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A B S T R A C T   

Domesticated animals are unique to investigate the contribution of genetic and non-genetic factors to specific 
phenotypes. Among non-genetic factors involved in phenotype formation are epigenetic mechanisms. Here we 
aimed to identify whether relative DNA methylation differences in the nidopallium between groups of in-
dividuals are among the non-genetic factors involved in the emergence of differential behavioral patterns in 
hens. The nidopallium was selected due to its important role in complex cognitive function (i.e., decision 
making) in birds. Behavioral patterns that spontaneously emerge in hens living in a highly controlled en-
vironment were identified with a unique tracking system that recorded their transitions between pen zones. 
Behavioral activity patterns were characterized through three classification schemes: (i) daily specific features of 
behavioral routines (Entropy), (ii) daily spatio-temporal activity patterns (Dynamic Time Warping), and (iii) 
social leading behavior (Leading Index). Unique differentially methylated regions (DMRs) were identified be-
tween behavioral patterns emerging within classification schemes, with entropy having the higher number. 
Functionally, DTW had double the proportion of affected promoters and half of the distal intergenic regions. 
Pathway enrichment analysis of DMR-associated genes revealed that Entropy relates mainly to cell cycle 
checkpoints, Leading Index to mitochondrial function, and DTW to gene expression regulation. Our study 
suggests that different biological functions within neurons (particularly in the nidopallium) could be responsible 
for the emergence of distinct behavior patterns and that epigenetic variation within brain tissues would be an 
important factor to explain behavioral variation.   

1. Introduction 

Measuring the quantitative contribution of genetic composition is 
usually the first step to understand the relative importance genes play 
in behavior (Jensen, 2015). Towards this goal, domesticated animals 
provide unique models to investigate the contribution of genetic and 
non-genetic factors to specific phenotypes. Commercial poultry offers a 
particularly relevant model to gain this understanding as there is nor-
mally no maternal role once the egg is laid, excluding a major con-
founding factor, as maternal care is shown to influence DNA methyla-
tion in the offspring in mammals (Weaver et al., 2004; Provencal et al., 
2012; Wang et al., 2012). Variation beyond that attributed to genetic 
factors can be in part explained by epigenetic mechanisms and the role 

they exert in the formation of phenotypes. Epigenetic mechanisms in-
volve chemical modifications of the DNA that regulate gene expression 
and can be maintained after cell divisions (Skinner et al., 2010). Epi-
genetic mechanisms are, on the one hand sensitive to environmental 
influences, and, on the other hand, fundamental players in shaping the 
adult phenotype of individuals (Guerrero-Bosagna and Skinner, 2012). 

From a neurobiological perspective, epigenetic mechanisms are re-
ported to be involved in processes such as memory, cognition, synaptic 
plasticity (Graff and Mansuy, 2008) and regulation of stress response 
(Malan-Muller et al., 2014). 

Regarding efforts to understand origins and regulation of behavioral 
variation, the concept of individuality has become an important re-
search topic across many species (Gosling, 2001; Reale et al., 2010), 
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including poultry. Within commercial systems, chickens were recently 
shown to manifest highly consistent movement and location patterns 
(Rufener et al., 2018). Despite the growing interest in this theme, the 
causal biological mechanisms that lead to behavioral variation are 
poorly understood, particularly in large groups typical of commercial 
livestock such as laying hens. At a fundamental level, the emergence of 
individual behavior phenotypes within a population will involve both 
genetic and non-genetic mechanisms as with other phenotypes. In do-
mesticated animals, behavioral traits are associated with low to mod-
erate heritability (Gerken and Petersen, 1992; Hradecká et al., 2015;  
Konig von Borstel et al., 2018). In modern commercial laying hen hy-
brids, the component of the heritability attributed to social traits is 
estimated to be at the same level of direct effects, i.e., 30% (Wade et al., 
2010). 

Epigenetic variation is one of the biological mechanisms that ex-
plain non-genetic heritability (Tal et al., 2010; Varona et al., 2015) and 
is thought to account for a sizeable part of phenotypic variability 
(Johannes and Colome-Tatche, 2011). The best studied epigenetic 
mechanism is DNA methylation, which involves the enzymatic addition 
of methyl groups (-CH3) to 5′ to 3′ oriented CG dinucleotides, known as 
CpG sites (Singal and Ginder, 1999). In humans, differential methyla-
tion in neurons explains great part of the heritability of neurological 
disorders such as schizophrenia, addictive behavior, and neuroticism 
(Rizzardi et al., 2019). In the present study we aimed to identify 
whether DNA methylation changes in the brain (nidopallium) are 
among the non-genetic factors involved in the emergence of differential 
behavioral patterns in chickens. These behavioral patterns were iden-
tified with a unique tracking system that involves recording transitions 
between specific zones of a pen. The nidopallium was selected as the 
brain area for epigenetic analysis due to its important role in complex 
cognitive function in the avian brain (Herold et al., 2011). This brain 
region controls decision-making, which is a relevant neurological pro-
cess that takes place when the animals weight the attributes of each 
zone in the pen (e.g., the relative amount of natural versus artificial 
lighting in outside or inside areas.). 

We characterized behavioral traits and activity levels using three 
types of classification schemes that our group has been employing in a 
variety of contexts (Rufener et al., 2018; Gómez et al., 2019). These 
schemes were: (i) daily specific features of behavioral routines and their 
associated stability (Entropy), (ii) daily spatio-temporal activity pat-
terns (Dynamic Time Warping), and (iii) a study-wide assessment of 
social leading behavior (Leading Index). In the present study we in-
vestigated the relationship between DNA methylation in the brain of 
chickens (nidopallium) and behavioral patterns detected through these 
methods. We identified a number of Differentially Methylated Regions 
(DMRs) associated with distinct patterns of behavioral activity that 
spontaneously emerged in our chicken population. Furthermore, we 
explored how the identified DNA methylation changes could influence 
genomic expression in each case. 

