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A B S T R A C T

In this study, Alloy 718 specimens manufactured by Electron Beam Powder Bed Fusion process are subjected to
two different post-treatments to have different microstructural features. Low cycle fatigue testing has been
performed both parallel and transverse to the build direction. EB-PBF Alloy 718 exhibits anisotropic fatigue
behaviour; the fatigue life is better along the parallel direction compared to the transverse direction. The ani-
sotropy in fatigue life is related to the anisotropy in the Young's modulus. The pseudo-elastic stress vs. fatigue life
approach is presented as a potential solution to handle anisotropy in fatigue life assessment of additively
manufactured engineering components.

1. Introduction

The interest in additive manufacturing (AM) of metals has con-
sistently grown among both industrial and academic research groups
across the world in the last decade. Metal AM technology is still ma-
turing and evolving, yet the high interest is primarily due to design
related advantages offered by AM for the low-volume-sector. With AM,
particularly powder bed fusion (PBF), the design space has expanded
considerably enabling manufacturing of topologically optimized struc-
tures, lattice structures and other generative designs easier and cost
efficient. AM is poised to expand rapidly in the aviation industry, with
applications such as new parts and repairs [1]. AM processes inherently
have complex physics that often result in anisotropic and/or location
specific microstructures, which are different from cast and wrought
microstructures of the same alloy [2]. While the design advantages of
AM are obvious, the mechanical behaviour and performance of the AM
material need to be characterized and understood in depth, in relation
to the microstructure, before AM parts could be used extensively in
critical applications. With increasing part complexity and criticality of
AM parts there is an urgent need in a thorough understanding of the
fatigue properties. It is imperative considering that more than half of all
the failures in aircraft components have been fatigue related [3].

Alloy 718, since its introduction in 1950s, has evolved into the most
utilized superalloy in the industry [4]. It is an iron-nickel-based

superalloy, a sub-class of nickel-based superalloys, that is precipitation
strengthened. In Alloy 718, γ” is the primary strengthening precipitate,
but it also has γ’ precipitates that contribute to the strength. The alloy
also has δ phase, that forms at the expense of γ”, which is often pre-
cipitated in a controlled manner for grain refinement and improved
notch sensitivity. Excessive amount of δ phase is detrimental for the
mechanical performance of the alloy. Other phases such as Laves,
niobium carbide (NbC) and titanium nitride (TiN) can also exist in the
alloy depending on the processing route [5,6].

Electron beam based PBF (EB-PBF) process has been successful in
processing a variety of materials including superalloys such as Alloy
718, Alloy 247, Alloy 282, Alloy 625 and CMSX-4 [7–10]. Alloy 718,
with its status as the workhorse superalloy, is the material on which
most of the EB-PBF research has been focused on so far. However, fa-
tigue research on EB-PBF processed Alloy 718 is limited [11–15]. Only
one published research, so far, is on low cycle fatigue (LCF) properties
of EB-PBF processed Alloy 718 [11], in which it has been demonstrated
that the columnar microstructure of EB-PBF processed Alloy 718 ex-
hibits anisotropic behaviour under both monotonic and cyclic loading
conditions. In fact, only limited research is available on LCF of Alloy
718 processed by any AM technique [16–21]. Apart from the evaluation
of fatigue performance using rotating bending and bending fatigue,
which the Metallic Materials Properties Database Development and
Standardization (MMPDS) discourages for the purpose of design and
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analysis of structures in aerospace systems [22], other fatigue studies
on PBF Alloy 718 has been focused on high cycle fatigue performance
evaluating the influence of surface characteristics due to part orienta-
tion [23–26], texture [27], notches [28,29] and defects [28,30].

The aim of this work, therefore, is to evaluate the room temperature
LCF performance of EB-PBF processed Alloy 718 and relate it to the
microstructural characteristics such as phase constitution, texture etc.
For this purpose, EB-PBF processed Alloy 718 is subjected to two dif-
ferent post-treatments and tested parallel and transverse to the build
direction. Furthermore, a pseudo-elastic stress approach is evaluated
and presented to handle the anisotropic behaviour exhibited by the
columnar microstructure.

