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Abstract

While many university students get introduced to the concept of statistics early
in their education, random matrix theory (RMT) usually first arises (if at all)
in graduate level classes. This thesis serves as a friendly introduction to RMT,
which is the study of matrices with entries following some probability distribu-
tion. Fundamental results, such as Gaussian and Wishart ensembles, are intro-
duced and a discussion of how their corresponding eigenvalues are distributed
is presented. Two well-studied applications, namely neural networks and PCA,
are discussed where we present how RMT can be applied.
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Sammanfattning

Medan många stöter på statistik och sannolikhetslära tidigt under sina uni-
versitetsstudier så är det sällan slumpmatristeori (RMT) dyker upp förän på
forskarnivå. RMT handlar om att studera matriser där elementen följer någon
sannolikhetsfördelning och den här uppsatsen presenterar den mest grundläg-
gande teorin för slumpmatriser. Vi introducerar Gaussian ensembles, Wishart
ensembles samt fördelningarna för dem tillhörande egenvärdena. Avslutningsvis
så introducerar vi hur slumpmatriser kan användas i neruonnät och i PCA.
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Slumpmatristeori, Gaussian Ensembles, Kovarians, Wishart Ensembles,
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Chapter 1

Introduction

A random matrix is a matrix M with its entries mij being random variables.
Two observations of 3ˆ 3 random matrices, both with elements being sampled
uniformly on the interval [0,1] can be

¨

˝

0.9575 0.9706 0.8003
0.9649 0.9572 0.1419
0.1576 0.4854 0.4218

˛

‚,

¨

˝

0.9157 0.6557 0.9340
0.7922 0.0357 0.6787
0.9595 0.8491 0.7577

˛

‚.

We can do the same thing for random matrices with its elements being sampled
from N p0, 1q

¨

˝

0.7269 ´0.7873 ´1.0689
´0.3034 0.8884 ´0.8095
0.2939 ´1.1471 ´2.9443

˛

‚,

¨

˝

1.4384 1.3703 ´0.2414
0.3252 ´1.7115 0.3192
´0.7549 ´0.1022 0.3129

˛

‚.

Again, the elements of the two matrices differ from each other, which will be
the general case when we are working with random matrices.

When we are studying random matrices, we are not interested in a specific sam-
ple, but rather a model of all the instances it can take. These models are known
as matrix ensembles.

As always when we are working with matrices, eigenvalues are of great interest.
Many of the results presented in this thesis will therefore be about how the
eigenvalues are distributed for different kind of random matrices. Since the en-
tries of random matrices are random themselves, the corresponding eigenvalues
will be random as well. A major result in random matrix theory can be observed
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2 Chapter 1. Introduction

Figure 1.1: Empirical distribution of the eigenvalues for a 10000ˆ10000 random
matrix.

by plotting the eigenvalues corresponding to a symmetric matrix with entries
being sampled from a standard normal distribution. The occurring elliptical
shape, known as Wigner’s semicircle, is demonstrated in Figure 1.1.

1.1 Aims and Outline

Most of the existing literature associated with random matrices is for graduate
studies or research, despite the fact that many results can be well understood
and interpreted by students on an undergraduate level. This thesis aims to give
the reader a friendly introduction to the topics associated with random matrix
theory.

Chapter 1 starts of by introducing the concept of matrix ensembles and briefly
generalizes random variables into random matrices. Mathematical results which
will be needed to develop the theory of random matrices will be presented here
as well.
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Chapter 2 collects the core of random matrix theory. The reader is introduced
to Gaussian ensembles and to their corresponding eigenvalue distribution. We
follow up with the definition of covariance matrices and their properties. Fo-
cusing on covariance matrices built upon Gaussian entries, a discussion of how
these matrices and their eigenvalues are distributed is represented.

Chapter 3 aims to introduce the reader to how random matrix theory can be
applied. First off, the idea of standard neural networks and how they are used
is represented. We follow up with the concept of extreme learning machines and
summarizes a framework, established by Z. Liao, of how random matrices can
be used in neural networks. Lastly, we derive the concept of standard PCA and
represent how statistical inference may be worked out when the underlying data
follows a normal distribution.

Chapter 4 serves as a final discussion of what we have accomplished in this
thesis and how the topics of random matrix could be further developed.

1.2 Preliminaries
Definition 1.1. A matrix M with entries mij is Hermitian if mij “ mji

where z is the complex conjugate of z.

Remark: If all entries in the matrix are real, then the matrix being Hermitian
is equivalent to it being symmetric.

Definition 1.2. The spectrum of a matrix M is given by the set tλ P C :
detpM ´ λIq “ 0u where λ is an eigenvalue of M and I is the identity
matrix.

Theorem 1.1. If X1, . . . , Xn are i.i.d. random variables with corresponding
probability density functions (pdf) fpxiq then their joint pdf is given by

fpx1, . . . , xnq “
n
ź

i“1

fpxiq .

Remark: We will simply denote the joint pdf for the matrix entriesm11, . . . ,mnn

of a nˆ n matrix M as fpMq.

Definition 1.3. The expected value (mean) for a continuous random variable
X with corresponding pdf fpxq is given by

ErXs “

ż 8

´8

xfpxqdx .
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Remark: For a discrete random variable, replace integral with proper sum and
pdf with probability mass function (pmf).

Definition 1.4. The variance for a random variable X is given by

V arrXs “ ErpX ´ ErXsq2s .

Definition 1.5. A random variable X is Gaussian (normal) distributed, with
mean µ and variance σ2 if its pdf is given by

fpx|µ, σq “
1

σ
?

2π
e´

px´µq2

2σ2 , x P p´8,8q

and we denote this by X „ N pµ, σ2q.

Definition 1.6. The gamma function Γp¨q is given by

Γpxq “

ż 8

0

yx´1e´ydy .

Definition 1.7. We say that X is chi squared distributed with n degrees of
freedom if its pdf is given by

fpx|nq “
1

Γpn2 q2
n
2
x
n
2´1e´

x
2 , x P p0,8q ,

which we denote as X „ χ2pnq.

Theorem 1.2. If X1, X2, . . . , Xn are all i.i.d. N p0, 1q then it follows that

n
ÿ

i“1

X2
i „ χ2pnq .

Definition 1.8. X is Rayleigh distributed with scale parameter b > 0 if its
pdf is given by

fpx|bq “
x

b2
e
´x2

2b2 , x P p0,8q ,

which we denote as X „ Rayleighpbq.