2. Materials and methods 

2.1. Animals and housing 

Beginning at one day of age until 17 weeks of age, 2840 commercial 
Brown Nick laying hens (https://www.hn-int.com/eng/commercial- 
layers/brownnick.php, accessed 12-9-2019) were housed at the 
Aviforum (Zollikofen, CH), a contract research facility focusing on 
commercial poultry. Animals were kept in eight pens (355 hens/pen) of 
a rearing barn equipped with one of two aviary systems (four pens with 
Inauen Natura, Inauen AG, Appenzell, Switzerland, and four pens with 
Landmeco Harmony, Globogal AG, Lenzburg, Switzerland). Each pen 
had floors that were covered with wood shavings. The aviary system 
contained round metal perches, automatic feeders, nipple drinkers, and 
manure belts. The chicks had access to a covered outdoor area (winter- 
garden) from six weeks of age onwards. 

At 17 weeks of age, birds were transferred to an on-site commercial 
laying hen house that was divided into two halves of which only one 
side was used for the current study. Each pen was equipped with a 
system that allowed tracking of individual animals, described in more 
detail below. The four pens (12.9 m2) contained a Rihs Bolegg II 
commercial aviary system (Krieger AG, Ruswil, Switzerland) with a 
stocking density of 9.33 hens/m2. Birds from each rearing pen were 
distributed across each laying pen in a stratified manner. The barn in-
terior included an aviary structure and group nests along one wall, with 
the floor covered with 10 cm of wood shavings. The aviary was 2.40 m 
high and consisted of three tiers with the following equipment in-
tegrated into the structure: manure belt, feeding chain, and nipple 
drinkers within the lowest tier; a manure belt within the middle tier; a 
feeding chain and nipple drinkers within the highest tier. Plastic 
mushroom-shaped perches were provided on the lowest and highest 
tiers. Plastic platforms to move between tiers were provided along both 
aviary sides (30 cm in width and at 70 cm height from the floor) and 
nest entries were square plastic grids (size 2.5 × 5 cm). External to the 
internal barn area, birds had access to a winter-garden (average size: 
17.55 m2; equipped with litter, nipple drinkers, perches), a fenced area 
containing small stones (stone yard, average size per pen: 88 m2), and a 
pasture (“free-range area”, average size per pen: 288 m2). The winter- 
garden consisted of an area entirely covered by a solid roof and sur-
rounded by wire mesh on the sides and in between pens, thereby pre-
venting birds from exiting the area with the exception of a pophole that 
could manually be opened. Each pen – including both external and 
internal areas - was separated by fencing to maintain divided popula-
tions. Within a pen, each area was further divided with fencing (or the 
barn wall) so access could be limited to the interior or outdoor areas as 
required by management protocol. Movement between areas (i.e. in-
side, winter-garden, stone yard, free-range) was via a single location 
between areas (pop hole or gate) that provided unobstructed access 
when opened. Transitions between areas could only occur between two 
juxtaposed areas, e.g., transitioning directly from the barn to the free- 
range areas without passing through the winter-garden and stone yard 
was not possible. Artificial light was provided in the barn from 0200 to 
1700 h with a transitional phase of 5 min beginning at 0200 h and 
15 min at 1645 h. Natural daylight was provided from 0800 to 1630 h 
through windows controlled by curtains or on pasture. Birds were en-
couraged into the barn interior around 16:30. 

2.2. Movement and location acquisition 

To record hen movement, a system similar to that described by  
Gebhardt-Henrich et al. (2014a) was used with some minor modifica-
tions. Within each pen 120 out of 355 hens (33.8%) were randomly 
selected to be fitted with Radio Frequency Identification tags (RFID, 
Hitag S 2048 bits, low frequency of 125 kHz, diameter: 4.0 mm, length: 
34.0 mm) attached to leg bands. This random assignment of RFID tags 
to 120 hens for tracking was done on the day the barn was populated. 
Two sets of antennas (Gantner Pigeon System (http://www.benzing.cc/, 
accessed 10.06.19) were positioned immediately on either side of the 
transition points connecting two areas (e.g., barn/winter-garden) in a 
manner that hens transitioning had to pass over each set. In order to 
protect the antennas from weather and staff working in the area, they 
were entirely encased within a small wooden box that ran the length 
and both sides of each transition area. 

The RFID system operated by registering and recording the date and 
time and date that individual RFID tags (worn by the hens) came within 
a vertical distance of 15 cm to an antenna. The inclusion of antennas on 
either side of the transition areas represents an added level of assurance 
as movement between two areas required registration of two events – 
both entrance into the area (e.g. registration inside the house followed 
by a transition into a second area, e.g., the winter-garden). Collected 
data, including: unique tag identification number, timestamp (with a 
precision of 0.1 s), and antenna number, were recorded to a connected 
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computer. The system allowed for multiple tags (and the associated 
hen) to be registered by the same antenna at the same time. The di-
rection of movement was deduced from the order in which the antennas 
detected the tags. More details of the RFID system and its reliability are 
provided in Gebhardt-Henrich et al. (2014b). 

Data was not analyzed for all days of the study period because ac-
cess to the stone yard or free-range areas was restricted during poor 
weather or pasture maintenance. Tracking data were recorded only on 
72 days (within the contiguous 166-day study period) when all pens 
were given access to all areas. 

