
a microphone. The scene camera is of type OV2722, a 1080p HD camera from
OmniVision. The imu consists of a gyroscope and accelerometer which are of
type L3GD20 and LIS3DH from STMicroelectronics. The eye tracker uses the
dark pupil method described in [40]. The glasses provide data using the data
structure described in [55].

For ground truth, a Qualisys motion capture (mocap) system was used. Themo-
cap system determines position of reflective markers using cameras. If a rigid
body is defined using several markers the position and orientation of objects can
be calculated if at least three markers can be located. The Qualisys setup in Vi-
sionen laboratory at Linköping University was used. This setup contains twelve
cameras covering a room with dimensions 10 m × 10 m × 8 m. For synchronisa-
tion between the glasses and Qualisys, a hardware synchronisation message was
sent to the glasses via a sync cable when the Qualisys recording was started.

4.2 Sound

For sound recording, hand held microphones were used where each talker had
one microphone each as seen in Figure 4.2. Sound was also recorded with the
video from the glasses. For synchronisation between the glasses and the micro-
phones, cross-correlation between the recorded audio from the video and the mi-
crophones was performed to the extent that was possible. If the cross-correlation
sync failed, manual synchronisation was used.
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Figure 4.2: Experimental setup visualising how microphones were used.

4.3 Ground Truth

As ground truth of the position and orientation of the glasses, six markers placed
as in Figure 4.3 were used. Due to lacking performance of the tracking, another
setup with the same principal appearance but with larger markers and longer
distance between the markers was used.

Figure 4.3: Tobii Pro 2 glasses with Qualisys markers attached.

In the mocap system, the coordinate system of the glasses was defined from the
position from where the user was sitting as in Figure 4.2 , hence, constant errors
might have occured compared to the estimates if the g-frame and b-frame were
not completely aligned when the body was defined in Qualisys.

The position and orientation of the faces were tracked using three different caps
with three markers placed on each. For experiments where the subjects were
sitting the caps were associated with a certain chair as seen in Figure 4.4.
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Figure 4.4: Experiment setup for experiments with seated subjects. The an-
gular difference from the chair of the user (black) to each of the chairs with
caps on them were between 20◦ and 25◦

To keep in mind, the tracking performance from Qualisys varied a lot and some-
times the rigid bodies had to be redefined, therefore the ground truth should be
used conservatively.

4.4 Experiment Descriptions

In this section, procedures of the performed experiments are explained. For
the experiments described in Section 4.4.1 to 4.4.3, four test subjects were used
where the one with the glasses will be referred to as the user. The experiments
were performed as listed below.

1. Calibrate glasses and start recording on glasses.

2. Start Qualisys recording.

3. Start sound recording.

4. Get into position and start experiment with a clap.

5. Perform experiment.

6. End experiment with a clap.

7. End sound and Qualisys recording.

8. Stop recording on glasses.
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4.4.1 Passive User

The first two experiments consisted of a passive user following a two minute con-
versation between three subjects as seen in Figure 4.2. The subjects were placed
approximately 20-25◦ apart from each other from the perspective of the user. For
the first experiment (psv1) the user did not rotate their head, thereby using only
gaze to follow the conversation. This scenario can be seen as ideal and as ref-
erence in performance for tracking and bias mitigation since the subjects were
within fov at all times as seen in Figure 4.5.

Figure 4.5: Typical frame of a psv1 experiment.

The second experiment (psv2) was almost identical to psv1 with the exception
that the user was allowed to rotate their head. This is a more natural way of at-
tending a conversation and subjects were not in fov at all time challenging the
tracking solution. Both psv1 and psv2 were performed twice with each subject
as user leading to a total of eight runs for psv1 and eight runs psv2.

4.4.2 Questions and Answers

The third experiment (q&a) was comprised of questions and answers for which
the subjects asked the user questions from a quiz game. Each subject had five
question cards and the user did not know who would ask the next question. The
subjects were seated as in Figure 4.2 and the user was allowed to move their head
to attend the person who was asking the question. From this experiment, the
correlation between gaze direction and current talker should be distinct with a
good baseline of how well gaze direction could be used to determine the attention



36 4 Experiments

of the user. The experiment time was decided by the duration of the 15 questions
and was performed once with each subject as user.

4.4.3 Normal Conversation

During a normal conversion experiment (NormSp), the subjects and the user
were standing and held a normal conversation for a non-specified time, once with
each subject as user. This tests the whole system on the CtP problem in the
most realistic environment among the tests performed. The user could attend
a conversation with one subject while the other two might be having another
conversation. From these experiments, data about how often a user is looking at
different subjects could be extracted.

4.4.4 VOR Excitation

An experiment to excite vor eye movements (ExpVOR) was performed. The user
focused on a point for the whole duration of the experiment while rotating his
head back and fourth horizontally. The experiment was performed with two dis-
tances to the fixation point, one short of about 0.2m and one longer of about 1.5m.
This experiment was performed to clarify how much the difference between eye
and head velocity varied during vor eye movements and how it is affected by the
distance to the point of fixation.