Lemma 1.1. If X „ N p0, σ2q and Y „ N p0, σ2q are independent, then it
follows that

a

X2 ` Y 2 „ Rayleighpσq.
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Proof: With Theorem 1.2 we get

P p
a

X2 ` Y 2 ď tq “ P pX2 ` Y 2 ď t2q

“ P

ˆ

X2

σ2
`
Y 2

σ2
ď
t2

σ2

˙

“

ż t2

σ2

0

1

2
e´

x
2 dx

“ 1´ e
´t2

2σ2 .

Taking derivative with the respect to t finally gives us

fptq “
t

σ2
e
´t2

2σ2

and we are done.

Definition 1.9. The trace for a nˆn matrix M with elements mij is given by

trpMq “

n
ÿ

i“1

mii

Lemma 1.2. Given a matrix M with eigenvalues λ1, λ2 . . . , λn we have that

trpMnq “

n
ÿ

i“1

λni .

Definition 1.10. A matrixM P Rnˆn is positive semi-definite if xTMx ě
0 for all vectors x P Rnˆ1.

Lemma 1.3. A symmetric matrix is positive semi-definite if and only if all of
its eigenvalues are non-negative.

Lemma 1.4. The eigenvectors corresponding to different eigenvalues of a sym-
metric matrix are orthogonal to each other.

Proof: Consider a symmetric matrix X with eigenvalues λi ‰ λj and corre-
sponding eigenvectors xi, xj . We have that xTj Xxi “ xTj λixi and xTi Xxj “
xTi λjxj and since X is symmetric, xTj Xxi “ xTi Xxj . Together, this gives us
the equality

pλi ´ λjqx
T
i xj “ 0 ,

and thus, xTi xj “ 0.
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Definition 1.11. A sequence of random variables Xn converges almost surely
(a.s.) to the random variable X as nÑ8 if

P ptω : Xnpωq Ñ Xpωq as nÑ8uq “ 1.

Definition 1.12. A sequence of random variables Xn converges in probabil-
ity to the random variable X as nÑ8 if @ε ą 0,

P p|Xn ´X| ą εq Ñ 0 as nÑ8.

Definition 1.13. A real valued function f is said to be Lipschitz continuous
if there exists a constant C for all x ‰ y such that

ˇ

ˇ

ˇ

ˇ

fpxq ´ fpyq

x´ y

ˇ

ˇ

ˇ

ˇ

ď C.

Theorem 1.3. Let V be a linear subspace of Rn, u P Rn and u||V the orthogonal
projection of u onto V. Then, for all v P V, we have that

›

›u||V ´ v
›

› ď }u´ v} .

Proof: We have

u´ v “ pu´ u||Vq ` pu||V ´ vq ñ }u´ v}
2
“

›

›pu´ u||Vq ` pu||V ´ vq
›

›

2

expanding the right hand side gives us

›

›pu´ u||Vq ` pu||V ´ vq
›

›

2
“
`

pu´ u||Vq ` pu||V ´ vq
˘T

¨
`

pu´ u||Vq ` pu||V ´ vq
˘

“ pu´ u||Vq
T pu´ u||Vq

` pu´ u||Vq
T pu||V ´ vq

` pu||V ´ vq
T pu´ u||Vq

` pu||V ´ vq
T pu||V ´ vq

“ pu´ u||Vq
T pu´ u||Vq

` pu||V ´ vq
T pu||V ´ vq

“
›

›u´ u||V
›

›

2
`
›

›u||V ´ v
›

›

2
,

as a result of orthogonality between pu ´ u||Vq and pu||V ´ vq. Finally, due to
the non-negative euclidean norm, we obtain

}u´ v}
2
ě
›

›u||V ´ v
›

›

2
, (1.1)
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which is equivalent to

}u´ v} ě
›

›u||V ´ v
›

› , (1.2)

and we are done.

Definition 1.14. The Frobenius norm, denoted }¨}F , of a matrix A is given
by

}A}F “
b

tr pAAT q.





Chapter 2

Random Matrices

2.1 Gaussian Ensembles
A cornerstone in random matrix theory (RMT) is to study the spectrum of
random matrices. It’s difficult to say anything about the eigenvalues for an
arbitrary matrix with random entries, so we will focus on symmetric random
matrices.

Definition 2.1. A n ˆ n matrix M with entries mij is a Wigner matrix if
mij “ mji and mij are randomly i.i.d. up to symmetry.

E. P. Wigner used symmetric random matrices to study nuclear energy levels
[23]. Another assumption which gives room for more calculations is to consider
the entries being Gaussian.

Definition 2.2. Let M be a real Wigner matrix with diagonal entries mii „

N p0, 1q and mij „ N p0, 1{2q, i ‰ j. M is said to belong to the Gaussian
orthogonal ensemble (GOE).

One can easily achieve the required properties for a matrix to be considered as a
GOE matrix. Consider a random nˆn matrix A with all entries being N p0, 1q.
Then

M “
A`AT

2
(2.1)

is a GOE matrix.

We can derive a more practical way to describe the GOE.

Andersson, 2020. 9
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Theorem 2.1. The joint pdf for the Gaussian orthogonal ensemble is given by

fpMq “
1

2n{2
1

πnpn`1q{4
e´

1
2 trpM2

q .

Proof: Let mij be the entries for a nˆ n matrixM generated by GOE. Recall,
all entries in M are independent so their joint pdf is given by

fpMq “

ˆ

1
?

2π

˙n
ź

i“j

e´
m2
ij
2

ˆ

1
?
π

˙

npn´1q
2 ź

1ďiăjďn

e´m
2
ij . (2.2)

Using exponential rules and the fact that M is symmetric, we can rewrite the
joint pdf as

Cn
ź

i“j

e´
m2
ij
2

ź

1ďiăjďn

e´m
2
ij “ Cne

´ 1
2

ř

i“j
m2
ij´

ř

1ďiăjďn
m2
ij

“ Cne
´ 1

2

˜

ř

i“j
m2
ij`2

ř

1ďiăjďn
m2
ij

¸

“ Cne
´ 1

2 trpM2
q ,

(2.3)

where

Cn “

ˆ

1
?

2π

˙nˆ
1
?
π

˙

npn´1q
2

“
1

2n{2
1

πn{2
1

πnpn´1q{4

“
1

2n{2
1

πnpn`1q{4

(2.4)

is a normalization constant.

Remark: The matrices sampled from the GOE are not orthogonal. The or-
thogonal in GOE comes from the fact that GOE matrices are invariant under
orthogonal transformations, which means that M and QTMQ has the same
distribution, where Q is an orthogonal matrix [1].