2. Materials and methods

2.1. Specimen manufacturing

Specimen blanks were manufactured, in the form of cylindrical rods
and cuboidal blocks, using an Arcam A2X Electron Beam Melting (EBM)
system running EBM Control software V4.2.76. All the individual spe-
cimen blanks were bundled into a group within EBM Control, to be
molten together rather than as individual parts. A raster scanning
strategy using the Inco 4.2.76 theme, provided by Arcam, with speed
function 63 and 125 µm hatch distance was implemented for the
melting. The beam current and velocity for melting are controlled by
the heat model algorithm in EBM Control as a function of the scan
length and speed function. The scanning direction was rotated by 90°
every layer and the layer thickness used was 75 µm. The build started
once the preheat temperature reached 1025 °C. The build configuration
used for manufacturing LCF specimen blanks is shown in Fig. 1; three
such builds were manufactured to obtain the required number of spe-
cimens for the test program. The feedstock used was gas atomized Alloy
718 powder having a nominal chemical composition listed in Table 1
and particle size range of 45–106 µm.

2.2. Post-treatment

All the specimen blanks were post-treated by hot isostatic pressing
(HIP) and solution treatment (ST) and ageing. HIP was carried out in a
Quintus QIH-21 HIP unit, while ST and ageing were carried out in a
vacuum furnace. Two different post-treatment routines as listed in

Table 2 were utilized in this work to evaluate the effect of post-treat-
ment on mechanical properties. Hereafter, PT-1 is referred to as
“standard treatment” and PT-2 as “repair treatment”. The shorter
ageing cycle used in this investigation is based on studies on cast
Alloy 718 [31]. The repair treatment is a simulation of multiple repair
welding cycles, a strategy that was used to evaluate effect of multiple
repair welding cycles on properties of cast and wrought Alloy 718 [32].
Furthermore, the two post-treatments have been chosen to include HIP
to ensure that the defects resulting from the E-PBF processing do not
affect the properties. The detrimental effect of different types of defects
from E-PBF processing of Alloy 718 have already been investigated by
the authors and published elsewhere [13,33].

2.3. Fatigue testing

Strain controlled LCF tests were performed, at room temperature in
accordance with ASTM E606/E606M [34], using an Instron 8802 servo-
hydraulic machine with 8800MT controller and LCF3 software. An In-
stron 2620-602 clip on extensometer was attached at the gauge section
to measure the strains over 12,5mm. LCF test specimens were extracted
along the build direction from the cylindrical rods and in the transverse
direction from the cuboidal blocks of the LCF build Fig. 1. Button head
type specimens having a gauge diameter of 6.35 mm and gauge section
length 13.2 mm were manufactured from the blanks, as shown in Fig. 2.
LCF tests were performed using total strain ranges between 0.5% and
2% and a strain ratio Rε = 0; six specimens were tested in the trans-
verse direction in the repair treatment condition and seven specimens,
each, were tested in the other three conditions. The straining cycle
followed a triangular wave form at a constant frequency of 0.5 Hz. If the
measured plastic strain was less than 0.01% after 43,200 cycles, the
testing was switched to load controlled cycling at 5 Hz. A 20% drop in
the peak load from that of the stabilized hysteresis loop was used as the
failure criterion for the test, after which the specimens were broken

Fig. 1. Build configuration for vertical and horizontal LCF specimen blanks.
Note: Z is the building direction.

Table 1
Nominal chemical composition of the Alloy 718 powder used in this work (in
weight percent).

Ni Fe Cr Nb Mo Ti Al C

53.30 18.00 18.70 5.14 3.00 0.94 0.42 0.05

Table 2
Post-treatment details.