4.4.5 Fixation Dot Stimuli

An experiment where the user followed a dot stimuli with their gaze (DotSac)
was performed. The stimuli involved a red dot which induced horizontal sac-
cades by changing position instantaneously. The dot stimuli was run on a laptop
screen and could be set to either only excite long saccades, more than 3◦, or ex-
cite both long and short saccades. This experiment was used to investigate eye
movement classification. Three experiments were performed with the dot stim-
uli. In DotSac1 the stimuli which only induced long saccades was used and the
user followed the dot with both gaze and head movements. The goal with this
experiment was to get information of how well saccades could be identified and
separated from vor eye movements. In DotSac2 the long saccade stimuli was
used, but the user rotated his head back and forth for the full duration of the ex-
periment. In DotSac3 the short saccade stimuli was used and the user kept his
head still. This experiment was performed to get information of the approximate
minimum angle of saccades one could expect to be able to identify.



5
Results and Discussion

In this chapter, the results of the experiments are presented. Estimates are in-
dicated by ˆ{ · } and { · }r indicates ground truth. The results will primarily be
presented as plots, and characteristics or regions of interests within the plots are
commented and discussed. Furthermore, when an ekf was used, the filter was
initialised when the recording was started on the glasses if nothing else is stated.
All threshold and ekf parameters used are given in Appendices A.1, A.2 and A.3.
As mentioned, the ground truth had varying performance and should therefore
be used with care.

5.1 Head Orientation Estimation

The results of the head orientation estimation will be presented in this section.
First orientation estimates and ground truth for the different experiments are
presented, then a dynamic response and the errors it leads to are discussed. Last,
how well yaw drift was mitigated estimating gyroscope bias is shown. Through
Section 5.1.1 to 5.1.3, the resulting plots for each experiments are from the same
test if nothing else is mentioned. For a simpler analysis, ground truth and yaw
estimates are set to zero at the start of each test. The experiments that will be
presented are from psv1, psv2 and NormSp since they excited the system in
different ways. The base ekf uses imu measurements only and no estimated
bias, extensions to the base ekf where different measurements are included are
presented with notation in Table 5.1 and described further down.
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Table 5.1: Table of measurements used and notations for different ori-
entation estimation methods used, marked with X. imu represents imu-
measurements to estimate orientation. geb represents gaze supported es-
timation of bias. of represents optical flow.

Notation\Measurement imu geb of Key Frames
cEKF X - - -
gEKF X X - -
ofEKF X - X -
kyEKF X - - X
gKyEKF X X - X

5.1.1 PSV1

From psv1, the performance of the different methods of mitigating drift is in fo-
cus. For reference, the estimated roll, pitch and yaw from the ekf using only the
imu and no bias estimates during an experiment is shown in Figure 5.1 together
with ground truth.
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Figure 5.1: Roll, pitch and yaw estimation and ground truth with no bias
compensation.

The plot shows a test of approximately two minutes where roll and pitch fol-
lowed ground truth well but yaw drifted more than 200◦. A straightforward way
to reduce drift would be with a constant bias (cEKF). From a test with stationary
glasses, the gyroscope constant biases were estimated to bgyr = [4.066, 1.430, 0.9093]T ◦/s.
With this constant bias, estimates and ground truth are shown in Figure 5.2.
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Figure 5.2: Roll, pitch and yaw estimations and ground truth with cEKF
during a psv1 test.

With a constant bias there were no significant differences in roll and pitch com-
pared to without bias compensation but the drift in yaw was reduced to approx-
imately 40◦ in total for the two minute test. For succeeding estimations the con-
stant bias bgyr = [4.066, 1.430, 0.9093]T ◦/s will be used when initiating the ekf
if nothing else is mentioned.

The use of a constant bias was an improvement compared to not estimating bias,
but showed that the gyroscope bias varied over time since drift was still signifi-
cant. The constant bias was estimated a different day than the experiments were
performed which might be the reason for the poor performance. This strengthens
the assumption that the variation of gyroscope bias significantly worsens the ori-
entation estimate, thus some way for continuous estimation of bias was desired.

A method investigated for estimating the gyroscope biases was to use eye gaze
data to estimate when the user was stationary (gEKF) as described in Section
3.3.1. The resulting roll, pitch and yaw estimates from the ekf are shown in
Figure 5.3 which shows a drift of less than 20◦ for the two minute test and a
flattening yaw estimate.
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Figure 5.3: Roll, pitch and yaw estimation using gEKF during a psv1 test.

The drift in yaw seemed to decrease throughout the whole test indicating that
the bias estimation had not fully converged at the end of the test. To visualize
the bias estimation, data from psv1 was used to estimate biases initialized at
bgyr = [0, 0, 0]T ◦/s. Ten seconds before the start clap the geb was started
and the result is shown in Figure 5.4 where the bias is estimated to about bgyr =
[3.7, 1.2, 1.0]T ◦/s.
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Figure 5.4: Estimated gyroscope biases in roll pitch and yaw during a psv1
test where the geb was initiated 10 seconds before test began. yb, are bias
measurements, i.e. gyroscope measurements when head was estimated to be
still.

With the front camera, mvo measurements were obtained and used to estimate
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orientation. Two different methods formvomeasurements were investigated, of
(ofEKF) and key frame (kyEKF). Using of for mvo measurements the resulting
roll, pitch and yaw estimations are shown in Figure 5.5.
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Figure 5.5: Roll, pitch and yaw estimation with constant bias (bgyr =
[4.066, 1.430, 0.9093]T ◦/s) and ofEKF during a psv1 test.