Matrices sampled from the GOE only contain real entries. Two other common
Gaussian ensembles are the Gaussian unitary ensemble (GUE) and the Gaus-
sian symplectic ensemble (GSE).

A random Hermitian n ˆ n matrix M is said to belong to the GUE if the
diagonal entries mjj „ N p0, 1q and the upper triangular entries are given by
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mjk “ ujk ` ivjk where ujk, vjk „ N p0, 1{2q. The pdf for GUE is given by

fpMq “

n
ź

j“1

1
?
π
e´m

2
jj

ź

1ďjăkďn

2

π
e´2|m2

jk| “ Cne
´trpMq , (2.5)

where

Cn “

ˆ

1
?
π

˙nˆ
2

π

˙n

“
2n

π3n{2
(2.6)

is a normalization constant. The U stands for GUE matrices being invariant
under unitary transformations [8].

We will not discuss the GSE beside stating that its matrix entries are real
quaternions.

2.2 Eigenvalues

We shall now look at the spectrum for random matrices with Gaussian entries.
We will mostly limit ourselves to the GOE case but some more general results
are presented as well.

Theorem 2.2. (Section 1.2 [8]) The joint pdf for the eigenvalues of a n ˆ n
GOE matrix is given by

fpλ1, . . . , λnq “
1

Cn
e
´ 1

2

n
ř

k“1

λ2
i

ź

1ďiăjďn

|λj ´ λi| ,

where Cn is a normalization constant.

We shall only show that Theorem 2.2 holds for the simplest case, that is, we
want to show that

fpλ1, λ2q “ ke´
1
2 pλ

2
1`λ

2
2q|λ1 ´ λ2| (2.7)

is the correct eigenvalue distribution for a 2 ˆ 2 GOE matrix, where k is nor-
malization constant.

Proof (Following from [7]): We will accomplish (2.7) by transforming the GOE
pdf in terms of its eigenvalues. Recall that GOE matrices are invariant under or-

thogonal transformation, so considerM “ QTMλQ, whereM “

ˆ

m11 m12

m21 m22

˙
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is a GOE matrix, Q “

ˆ

cos θ sin θ
´ sin θ cos θ

˙

is an orthogonal matrix and Mλ “

ˆ

λ1 0
0 λ2

˙

. We have that

ˆ

m11 m12

m21 m22

˙

“

ˆ

cos θ sin θ
´ sin θ cos θ

˙T ˆ

λ1 0
0 λ2

˙ˆ

cos θ sin θ
´ sin θ cos θ

˙

“

ˆ

λ1 cos2 θ ` λ2 sin2 θ pλ1 ´ λ2q sin θ sin θ
pλ1 ´ λ2q sin θ sin θ λ1 sin2 θ ` λ2 cos2 θ

˙

(2.8)

that is
$

’

&

’

%

m11 “ λ1 cos2 θ ` λ2 sin2 θ,

m22 “ λ1 sin2 θ ` λ2 cos2 θ,

m12 “
1
2 pλ1 ´ λ2q sin 2θ.

(2.9)

Note that m12 “ m21 due to symmetry, so we only need to consider one of the
entries. To ensure that our function in the terms of its new variables (the eigen-
values) is a valid pdf, we need to take the Jacobian determinant into account.
The Jacobian is given by

J “

¨

˝

cos2 θ sin2 θ pλ2 ´ λ1q sin 2θ
sin2 θ cos2 θ pλ1 ´ λ2q sin 2θ
1
2 sin 2θ ´ 1

2 sin 2θ pλ1 ´ λ2q cos 2θ

˛

‚ (2.10)

and

detpJ q “ det

¨

˝

cos2 θ sin2 θ pλ2 ´ λ1q sin 2θ
sin2 θ cos2 θ pλ1 ´ λ2q sin 2θ
1
2 sin 2θ ´ 1

2 sin 2θ pλ1 ´ λ2q cos 2θ

˛

‚

“ λ1 cos4 θ cos 2θ ´ λ2 cos4 θ cos 2θ ´ λ2 sin2 2θ

` λ1 sin2 2θ ` x sin2
p2θq ´ λ1 sin4 θ cos 2θ

` λ2 sin4 θ cos 2θ

“ pλ1 ´ λ2qpcos2 2θ ` sin2 2θq

“ λ1 ´ λ2

(2.11)

Now, the change of variable can be done as fpm11,m22,m12q Ñ fpλ1, λ2, θq|detpJ q|
:“f̂pλ1, λ2, θq, where fpm11,m22,m12q is the GOE pdf. We have that

f̂pλ1, λ2, θq “ k1e´
1
2 pλ

2
1`λ

2
2q|λ1 ´ λ2| , (2.12)
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where k1 is a constant. To get rid of θ, all we need to do is integrate with respect
to θ which only contributes to the constant value. We have

f̂pλ1, λ2q “

ż

θ

k1e´
1
2 pλ

2
1`λ

2
2q|λ1 ´ λ2|dθ

“ ke´
1
2 pλ

2
1`λ

2
2q|λ1 ´ λ2|.

(2.13)

Next thing we are going to look at is the distribution of the distance between
two eigenvalues from a 2ˆ 2 GOE matrix.

Theorem 2.3. The pdf for the distance d “ |λ1´λ2| between the two eigenvalues
λ1, λ2 in a 2ˆ 2 GOE matrix is given by

fpdq “
d

2
e´

d2

4 .

Proof: Let M “

ˆ

m11 m12

m21 m22

˙

be GOE matrix with eigenvalues λ1, λ2 such

that λ1 ą λ2 and consider d “ λ1 ´ λ2. Solving det
ˆ

m11 ´ λ m12

m21 m22 ´ λ

˙

“ 0

gives us

λ1 “
m11 `m22 `

a

pm11 ´m22q
2 ` 4m12m21

2
,

λ2 “
m11 `m22 ´

a

pm11 ´m22q
2 ` 4m12m21

2

and therefore
d “

b

pm11 ´m22q
2 ` 4m2

12 ,

where we used that m12 “ m21 due to symmetry. Now let X “ m11 ´ m22,
Y “ 2m12. We have that X „ N p0, 2q, Y „ N p0, 2q so

d “
a

X2 ` Y 2 „ Rayleighp
?

2q (2.14)

according to Lemma 1.1. The pdf for d is therefore given by

fpdq “
d

2
e´

d2

4 . (2.15)
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Figure 2.1: Pdf for distance between the two eigenvalues for a 2ˆ2 GOE matrix.