Post-treatment Details

PT-1
(Standard)

HIP: 1121 °C/100 MPa/4 h/URC
ST1: 1065 °C/1 h/AC
Age1: 760 °C/5 h/FC to 649 °C in
2 h

ST2: 954 °C/1 h/AC
Age2: 649 °C/1 h/AC

PT-2
(Repair)

HIP: 1121 °C/100 MPa/4 h/URC
ST1: 1065 °C/1 h/AC
Age1: 760 °C/5 h/FC to 649 °C in
2 h

ST2: 954 °C/1 h/AC (5
times)
Age2: 649 °C/1 h/AC

Note: URC – Uniform Rapid Cooling, AC – Air Cooling, FC – Furnace Cooling.

Fig. 2. LCF specimen geometry.
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apart by applying a tensile load to reveal the fracture surfaces. Some of
the specimens, however, were kept unbroken to extract metallographic
sections to investigate crack propagation path. On such specimens,
metallographic sections were extracted by electro discharge machining
(EDM) leaving the remainder of the specimen intact, which were then
broken apart to reveal the fracture surfaces.

2.4. Fractography and metallography

Fractographic investigation was performed using an Olympus SZX9
stereomicroscope and a Zeiss EVO 50 scanning electron microscope
(SEM) fitted with an Oxford XMaxN 20 mm2 energy-dispersive x-ray
spectroscopy (EDS) detector.

Metallographic samples were cut using a Struers Secotom 10 pre-
cision cutting machine or by wire-EDM. Samples were hot mounted,
ground, and polished using standard metallographic procedures fol-
lowed by a final vibropolishing with a 0.02 µm silica suspension.
Electrolytic etching was performed with oxalic acid at 3 V for 5–10 s to
reveal the microstructure. Microstructure analysis was carried out using
a Zeiss AX10 light optical microscope (LOM) and a Zeiss Gemini 450
field emission gun (FEG) SEM fitted with an Oxford ULTIM MAX
100 mm2 EDS and Oxford Symmetry electron back scatter diffraction
(EBSD) detector. Analysis and imaging were performed using both Back
Scattering Electron (BSE) and Secondary Electron (SE) modes. EBSD
data was analyzed for texture information using Aztec Crystal v1.1
software.

3. Results and discussion

3.1. Microstructure

In the present study, the mechanical test specimens were extracted
by machining, and therefore only the microstructure representative of
the test volume is presented here. The microstructure, after the two
post-treatments, is presented in this section. The microstructure in-
vestigation was performed on several metallographic samples extracted
from both the cylindrical and the cuboidal specimens. The micro-
structure was identical in both the cylindrical and the cuboidal speci-
mens. The grains were columnar parallel to the building direction
having an average grain width of 192 ± 69 µm and length in the order
of millimeters spanning several layers. EBSD grain orientation mapping
indicated a strong 〈100〉 texture along the building direction and
random orientation distribution in the transverse directions. The EBSD
inverse pole figure (IPF) showing the texture and the grain width in-
formation, representative of all the material conditions investigated, is
presented in Fig. 3; the texture and the grain width were similar in all
the investigated conditions, but are not presented here for brevity.
Oxide (rich in Al, Ti) inclusions were present both in spherical form
(< 10 µm) and in shapes with high aspect ratio (widths in 20–250 µm
range and thickness < 10 µm) Fig. 4. The inclusions were randomly
distributed in the investigated metallographic sections, with the high
aspect ratio type lying parallel to the layers. Gas porosity (< 50 µm)
were distributed randomly throughout the microstructure. All these
microstructural features are consistent with reported literature on EB-
PBF processing of Alloy 718 [14,35].