No larger difference in roll and pitch can be seen but the drift in yaw clearly
varies and the total estimation error was reduced to less than 10◦. The varying
drift could be due to movement in the scene or poor camera calibration. The
second method, kyEKF, resulted in estimates shown in Figure 5.6.
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Figure 5.6: Roll, pitch and yaw estimation with constant bias (bgyr =
[4.066, 1.430, 0.9093]T ◦/s) and kyEKF during a psv1 test.
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With a kyEKF, the estimation error in yaw seemed to be fully mitigated and the
dynamics were similar to the other estimation methods.

5.1.2 PSV2

During the psv2 tests, the effect of dynamics could be seen more distinctly com-
pared to psv1. For reference, cEKF with bgyr = [4.066, 1.430, 0.9093]T ◦/s was
used and is shown in Figure 5.7. The yaw estimate error was slightly below 50◦

and the dynamics were following the ground truth with a seemingly constant
offset in roll.
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Figure 5.7: Roll, pitch and yaw estimation with cEKF and (bgyr =
[4.066, 1.430, 0.9093]T ◦/s) during a psv2 test.
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The result of gEKF is seen in Figure 5.8 where the estimation error was reduced to
approximately 10 ◦ over two minutes and dynamics like with cEKF. The discrep-
ancy in drift between psv1 and psv2 is probably due to better gebmeasurements
in psv2.
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Figure 5.8: Roll, pitch and yaw estimation with gEKF initiated at (bgyr =
[4.066, 1.430, 0.9093]T ◦/s) during a psv2 test.

Figures 5.9 and 5.10 shows the results of the ofEKF and kyEKF respectively with
bias initiated as bgyr = [4.066, 1.430, 0.9093]T ◦/s. No larger differences in roll
and pitch can be seen but the estimation error in yaw for the two methods were
approximately 10◦ for ofEKF and 3◦ for kyEKF after the two minutes. The error
in yaw using kyEKF was probably due to that a key frame was lost since most
errors should have been mitigated throughout the life time of a key frame. For
instances where a new key frame is needed (such as during large movements)
only imu data is available and thus drift and other estimation errors occur.
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Figure 5.9: Roll, pitch and yaw estimation with ofEKF and a constant bias
at (bgyr = [4.066, 1.430, 0.9093]T ◦/s) during a psv2 test.
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Figure 5.10: Roll, pitch and yaw estimation with kyEKF and a constant bias
at (bgyr = [4.066, 1.430, 0.9093]T ◦/s) during a psv2 test.

5.1.3 NORMSP

During the NormSp experiments, the subjects and the user were standing which
might have induced other dynamics compared to psv1 and psv2. All estimation
methods, cEKF, gEKF, ofEKF and kyEKF performed similar in roll and pitch
with slightly poor following of the ground truth which is seen in Figure 5.11, 5.12,
5.13 and 5.14 respectively. The total estimation error during the 260 second test
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for the different methods were approximately 80◦, 40◦, 40◦ and 30◦ for cEKF,
gEKF, ofEKF and kyEKF, respectively.
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Figure 5.11: Roll, pitch and yaw estimation with with constant bias (bgyr =
[4.066, 1.430, 0.9093]T ◦/s) during a NormSp test.
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Figure 5.12: Roll, pitch and yaw estimation with gEKF initiated at (bgyr =
[4.066, 1.430, 0.9093]T ◦/s) during a NormSp test.
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Figure 5.13: Roll, pitch and yaw estimation with ofEKF and a constant bias
at (bgyr = [4.066, 1.430, 0.9093]T ◦/s) during a NormSp test.
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Figure 5.14: Roll, pitch and yaw estimation with kyEKF and a constant bias
at (bgyr = [4.066, 1.430, 0.9093]T ◦/s) during a NormSp test.

5.1.4 Analysis

As the results presented in sections 5.1.1, 5.1.2 and 5.1.3 indicate, includingmvo
measurements improved the orientation estimate, reducing the error in yaw. Two
methods based on mvo were investigated, ofEKF and kyEKF. Using kyEKF re-
sulted in the best estimate for all tests but varied depending on experimental
type. For stationary tests and kyEKF no noticeable error in estimation could be
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seen while for experiments where the user was free to rotate their head, the es-
timate in yaw deteriorated at large dynamical events. Such events resulted in
loss of key frames and any new key frame might have been poor due to blurry
images. Without a key frame, no orientation estimate could be obtained. How-
ever, if a good key frame was available, no significant error in yaw should occur
since the camera measurements are absolute compared to the state the key frame
was obtained in. Performance using ofEKF seemed to be more sensitive to exter-
nal disturbances which was visible during the psv1, Figure 5.5, tests but it also
reduced the drift significantly. While using an ofEKF some drift in yaw is ex-
pected since the relative state between frames continuously changes.

The benefit of usingof is the computational power needed. The preferred method
would probably be a combination of both key frames and of as mentioned in Sec-
tion 3.2.1. A method could be to downsample the key frame loop and using of
for the other frames. Furthermore, the current solution using kyEKF only keeps
one key frame which could be improved using multiple key frames.