What Theorem 2.3 actually says is that the eigenvalues do not want to be too
close to each other, neither do they want to be too far apart. For d close to 0,
the linear factor will dominate while for large d, the exponential factor will take
over, see Figure 2.1.

One may rescale (2.15) to

fpsq “
πs

2
e´

πs2

4 , (2.16)

which is known as Wigner’s surmise [18].

Wigner suggested (2.16) to calculate the energy level spacings in the atomic nu-
cleus where s “ λi`1´λi

D and D equals the mean distance for the energy levels.
While (2.15) do gives us an correct pdf for the spacings between the eigenvalues,
Wigner’s surmise only works as an approximation for true value of the energy
level spacings. The error may be up to 2% [9].

As we mentioned earlier there exist more Gaussian ensembles than the orthog-
onal one. Each of these ensembles have their own eigenvalue distribution as
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well.

Theorem 2.4. (Section 1.3 [8]) The joint pdf for the eigenvalues of the GOE
(β “ 1), the GUE pβ “ 2q and the GSE pβ “ 4q is given by

fpλ1, . . . , λnq “
1

Gn,β
e
´
β
2

n
ř

k“1

λ2
i

ź

1ďiăjďn

|λj ´ λi|
β ,

where β is known as the Dyson index and

Gn,β “ β´n{2´nβpn´1q{4p2πqn{2
n´1
ź

j“0

Γp1` pj ` 1qβ{2q

Γp1` β{2q

is a normalization constant.

So how do we actually calculate the probability that an eigenvalue ends up
within a given interval I? Normally, this would be done as

P pλ P Iq “
ż

I
fpλqdλ. (2.17)

But how do we get the pdf for the eigenvalue? A good guess could be to integrate
away the other variables in the joint pdf given in Theorem 2.4, that is

fpλq “

ż 8

´8

. . .

ż 8

´8

fpλ, λ2, . . . , λnqdλ2 . . . dλn. (2.18)

However, computing this multiple integral is far from trivial, even if we limit
ourselves to the GOE. As we saw earlier in Figure 1.1, it seems like the eigenvalue
distribution takes on a epileptic shape.

Theorem 2.5. (Section 1.4 [8]) As the size n of a matrixM from the Gaussian
ensemble approaches infinity, the eigenvalue distribution for the scaled matrix
M?
2n

has a limit

fpλq “
2

π

a

1´ λ2 , λ P r´1, 1s .

Theorem 2.5 is known as Wigner’s semicircle law. Wigner was first to prove it
with the help of combinatorics in the 1950’s. Later on, M. L. Mehta and M.
Gaudin [18] proved it by computing the integral given in (2.18) and then taking
the limit nÑ8.

The curve generated for the semicircle law won’t be a half-circle, but rather a
half-ellipse, see Figure 2.2. Depending on how you choose to scale your matrix
you will get different intervals for your elliptic curve.
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Figure 2.2: Eigenvalue distribution of 1000 ˆ 1000 GOE matrix together with
semicircle law.



2.3. Covariance and Wishart Ensembles 17

Figure 2.3: Plots of two data sets with positive and negative covariance respec-
tively.

2.3 Covariance and Wishart Ensembles
So far have we only discussed theory regarding Wigner matrices and their nat-
ural symmetric counterpart pA`AT q{2, which mostly appear when modelling,
for example, physical systems [23]. However, when we are studying applications
of multivariate statistics, such as variance analysis, regression analysis, dimen-
sion reduction etc. we are often interested in variation and dependency in our
input data. A more occurring matrix in these topics is the covariance matrix,
which will be the focus of this section.

Definition 2.3. The covariance between two random variables X and Y ,
where ErXs “ µX , EpY q “ µY , is given by

CovrX,Y s “ ErpX ´ µXqpY ´ µY qs .

If X and Y are independent then CovpX,Y q “ 0. However, CovpX,Y q “ 0
does not necessary mean that X and Y are independent. The covariance acts
as a metric of how two random variables vary compared to each other. Posi-
tive/negative covariance means that X and Y tend to be large/small simulta-
neously. This is illustrated in Figure 2.3.

Definition 2.4. The covariance matrix of a random vector X P Rpˆ1 is



18 Chapter 2. Random Matrices

given by
C “ ErpX ´ µqpX ´ µqT s ,

where µ “ ErXs “ pErX1s, ErX2s, . . . , ErXpsq
T is the mean vector of X.

Each element cij in the covariance matrix C denotes the covariance between Xi

and Xj . Since cii “ CovpXi, Xiq “ ErpXi´µXiqpXi´µXiqs “ σ2
i we have that

the variance of Xi can be found on the diagonal of C, as

C “

¨

˚

˝

σ2
1 c12 . . .

c21 σ2
2 . . .

...
...

. . .

˛

‹

‚

. (2.19)

Note that CovpX,Y q “ CovpY,Xq soC is always symmetric. Also, for v P Rnˆ1

we have that

vTCv “ vTErpX ´ µqpX ´ µqT sv

“ ErvT pX ´ µqpX ´ µqTvs

“ ErppX ´ µqTvqT pX ´ µqTvs

“ Er
›

›pX ´ µqTv
›

›

2
s ě 0

(2.20)

so the covariance is positive semi-definite and therefore, due to Lemma 1.3, the
eigenvalues of C are non-negative. What (2.20) actually tells us is that the
variance (see Definition 1.4) for a linear combination aTX of random variables
is given by V arraTXs “ aTCa.

With the covariance matrix defined we may expand the single variable Gaussian
distribution into its multivariate case.

Definition 2.5. A random vector X P Rpˆ1 has a multivariate normal
distribution if its pdf is given by

fpX|µ,Cq “
1

p2πqp{2detpCq
e´

1
2 pX´µqC

´1
pX´µqT ,

where µ is the mean vector and C is the covariance matrix. This will be denoted
as X „ N pµ,Cq.

