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Chesson’s (2019) comment on our review of modern
coexistence theory (Barabás et al. 2018) focuses on per-
ceived mistakes and provides a re-derivation of key
results from his own perspective. The criticisms concern
three main issues: the definition of standardized environ-
mental and interaction parameters; the definition of
comparison quotients and the meaning of their non-
uniqueness; and the status of the theory when there are
at least as many limiting factors as species in the system.
He makes many important observations, and the provi-
sion of his own derivation of the theory gives a unique
perspective on what elements of the theory are deemed
important and why. Additionally, Chesson (2019) men-
tions in passing several elements of our review that he
believes are not handled well. However, we argue that
the differences between Chesson’s (2019) account of the
theory and ours are overstated, turning out to be differ-
ences of emphasis and interpretation, rather than funda-
mental mistakes. We therefore take this opportunity to
clarify our point of view, and to synthesize Chesson’s
perspective with ours for an improved outlook on the
theory.

DEFINITIONS OF THE STANDARDIZED ENVIRONMENTAL AND

INTERACTION PARAMETERS

After choosing environmental and interaction param-
eters Ej and Cj (both may depend on time), the theory
starts by writing the per capita growth rates rj as their
function: rj = gj(Ej,Cj). Based on this parameterization
of the growth rates, Chesson (1994, 2019) defines the

standardized environmental and interaction parameters
E j and C j via

E j ¼ rjðEj ,C∗
j Þ, C j ¼ rjðE∗

j ,CjÞ, ð1Þ

where E∗
j and C∗

j are “equilibrium” values such that
rjðE∗

j ,C
∗
j Þ¼ 0 (Chesson defines C j with an extra negative

sign, conforming to the situation where Cj measures a
competitive reduction in growth rates). In our review, we
did mention these definitions, though only as a refer-
ence. Instead, we defined the standardized parameters as
quadratic approximations to these formulas (Barabás
et al. 2018:279):

E j ¼ α j E j �E∗
j

� �
þ1
2
α 2ð Þ
j ðEj �E∗

j Þ2,

C j ¼ β j C j �C∗
j

� �
þ1
2
β 2ð Þ
j ðCj �C∗

j Þ2 ð2Þ

where the αs and βs are Taylor coefficients. Chesson
(2019) mentions two problems with our definitions.
First, they are less accurate than those of Eq. 1. Second,
they do not yield critical understanding of the underly-
ing theory.
Eq. 1 is indeed more accurate than Eq. 2, as the

latter is a quadratic approximation to the former.
Fig. 1 of Chesson (2019) presents a model example,
showing that, for large environmental variation, the
difference in accuracy is especially pronounced in
favor of Eq. 1. While this is true, one must keep in
mind that the theory as a whole is based on a small
fluctuation approximation. This assumption pervades
the development of the theory; e.g., the quadratic
approximation of the standardized interaction parame-
ters C j in the limiting factors rests on this (Eq. 11 in
Chesson [2019]; Eq. 9 in Barabás et al. [2018]), as
does the approximation E jC j≈covðE jC jÞ, which
neglects the �E j�C j term. For small environmental vari-
ability, the difference between Eqs. 1 and 2 diminishes.
From the point of view of deriving the equations of
the theory or applying them to particular ecological
models, and making sure that they are accurate to
quadratic order, it therefore does not matter which set
of definitions one uses, and the difference in accuracy
between Eqs. 1 and 2 is beside the point. To go
beyond small fluctuation approximations, one way to
go is to estimate model quantities via simulations in
the first place (Ellner et al. 2016, 2019, Chesson
2019).
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Instead, the goal of our alternate approach in Barabás
et al. (2018) was to offer a new angle to view the struc-
ture of the theory. This takes us to the other criticism of
Eq. 2 by Chesson (2019), that it does not yield the same
insight into the theory as Eq. 1. Clearly, different ways
of arriving at a result emphasize different aspects of the
same underlying concepts. Ours emphasizes how a
straightforward quadratic expansion recovers all salient
quantities of the theory. In the end, we would argue that
having both developments is better than having just one
or the other. Out of a pool of possible parameterizations,
it is best to use the one that yields the most insight into
the problem at hand. Standard parameterizations facili-
tate the comparison of different models and results. That
said, we see no reason to rely on a single one exclusively.