5.1.5 Dynamic Response

Figure 5.15 shows what influence larger dynamics had on the orientation esti-
mate. It shows that instances where the assumption ||a|| � g, (a is illustrated by
the orange dotted line in the lowermost plot of the figure), was not true the esti-
mate in roll and yaw deteriorated. Roll eventually returned to a more accurate
estimate but the loss in yaw was permanent since no absolute measurement of
yaw was available.
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Figure 5.15: Results from NormSp during a rapid yaw movement. The aim
with this plot is to illustrate how model errors affect the estimated orienta-
tion.
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As results show, performance of the estimation during dynamical events varied.
For small angular rates, all estimation methods followed the ground truth dy-
namics in a satisfactory way while for larger angular rates in yaw, significant
estimation errors could occur as can be seen in Figure 5.15. These errors proba-
bly originated from the simplification in the accelerometer measurement model.
The assumption of ||a|| � g, neglecting accelerations, result in that centripetal
and acceleration forces are identified as gravity. This affects roll and pitch esti-
mates since angular rate in z in the b-frame is projected to x and y in the g-frame,
thereby leading to errors. To some extent, these disturbances are mitigated by set-
ting a threshold for the normalised accelerometer vector but a too small threshold
would reduce the number of samples too much impairing the estimate and would
leave it more sensitive to accelerometer calibration errors. Another aspect which
would contradict the use of a threshold was that the accelerometer measurements
seemed to depend on the battery voltage, but this has to be further investigated.
Another method of mitigating the impact from large dynamical events can be
to include acceleration in the model. Additionally, if the rotational center and
angular acceleration was to be estimated, the influence of centripetal forces and
acceleration due to rotation could be mitigated.

5.1.6 Bias Estimation

In this section, results on how the yaw drift was affected by geb, described in
3.3.1, are presented. Results from psv1, psv2 and NormSp are depicted to visu-
alize how the bias estimate performed during varying conditions. psv1, where
the user was stationary and kept head still, should be less challenging than psv2
and NormSp where the user was allowed to rotate their head. The drift in all
plots in this section were calculated as

ψdrift(t1) =
(ψ̂(t1) − ψr (t1)) − (ψ̂(t0) − ψr (t0))

t1 − t0
, (5.1)

where the time window (t1 − t0) was set to four seconds. This way of calculat-
ing drift will lead to that model errors as described in Section 5.1.5 will show as
peaks in drift. Thus, when analysing the following plots one should keep in mind
that peaks in drift without corresponding change in bias estimate is probably not
due to a poor bias estimate.

Figure 5.16 shows that the drift for all runs of psv1 was reduced with increasing
number of bias measurements. However, the drift did not seem to converge to
zero, but rather stagnate somewhere between ±15◦/min. It would be beneficial
to do longer tests to get more data on this and get a more reliable measure.
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Figure 5.16: Result of all tests from psv1. Upper plot shows drift in yaw and
lower plot shows estimated bias around z-axis. The horizontal axis in the
plot contains the number of bias measurements.
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Figure 5.17: Zoomed section of the same data as in Figure 5.16, focused to
the end of the experiments to clarify which level the drift reached towards
the end of the tests.
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Figure 5.18: Result of all tests from psv2. Upper plot shows drift in yaw and
lower plot shows estimated bias around z-axis. The horizontal axis in the
plot contains the number of bias measurements.

The same appearance as in earlier figures can be seen in Figure 5.18 and 5.20
which are from tests where the user was free to move their head. From these ex-
periments, the drift did not seem to be mitigated as much as in the more station-
ary psv1, but at least seemed to go below 20◦/min for most cases. It can also be
seen that the bias estimates for the cases when the user moved their head varied
more than for the stationary experiments, which was probably due to that move-
ments of the head leaked into the bias measurements. However, the bias seemed
to converge to some stationary level between 1 ◦/s and 1.6 ◦/s for all cases.
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Figure 5.19: Zoomed section of the same data as in Figure 5.18, focused to
the end of the experiments to clarify which level the drift reached towards
the end of the tests.
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Figure 5.20: Result of all tests from NormSp. Upper plot shows drift in yaw
and lower plot shows estimated bias around z-axis. The horizontal axis in
the plot contains the number of bias measurements.

From Figure 5.21, one can tell that the drift was negative for test 1, where the
bias was estimated significantly higher than for the other tests. This would imply
that the true bias would be a bit lower than what was estimated at the end of
the experiment. For test 2, the opposite can be seen with a lower estimate of
the bias and a higher drift. As mentioned earlier, longer experiments would be
advantegous to get a better measure of the performance of the method to estimate
bias.
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Figure 5.21: Zoomed section of the same data as in Figure 5.20, focused to
the end of the experiments to clarify which level the drift reached towards
the end of the tests.
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The performance of the bias estimate varied depending on experiment type and
the initialisation of the filter. For most experiments, the drift was reduced be-
low 20 ◦/min with geb, which point toward that this might be a promising way
of estimating bias. The drift generally decreased throughout the tests indicating
that the bias estimation did not fully converge at the end of the tests. It would
be better to perform longer tests to see if the drift tends to stagnate between
±20◦/min or if it converges towards lower drift. Results show that the gaze can-
not be used to estimate that the head is still with complete accuracy, since the
estimated bias varied significantly more during tests with moving head. How-
ever, the bias seemed to possibly converge to some value. With a lower process
noise on the bias in the dynamic model, the variance could possibly be reduced
and a more steady drift might be achieved.