In most real-world scenarios, we don’t know the true values of our parameters so
we have to estimate them. For example, in the univariate case we, we estimate
the mean µ with the sample mean x̄ “ 1

n

ř

xi and variance is mostly estimated
with the sample variance s2 “ 1

n´1

ř

pxi ´ x̄q
2. What we often desire from our

estimators is that they are unbiased, which means that their expected value is
the true value.
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Definition 2.6. Suppose we have n independent samples pxi, yiq. The sample
covariance is given by

ĉ “
1

n´ 1

n
ÿ

i“1

pxi ´ x̄qpyi ´ ȳq

For the sample covariance, we have that

ĉ “
1

n´ 1

n
ÿ

i“1

pxi ´ x̄qpyi ´ ȳq

“
1

n´ 1

˜

n
ÿ

i“1

xiyi ´ ȳ
n
ÿ

i“1

xi ´ x̄
n
ÿ

i“1

yi ` nx̄ȳ

¸

“
1

n´ 1

˜

n
ÿ

i“1

xiyi ´
1

n

n
ÿ

i“1

xi

n
ÿ

i“1

yi

¸

“
1

n´ 1

˜

n
ÿ

i“1

xiyi ´
1

n

˜

n
ÿ

i“1

xiyi `
ÿ

i‰j

xiyj

¸¸

(2.21)

and calculating the corresponding expected value of Ĉ gives us

ErĈs “
1

n´ 1
pEr

n
ÿ

i“1

XiYis ´
1

n
pEr

n
ÿ

i“1

XiYis ` Er
ÿ

i‰j

XiYisqq

“
1

n´ 1
pnErXY s ´

1

n
pnErXY s ` npn´ 1qErXsErY sqqq

“ ErXY s ´ ErXsErY s

“ CovpX,Y q

(2.22)

and thus, the sample covariance is an unbiased estimator of the true covari-
ance. The last step can be derived by expanding the covariance formula in
Definition 2.3.

Definition 2.7. Suppose we have n independent samples xi P Rpˆ1 i “ 1, . . . , n,
then the sample (empirical) covariance matrix is given by

S “
1

n´ 1

n
ÿ

i“1

pxi ´ x̄qpxi ´ x̄q
T .

By evaluating the sum for the sample covariance matrix S as we did in (2.21),
we get the more practical matrix notation

S “
1

n´ 1
pXXT ´ nx̄x̄T q, (2.23)
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whereX “ rx1, . . . ,xns is a pˆn data matrix with each column being a sample
and x̄ is the sample mean.

We shall now consider the distribution for matrices on the form XXT where
the entries xi of X are normal distributed. In general, when xi „ N pµ,Cq,
we have the non-central Wishart distribution [13]. For the sample covariance
matrix S, we indirectly assume µ “ 0 as a result of subtracting the sample
mean from each xi. Assuming zero mean explicitly is rather common in RMT
and statistical literature, since most interesting results will be the same as with
µ ‰ 0 [20].

Theorem 2.6. (Section 7.2 [2]) Let W “ nS where S is the sample covari-
ance matrix built upon X “ rx1, . . . ,xns P Rpˆn, xi „ N pµ,Cq. W is then
called a Wishart matrix and has a (central) Wishart Distribution, denoted
Wppn,Cq, with the pdf

fpW q “
det pW q

n´p´1
2 e´

1
2 trpC´1W q

2
np
2 π

ppp´1q
4 det pCq

n
2
śp
i“1 Γ

`

1
2 pn` 1´ iq

˘

Remark: To be consistent with the statistical literature we are referring to, we
define the sample covariance matrix with a factor n´1 instead of pn´1q´1. This
change will be of minor importance for the theory we are representing and the
empirical results will be sufficiently equal as n grows large.

Theorem 2.7. [6] Let X be a pˆ n matrix (n ě p) with i.i.d entries xij
being standard normal distributed. Then the matrix W “ XXT belongs to the
Wishart Ensemble with the pdf

fβpW q “
1

Cp,n,β
detpW qβpp´n`1q{2´1e´

1
2TrpW q ,

where Cp,n,β is a normalization constant and β “ 1, 2, 4 corresponds to the
orthogonal (real), unitary (complex) and symplectic (quaternion) ensembles, re-
spectively.

Remark: We have only defined covariance for real matrices in this chapter but
one may easily get the complex case by changing the real transpose operator
p¨qT to the complex one p¨q˚. Note that for β “ 1 we have the Wishart distri-
bution Wppn, Iq.

Like the GOE case, matrices from the Wishart orthogonal ensemble are not or-
thogonal, they are invariant under an orthogonal transformation. Also, since the
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entries of a Wishart matrix are not independent in general, it is not as trivial to
prove Theorem 2.7 than, for example, Theorem 2.1. A proof by A. Edelman for
the real and complex case, with help of matrix factorization, can be found in [5].

Just as eigenvalues tells us how eigenvectors are stretched when multiplied with
their corresponding matrix, eigenvalues of covariance matrices do inform us how
the data is spread (more about this in section 3.2). Like the Gaussian ensembles,
we have a joint eigenvalue distribution for each of the Wishart ensembles.

Theorem 2.8. [6] The joint eigenvalue pdf for a matrix generated by the
Wishart ensemble is given by

fpλ1, . . . , λpq “ cβ,p
ź

iăj

|λi ´ λj |
β

n
ź

i“1

λ
β
n pp´n`1q´1
i e´

1
2

řn
i“1 λi ,

where cβ,p is a normalization constant.

Since we only defined the Wishart ensemble for standard Gaussian entries, we
do expect our covariance matrix to take the form of an identity matrix. One
may mistakenly conclude assume that the eigenvalues will concentrate around
1. However, it turns out that λ1, . . . , λp « 1 only holds when the sample size is
much larger than the dimension of our data.

Theorem 2.9. [20] Consider a pˆ n matrix X (n ě p) with i.i.d. entries xij
being standard normal distributed and let γ “ p

n P p0, 1s. As the sample size n
approaches infinity, the eigenvalue pdf for S “ 1

nXX
T has a limit

fpλq “
1

2πγλ

a

pb` ´ λqpλ´ b´q , λ P rb´, b`s , (2.24)

where b˘ “ p1˘
?
γq2.

Theorem 2.9 is known as the Marčenko–Pastur law. We observe in Figure 2.4
that our prediction about the eigenvalues being close to 1 gets less accurate
when the dimension p approaches the sample size n.
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Figure 2.4: Empirical eigenvalue distribution of covariance matrices together
with Marčenko–Pastur law for different γ “ p

n values.



Chapter 3

Applications

3.1 Random Matrices in Neural Networks

3.1.1 Neural Networks in General

Neural networks (NNs) are trained to predict/classify new data. The most ba-
sic approach is to train NNs with training samples {xi,yi} i “ 1, . . . , n where
xi P Rp is a feature vector and yi is the correct class label. The output is a
function fpx;wq which is a prediction of the true value y, where w is a weight
vector that determines how important each of the components in x is.

The key idea is to find a function f and to adjust the parameters w such that the
NN predicts class labels y with a high accuracy. We measure the accuracy of our
NN with a loss function L, which we wish to minimize. The most elementary
NNs uses fpx;wq “ wTx, which results in the loss function

L “
n
ÿ

i“1

pyi ´w
Txiq

2. (3.1)

This is a least-square problem with an optimal solution w “ pXTXq´1Xy
where X “ rx1, . . . ,xns is our data matrix and y contains all our class labels
yi. An illustration of a very simple NN is given in Figure 3.1.