THE COMPARISON QUOTIENTS

In relation to the comparison quotients qis that are
used in invader-resident comparisons (denoted ds/di in
Barabás et al. 2018:283), Chesson (2019) objects that we
have confused them with the conceptually different scal-
ing factors (which are used, among other things, to
decompose invasion rates into stabilizing and equalizing
contributions), and takes issue with our claim that using
partial derivatives does not properly define the qis, whose
non-uniqueness we seemingly deemed a flaw of the
theory.
We have not in fact confused comparison quotients

with scaling factors, but this is obfuscated by conflicting
terminology in the literature. Historically, the qis had not
been assigned a particular name until Ellner et al. (2016)
called them scaling factors. It was only in Chesson
(2019) that the term “comparison quotient” was offered,
to differentiate them from another set of quantities
called “scaling factors,” which were independently intro-
duced by Chesson and Huntly (1997). Their purpose
was to cancel linear terms in the limiting factors (Ches-
son and Huntly 1997: Appendix C), and they therefore
closely correspond to our dj in Barabás et al. (2018); in
fact, as we pointed out in our review, our inspiration for
these factors was Chesson and Huntly (1997) in the first
place. Without being explicitly named, scaling factors
underwent further evolution (e.g., Chesson 2003, 2008,
Yuan and Chesson 2015) and became a tool for nondi-
mensionalizing invasion growth rates and decomposing
them into stabilizing and equalizing contributions.
Finally, Chesson (2018) gave scaling factors their official
name, notation (as bi), and a general definition.
In Barabás et al. (2018), we consistently denote what

Chesson would call the comparison quotients qis by ds/di,
and call the individual di scaling factors (in line with
Chesson and Huntly 1997). In turn, the bi of Chesson
(2018), which he calls scaling factors, we denote by ϕi

and do not give them any particular name. In no place
do we refer to one as if it was the other, either in

notation or in terminology. We of course did not use the
terms “comparison quotient” and “scaling factor” as
suggested by Chesson (2018, 2019), as our review was
published prior to these works. That said, we have noth-
ing against adopting Chesson’s suggested terminology
as described above. During review, it was suggested that
the di should then also receive their own name. We sug-
gest calling the di the “(linear) cancellation coefficients,”
to emphasize their role in eliminating the linear terms in
the limiting factors from the invader-resident compari-
son.
Apart from terminology, another possible reason for

the impression that we have conflated comparison quo-
tients and scaling factors is the fact that the scaling fac-
tors happen to be the same as the “canonical” choice of
invader comparison quotients in the presence of a single
limiting factor, because then di = 1/ϕi for any invader
species i (Barabás et al. 2018: Eq. 22). That scaling fac-
tors and comparison quotients are related in this way is
itself a noteworthy result. It is an open question whether
this should be treated as an opportunity to unify the
concepts of scaling factors and comparison quotients, or
if it is better for future developments of the theory to
still treat them as separate entities, despite the fact that
they are related.
Chesson (2019) also points out that we unduly criti-

cized the definition of comparison quotients in terms of
the partial derivative ∂Ci=∂Cs evaluated at Cs ¼ 0 (Ches-
son 1994, Chesson 2019: Eq. 4). This was not our inten-
tion, though we do see that it was possible to read our
text that way (last paragraph of Partitioning the sum of
invader and resident growth rates). We regret if we were
interpreted by readers as claiming that this definition is
faulty, and so we would like to emphasize here that this
is not the case. As pointed out by Chesson (2019), the
derivative works just as well as our method, as long as
the invader’s Ci is expressible as a function of resident
Cs values, which is another way of saying that the num-
ber of independent limiting factors should be lower than
the number of species competing for them. The deriva-
tive will not be unique unless the number of limiting fac-
tors is one less than the number of species (in which
case, the di are unique up to a common multiplicative
constant that cancels from qis = ds/di). Otherwise, the
invader Ci can be expressed as a function of the resident
Cs in multiple ways; Chesson (2019) explains very clearly
why this is a natural consequence of the theory. In the
end, both our method and that of Chesson (1994, 2019)
yield the same results, and both can be non-unique for
the exact same reason.
We opted for our approach because it reduces the