After the standard treatment, acicular δ phase was present at the
columnar grain boundaries and at intra-granular sites as in Fig. 5(a) and
(b). The δ phase particles at the grain boundaries, in general, were
relatively smaller in size and higher number density compared to the
intra-granular sites. Carbides (NbC) were present both at the grain
boundaries and at intra-granular sites as seen in Fig. 5(c) in the form of
vertically aligned strings along the building direction. The strength-
ening precipitates are shown in Fig. 5(d). After the repair treatment,
however, acicular δ phase was spread evenly throughout the material.
The δ phase particles were larger in both size and quantity compared to
the standard treatment (compare Fig. 5(b) and Fig. 6(a)), consistent

with four more hours of treatment in the δ phase precipitation tem-
perature regime for Alloy 718. Correspondingly, the strengthening
precipitates were smaller in size compared to the standard treatment
(compare Fig. 5(d) and Fig. 6(c)). The grain boundary δ phase particles
were smaller than the intra-granular ones, similar to the standard
treatment (see Figs. 5(b) and 6(b)). The carbide particles were similar in
size as the standard treatment (compare Fig. 5(b) and Fig. 6(b)) and
were vertically aligned.

3.2. Fatigue properties

3.2.1. First cycle properties
The first loading cycle was started in the tensile direction and hence

was used to evaluate the yield strength as well as the Young’s modulus
of the different material conditions; the results are presented in Table 3
along with the number of specimens used for the evaluation. The yield
strength was evaluated using the data from specimens that experienced
a plastic strain of at least 0.2% during the first loading cycle. Since the γ
matrix in Alloy 718 has an FCC structure, that usually does not exhibit
strain rate dependence, the properties from the first cycle at different
strain ranges can be treated as equivalent to monotonic properties. The
properties are anisotropic, with clear differences between the two di-
rections, as expected for a columnar microstructure. The Young’s
modulus was ~30% lower in the parallel direction than the transverse
direction. The strong 〈100〉 texture along the parallel direction is re-
sponsible for the lower modulus [36]. The yield strength was higher for
the standard treatment compared to the repair treatment in both the
directions. The formation of δ phase consumes the amount of niobium
available for the formation of γ” strengthening precipitates [5], and
therefore the repair treated condition that has significantly higher
amount of δ phase consequently has lower yield strength.

3.2.2. Cyclic stress evolution
Cyclic stress evolution and mid-life hysteresis loops for the different

material conditions tested are presented in Figs. 7 and 8 for a selection
of strain ranges. The figures indicate that the cyclic properties are also
anisotropic, following the same trend as the monotonic properties. The
cyclic stress evolution curves show that, in both post-treatment condi-
tions, a higher stress range is required along the transverse direction
than the parallel direction to achieve a specific applied strain range.
Such a difference is, as expected, consistent with the difference in
modulus between the directions. The mid-life hysteresis loops show that
at lower strain ranges the stress response is either fully elastic or un-
dergoes elastic shakedown, whereas, at higher strain ranges there is
significant cyclic plasticity. Such a response correlates well with the
monotonic properties evaluated from the first loading cycle; the ma-
terial with higher modulus and lower yield strength experiences higher
cyclic plasticity and vice-versa. Similar anisotropic cyclic plasticity
behaviour has been reported for EB-PBF Alloy 718 at 650 °C [11].

The cyclic stress evolution curves show that at lower strain ranges
the materials exhibit a pronounced level of cyclic saturation is until
failure. However, at higher strain ranges the materials undergo limited
cyclic hardening and then continuously soften until failure. Wrought
Alloy 718 also exhibits such stable cyclic response at lower strain
ranges and initial hardening followed by softening at higher strain
ranges [37]. In the present study, there is no difference in terms of cycle
dependent softening or hardening between the material conditions with
different amounts of δ phase. Such cycle dependent softening is a ty-
pical behaviour of precipitation strengthened materials due to shearing
of strengthening precipitates [38].