This NN structure can only solve linearly-separable classification problems which
puts heavy limitations on the practical uses of it and a classic example of its
limitations is the XOR problem [4]. A solution to this, which is based on Cover’s

Andersson, 2020. 23
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Figure 3.1: A very basic neural network with 4 dimensional feature vectors.

theorem [10], is to apply entry-wise a non-linear activation function σ : R ÞÑ R
on our data. Our new loss function is then given by

L “
n
ÿ

i“1

pyi ´ σpw
Txiqq

2 . (3.2)

Due to the non-linear mapping, our new optimization problem is non-linear and
our least-square solution will not work. In general, a NN with a non-linear
activation function will result in a non-convex optimization problem which is
considered hard to solve. NNs are in general built of hidden-layer(s) which are
used to apply our activation function and the training time for these networks
can be up to days [14]. This is due to the massive amounts of parameters in
large NNs, which in general results in many local minima while seeking an op-
timal solution. See Figure 3.2 for an illustration of this1.

A way to tackle this problem is to consider networks with a single hidden-layer
where the input weights are randomly selected, so called Extreme Learning Ma-
chines (ELMs) [12]. ELMs has shown to perform really good for large non-
complex data sets compared to other popular classification algorithms (such as
support vector machines)[11]. The fast performance comes from the fact that
we do not train the first layer in ELMs, so our non-linear optimization problem
turns into a regression problem with a closed form solution.

Due to the random weights we may use results from RMT to model our ELMs.
A framework for this will be represented in the next subsection, solely based on

1Figure is taken from https://github.com/tomgoldstein/loss-landscape
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Figure 3.2: Illustration of a loss surface with many local minima .

the work by Z. Liao, C. Louart and R. Couillet [24] [19].

3.1.2 RMT Model for Neural Networks
Consider a data matrix X “ rx1, . . . ,xns P Rpˆn with a target matrix2 Y “

ry1, . . . ,yns P Rdˆn, a random weight matrix H P RNˆp with i.i.d. Gaussian
standard entries and a weight matrix β P RNˆd for the second layer. We
shall denote the output from the hidden layer as Σ “ σpHXq P RNˆn, where
σ : R ÞÑ R is our activation function applied entry-wise, see figure Figure 3.3.
As mentioned earlier, only the output layer β is to be trained, while H is static
but randomly chosen. We seek weights β which minimizes the loss function

Lpβq “
1

n

n
ÿ

i“1

›

›yi ´ β
TσpHxiq

›

›

2
` λ }β}

2
F ,

for some regularization parameter λ ě 0 to ensure our model is not overfitting.
An explicit solution for this given by

β “
1

n

ˆ

1

n
ΣΣT ` λIN

˙´1

ΣY T “
1

n
Σ

ˆ

1

n
ΣTΣ` λIn

˙´1

Y T

which, per sample, results in a mean square training error

Etrain “MSEtrainpλq “
1

n

›

›βTΣ´ Y
›

›

2

F
“
λ2

n
tr
`

Y Q2Y T
˘

, (3.3)

2This is a more general notation of the one we used in (3.1), which allows us to have
multiple output nodes. However, when we represent the results in the end of this chapter, we
will use unidimensional output columns (d “ 1) as in (3.1).
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Figure 3.3: Sketch of our neural network (ELM) model with random weights.

where Q “ Qpλq “
`

1
nΣTΣ` λIn

˘´1
P Rnˆn is known as the resolvent of

the matrix ΣTΣ. Once training is accomplished, we test our network by its
capability to generalize. This is again measured in terms of mean squared error
but on a previously unseen data set xX of size n̂ with corresponding outputs pY ,
as

Etest “MSEtestpλq “
1

n̂

›

›

›
βT pΣ´ Y

›

›

›

2

F
. (3.4)

where pΣ “ σpHxXq.

Our goal is to predict how this network will perform. Due to the random
weights, we estimate the performance by studying a deterministic equivalent Q̄
of Q (where all the randomness is captured). This means that we are looking
for Q̄ such that

1

n
trpAqpQ´ Q̄q Ñ 0, aT pQ´ Q̄qbÑ 0,

holds for deterministic (non-random) matrix A P Rnˆn and unit vectors a, b P
Rn, where convergence is understood a.s. or in probability. To accomplish this,
we shall assume that our activation function σ is Lipschitz continuous. We shall
also assume a bounded growth rate for our network, that is, as nÑ8, we have
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1) p
n Ñ c1 and N

n Ñ c2 where c1, c2 P p0,8q, 2) Input matrix X has a bounded
spectral norm, and 3) Output matrix Y has bounded entries.

Determining a deterministic equivalent to Q often boils down to calculating
ErQs which unfolds from the fact that

›

›ErQs ´ Q̄
›

› Ñ 0. Given the model we
represented, Z. Liao shows that

Q̄ “ Q̄pλq “ pǨ ´ λInq
´1 , Ǩ “

N

np1` δq
K ,

where K “ Ewrσpw
TXqTσpwTXqs is an equivalent kernel matrix for w „

N p0, Ipq and δ implicitly defined as the solution to δ “ 1
n tr

`

KQ̄
˘

do result in
›

›ErQs ´ Q̄
›

›Ñ 0 ,

as n, p, N Ñ8. This, together with (3.3) and (3.4), gives us the deterministic
training and test mean-squared errors

Ētrain “
λ2

n
tr

˜

Y Q̄

˜

1
N tr

`

Q̄ǨQ̄
˘

1´ 1
N tr

`

ǨQ̄ǨQ̄
˘Ǩ ` In

¸

Q̄Y T

¸

,

Ētest “
1

n̂
“

›

›

›

pY ´ pY Q̄Ǩ
XxX

›

›

›

2

F

`

1
N tr

´

Y Q̄ǨQ̄Y
T
¯

1´ 1
N tr

`

ǨQ̄ǨQ̄
˘

ˆ

1

n̂
tr
`

Ǩ
xXxX

˘

´
1

n̂
tr
ˆ

In `
N

n
λQ̄

˙

Ǩ
XxX

Ǩ
xXX
Q̄

˙

,

which results in the desired convergence

Etrain ´ Ētrain Ñ 0, Etest ´ Ētest Ñ 0,

understood almost surely, where we used the notations

KAB “ Ewrσpw
TAqTσpwTBqs, ǨAB “

N

n

KAB

1` δ
, K “KXX , Ǩ “ ǨXX .