Based on time-sampled transition data, we calculated the following 
measures for each hen: time inside, time outside, number of transitions, 
entropy, order leaving, order returning, number of days outside, a 
leading index, as well as a classification of movement type based on 
Dynamic Time Warping (DTW). For these measures, the stone yard and 
free-range areas were considered as outside. Time inside the barn is the 
proportion of time that the birds spend inside the barn between the 
opening and closing of the popholes/gates during all days. Time outside 
is the proportion of time that birds spend either in the stone yard or in 
the free-range area between the opening and closing of the popholes/ 
gates during all days. Number of transitions is the total number of re-
corded transitions for a specific hen between opening and closing of the 
pophole/gates summed over all days. The entropy for each hen was 
calculated as the sample entropy, which is the negative natural loga-
rithm of the conditional probability that two sequences similar for a 
number of points remain similar at the next point, excluding self-mat-
ches (Richman and Moorman, 2000) (Supplementary Fig. S1). The 
order for leaving is based on the order in which hens of a pen entered 
the stone yard for the first time on a given day. Ordinal numbers for 
each hen are averaged over all observational days. The order for re-
turning is based on the order in which hens of a pen returned from the 
stone yard and re-entered the winter garden for the last time on a given 
day. The numbers of days outside is the number of days when a bird 
was at least once recorded entering the stone yard or the free-range 
area. The leading index gives for each hen the proportion of all its 
transition where it was a leader, defined as being followed more closely 
in time by another bird than following another bird. For the differential 
methylation analysis both entropy and leading index were converted 
into binary measures by splitting the subsample of tissue sampled an-
imals into two evenly sized groups with the median entropy and leading 
index values of the subset as the threshold values. DTW is a shape-based 
time series analysis, comparing the dissimilarity of two time series in-
dependent of their individual length (Bellman and Kalaba, 1959; Keogh 
and Ratanamahatana, 2005). DTW creates a dissimilarity distance 
matrix including each pairwise comparison of time series and was 
calculated using the R-package dtwclust (Sardá-Espinosa, 2019). High 
DTW score exist when two time series are very dissimilar from each 
other. If pairwise comparisons of time series from a single bird have 
high DTW values, this indicates that the bird was not very consistent in 
its movement patterns. If DTW distance scores between birds are high, 
this indicates that the birds had rather different movement patterns. 
Hierarchical clustering analyses of these dissimilarity matrices were 
performed with the DIANA method (divise analysis, (Singal and Ginder, 
1999)). Beyond these behavioral classifications, no other categories 
were used to group or select animals. 

2.3. Tissue collection and DNA extraction 

The 24 animals used in this study were haphazardly selected from a 
larger population devoted for multiple parallel investigations in hens. 
Animals were sacrificed via intravenous injection with pentobarbital 
(Esconarkon, 0.3 ml/hen). Immediately thereafter, brains were re-
moved from the skulls and transferred to petri dishes containing 0.1 M 
PBS. The hemispheres were divided along the longitudinal fissure with 
a scalpel. The brain section used for the genomic and epigenomic 
analyses was removed using scissors from the exposed area underneath 

the lateral ventricle and adjacent to the midline. As this region came 
from the caudal half of the forebrain it consisted primarily of caudal 
medial nidopallium (Pulles, 2007). The samples were then stored at 
−80 °C until shipped on dry ice to Linköping University for further 
processing. After arriving, DNA was extracted from the brain sections 
using the DNeasy Blood and Tissue Kit from Qiagen, following the 
manufacturer's instructions. 

2.4. Preparation of sequencing libraries 

To prepare the sequencing library we used an approach that com-
bines the Genotyping by Sequencing (GBS) (Pertille et al., 2016) and 
Methylated DNA immunoprecipitation (MeDIP) (Guerrero-Bosagna and 
Jensen, 2015) techniques. We recently employed this methodological 
combination in previous studies (Pertille et al., 2017). The method 
consists of first digesting the genome with the PstI restriction enzyme 
(Thermo Scientific) in a suitable range for Illumina sequencing (Pertille 
et al., 2016). Illumina sequencing barcodes are then ligated at each end 
of the digested DNA fragments, allowing the pool of DNA samples to be 
immunoprecipitated together. Each pooled DNA sample contains dif-
ferent barcodes identifying each individual. The methylated fraction of 
the DNA is captured by an anti-methyl-cytosine antibody (Diagenode) 
(Guerrero-Bosagna and Jensen, 2015). After this step, the methylated 
DNA is amplified using PCR, which is followed by clean-up of primer 
dimers and unbound adapters (Elshire et al., 2011; Poland et al., 2012) 
before the samples are sent for paired-end sequencing on the Illumina 
HiSeq2500 platform with a read length of 125 bp at the SNP&SEQ fa-
cilities of the SciLifeLab (Stockholm, Sweden). 

2.5. Bioinformatic analyses 

The CASAVA (Illumina) program was used for the initial processing 
of the samples by converting the “.bcl” (base call files) to “.fastq” ex-
tensions, which is compatible with programs used for reads alignment. 
The quality of the reads was checked using FastQC v.0.11.3 (Andrews, 
2010). Quality trimming was performed in short read sequences during 
the data processing. For both SNP calling and methylation analyses, 
quality-trimmed reads were aligned against the chicken reference 
genome (Gallus_gallus 5.0, NCBI) with the Bowtie2 tool v.2–2.3.4.2 
(Langmead and Salzberg, 2012) using default parameters. The coverage 
depth of each sequenced file was determined using SAMtools v.0.1.19 
(Li et al., 2009) with the “depth” option. For the identification of dif-
ferential methylation regions (DMR), uncalled and low quality score 
bases were eliminated using the process_radtags function in the Stacks 
v.1.39 program (Catchen et al., 2011). Following the alignment, se-
quencing data for each individual were then assigned to one of the 
experimental groups. For the identification of significant DMRs, the 
animals were divided into three classification schemes: Entropy (0 and 
1), Leading Index (0 and 1) and DTW clustering (1, 2 and 3). DMRs 
were calculated by performing pairwise comparisons between DNA 
methylation levels (observed in the reduced genomes of RBCs) from 
animals belonging to two of the categories defined within each classi-
fication scheme. The MEDIPS package from R (Lienhard et al., 2014) 
was used for basic data processing, quality controls, normalization, and 
identification of differential coverage regions using default parameters. 
The BSgenome.Ggallus.UCSC.galGal5 package from Bioconductor was 
used as the chicken reference genome within R environment. Quality 
control was carried out to confirm enrichment of the methylated frac-
tion of the genome. This was performed by calculating the average 
enrichment score. Enrichment scores should be > 1, with values around 
2 signaling very good enrichment for methylated DNA. The main idea 
of this approach is to verify the extent of CpG enrichment in the regions 
obtained compared to the reference genome. For this, the function 
counts the number of Cs, the number of Gs, the number of CpGs and the 
total number of bases within the reference genome. Subsequently, the 
function calculates the relative frequency of CpGs (relH) and the 

C. Guerrero-Bosagna, et al.   Comparative Biochemistry and Physiology - Part D 35 (2020) 100700

3



observed/expected ratio of CpGs in the reference genome (GoGe). In 
addition, the function performs the same calculation for DNA sequences 
underlying regions of interest. The final enrichment values result from 
dividing the relative frequency of CpGs (or the observed/expected 
value) in the regions of interest by the relative frequency of CpGs (or 
the observed/expected value) of the reference genome. 