problem of finding the comparison quotients to the solu-
tion of a system of linear algebraic equations. This felt
more direct than computing ∂Ci=∂Cs, which requires the
implicit function theorem to even interpret correctly,
and potentially obscure methods such as generalized
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inverses to actually evaluate. As an added benefit, the
fact that a set of linear equations may have a non-unique
solution is well known, and we hope this helps shed new
light on the origins of the non-uniqueness of the com-
parison quotients (this is why, despite the criticisms,
Chesson (2019) acknowledges that our method has
merit). We reiterate that the purpose of our approach is
not to dismiss that of Chesson (1994, 2019). Both are
equally adequate and lead to the same result, and it is up
to the user to decide which formulation they prefer.

THE NUMBER OF LIMITING FACTORS REACHING OR

EXCEEDING THE NUMBER OF SPECIES

Chesson (2019) argues that we underestimate the util-
ity of the theory when there are at least as many limiting
factors L as species S. This is in response to our claim
that the theory “does not offer any advantages, and may
even work worse than other methods, if there are as
many or more limiting factors as species” (Barabás et al.
2018:300). To be fair, we did follow that sentence up by
saying that this limitation, along with others, may not be
fundamental to the theory and could be amended by
future work. In light of this, it is especially helpful that
Chesson (2019) cites example applications with as many
or more limiting factors than species, with a worked-out
example in an Appendix.
The example of Chesson’s Appendix has two species

in a MacArthur-style consumer–resource model
(MacArthur 1970, Chesson 1990). In this case, due to
the assumption of a timescale separation between
resources and consumers (the former are much faster
than the latter), the limiting factors become the species’
population densities themselves, and the competitive
factors are weighted sums of them: Cj ¼∑S

k¼1σjkEkNk,
where S is the number of species, σjk is the interaction
coefficient between species k and j based on the degree
of overlap in their resource use, Ek is the kth environ-
mental parameter, and Nk is the density of species k.
Then, one can indeed obtain the comparison quotients
using ∂Ci=∂Cs evaluated at Cs ¼ 0 (Chesson 2019:
Eq. 14). The reason this works is that the invader spe-
cies is absent from the community: N�i

i ¼ 0, which also
means that the corresponding limiting factor is absent.
In the two-species case for instance, letting i be the inva-
der and s the resident, we have C�i

i ¼ σisEsNs and
C�i

i ¼ σssEsNs, where Ns is the monoculture equilibrium
density of the resident. We can therefore write
C�i

i ¼ σisEsNs ¼ σssEsNsσis=σss ¼C�i
s σis=σss, which is

now explicitly a function of C�i
s . Taking the derivative

with respect to this variable yields the comparison quo-
tients: qis ¼ ∂C�i

i =∂C�i
s ¼ σis=σss.

More generally, in any S-species community with lim-
iting factors proportional to the population densities,
putting species i in the invader state will also set the ith
factor to zero. This factor therefore disappears without

having to cancel it out, so the number of limiting factors
to be eliminated is reduced from S to S − 1. This is now
less than the number of species, so either the method of
Chesson (2019: Eq. 14) or our method of the cancella-
tion coefficients dj (Barabás et al. 2018, Eq. 21) may be
applied to cancel the remaining S − 1 factors. All in all,
here indeed comparison quotients can be obtained even
though there are as many limiting factors as species. On
the downside, this method requires a separation of time
scales which may not always hold. Relaxing this require-
ment to obtain comparison quotients when L < S is
still avenue for future research (Barabás et al. 2018:
295–296).
Our claim that Chesson’s framework loses its advan-