We represent the result3 on a classification task of a 2-class MNIST4 dataset (7
and 9) for two different choices of activation function σ in Figure 3.4. We can
observe an almost perfect match between theory and simulation for relatively
small n, n̂, p and N .

3The results are represented with a modified version of Z. Liaos code. Z. Liaos original
code can be found on https://github.com/Zhenyu-LIAO/RMT4ELM

4http://yann.lecun.com/exdb/mnist/
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Figure 3.4: Comparison between predicted and simulated MSE (log-log scale)
for sample size n “ n̂ “ 1024, variables p “ 784 and hidden neurons N “ 512.
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3.2 Dimensionality Reduction - PCA

In modern technology it is very common that data sets are very large and prob-
lems may arise when we try to draw statistical conclusions [3, 22]. A common
strategy to tackle this is to transform the data such that our transformed data
contains fewer variables but most of the relevant information remains. A very
popular method to accomplish this is the Principal Component Analysis (PCA),
which may traced back to 1901 [21].

3.2.1 Minimizing Mean Squared Error of Projection

Consider a sampled data matrix X “ rx1, . . . ,xns P Rpˆn that we want to
project onto a lower dimensional subspace spanned by the orthogonal unit vec-
tors rv1, . . . ,vns “ V P Rdˆn, where d ă p. It is safe to assume that the
sample mean x̄j for each column in X equals to zero (on a real data set, this
can achieved by replacing our variables xij with x̂ij “ xij´ x̄j). This projection
will result in loss of information and our goal is to minimize it. Due to Theo-
rem 1.3, we know that the optimal projection (in terms of least squares) is given
by the orthogonal projection. This gives us the mean squared error (MSE)

1

n

n
ÿ

i“1

›

›xi ´ V V
Txi

›

›

2

2
“

1

n

n
ÿ

i“1

´

}xi}
2
2 ´

›

›V Txi
›

›

2

2

¯

“
1

n

n
ÿ

i“1

}xi}
2
2 ´

1

n

n
ÿ

i“1

›

›V Txi
›

›

2

2
.

(3.5)

As we are minimizing the MSE in terms of V , we can simply ignore the first term
and focusing on maximizing the second term. With help of the trace identities
aTa “ trpaaT q and trpABCq “ trpBCAq we get

1

n

n
ÿ

i“1

›

›V Txi
›

›

2

2
“

1

n

n
ÿ

i“1

tr
`

V Txix
T
i V

˘

“
1

n
tr
`

V TXXTV
˘

“ tr
`

V TSV
˘

“ tr
`

SV V T
˘

“

n
ÿ

i“1

tr
`

Sviv
T
i

˘

“

n
ÿ

i“1

pSviq
T
vi

“

n
ÿ

i“1

vTi Svi.

(3.6)
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Now let yi “ vTxi, we have that

vTSv “
1

n´ 1

˜

n
ÿ

i“1

vTxix
T
i v ´ nv

T x̄x̄Tv

¸

“
1

n´ 1

˜

n
ÿ

i“1

`

vTxi
˘2
´ n

`

vT x̄
˘2

¸

“
1

n´ 1

¨

˝

n
ÿ

i“1

`

vTxi
˘2
´

1

n

˜

n
ÿ

i“1

vTxi

¸2
˛

‚

“
1

n´ 1

n
ÿ

i“1

pyi ´ ȳq
2
“ s2y

(3.7)

which tells us that vTSv is the sample variance of y1, . . . , yn. This means that
minimizing the MSE of the orthogonal projection is equivalent to maximizing
the variance of our data. We shall exploit this in the next subsection to acquire
a rather simple model for reducing the dimensionality while preserving as much
information as possible.

3.2.2 Maximizing the Variance

We have that the key idea behind PCA is to maximize the variance of our data
which means that we seek a linear combination vTx “

řp
i“1 vixi so that the

variance is maximized. The sample variance for such a linear combination is
given by vTSv where S is the sample covariance matrix. To proceed with a
non-trivial optimization problem, we shall assume that the vectors spanning
the subspace V are of unit norm and orthogonal to each other, that is, }v}22 “
vTi vj “ 1 for i “ j and vTi vj “ 0 otherwise. This results in the following
optimization problem

max
v P Rpˆ1

vTSv

s.t. vTv “ 1
(3.8)

Note that (3.8) is not a convex optimization problem. However, we can still
solve it by looking at the spectral decomposition of S

S “ EDET “

¨

˝

| |

e1 ¨ ¨ ¨ ep
| |

˛

‚

¨

˚

˝

λ1 0
.. .

0 λp

˛

‹

‚

¨

˚

˝

e1
...
ep

˛

‹

‚

,
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where, without loss of generality, we can assume that the eigenvalues are ordered
as λ1 ě . . . ě λp. Due to the symmetry of S, we also know that the eigenvectors
e1, e2, . . . will be orthogonal to each other (see Lemma 1.4). Multiplying S from
both sides with v gives us

vTSv “ vTEDETv “
`

ETv
˘T
DETv “ zTDz “

p
ÿ

i“1

λiz
2
i ď λ1

p
ÿ

i“1

z2i , (3.9)

where we used the notation z “ ETv. Note that

p
ÿ

i“1

z2i “ }z}
2
2 “

`

ETv
˘T
ETv “ vTEETv “ vTv “ 1, (3.10)

which tells us that vTSv ď λ1. Choosing v to be the eigenvector e1 corre-
sponding to λ1 results in

vTSv “ eT1EDE
Te1 “

`

ETe1
˘T
DETe1 “ λ1, (3.11)

since

ETe1 “

¨

˚

˝

e1
...
ep

˛

‹

‚

¨

˝

|

e1
|

˛

‚“

¨

˚

˝

eT1 e1
eT2 e1
...

˛

‹

‚

“

¨

˚

˝

1
0
...

˛

‹

‚

. (3.12)

This can be done for all the eigenvalues of S, that is,

λ1 “ eT1 Se1 “ sample variance for linear combinations eT1 xi @i “ 1, . . . , n,

...

λp “ eTp Sep “ sample variance for linear combinations eTp xi @i “ 1, . . . , n,

which tells us that the largest eigenvalue and it’s corresponding eigenvector
matches the direction in which the data varies most. This means that reducing
the dimensionality of a dataset while preserving maximum variance is obtained
by projecting the data onto the eigenvector(s) corresponding to the largest eigen-
value(s).
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Figure 3.5: Blue/red dots represent the 2-dimensional data projected onto the
first/second eigenvector.