5.2 Tracking 53

5.2 Tracking

In this section the results regarding tracking will be presented. All plots will be
of confirmed tracks as described in Section 3.3.2 and will be from experiments
accentuating different behaviours and the influence of different orientation es-
timation methods will be presented. Any ground truth of the tracking is not
included in the plots, as can be seen later in Section 5.4 the face detections using
camera can be assumed to be accurate since gaze direction and a track frequently
coincide. The detection and tracking of subjects are initiated before the tests be-
gan. For a psv1 experiment, using a cEKF the tracker was able to keep tracks
during the whole duration of the experiments, even though there was significant
drift in yaw, which can be seen in Figure 5.22. The tracks are also clearly drifting
which is expected since the estimated direction to faces in the g-frame depends
on the estimated orientation.
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Figure 5.22: Plots visualising tracks of faces for a psv1 test. Upper plot
showing the azimuth angle to tracked faces in the g-frame. Middle plot
shows measurements associated to the tracks in the upper plot. Third plot
shows the estimated yaw. cEKF is used for orientation estimation.

For a NormSp test, Figure 5.23 shows the tracks and estimated yaw when using
key frames and estimated bias (gKyEKF) and Figure 5.24 shows tracks using
cEKF with bgyr = [4.066, 1.430, 0.9093]T ◦/s. The plots are from an extreme
example when faces were not in fov for extended periods of time. It shows that
with a cEKF, tracks were lost and multiple tracks of the same face were created
which did not happen using gKyEKF.
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Figure 5.23: Plots visualising tracks of faces for a NormSp test. Upper plot
showing the azimuth angle to tracked faces in the g-frame. Middle plot
shows measurements associated to the tracks in the upper plot. Third plot
shows the estimated yaw. gKyEKF is used for orientation estimation.
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Figure 5.24: Plots visualising tracks of faces for a NormSp test. Upper plot
showing the global angle to tracked faces in azimuth. Middle plot shows
measurements associated to the tracks in the upper plot. Third plot shows
the estimated yaw angle. cEKF is used for orientation estimation.

Figures 5.25 and 5.26 shows the tracking result for another NormSp where the
different estimation methods were kyEKF in Figure 5.26 and with gKyEKF in
Figure 5.25. It shows that one track was lost in the beginning of the experiment
while using gKyEKF. Otherwise the tracks were kept for both methods. The
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track indicated by the orange plot seems to be initiated before a measurement
was obtained, but this is not the case. As mentioned earlier, the tracking system
was initiated prior to test start, thus, measurements were received before the test
began resulting in that the tracks had already been initiated.
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Figure 5.25: Plots visualising tracks of faces for a NormSp test. Upper plot
showing the global angle to tracked faces in azimuth. Middle plot shows
measurements associated to the tracks in the upper plot. Third plot shows
the estimated yaw angle. kyEKF is used for orientation estimation.
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Figure 5.26: Plots visualising tracks of faces for a NormSp test. Upper plot
showing the global angle to tracked faces in azimuth. Middle plot shows
measurements associated to the tracks in the upper plot. Third plot shows
the estimated yaw angle. gKyEKF is used for orientation estimation.



56 5 Results and Discussion

The face tracker performed satisfactory using all investigated ekf methods for
tests where detections of faces were frequent. For tests where detections were
more sparse due to fast head rotations or when the camera was not directed to-
wards all faces, the need of a good orientation estimate was greatly increased.
With a cEKF there was a greater risk of loosing tracks compared to when using a
gKyEKF since the drift was higher with the cEKF. Of the investigated ekfmeth-
ods, the gKyEKF is assumed to perform best, but this requires that the estimated
bias is close to the true bias which is more likely with more bias measurement
samples. The experiments were too short for the bias estimates to converge re-
sulting in a poorer performance using the gKyEKF compared to gEKF for some
cases early on in the experiments.

The use of a constant position model seemed to be enough to keep track of the
faces when the movement of both user and subjects were small enough. The an-
gular dispersion between faces was large enough to associate detections with the
correct face for most parts. If larger movements of user and talkers would be
allowed, or if subjects would be closer to each other, there would probably be
need for a more stringent tracking solution. For those situations a constant posi-
tion model might not be enough. Also, other solutions such as face recognition
software would probably simplify the data association step. Regarding false de-
tections, the use of a counter seemed to serve its purpose. The presented results
show no tracks initiated where there was no face.

5.3 Gaze

This section is to present the results regarding gaze data. Results from ExpVOR

and DotSac are displayed. These results are to show how eye movements and
head movements correlated as well as how eye and head velocity varied during
saccades and fixations. Figure 5.27 and 5.28 from ExpVOR shows that there was
correlation between eye and head velocity during fixation. Further, one can see
that the eye velocity was higher than the head velocity for β , 0 at shorter dis-
tances. For the 1.5m fixation, the absolute velocity of eyes and head seemed to be
equal, while for the shorter fixation distance, the velocity of eyes was higher than
the velocity of the head.
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Figure 5.27: Result from ExpVOR with short distance fixation, yaw and yaw
rate are plotted with negative signs to clarify how the amplitude of head and
eye movements correlate.

−10

−5

0

5

10

Ga
ze
 Di

rec
tio

n [
 ]

̂β − ̂ψ

̂36 ̂38 ̂40 ̂4̂ ̂44
Time [s]

−̂0

−10

0

10

̂0

Ve
loc

ity
 [ 

∘s]

̂δ −ω̂z

Figure 5.28: Result from ExpVOR with long distance fixation, yaw and yaw
rate are plotted with negative signs to clarify how the amplitude of head and
eye movements correlate.