tages compared to other methods when there are as
many or more limiting factors than species was based on
the fact that the theory is rooted in invasion analysis.
What distinguishes it from “standard” textbook invasion
analysis is the meaningful partitioning of invasion
growth rates into the Δρi, ΔNi, ΔIi, and Δκi coexistence-
affecting terms via the comparison quotients (Barabás
et al. 2018: Eqs. 20 and 47). However, these quotients do
not exist (or are all zero, if one uses our di) when L ≥ S,
unless we are in the realm of the example discussed
above. Without the comparison quotients, the method
effectively reduces to standard invasion analysis, and
can do only as much. That said, there is more to the the-
ory than the comparison quotients, and other aspects
may still be useful for analysis, e.g., the quadratic expan-
sion of growth rates. Furthermore, even when L ≥ S,
one can choose a subset of up to S − 1 limiting factors
to eliminate explicitly, leaving the others as contributions
to the Δρi term (Barabás et al. 2018:283). Though this
leaves the Δρi term unevaluated, one still ends up with a
meaningful partitioning of the invasion growth rates.
Therefore, while the theory may not offer benefits over
others in performing calculations, it still has strong
heuristic power and can facilitate improved understand-
ing even when L ≥ S. We take it that this is what Ches-
son meant by pointing out that the theory is not
primarily methodological, but a theory of coexistence in
ecological communities: an important and valid point.

FURTHER POINTS

Chesson (2019) lists a number of additional issues that
were “not handled well” by our review. As these were not
expounded on, we do not respond to any specific criti-
cisms here. Instead, we simply provide our own perspec-
tive on some of them, those about which we feel we have
something relevant to say.

Species average fitness

In our review, we suggested replacing the term “aver-
age fitness difference” with “competitive advantage.” We
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wish to emphasize that this was not because the original
terminology cannot be justified (Chesson 2018). Rather,
the problem is that subdisciplines such as adaptive
dynamics (Geritz et al. 1998, Meszéna 2005, Metz 2012)
operate with a slightly different fitness concept. In adap-
tive dynamics, “fitness” corresponds to the realized per
capita growth rate ri of a rare invader in the environment
defined by the resident species (Metz and Geritz 2016:
Invasion fitness and fitness proxies: a short review). This
differs from the “species average fitness” of Chesson
(2018), which determines the identity of the competi-
tively superior species in the absence of any coexistence-
affecting mechanisms; and also from the “average fitness
difference” (adjusted for the presence of such mecha-
nisms) that was denoted by ξi in Chesson (2018) and by
fi in Barabás et al. (2018: Eq. 52). As we have stated in
Barabás et al. (2018:286–287), we believe coexistence
theory and adaptive dynamics combined could yield a
method for studying evolution in variable environments.
But then one may wish to avoid a potential terminologi-
cal clash, where “fitness”means multiple, subtly different
things. While the qualifier “species average” in front of
“fitness” ought to clarify the distinction from the general
fitness concept of adaptive dynamics, the term is often
not used this way. As we have pointed out in Barabás
et al. (2018:286), various aliases are in use, such as “rela-
tive fitness difference,” “fitness difference,” or just “fit-
ness.” While we do not wish to insist on our own
terminology, we hope this clarifies why we felt that there
is a risk of a terminological clash, and opted for “com-
petitive advantage” instead.

Community average stabilization and the size of the
coexistence region

As long as the community average stabilization A and
the average fitness differences fi are independently adjus-
table, A will measure the size of the parameter region
allowing for coexistence (Yuan and Chesson 2015). We
have argued in Barabás et al. (2018:298) that, in general,
A and fi are not independent, thus limiting the use of A
to measure the coexistence region. Since the publication
of our review, there have been several new developments.
Chesson (2018) proves a theorem stating that in models
with sufficiently many parameters, one can always find
some combination of them such that A and fi are inde-
pendently adjustable, at least for A sufficiently small.
While this theorem shows that one can vary A and fi
independently in a broad class of models, it is silent on
how likely this is to be the case in nature. Should field
ecologists expect species differences in traits such as
beak shape or flower color to contribute only to A, only
to fi, or both, confounding whether those differences
promote coexistence by increasing stabilization or hinder
it by increasing competitive advantages? We argue else-
where that the independence of A and fi is in fact highly

unlikely (Song et al. 2019): unless one chooses very care-
fully which parameters to vary and exactly how, both
quantities will simultaneously change in response to the
change in parameters. That said, this is a rapidly devel-
oping area, and while perfect independence may be the
exception, the same need not be true of quasi-indepen-
dence, whereby some mechanism mainly affects either A
or the fi, leaving the other relatively intact. For instance,
analysis of a competition-predation tradeoff revealed
that it mostly affected only the fi (Stump and Chesson
2017). Such quasi-independence is an intriguing possibil-
ity and an avenue for future work.