We used the same specific parameters for the MEDIP package as we 
previously reported (Pertille et al., 2017). However, the parameter of 
P = 0.01 was used as the threshold for the detection of stacked reads to 
call DMRs. To define 'regions of interest' (ROI) to be analyzed, we used 
a bed.file obtained from the Model-based Analysis of ChIP-Seq data 
(MACS) peak calling program (https://github.com/taoliu/MACS/) 
(Robinson and Oshlack, 2010), using default parameters. Macs2 allows 
that large methylated regions are not arbitrarily divided into smaller 
windows. Therefore, the analysis is “peak specific”. MACS2 improves 
the spatial resolution of the predicted sites, uses a dynamic parameter 
to capture local biases in the genome, and improves the robustness and 
specificity of the prediction, being strongly indicated for fold-enrich-
ment experiments (Zhang et al., 2008). Three thresholds defined the 
genomic windows obtained by the DMR analyses: P  <  0.0005 for 
describing genes related to significant DMRs, P  <  0.005 for ex-
ploratory analysis of DRM-gene related, and p  <  0.05 for enrichment 
pathways. To identify DMRs (P  <  0.05) overlapping across the clas-
sification schemes, we used the GenomicRanges package in R en-
vironment. 

The significant DMRs obtained were annotated against the chicken 
reference genome (BSgenome.Ggallus.UCSC.galGal5) using the 
annotatePeak function from the ChIPseeker package (Yu et al., 2015) in 
R environment. In this function, we used the gg_txdb (as the transcript 
metadata) from GenomicFeatures package and org.Gg.eg.db package as 
the annotation database for the chicken genome. For the identification 
of affected molecular function, cellular components and biological 
processes, we used the DMR-associated genes for a Gene Ontology 
(http://geneontology.org) analysis performed through the enrichGO 
function within the ChIPseeker package (Yu et al., 2015). For the 
identification of enriched molecular interaction and reaction networks 
we used the Kyoto Encyclopaedia of Genes and Genomes (KEGG; 
https://www.genome.jp/kegg), which was run with the enrichKegg 
function also within the ChIPseeker package (Yu et al., 2015). Also, 
selected DMR-associated genes (described in the results) were used as 
input in the web-based Genemania tool (https://genemania.org, using 
default parameters) to obtain extended gene networks (Warde-Farley 
et al., 2010). 

3. Results 

3.1. Basic movement 

The tracking system successfully registered 1,219,658 transitions of 
421 tracked hens (range: 0–6339) across the included days of the study 
period. Due to missed data we could not determine the birds' positions 
at all times, though on average (mean), the location of a bird was 
known to us in 84.3% of the time. Utilization of the four available areas 
differed substantially. While ten birds (2.4%) never left the indoor area, 
other birds spent up to 87% of available time outside of the barn when 
access was available (Supplementary Fig. S2), and 33 birds (7.8%) 
never entered the free-range area. 

The individual-level variables (time inside the barn, time outside 
the barn, number of transitions, entropy, order leaving, order returning, 
number of days outside and leading index) were partly correlated 
(Supplementary Table S1). A principal component analysis of the nor-
malized z-scores (Supplementary Fig. S3; Supplementary Table S2) 
gives a rotation where the first principal component explains 55% and 
the second component explains 13% of the overall variation. The first 
component has high loadings for time inside and order going outside, 
and low loadings for the number of transitions, entropy and the number 
of days seen outside. The second component has by far the strongest 
loading for the leading index. Entropy was highly correlated with the 
number of transitions per day (r = 0.95, CI95 = 0.94–0.96). The time 
animals spent in the barn was correlated with: the order first entering 
the stone yard (as part of the outdoor area) (r = 0.59, 
CI95 = 0.52–0.65; a high order number means that the bird left later 
than most other birds in the day) and negatively correlated with: en-
tropy (r 0–0.69, CI95 = −0.74 to −0.64), number of transitions 
(r = −0.60, CI95 = −0.66 to −0.53), order of going back inside in 
the afternoon (r = −0.53, CI95 = −0.60 to −0.45), and number of 
days the birds were recorded outside (r = −0.64, CI95 = −0.69 to 
−0.58). Thus, birds that spent less time in the barn were generally 
more active in terms of movements between areas. The Leading index 
was not strongly correlated with any of the variables describing the 
movement patterns (e.g., number of transitions: r = 0.205, 
CI95 = 0.11–0.30; time inside the barn: r = −0.24, CI95 = −0.33 to 
−0.15; order going outside the barn r = −0.26, CI95 = −0.35 to 
−0.17. The median leading index was 0.496 (interquartile range: 
0.463–0.530) and the median entropy was 0.018 (interquartile range: 
0.012–0.024). DTW analysis allowed the creation of dissimilarity ma-
trices by computing summed dissimilarity distances for all pairs of the 
24 hens (across both pen 1 and pen 2). Hierarchical clustering analyses 
of these dissimilarity matrices, performed with the DIANA method 
(divise analysis (Sardá-Espinosa, 2019)), suggests the existence of 
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cluster 1

DTW 
cluster 2

DTW 
cluster 3

IN

WG
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IN
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08:20:00 16:40:00

Fig. 1. Representative movement patterns of three 
clusters obtained through DTW. Each timeseries 
shown reflects the typical movement pattern of each 
cluster throughout one day in relation to the four 
distinct areas. Each line shows the position of the hen 
representing the median point obtained from the 
analysis of all the behavioral patterns recorded 
within a specific cluster. The four areas are: inside 
the barn (IN), winter garden (WG), stone yard (SY) 
and free range (FR). 
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clusters of distinct movement patterns. Based on this clustering ana-
lysis, we were able to identify three clusters representing markedly 
differing movement patterns (henceforth DTW clusters; Fig. 1). The 
categorization of each hen within each behavioral classification scheme 
is shown in Supplementary Table S3. 