Results from DotSac1 are presented in Figure 5.29 where one can see that a
head movement is completed between a half and one second later than the eye
movement, which would imply that gaze steering is favourable compared to head
steering in terms of speed.
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Figure 5.29: Results from DotSac1, where the user follows the dot with
both gaze and head direction. Upper plot shows horizontal gaze direction
(orange) and estimated yaw angle of the head (blue). Middle plot shows b-
frame angular velocity around z-axis, gaze (orange) and head (blue). Lower
plot shows how the dot in the stimuli was positioned horizontally (red) and
gaze direction compensated by head orientation to indicate the gaze direc-
tion in g-frame (blue).

In terms of saccade/fixation classification, Figure 5.30 shows that it should be
possible to detect fixation during head movements, depending on which thresh-
old velocity is chosen. As can be seen in the lowermost plot, of Figure 5.30, the
difference in velocity between head and eyes typically was below 5◦/s during fixa-
tion with head still and up to 20◦/s during vor. A threshold of 10◦/s lead to that
some fixations would be classified as saccades while a higher threshold would
fail in classifying short saccades correctly.
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Figure 5.30: A section from DotSac1. Upper plot shows angular velocity
around b-frame y-axis, gaze (orange), head (blue). Middle plot shows an-
gular velocity around b-frame z-axis, gaze (orange), head (blue). Lower plot
shows absolute difference in angular velocity between gaze and head rotation
around b-frame y-axis (orange), z-axis (blue). The dot stimuli is indicated by
the red dashed line in every plot. Gray dashed lines in the lowermost plot
indicate thresholds of 10◦/s and 25◦/s.

In Figure 5.31 from DotSac2, one can see that the difference between eye and
head velocity during fixation and angular velocity of the head of about 20◦/s
lies around 10◦/s with some intervals with lower velocity difference. Figure 5.32
is from a section of DotSac2 with head velocity of about 30◦/s, which gives a
larger velocity difference than the section with lower head velocity. To classify
what would be fixations based on the stimuli for head velocities around 30◦/s, a
threshold of about 25◦/s would be needed. However, since there is no ground
truth for eye measurements. It can not be concluded if these larger differences
in velocity is due to noisy measurements during motion or if the user performs
short saccades to keep their gaze at the dot at higher head velocities. One thing
that is not included in the model which would lead to errors is translational mo-
tion of the head which would lead to eye movement without corresponding head
rotation during fixation.
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Figure 5.31: A section from DotSac2, subject moves head back and forth
with angular velocity approximately between −20◦/s and 20◦/s. Upper plot
shows angular velocity around b-frame y-axis, gaze (orange), head (blue).
Middle plot shows angular velocity around b-frame z-axis, gaze (orange),
head (blue). Lower plot shows absolute difference in angular velocity be-
tween gaze and head rotation around b-frame y-axis (orange), z-axis (blue).
The dot stimuli is indicated by the red dashed line in every plot. Gray dashed
lines in the lowermost plot indicate thresholds of 10◦/s and 25◦/s.
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Figure 5.32: A section from DotSac2, subject moves head back and forth
with angular velocity approximately between −30◦/s and 30◦/s. Upper plot
shows angular velocity around b-frame y-axis, gaze (orange), head (blue).
Middle plot shows angular velocity around b-frame z-axis, gaze (orange),
head (blue). Lower plot shows absolute difference in angular velocity be-
tween gaze and head rotation around b-frame y-axis (orange), z-axis (blue).
The dot stimuli is indicated by the red dashed line in every plot. Gray dashed
lines in the lowermost plot indicate thresholds of 10◦/s and 25◦/s.

Figure 5.33 depicts a section from DotSac3 which contains saccades below 1◦.
The section contains four saccades of about 0.5◦ and one saccade of less than 0.1◦.
Three of the 0.5◦ saccades give velocities exceeding 5◦/s which could be identi-
fiable, the last 0.5◦ saccade is not identifiable in the velocity plot, but could be
identified by analysing gaze direction. The saccade of less than 0.1◦ is practically
not identifiable. The 0.5◦ saccades are however, based on the results from Dot-
Sac2 where a threshold of at least 10◦ was needed, hard to identify during head
motion.
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Figure 5.33: A section from DotSac with short saccades. In both upper and
lower plot, the horizontal position of the dot in the stimuli is indicated by
the red dashed line. In the upper plot horizontal gaze direction is blue. in
the lower plot b-frame angular velocity is shown, around y-axis (orange) and
around z-axis (blue). Gray dashed lines indicates threshold levels 5◦/s and
10◦/s.

The results from the ExpVOR experiments indicate that eye gaze data could be
used to support the yaw estimate using vor, since gaze direction and yaw corre-
lated well during fixation. They also show a dependency of depth of gaze which
would be expected. Due to translational movement of the eyes while the head ro-
tates an overestimation of the yaw angle occured. This overestimation depended
on the depth of gaze and was smaller at longer distances. If the rotational cen-
ter of the head and the depth of gaze could be estimated, a better measurement
model could be created. Otherwise, only measurements where the depth of gaze
is large enough would be preferred. If gaze is to be used to support the yaw es-
timate, an accurate fixation classifier is crucial since head movements and gaze
only correlate during fixation as mentioned in Section 2.5.1.