The significance of the ratio of intra- to interspecific
competition

For two-species Lotka-Volterra competition, intra-
specific competition must exceed interspecific competi-
tion for coexistence. This statement has strong
heuristic power: coexistence requires that a species lim-
its itself more than its competitor. Generalizations of
this principle to multiple species and other models all
emphasize that stable and robust coexistence requires
that species’ growth rates are, to an extent, regulated
by different factors (Levin 1970, Chesson 2000,
Meszéna et al. 2006, Pásztor et al. 2016), leading to
the same effect.
Its heuristic power notwithstanding, a naive applica-

tion of the “intra > inter” principle can lead to incorrect
conclusions. We have shown an example in Barabás et al.
(2018: Appendix S8) where increasing the ratio of intra-
to interspecific competition coefficients does not neces-
sarily move the system in the direction of stability. This is
due to indirect effects that are absent in a two-species set-
ting (Barabás et al. 2016). For instance, reducing
intraspecific competition may allow two species to coexist
that together are able to prevent a third from establishing,
even though all three possible species pairs would form
stable communities. In some situations it is even possible
to increase the intraspecific competition strength of a sin-
gle species and get a non-monotonic effect on community
stability, with a stable configuration achieved only for
intermediate strengths (Barabás et al. 2017).
Despite these examples (which Peter Chesson

acknowledges; see Chesson 2018: Eq. 37 and surround-
ing text), one may justifiably argue that the heuristic is
nevertheless important, as it usefully guides our thinking
about what kinds of effects can promote coexistence.
Naive applications notwithstanding, the general princi-
ple that species must be somewhat independently regu-
lated for stable coexistence still stands. We therefore
stress that our purpose is not to dispel the principle, but
to warn against adopting an unquestioning acceptance
of it, and using it where it does not apply. The examples
in Barabás et al. (2016, 2018) are designed to bring
attention to the non-intuitive role of indirect effects and
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show how naive applications can run into trouble, rather
than to question the heuristic itself.

Niche overlap and the ratio of species average fitnesses

While this was not explicitly mentioned by Chesson
(2019), we bring it up here nevertheless, as it is a topic
we have indeed not handled well. Unlike with the other
issues where we see differences in emphasis but no out-
right error, this topic was treated far too superficially in
Barabás et al. (2018:287), without explanation but with
notation that could easily cause confusion. To remediate,
we have included an Appendix S1 where we explain the
origin of the often-used formulas

ρ¼
ffiffiffiffiffiffiffiffiffiffiffi
ajkakj
ajjakk

r
,
κj
κk

¼ bj
bk

ffiffiffiffiffiffiffiffiffiffiffiffi
akjakk
ajjajk

r
ð3Þ

in detail, along with the meaning of ρ and the κ-ratio,
and their connection to the community average stabiliza-
tion A and average fitness differences fi.

CONCLUSIONS

We have argued that the deviations of Barabás et al.
(2018) from Chesson’s formalism (Chesson 1994, 2018,
2019) are not errors but differences in terminology, empha-
sis, and perspective, which we believe can help clarify the
theory’s strengths and weaknesses. Regardless of which
description one prefers, the theory has the potential to
continue developing and contributing to our understand-
ing of coexistence. Alongside many other possibilities, one
untapped direction is its application to problems of adap-
tive dynamics in variable environments.While the adaptive
dynamics of two species in cyclic environments has been
explored before (Kremer and Klausmeier 2013), coexis-
tence theory could help generalize these results to station-
ary nonperiodic fluctuations and an arbitrary number of
species. Furthermore, the theory will continue to remain
useful in guiding our thinking about coexistence in spa-
tiotemporally variable environments.
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