3.2. Basic sequencing features 

We sequenced a reduced and methylation enriched genomic fraction 
of 24 individuals across experimental groups. The average sequencing 
yield across individuals was 233.7  ±  4.1 million of bps. The average 
sequencing depth was 56.3×  ±  9.0× covering ~4.06 million unique 
bps, which corresponds to 0.4% of the whole chicken genome. Details 
about individual sequencing coverage per DNA sample can be found in 
the Supplementary Table S4. 

In order to verify the enrichment for CpGs in our sequenced reads, 
we calculated a CpG ‘enrichment score’, which compares CpGs in the 
genomic regions covered by the sequenced reads against CpGs in the 
whole reference genome. An ‘enrichment score’ of 2.80  ±  0.22 was 
obtained based on 94,331 CpGs identified across individuals on 
average. This corresponds to approximately 1% of all CpGs within the 
whole Gallus gallus genome. 

3.3. Differential methylation analysis between experimental groups 

DMRs (P ≤ 0.05) were identified between i) animals with low and 
high entropy, ii) animals characterized as leaders or followers (ac-
cording to the calculated ‘Leading Index’), and iii) animals differentially 
classified into three DTW clusters. Between animals with high and low 
entropy 110 DMRs were identified (Fig. 2A). Additionally, 25 DMRs 
were found between animals characterized as followers or leaders 
(Fig. 2B). In relation to the DTW clusters, 15 DMRs were identified 
between DTW clusters 3 and 2 (Fig. 2C), 7 DMRs were identified be-
tween DTW clusters 2 and 1 (Fig. 2D), and 6 DMRs were identified 
between DTW clusters 3 and 1 (Fig. 2E). A selection of the DMRs with 
the lowest P values (P ≤ 0.005) is shown in Table 1 with their re-
spective annotations. The number of DMRs unique to, or overlapping 
between, classification schemes is shown in Fig. 3A. The unique and 
overlapping DMRs observed between DTW clusters is shown in Fig. 3B. 

An annotated list of all the DMRs identified (P  <  0.05) in the 
current study is available in Supplementary Table S5. Within each 
classification scheme, functional annotation of all DMRs was performed 
to identify the genomic functional regions where the DMRs found lo-
cate. DMRs in each classification scheme were associated with different 
patterns of functional genomic features (Fig. 4). In total, there were 81 
genes associated to DMRs. Interestingly, the patterns of functional an-
notation differ substantially across the classification schemes. 

Next, KEGG (enrichKegg) and Gene Ontology (enrichGO; biological 
processes) pathway analyses were performed using the 81 genes asso-
ciated to DMRs as the input. However, we selected the subset of these 
genes associated with each classification scheme for the pathway ana-
lyses related to them. Overall, for the Kegg analysis 26 genes mapped to 
at least one pathway in the Kegg database, and for the GO analysis 9 
genes mapped to at least one pathway in the OrgDb database. With both 
analyses we identified genes significantly enriched in pathways. The 
enrichKegg analysis revealed genes enriched in pathways in relation to 
each of the comparisons performed within classification schemes 
(Padj≤0.1). Some of these are well studied genes, relevant for a variety 
of biological pathways, such as RAF1 (associated to DMRs found be-
tween DTW clusters 3 and 2), GSL (associated to DMRs found between 
DTW clusters 3 and 1) and TGFβ2 (associated to DMRs found between 
followers and leaders). Also of interest is the fact that three genes as-
sociated to DMRs found between low and high entropy (RFWD2, ATR 
and SHISA5) belonged to the p53 signaling pathway (Table 2). The 
complete output of the enrichKegg analysis is shown in Supplementary 
Table S6. The enrichGO analysis revealed DMR-associate genes 

(Padj≤0.1) emerging within the Leading index classification scheme 
(RAF1), and when comparing DTW 3 vs 2 (TGF β2). These genes were 
also found in the enrichKegg analysis and are important for a number of 
biological process, as previously mentioned and as shown in the Sup-
plementary Table S7. 

After this analysis, for each classification scheme we selected i) all 
the genes associated to the most highly significant DMRs (Table 1), and 
ii) those genes that were enriched in the Kegg pathway analysis. This 
subset of highly relevant genes was used to build extended gene net-
works and identify their biological impact using the web based Gene-
Mania (https://genemania.org) tool (Warde-Farley et al., 2010). The 
extended gene networks related to each classification scheme are shown 
in Fig. 5A. The functional biological pathways significantly impacted by 
these extended gene network modules are shown in Supplementary 
Table S6. In order to better visualize the different biological functions 
affected by the extended gene networks associated to DMRs within each 
classification scheme, we built word clouds using the terms of the 
abovementioned functional pathways (Fig. 5B). 

4. Discussion 

4.1. Overview 

In the current work we used a relatively large and uniform popu-
lation of laying hens with the aim of identifying the relationship be-
tween behavioral patterns (detected by applying metrics in novel ways) 
and epigenetic variation (DNA methylation) in a brain region involved 
in the processing of higher cognitive abilities (nidopallium) in birds. 
Behavioral patterns that spontaneously emerged were able to be 
documented in our population of hens and were linked to specific 
DMRs. Genes associated to these DMRs are relevant from a neurobio-
logical perspective but are also involved in other biological functions, 
notably cell cycle checkpoints and exit to repair. 