The stress ratio (Rσ), based on true stresses, for the first cycle and
the mid-life cycle are presented in Table 4 for a few selected strain
ranges. Rσ is calculated based on true stress, instead of engineering
stress to account for the instantaneous change in area during cyclic
loading, to evaluate the bias in stress response to the biased applied
strain. In the first cycle, in general, there is a tensile bias in the stress

A.R. Balachandramurthi, et al. International Journal of Fatigue 141 (2020) 105898

3



Fig. 3. (a) EBSD IPF map showing the columnar microstructure. (b) IPF map coloring legend. (c) IPF showing strong 〈100〉 texture along building direction.

Fig. 4. (a) LOM image of gas pores. (b) SE image of a gas pore at high magnification. (c) SE image of a spherical inclusion. (d) SE image of high aspect ratio oxide
inclusion.
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response (Rσ > −1) corresponding to the tensile bias in the applied
strain range (Rε = 0). With increasing applied strain range, the bias
tends towards symmetry; however, in the transverse direction sym-
metry is surpassed and even a compressive bias is attained. Such a re-
sponse indicates the existence of a tension-compression asymmetry,
which is typical of anisotropic materials such as single crystal nickel
superalloys [39,40]. This change in the stress response from tensile bias

towards symmetry (and eventually to a compressive bias in the trans-
verse direction) is due to the increasing cyclic plasticity corresponding
to the increase in the applied strain range. Accordingly, the transverse
direction that has higher Young’s modulus, and therefore higher cyclic
plasticity, exhibits a faster change in the bias compared to the parallel
direction. Furthermore, the stress ratio for the mid-life cycles indicate
that, in general, there is cycle-dependent mean stress relaxation.

Fig. 5. Microstructure in standard treatment condition. (a) SE image showing grain morphology. (b) SE image of area marked in (a) showing intra and inter-granular
δ phase. (c) BSE image showing vertically aligned carbides. (d) SE image showing strengthening precipitates.

Fig. 6. Microstructure in repair treatment condition. (a) SE image showing grain morphology and δ phase distribution. (b) SE image of area marked in (a) showing
smaller inter-granular δ phase and NbC. (c) SE image showing strengthening precipitates.
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3.2.3. Cyclic stress-strain curve
The cyclic stress-strain (CSS) curve is obtained by plotting the mid-

life stress amplitude (σa) and strain amplitude (εa). The cyclic Ramberg-

Osgood model is given by

= + ′
′ε σ E σ H( / ) ( / )a a a

n1/ (1)

where H’ and n’ are cyclic strength coefficient and hardening exponent,
respectively. The CSS curve for the respective material conditions is
presented, together with stress-strain responses during the first cycle of
specimens that have significant plastic strains, in Fig. 9 and the cyclic
Ramberg-Osgood model constants are listed in Table 5. Cyclic softening
is observed in the standard treatment condition for both the tested di-
rections, whereas, in the repair treatment condition the CSS curve fol-
lows the monotonic curve indicating that the material undergoes nei-
ther cyclic softening nor cyclic hardening. The difference in the
softening behaviour, between the standard and the repair treatments,

Table 3
First cycle properties.

Material condition E (GPa) σYS (MPa)

Std. Par. 123 ± 7 (7) 1119 ± 12 (3)
Std. Tran. 191 ± 5 (7) 1048 ± 10 (3)
Rep. Par. 123 ± 8 (7) 835 ± 5 (3)
Rep. Tran. 185 ± 5 (6) 851 ± 13 (2)

Note: σYS is computed as Rp 0.2 offset strength in the tensile direction.

Fig. 7. Cyclic stress evolution at different applied strain ranges.

A.R. Balachandramurthi, et al. International Journal of Fatigue 141 (2020) 105898

6



could be explained by the differences in the strengthening precipitates
described in Section 3.1. In the standard treatment condition, the
strengthening precipitates provide sufficient strengthening effect
during the first loading cycle; however, undergo shearing, dissolution
due to multiple shearing events, etc. that is typical under cyclic loading
and therefore result in the softening behaviour. Whereas in the repair
treatment condition, due to the extensive precipitation of δ phase, both
the volume fraction and the size fraction of the primary strengthening
γ” phase could be lower as noted earlier. Therefore, the strengthening
effect during the first loading cycle is lower, to start with, than in the
standard condition. Furthermore, the shearing of neither the relatively
smaller and fewer strengthening precipitates nor the extensive amount
of δ phase lead to the same magnitude of softening as in the standard
treatment condition.