We can measure how much of the variance is accounted for in a direction by
calculating

λk
trpSq

, (3.13)

where λk is the eigenvalue corresponding to the eigenvector ek we project our
data onto. As an illustrating example, consider the 2-dimensional dataset in
Figure 3.5. Projecting the data onto the first eigenvector (blue dots) will take
about 94% of the the variance into account.

In general, one direction isn’t enough to describe larger datasets sufficiently
good. We can take more eigenvalues into consideration in our calculation and
evaluate the accounted variances as

ΛS “

ř

iPS λi
trpSq

, (3.14)

where S is the set of eigenvalues we want to consider in our analysis. Neverthe-
less, correlation often do exist between sampled variables and then it’s usually
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Figure 3.6: Cumulative sum of the eigenvalues corresponding to the sample
covariance matrix of the data set ’ovariancancer’.

enough with a small set of eigenvalues to get a satisfying ΛS . To illustrate this,
we perform PCA on the dataset ’ovariancancer’5 which contains n “ 216 sam-
ples6 and p “ 4000 variables that has been accounted for. Observing the result
in Figure 3.6, we can see that we only need 3 eigenvalues (out of 216 unique
ones) to explain about 90% of the variance. Another interesting outcome is
that most of the eigenvalues tend to be very small and lump together while only
representing a small portion of the variance. Plotting the data projected onto
the first three eigenvectors gives us a noticeable clustering of the data (see Fig-
ure 3.7), which illustrates how PCA can be used to represent high dimensional
data.

5Can be loaded in MATLAB with the command "load ovariancancer"
6121 with ovarian cancer and 95 without.
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Figure 3.7: Red/Blue markers representing cancer/healthy patients in 3 dimen-
sion.

3.2.3 Statistical inference of PCA

So far, we treated PCA as a linear algebra problem without any assumptions
about the underlying distribution of the data, and for many applications, this is
good enough. For example, PCA may work as first step for other machine learn-
ing algorithms so intractable problems can be solved in a satisfactory time, or
as we demonstrated in Figure 3.7, to visualize high-dimensional data. However,
if we want to perform some kind of statistical inference, we need to consider
some distribution for our data samples in X.

Consider xi „ N pµ,Cq i “ 1, . . . n and let λj j “ 1, . . . , p be unique distinct
eigenvalues for C and let λ̂j be the eigenvalues for a sample covariance matrix
built upon xi. D. N. Lawley [17] proves that the mean and variance for the
random variable λ̂j is given by

Erλ̂js “ λj `
λj
n

p
ÿ

i“1,i‰j

ˆ

λi
λj ´ λi

˙

`O
ˆ

1

n2

˙

,

V arrλ̂js “
2λ2j
n

˜

1´
1

n

p
ÿ

i“1,i‰j

ˆ

λi
λj ´ λi

˙2
¸

`O
ˆ

1

n3

˙

.

(3.15)

T. W. Anderson [2] shows that the eigenvalues λ̂j in fact are asymptotically
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normal distributed. This means that as n grows large, we have

λ̂j „ N

˜

λj ,
2λ2j
n

¸

(3.16)

approximately. Normalizing (3.16) results in

λ̂j ´ λj

λj
a

2{n
„ N p0, 1q, (3.17)

which can be used for classic statistical inference such as hypothesis testing
and interval estimation. For example, a confidence interval (CI) for λj with a
confidence level 1´ α may be constructed as

´zα{2 ď
λ̂j ´ λj

λj
a

2{n
ď zα{2

ô

´zα{2λj
a

2{n` λj ď λ̂j ď zα{2
a

2{n` λj

ô

λ̂j

1` zα{2
a

2{n
ď λj ď

λ̂j

1´ zα{2
a

2{n

(3.18)

and thus, we have a CI

Iλj “

˜

λ̂j

1` zα{2
a

2{n
,

λ̂j

1´ zα{2
a

2{n

¸

, (3.19)

where zα{2 is the z-score which can be found in a normal table. Recall that we
are only interested in Iλj for large n, so it is safe to assume that zα{2

a

2{n ă 1.

For hypothesis testing, we may want to test

H0 : λj “ λj0 vs H1 : λj ‰ λj0 (3.20)

where we reject H0 on a significance level α if

ˇ

ˇ

ˇ

ˇ

ˇ

λ̂j ´ λj0

λj
a

2{n

ˇ

ˇ

ˇ

ˇ

ˇ

ě zα{2. (3.21)
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A perhaps more interesting test would be to check if the smallest pp´ kq eigen-
values are all the same, that is

H0 : λk`1 “ λk`2 “ . . . “ λp

vs
H1 : At least two of the smallest pp´ kq eigenvalues are not equal.

(3.22)

Accepting H0 as in (3.22) justifies that the k largest PCs are measuring some
significant variation in our input data while the remaining pp´kq PCs effectively
measure noise. To test (3.22), one may use

Q “

¨

˚

˝

śp
j“k`1 λ̂j

´

řp
j“k`1

λ̂j
p´k

¯p´k

˛

‹

‚

n{2

(3.23)

as a test statistic, where ´2 lnpQq „ χ2pfq approximately under H0 and f “
1
2 pp´k`2qpp´k´1q [15]. This lets us reject the null hypothesis at a significance
level α if

´2 lnpQq ě χ2
α{2pfq, (3.24)

where χ2
α{2pfq can be found in a χ2 table.



Chapter 4

Ending discussion

We have introduced, discussed and applied the results from random matrix
theory. The focus has solely been on matrices with entries being normal dis-
tributed, or even stricter, N p0, 1q distributed. Nevertheless, many interesting
results, such as Wigner’s semicircle law and the Marčenko–Pastur law, still
emerges.

As we mentioned in the beginning, RMT mostly appears on research level. The
aim of this thesis has been to introduce and perhaps simplify some results of
this rather advanced topic, so that someone with basic probability and linear
algebra skills can get a solid grasp of the properties related to random matrices.

For further research, it would be interesting to generalize some of the results.
We have mostly focused on the spectrum of large matrices with an underlying
N p0, 1q distribution. Having explicit non-asymptotically eigenvalue distribu-
tions for matrices with other distributions than standard normal would perhaps
shed some light on the topics of RMT, such that it would be introduced much
earlier in a mathematical oriented education.

Finally, as for applying the theory, we have only introduced RMT in already
well established applications. Starting from the other side, that is, given an
arbitrary matrix ensemble and trying to answer ’what does this model?’ would
perhaps result in new applications beside those we already have today.
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