This study is unique in several ways that contrast with previous 
efforts to investigate interactions between behavior and the epigenome. 
Firstly, the study population of commercial laying hens is highly 
homogeneous in terms of both environmental exposures and genetic 
composition. All hens were hatched, reared and housed together, where 
they are exposed to the same nutrition, lighting, climate, and other 
environmental factors, and without any possibility for maternal inter-
actions. In terms of genetic variation, these farm animals are considered 
fairly homogenous due to intensive commercial breeding efforts to yield 
highly productive and feed efficient animals. 

A second unique aspect of the current work is that behavioral data 
was collected longitudinally over an extended period of time within the 
animals' home pen, which minimized disturbances to the animal. We 
believe the methods to track and analyze behavior used in the current 
study ensure the identified relationships are more indicative of actual 
commercial populations compared to efforts that utilize experimentally 
induced behaviours within specific testing paradigms conducted out-
side the home area. Although such approaches can serve as useful 
proxies for underlying behavioral traits (Mittelbach et al., 2014), they 
present limitations when investigating longitudinal changes (Richter 
and Hintze, 2019). 

Another unique aspect is that data was collected in a relatively large 
group of animals where the utilization of traditional behavioral tech-
niques do not allow for observations focusing on individuals (Siegford 
et al., 2016). Group size is important as smaller groups of laying hens 
(estimated at < 70 individuals) are believed to adopt different social 
structures than those in larger groups (reviewed by (Croney and 
Newberry, 2007)). In that sense, relationships identified in small groups 
may not be applicable to larger groups, and, by extension, the world's 
commercial laying hens that are typically housed in flocks containing 
5000 to 50,000 animals (when not housed in cages). In summary, the 
current experimental set up has unique features to allow the identifi-
cation of relationships between behavioral patterns and brain DNA 

C. Guerrero-Bosagna, et al.   Comparative Biochemistry and Physiology - Part D 35 (2020) 100700

5

https://genemania.org


methylation. 

4.2. The relationship between behavioral and epigenetic profiles 

The results of the current study support the position that epigenetic 
variation within brain tissues is an essential factor to explain the nat-
ural emergence of behavioral variation. In our case, we focused on the 
nidopallium, which is a region of the avian brain involved in complex 
cognitive abilities, such as executive function, and considered to be 
analogous to the mammalian pre-frontal cortex (Herold et al., 2011). 

By applying established classification schemes in a novel way to 

characterize animal movement and location patterns over the study 
period, we identified different and unique patterns across individuals. 
In comparison to the simple individual-level variables (e.g., time in-
side), we believe complex metrics (i.e., DTW clustering, Entropy, and 
the Leading Index) offer a more comprehensive representation of an 
individual animal's behavior. 

Importantly, the different behavioral patterns that spontaneously 
emerged and were able to be documented in our population of hens 
were linked to related DNA methylation patterns in the nidopallium. 
Although a random sample of hens with the larger population would be 
expected to show some degree of epigenetic variation, the combination 

A) Entropy Low Entropy High B) Follower Leader

hypermethylationhypomethylation

C) DTW cluster 3 DTW cluster 2 D) DTW cluster 2
DTW 

cluster 1

E) DTW cluster 3
DTW 

cluster 1

Fig. 2. Heat maps depicting DMRs (P  >  .05) in the nidopallium of laying hens who were identified as belonging to different behavioral classification schemes: (A) 
Entropy, (B) Leading Index and DTW clusters (C-E). Animals with leading indices above the median were classified as “Leaders” while the others as “Followers”. 
Entropy values above the median value are considered high, and those below the median, low. DTW clusters based on dissimilarity of time patterns in movement 
between areas were identified using hierarchical clustering analysis. 
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of novel movement classification analysis and epigenetic methods has 
revealed the emergence of linkages between the two that would have 
not been apparent otherwise. Unique DMRs were identified between 
behavioral patterns that emerged within all classification schemes, 
among which, entropy was associated with the greatest number (i.e., 
110) (Fig. 3A). 

The biological mechanisms behind unique DMRs emerging between 
behavioral patterns are only conjecture at this point. However, it is 
important to consider that each classification scheme measures dif-
ferent properties of the time series. For instance, the type of entropy 
assessed in the current study may reflect activity levels. Entropy, which 
addressed the complexity of a given time series, was highly correlated 
with the number of transitions. This probably means that the kind of 
entropy measured here could somehow relate to increased exploratory 
behavior, which would be reflected in increased number of transitions 
between areas. In contrast, DTW clustering provides a more compre-
hensive representation of the time series as it incorporates both location 
as well as the timestamp into the resulting metric. This additional in-
formation could make DTW sensitive to biological processes that would 
influence the decision of animals of reaching particular areas, as well as 
the duration and time of day of their presence at these areas. For in-
stance, increased time in areas external to the barn interior would result 
in proportionally greater exposure to sunlight, better air quality (par-
ticularly the free range and stone yard area), or risks associated with 
particular areas (e.g., use of the free range and stone yard area would 
have a greater chance of predation). The leading index was the only 
metric that represented an aspect of social behavior. Thus, it is inter-
esting to consider leading index in light of decision-making processes, 
reactivity, or behavioral tendencies towards conspecifics (e.g, aggres-
sion or boldness). Our results show that these properties described may 
have a functional relationship to the associated DMR. 