3.2.4. Strain-life relationship
The strain-life relationship is based on that the total strain ampli-

tude is an additive partition of the elastic and plastic strain amplitudes.

= +ε ε εa ea pa (2)

The elastic and plastic strain amplitudes are given by Eqs. (3) and
(4) respectively.

= =ε σ E A N( / ) . ( )ea a f
α (3)

=ε B N. ( )pa f
β (4)

The elastic strain amplitude is estimated from the mid-life stress
amplitude and the Young’s modulus using the Hooke’s law. The plastic
strain amplitude is, then, the difference between the applied total strain
amplitude and the elastic strain amplitude estimated as above. The

Fig. 8. Mid-life hysteresis loops at different applied strain ranges.

Table 4
Stress ratio (Rσ) in response to different applied strain ranges.

Material condition Δεt = 0.5% Δεt = 0.75% Δεt = 1% Δεt = 1.5% Δεt = 2%

1st Nf/2 1st Nf/2 1st Nf/2 1st Nf/2 1st Nf/2

Std. Par. 0.00 0.00 −0.02 −0.03 −0.18 −0.22 −0.49 −0.57 −0.71 −0.79
Std. Tran. 0.00 −0.05 −0.37 −0.46 −0.72 −0.83 −0.94 −1.03 −0.96 −1.03
Rep. Par. 0.00 0.00 −0.18 −0.31 −0.41 −0.51 −0.58 −0.69 −0.78 −0.91
Rep. Tran. −0.11 −0.17 −0.41 −0.53 −0.64 −0.76 −0.87 −0.98 −0.98 −1.06
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parameters of the strain-life relationship can be obtained by linear re-
gression of the strain components, independently, as a function of life as
per ASTM E739 [41].

The strain-life relationship constants for the different material
conditions are listed in Table 6 and the corresponding strain-life curves
are presented in Fig. 10 together with reference wrought data [42]. The
data points presented as open symbols indicate crack initiation from an
oxide inclusion at the surface, while the data points presented as solid
symbols indicate crack initiation from the slip at the surface. Similar
crack initiation from oxide inclusion, formed during EB-PBF processing,
and therefore deterioration of fatigue performance has been reported
[12,13]. In both the directions, the fatigue performance is similar for

the standard treatment and the repair treatment even though a differ-
ence was observed in the cyclic stress evolution, the cyclic plasticity,
and the CSS behaviour. The apparent difference seen in the parallel
direction is due to the differences in the features that initiate the fatigue
crack and not represent the microstructure related differences due to
the two post-treatments investigated.

Similar result, that of limited influence of simulated repair treat-
ments on LCF properties, has been reported for cast and wrought Alloy
718 [32]. Fig. 11 is a representative of samples tested along the parallel
direction with an inclusion-based crack initiation and crack initiation
due to slip at the surface.

The material in the parallel direction has higher fatigue life than the
transverse direction under the strain-controlled LCF condition, as
shown in Fig. 10. Furthermore, the material in the parallel direction has
better fatigue performance than the wrought material, while the ma-
terial in the transverse direction has similar performance to that of the
wrought material. Similar behaviour has been reported for EB-PBF
Alloy 718 at elevated temperature as well [11]. The anisotropic fatigue
behaviour in PBF metals, under stress-controlled high cycle fatigue
(HCF) condition, due to the orientation dependent as-built surface
roughness and the orientation of the defects w.r.t to the loading di-
rection and the building direction are well established [43–46]. Both
the sharp edges of the LoF defects and the notch-like valleys of the as-
built surface lead to high stress concentration and act as crack initiation
sites and deteriorate the HCF performance. In general, the part or-
ientation that leads to a higher surface roughness has inferior fatigue
performance. Similarly, the fatigue performance is poor when the LoF
defects are oriented perpendicular to the loading direction. In the
present study, however, the anisotropy in LCF behaviour is due to the
process-dependent texture-induced anisotropy of the Young’s modulus.