The results from DotSac1 showed that, saccades to follow the dot stimuli was
performed significantly faster than the rotation of the head. This implies that
using eye data compared to only using head direction for steering, could notably
improve performance in terms of speed which aligns with previous results from
among others [22] and [13]. The detection of saccadic movements was not as clear
since it was highly dependent on the amplitude of the saccade. As mentioned in
Section 2.5.1, a threshold between 30°/s and 70°/s has performed well in other
studies. This would coincide well with results in Figure 5.32 where one can see
eye velocities up to 30◦/s during fixation. If a high threshold for saccadic move-
ment was set, all fixations were detected but also smaller saccades were classified



5.4 Attention Estimate 63

as fixations which would be a problem if they were to be used for estimating bias
or orientation. The opposite would be true with a lower threshold, where most
saccades would be detected but also some fixations would be falsly detected as
saccades, especially when the head of the user was rotated and vor eye move-
ments were excited. With an accurate head orientation estimation, one could
have some measure of how much the gaze point moves over a longer time inter-
val to possibly determine if the focus of the wearer is directed to some delimited
area instead of accurately trying to classify every saccade and fixation.

5.4 Attention Estimate

Results on the system which aim to illustrate how it can be used to estimate the
attention of the user are presented below. Plots show tracked faces along with
gaze and head direction. The orientation was estimated with gKyEKF for all
plots in this section. To have some kind of reference on where the user might
have directed their attention, it will be indicated when the sound level from each
subjects microphone exceeded a threshold.
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Figure 5.34: Result from q&a, upper plot shows direction to each of the
tracked faces in blue, orange and green. The gaze direction of the user is
indicated with a black line and the yaw angle of the user is indicated by a
gray line. Lower plot indicates when the sound level of each microphone ex-
ceeded a threshold in black. When each subject asked a question is indicated
with the colour for the respective track.
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Figure 5.35: Result from q&a with another user than in Figure 5.34, upper
plot shows direction to each of the tracked faces in blue, orange and green.
The gaze direction of the user is indicated with a black line and the yaw
angle of the user is indicated by a gray line. Lower plot indicates when the
sound level of each microphone exceeded a threshold in black. When each
subject asked a question is indicated with the colour for the respective track.

Both Figure 5.34 and 5.35 shows that the user tended to direct their gaze towards
any of the subjects for most of the time. This implies that one is likely to direct
ones gaze towards a person while being part of a conversation. One can also see
that the head direction of the user often was not directed completely towards the
one they directed their gaze to. In the test presented in Figure 5.35 the user per-
formed saccades away from and back to the one they listened to quite frequently
during q&a. The same behaviour can not be seen in Figure 5.34 also from q&a
but with another user indicating that how one directs ones gaze is varying among
individuals.
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Figure 5.36: Result from NormSp, upper plot shows direction to each of the
tracked faces in blue, orange, green and red. The gaze direction of the user
is indicated with a black line and the yaw angle of the user is indicated by
a gray line. Lower plot indicates when the sound level of each microphone
exceeded a threshold.

In NormSp, where the subjects were positioned such that the angles between
them were considerably large, a significantly long time could pass without any
measurements from the face detector associated to a certain face. This can be
seen in Figure 5.36 where the tracks follow a straight line when the user was not
directly directed towards the corresponding face and thus did not get any detec-
tion for that face. As mentioned in Section 5.2, several tracks can be initiated for
the same face if the drift is high enough between face detections. However, one
can clearly see that as soon as the user is directed towards any of the faces, the
track is updated with a new measurement. One could also argue that, based on
the information in the lower plot in Figure 5.36, the user was likely to direct their
gaze towards the subject that was talking. This is especially clear when looking
at Subject 1 which does not talk that much compared to Subjects 2 and 3 but for
several of the instances where Subject 1 actually talks, the user direct their gaze
at him.
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Figure 5.37: A section from the same result that was presented in Figure 5.36
where one can see that head movements to change direction were initiated
before a saccade was performed. The points of interest are, ∼189s, ∼204s
and ∼214s.

The assumption that gaze data would be beneficial to steer with in terms of speed
seemed to hold for most cases. However, as can be seen in Figure 5.37 one could
see that head movements were initiated before the gaze was moved for some sac-
cades. This could probably be used to predict a direction of where the user is
about to direct their attention.

Based on presented results, it should be possible to determine the attention of a
user with the system developed for situations like in the experiments. To get an
accurate determination of direction, a well performing head orientation estima-
tion would be beneficial. It seemed like, for most of the experiments, the system
at hand would perform well enough. However, this was dependent on that no
translational movements of neither user nor subjects were allowed. As can be
seen in the results, the user tended to direct their gaze towards a face, thus, so-
lutions to steer beamformers like the ones described in [24] could possibly be
implemented with the system for further evaluation.

5.5 Ethics Discussion

A future implementation of the studied subject will have some ethical dilemmas
that will need to be taken into consideration. The fact that both audio and video
are recorded might infringe on privacy and also be illegal in some areas. For
example, recordings of most protected facilities are illegal. Future work of using
face recognition will also infer ethical and legal problems. To handle these ethical
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concerns an idea would be to not save data recorded by having a closed pipeline
where no video and audio data can be retrieved externally.





6
Conclusion and Future Work

In this chapter conclusions based on the problem statements will be given and
possible future work is presented.

6.1 Conclusion

Here, the research questions are repeated and answered.

• What solution should be used to estimate glasses orientation?

– What kind of dynamic model should be used and how well can it de-
scribe the system?

– How well can measurement errors be mitigated?