Among the DMRs found, 12 were selected with a relatively stringent 
P value cut-off (P ≤ 0.005, Table 1). Of these DMRs, eight are gene 
related. Moreover, two of these DMRs have P values ≤0.0005 and re-
late to the genes Netrin G1 (DTW scheme) and Cadherin-22 (entropy 
scheme). We considered all these eight genes to be of special interest, 
and thus, their function is discussed here. Three of these genes exhibit 
an important role in brain function or development. Netrin G1 is part of 
a conserved family of proteins involved in axon guidance during de-
velopmental phases of the vertebrate nervous system (Nakashiba et al., 
2000). Cadherin-22 is suggested to regulate cell-cell adhesion in mor-
phogenesis and tissue formation in neural and non-neural cells in brain 
and neuroendocrine organs during developmental stages, as well as in 
the maintenance of these organs (Sugimoto et al., 1996). The SLC9A9 
gene, in turn, is a sodium hydrogen exchanger present in the recycling 
endosome, which is highly expressed in the brain and implicated in 
neuropsychiatric disorders such as autism spectrum disorders (Patak 
et al., 2017). Other two genes in the list have important roles in the cell 
cycle checkpoints and exit. For example, the ATR gene encodes a 
serine/threonine kinase involved in damage-induced G2 checkpoint 
control and apoptosis in proliferating cells (Enriquez-Rios et al., 2017). 
The MST1 gene, in turn, is part of the Hippo signaling pathway, which 
in the optic neuroepithelia of Drosophila is shown to participate in cell 
cycle exit (Reddy et al., 2010). 

4.3. Association between classification schemes and genomic regulatory 
regions 

A deeper exploration of the linkages between behavioral classifi-
cation schemes and differential DMRs revealed that the schemes dif-
ferentially associated with specific genomic regulatory regions. For 
instance, while similar proportion of DMRs associated with intronic, 
downstream, and exonic regions across the three schemes, DTW had 
double the proportion of affected promoter regions and half of the distal 
intergenic regions. DMRs exhibiting hypermethylation of promoter re-
gions are expected to inhibit the transcriptional machinery and thus Ta
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ENTROPYDYNAMIC TIME 
WARPING LEADING INDEX

Cluster
3 vs 2

DYNAMIC TIME WARPING 

Cluster
3 vs 1

Cluster
2 vs 1

A)

B)

Fig. 3. Venn diagrams showing the number of: (A) unique DMRs found within the different behavioral classification schemes, as well as overlapping DMRs among 
these schemes, and (B) DMRs found among different DTW clusters, as well as overlapping DMRs obtained after each pairwise comparison.. 

ENTROPY LEADING INDEX DYNAMIC TIME 
WARPING

Fig. 4. Pie charts representing genomic functional features mapped to DMRs (P  <  .05) in relation to nearby chicken genes (based on the chicken reference genome) 
for each classification scheme (entropy, leading index and dynamic time warping). 
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Fig. 5. (A) Extended gene networks obtained with genemania.org based on the genes related to DMRs found among the different behavioral classification schemes. 
(B) Word clouds were created from the Genemania functional analysis performed on each extended network obtained in (A). The word size is relative to how often 
the term was repeated in the output of the Genemania functional analysis.\. 

Table 2 
Gene enrichment obtained by KEGG pathways based on genes associated to significant DMR (P  <  .05) found among behavioral patterns identified within each 
classification scheme.     

Comparisson DMR-associated gene enriched 
in pathways 

Pathways involved  

DTW cluster 2 vs 1 ABCB6 ABC transporters 
FANCE Fanconi anemia 
RAF1 VEGF signaling; VEGF signaling; ErbB signaling; Progesterone-mediated oocyte maturation; Gap junction; 

GnRH signaling; C-type lectin receptor signaling; Melanogenesis; Vascular smooth muscle contraction; 
Apelin signaling; FoxO signaling; Autophagy - animal; Apoptosis; Influenza A; mTOR signaling; Cellular 
senescence; Focal adhesion; Regulation of actin cytoskeleton 

DTW cluster 3 vs 2 NTNG1 Cell adhesion molecules (CAMs) 
ATP2B4 Adrenergic signaling in cardiomyocytes; Calcium signaling 

DTW cluster 3 vs 1 GSL Arginine biosynthesis; Nitrogen metabolism; Glyoxylate and dicarboxylate metabolism; Alanine, aspartate 
and glutamate metabolism; Biosynthesis of amino acids; Necroptosis 

Entropy: low vs high RFWD2 p53 signaling 
ATR 
SHISA5 

Leading index: follower vs 
leader 

TGFB2 TGF-beta signaling; AGE-RAGE signaling pathway in diabetic complications; Cell cycle; FoxO signaling; 
Cellular senescence 

AIFM1 Apoptosis; Necrosis 
ATP6V1AL Phagosome; mTOR signaling 
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prevent gene expression, according to standard assumptions 
(Anastasiadi et al., 2018). Alternatively, promoter hypomethylation 
generally activates genes as a result of increased accessibility of DNA by 
polymerase (Anastasiadi et al., 2018). In this sense, the DMRs linked 
with the differential behavioral clusters identified by DTW could have a 
direct role on the abundance of specific gene products. The effect of 
distal intergenic regions on gene expression is less clear and dependent 
on the region's association with other factors such as enhancers. En-
hancers regulated by DNA methylation are linked to the coordinated 
transcriptional and epigenomic regulation of developmental genes in 
vertebrates (Bogdanovic et al., 2016). 

It is interesting to consider the usefulness of DTW for obtaining 
clusters of individuals that are more likely to be exposed to particular 
environments or engage in particular activities. For example, Cluster 3 
with its limited exposure to natural sunlight, could relate to a specia-
lized suite of gene products (e.g., vitamin D conversion) that would be 
categorically different from the gene products that could relate to ac-
tivities of animals in the other clusters which routinely exit the barn 
interior. Alternatively, the association of the Leading Index classifica-
tion scheme with nearly 70% of the distal intergenic regions would 
allow for a relatively greater flexibility in gene expression regulation, 
rather than simply regulating expression levels. This flexibility refers to 
the ability of one genomic region or element to regulate the expression 
of different genes, such as in epigenetic clusters of regulation. In this 
sense, the social behavior of the animals as characterized by the 
Leading Index will be highly dependent not only on their own behavior 
but also on the behavior of their conspecifics, which would, in turn, be 
related to a flexible ability of the genome to regulate gene expression. 
For instance, an animal classified as a follower in the Leading Index will 
enter into an area only if initiated by a specific conspecific in contrast to 
animals classified in the DTW Cluster 2 which reliably go to all areas of 
the pen moved by their own initiative. 