Fig. 9. Cyclic stress strain Ramberg-Osgood curves.

Table 5
Cyclic Ramberg-Osgood constants.

Material condition E (GPa) H′ (MPa) n′

Std. Par. 122 1215 0.05
Std. Tran. 189 1067 0.04
Rep. Par. 122 1659 0.14
Rep. Tran. 182 1650 0.12

Table 6
Strain-life relationship constants.

Material condition A α B β

Std. Par. 18.85 −0.31 6.72 * 105 −1.85
Std. Tran. 4.99 −0.21 6.05 * 105 −1.84
Rep. Par. 26.19 −0.35 4.63 * 106 −1.97
Rep. Tran. 3.44 −0.17 2.27 * 104 −1.38
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The better LCF performance of the material in the parallel direction
is due to the lower stress ranges required to achieve a specific strain
range than the material in the transverse direction, which is a con-
sequence of the lower Young’s modulus as described in Section 3.2.1.
Therefore, it can be assumed that the resolved shear stress acting on slip
planes that is responsible for slip (and dislocation multiplication and
their movement), for a specific strain range, is lower for the material in
parallel direction than the transverse direction. To verify this

assumption, a pseudo-elastic stress estimated from the strain amplitude
and Young’s modulus (σpseudo-elastic = εa.E) is plotted against life, as a S-
N type graph, in a double logarithmic scale as in Fig. 12. All the data
points for the parallel direction and transverse direction, in both post-
treatment conditions, merge to a linear relationship in a double loga-
rithmic plot between pseudo-elastic stress and life. In addition, the
scatter in this data is clearly related to the inclusion-based crack in-
itiations. Such a relationship between strain, anisotropic modulus due

Fig. 10. Strain amplitude vs. fatigue life plots. Note: Open symbols indicate inclusion-based crack initiation, and solid symbols indicate crack initiation due to slip at
the specimen surface. For specimens tested at εa = 0.875%, fractography was not performed as specimens were preserved for crack path investigation.

Fig. 11. (a) SE image of fracture surface of sample
with crack initiation at an oxide inclusion at the
surface. (b) High magnification SE images of the
area marked in (a) showing crack initiation site. (c)
SE image of fracture surface of sample with crack
initiation at surface. (d) High magnification SE
images of the area marked in (c) showing crack in-
itiation site.

A.R. Balachandramurthi, et al. International Journal of Fatigue 141 (2020) 105898

9



to crystallographic orientation and fatigue life has been shown to exist
for single crystal nickel superalloys in the past [40,47,48]. For the
wrought reference data the Young’s modulus for specimens at each of
the data points was unknown; therefore, an average value is assumed
from literature [49] and utilized in the pseudo-elastic stress estimation.
Even the wrought data, with approximated estimates, merges with the
other material conditions. Therefore, it can be inferred that the slip
resistance under fatigue loading conditions is similar in all the four
material conditions. Furthermore, in single crystal superalloys shear
stresses and shear strains estimated to act on the slip systems have
shown good correlation to fatigue life [50,51], which further
strengthens the argument regarding similarity in slip resistance for the
different material conditions evaluated in the present study. Based on
these findings, it would be worth investigating the fatigue response of
the EB-PBF manufactured Alloy 718, having a columnar microstructure,
under stress-controlled conditions.