To describe the system, a nearly constant velocity model was chosen. For slow
dynamics and limited translational movement this model performed well. With
faster dynamics, the accelerometer measurement model deviated from the real
system and good key frames were not retrievable leading to errors in the orien-
tation estimate. To mitigate drift, the best performance was achieved using a
key frame based monocular odometry method and an estimated bias based on
gyroscope and gaze direction. The drift in yaw was reduced from 100◦/min to
approximately ±20◦/min when using a gaze supported bias estimate. Key frame
measurements mitigated drift as long as a good key frame was available.

• What solution should be used to detect and track faces.

– Can multiple faces be tracked simultaneously?
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– What robustness can be achieved concerning data association and false
detection?

A satisfactory result of the face tracking was achieved using an extended Kalman
filter with a constant position model to track faces parametrized as a unit vector
to the track. Measurements consisted of face detections retrieved using a Mobile-
FaceNets face detector. The system was used to track up to three faces, but no
upper limit of the number of faces possible to track was investigated. The sen-
sitivity to orientation estimate errors was highly dependent on the frequency of
detections. This resulted in multiple tracks of the same face being created dur-
ing experiments with less frequent detections and larger orientation errors. False
detections were handled succesfully meaning no tracks were initiated on false
detections.

• How should the gaze data be interpreted?

– Can eye data be used to support yaw estimate?

– Can eye data be used to estimate a talker of interest?

The use of eye data to support yaw estimate seems promising where two meth-
ods has been investigated. Using eye gaze to estimate gyroscope bias has been
implemented and reduced yaw drift, further, the use of vor movements as yaw
measurements also looks to have some potential. An important aspect for these
methods to work is a robust classifier of eye movements. The use of an i-vt filter
to classify eye movements was investigated. Results point towards that such a
filter could perform well in identifying saccades. However, the result is highly
dependent on the threshold and a choice has to be made of how short saccades
one is interested in identifying. Moreover, gaze direction seemed to be a good
indication of whether someone was attending a talker since gaze direction and
current talker frequently coincided.

The overall objective given the stated limitations has been achieved. The system
can be used to track faces in the environment of a user and gaze direction can be
used to estimate attention.

6.2 Future Work

In this section, the authors own remarks of what could be done for future work
are presented.

6.2.1 Head Orientation Estimation

To further improve the head orientation estimate, one could extend the model to
include accelerations. This would probably mitigate estimation errors such that
were discussed in 5.1.5 but would increase the required computational power
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due to a larger state space model. Even further, one could evaluate possibilities
of a full pose estimation, which would make the system more robust for scenar-
ios with moving users and subjects. This could be achieved using a simultaneous
location and mapping approach. With the current methods formvo, the features
are not used as much as they can be, being deleted when the match to either the
key frame or the previous frame are not good enough. If features from the mvo
pipeline are introduced as landmarks a pose estimate should be achievable. Fur-
thermore, the current mvo methods are not computationally efficient where a
combination of of and key frames could give a substantial improvement.

The method for estimating bias can be improved, one could possibly include ac-
celerometer measurements to strengthen the assumption of stationary head and
including measurements from mvo would enhance the bias estimate. Results
from ExpVOR point toward that it might be possible to use gaze data to estimate
head orientation, this however requires an accurate fixation classification which
can be challenging to achieve.

6.2.2 Tracking

The current solution of tracking is quite restricted to situations similar to the ex-
periments. If the conditions would be more similar to a CtP, where attendees
move continuously and obstruct each other a more sophisticated tracker would
be needed. If the user moves, the need of full pose estimation increases and in
such situations a constant position model for tracked faces would probably not
be enough. If more accurate depth data could be retrieved, a constant velocity
model or the use of multiple models might improve the tracking. One method
of achieving depth information might be to use vergence information from eye
data.
The future use of the system will be to track talkers of interests and microphones
will be used for beamforming. If a face is outside the fov of the camera, mi-
crophone measurements might be available to get measurements of direction to
tracked faces, thus increasing the performance of the tracking. A further exten-
sion for the tracking system could also be to estimate if a tracked face is talking
using camera input. One method could be to detect the lips in a face and estimate
the optical flow in that region. From this, a state of lip activity could be added to
each track. The correlation between microphones and lip activity should also be
very distinct since it is one of the auditory cues described in Section 1.1.

6.2.3 System

To develop a system like this further, it would be useful to have an implementa-
tion for live testing. This would include optimizing code and probably lowering
the frequency of some estimations and/or detection. One would probably have to
find a trade off between an acceptable orientation estimate and the frequency of
face detections. A live running system would enable a possibility to develop and
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evaluate different approaches to steer beamformers in hearing aids based on gaze.

Further work could also include how one is to estimate the attention of the user
efficiently. More extensive testing, preferably involving users with hearing loss
and background noise would give data to base the development of an attention
estimate on.
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A.1 Orientation EKF Parameters

Qω = I3×3 · 10−1

Qbias = I3×3 · 10−8

Racc = I3×3 · 10−8

Rgyr = I3×3 · 10−10

RGEB = I3×3 · 10−2

RMVO = I4×4 · 10−12

x0 = [1 0 0 0 0 0 0 0 0 0]T

P0 = I10x10

εa = 1 [m/s2]

εGEB = 3 [◦/s]

εMVO = 0.04 [−]

A.2 Gaze EKF Parameters

Qα = 1 · 10−2

Qβ = 1 · 10−2

Reye = I2×2 · 10−10
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A.3 Tracking EKF Parameters

Qf = 1 · 10−1

Rf = 1

εf = 8 [◦]

εcounter = 25

talive = 120 [s]
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