4.4. DMR-associated genes enriched in biological pathways 

Subsequent enrichment analysis of the genes associated to the DMRs 
revealed that some DMR-associated genes such as RAF1, GSL and 
TGFβ2 are influential on several important biological pathways. RAF1 
is associated to a DMR that emerged in the comparison between DTW 3 
and 2. RAF1 is an oncogene with suggested involvement in the patho-
genesis of glioblastoma, the most aggressive type of brain cancer (Liu 
et al., 2014). RAF1 is member of the RAS/extracellular signal-regulated 
kinase 1/2 signaling pathway. Mutations in these genes are known to 
associate with so-called RASopathies, the most common of these being 
the Noonan Syndrome (Holter et al., 2019). The effects of the Noonan 
Syndrome include structural malformations, developmental delays, but 
also behavioral issues such as irritability and communication difficul-
ties (Wood et al., 1995). Interestingly, research shows that mice ex-
pressing the Raf1L613V gain-of-function mutation, associated with the 
Noonan Syndrome, perform better than controls in some aspects of 
common behavioral tests such as the water radial-arm maze, Morris 
water maze, and cued fear conditioning tasks (Holter et al., 2019). GSL, 
in turn, is a glutamine synthetase-like gene. In the brain, excesses of 
ammonia and the neurotransmitter glutamate are regulated by their 
conversion to glutamine. This happens mainly in astrocytes and by the 
action of the glutamine synthetase enzyme (Suarez et al., 2002). Higher 
glutamine levels in the prefrontal cortex of mammals are associated 
with better performance in a reversal learning task (Lacreuse et al., 
2018) and attenuation of depressive behavior (Son et al., 2018). TGF 
Betas, in general, are molecular components of the signaling cascades 
defining the development and survival of many neuronal groups, and 
TGFβ2, in particular, is relatively more important during development 
(Chleilat et al., 2019). Interestingly, TGFβ2 mutant mice exhibit less 
caudal 5-HT neurons and impaired development of raphe neurons 
during embryogenesis, as well as lower serotonin levels in the hind-
brain and cortex in adulthood (Chleilat et al., 2019). Another 

interesting result was the presence of three DMR-associated genes from 
the low vs high entropy comparison in the p53 signaling pathway. 
Described nearly 40 years ago and known as ‘The Guardian of the 
Genome’, p53 is one of the most important and well-studied tumor 
suppressor factors (DeLeo and Appella, 2020). The DMR-associated 
genes that participate in the p53 pathway are SHISA5, RFWD2 and 
ATR. SHISA5, also known as SCOTIN in humans, is a pro-apoptotic gene 
induced after DNA damage or cellular stress in a p53-dependent 
manner (Gupta et al., 2008). No role has been reported for SHISA5 in 
relation to behavior. ATR (which is among our genes with the lowest p 
values, Table 1) is shown to maintain chromosomal integrity during 
postnatal cerebellar neurogenesis (Lang et al., 2016). Interestingly, 
RFWD2, which is hypermethylated in the promoter regions of low en-
tropy chickens (Suppl Table S5), is also hypermethylated in the pre-
frontal cortex (the mammalian equivalent to the bird nidopallium) of 
schizophrenia human patients (Lee and Huang, 2016). Overall, our 
results suggest that behavior patterns share molecular mechanisms and 
are interrelated with other biological functions, such as tumorigenesis 
(related to the RAF1 oncogene) and cell cycle checkpoints and exit to 
repair (the main described functions of the p53 pathway). These genes 
and pathways they participate provide hints to explain the molecular 
basis of behavioral patterns. 

Word clouds obtained from the pathways enriched by the gene as-
sociated DMRs give an idea of the different biological functions that 
could be related to each behavioral pattern identified in each classifi-
cation scheme. Our data shows that while Entropy relates to cell cycle 
checkpoints, Leading Index relates to mitochondrial function, and DTW 
relates to regulation of gene expression. These results suggest that dif-
ferent behavior patterns could be linked to different biological me-
chanisms within neurons. For example, according to our data, acting as 
a leader or a follower (e.g. a classification involving variable decision 
making abilities) would be mostly associated with mitochondrial 
function and regulation of energy expenditure, while behavioral con-
sistency (e.g., habits or repeated behaviours such as those observed 
within DTW clusters) would be related to fine-tuned regulation of gene 
expression at the level of transduction and activation/inactivation of 
proteins (e.g., by phosphorylation). These results open the possibilities 
for exciting experiments to investigate the biological basis of different 
behaviours. The methodologies described here could be employed for 
future investigations of causal relationships between epigenetic 
changes, cellular function and behavioral patterns. 

While we cannot causally link the specific classification schemes 
and different DMRs, the present paper shows a clear relationship be-
tween DNA methylation and specific behavioral patterns. The linkage 
between behavioral and epigenetic patterns is not in itself novel. For 
instance, post-traumatic stress disorder in humans is well documented 
to be correlated with epigenetic changes in the brain (Malan-Muller 
et al., 2014). Behaviours linked to epigenetic patterns are also well 
documented in experimental paradigms where conditions or behaviours 
are experimentally induced in animal models, e.g. maternal separation 
in macaques (Provencal et al., 2012) or maternal grooming in mice 
(Weaver et al., 2004). One of the novelties of our experiment lies in that 
the observed patterns (i.e., both behavioral and epigenetic) arose 
spontaneously within a group of individuals living in a relatively con-
trolled and homogenous environment. The emergence of these patterns 
in animals that are able to ‘freely’ explore and engage in a full re-
pertoire of behaviours (Weeks and Nicol, 2006) represents a unique 
experimental condition to understand factors influencing phenotypic 
variation in addition to genetic conformation. Although we are limited 
in our ability to draw conclusions about the nature of these relation-
ships in terms of associated causal mechanisms, our work establishes an 
important foundation for future directed hypothesis-based evaluation of 
the link between neural epigenetics and behavioral variability in ver-
tebrates. Our study suggests that different biological functions within 
neurons could be responsible for the emergence of different behaviours. 

Supplementary data to this article can be found online at https:// 
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