3.2.5. Crack path investigation
Fig. 13(a)–(c) are representative fracture surfaces of specimens

tested along the parallel and the transverse direction; the fractographs
show similar features in the standard and the repair treatment condi-
tions. All the samples tested along the parallel direction have a typical
transgranular crack growth appearance as shown in Fig. 13(a), which
are confirmed by analysis of metallographic cross-sections of the crack
path (Fig. 13(d) and (g)). The cross-sections in Fig. 13(g) reveal that
there is secondary cracking along some of the grain boundaries. The
angular difference between the slip line on either side of the secondary
crack, visible in Fig. 13(g), indicate that this could be a high-angle grain
boundary. Similar crack-branching, along high angle grain boundaries,
for parallel direction has been reported for dwell-fatigue crack propa-
gation testing at 550 °C [15].

The samples tested along the transverse direction have a columnar
appearance in the fracture surfaces as shown in Fig. 13(b) and (c). The
crack propagation, in most cases, appears to be at an angle to the co-
lumnar grains Fig. 13(b); between being either completely perpendi-
cular or parallel. Metallographic sections and EBSD IPF maps perpen-
dicular to the crack plane, shown in Fig. 13(e), (f), (h) and (i), reveal
that the crack growth occurs by a combination of transgranular and
intergranular modes in all the cases, irrespective of the macro

appearance of the fracture surface. The angular difference between slip
lines on either side of the crack, at the intergranular sections of the
crack path as shown in Fig. 13(i), is high. Therefore, it is possible that
intergranular cracking occurs whenever the crack tip encounters a high-
angle grain boundary. Based on this tendency for intermittent inter-
granular cracking and secondary cracking along high-angle boundaries
that is discussed above, further in-depth research is required to un-
derstand if there are other metallurgical reasons, than strain in-
compatibility, for intergranular cracking at room temperature.

An earlier study has shown that the crack propagation rate is slower
along the parallel direction than the transverse direction [15]; however,
the two possible orientations of the crack tip w.r.t to the columnar
grains in the transverse direction were not investigated. In the present
study, only one out of the 13 specimens tested in transverse direction
had crack propagation completely parallel to the columnar grains as in
Fig. 13(c). Since only a few specimens had crack propagation being
exactly parallel or perpendicular to the columnar grains, it was difficult
to draw any meaningful conclusion about the crack propagation be-
haviour between the different orientations of the crack front to the
columnar grains, and how it affects the fatigue life. Furthermore, in-
vestigating the differences in crack propagation behaviour is outside
the scope of the current study. However, based on the fracture surface
appearance dedicated fatigue crack propagation tests are needed in
order to study if the material exhibits anisotropy in crack propagation
rates based on the orientation of the crack tip w.r.t to the columnar
grains.

4. Conclusions

In this work, LCF properties of Alloy 718 manufactured by EB-PBF
process and subjected to two different post-treatments have been in-
vestigated. The tests were conducted at room temperature under strain-
controlled conditions with a tensile bias in the applied strain range such
that Rε = 0. Alloy 718 manufactured by EB-PBF process has fatigue
properties that is comparable to, or exceeding that of, wrought mate-
rial.

• The cyclic properties exhibit anisotropy in stress evolution and
cyclic plasticity (hysteresis loops) between the parallel and trans-
verse directions, corresponding to the respective Young’s modulus
and yield strength.

• The standard and repair treatment lead to different size and volume
fraction of δ and γ” precipitates. Accordingly, the CSS behaviour is
different between the two treatments – standard treatment leads to
cyclic softening while the repair treatment leads to neither hard-
ening nor softening.

• In strain-controlled fatigue conditions, the parallel direction out-
performs the transverse direction i.e. has longer life. The difference
in fatigue life between the standard and repair treatment is not
significant.

• The pseudo-elastic stress vs. fatigue life approach indicates that the
anisotropy in life is related primarily to the anisotropy in Young’s
modulus. Such an approach can, potentially, be used to handle an-
isotropy in fatigue life estimation of additively manufactured en-
gineering components.
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