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Abstract
Artificial intelligence (AI) holds much promise for enabling highly desired imaging diagnostics improvements. One of the most
limiting bottlenecks for the development of useful clinical-grade AI models is the lack of training data. One aspect is the large
amount of cases needed and another is the necessity of high-quality ground truth annotation. The aim of the project was to
establish and describe the construction of a database with substantial amounts of detail-annotated oncology imaging data from
pathology and radiology. A specific objective was to be proactive, that is, to support undefined subsequent AI training across a
wide range of tasks, such as detection, quantification, segmentation, and classification, which puts particular focus on the quality
and generality of the annotations. The main outcome of this project was the database as such, with a collection of labeled image
data from breast, ovary, skin, colon, skeleton, and liver. In addition, this effort also served as an exploration of best practices for
further scalability of high-quality image collections, and a main contribution of the study was generic lessons learned regarding
how to successfully organize efforts to construct medical imaging databases for AI training, summarized as eight guiding
principles covering team, process, and execution aspects.
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Introduction

Globally, a constantly increasing workload and cost causes an
extremely demanding situation for both the radiology and pathol-
ogy disciplines. However, the rapid development of artificial
intelligence (AI) technology shows great potential for highly
desired improvements. Future tools are expected to contribute
to improving the quality, accuracy, and efficiency of diagnostic

work and would be of particular use for repetitive and time-
consuming tasks.

A prerequisite for successful machine learning develop-
ment in imaging diagnostics is the availability of large vol-
umes of labeled (annotated) data. Today, there are some
existing repositories available, for example: The Cancer
Imaging Archive [1], re3data [2], Grand Challenges in
Biomedical Image Analysis [3], Chest-Xray8 [4], MIMIC-

* Caroline Bivik Stadler
caroline.bivik.stadler@liu.se

1 Center for Medical Image Science and Visualization (CMIV),
Linköping University Hospital, Linköping University, SE-581
85 Linköping, Sweden

2 Department of Health, Medicine and Caring Sciences (HMV),
Linköping University, SE-581 85 Linköping, Sweden

3 Sectra AB, Teknikringen 20, SE-583 30 Linköping, Sweden

4 Department of Science and Technology (ITN), Linköping
University, Campus Norrköping, SE-601 74 Norrköping, Sweden

5 Department of Clinical Pathology, Region Östergötland, Linköping
University Hospital, SE-581 85 Linköping, Sweden

6 Department of Biomedical and Clinical Sciences (BKV), Linköping
University, SE-581 85 Linköping, Sweden

7 Department of Cellular Pathology, Leeds Teaching Hospital NHS
Trust, Beckett St, Leeds LS9 7TF, UK

8 University of Leeds, Leeds LS2 9JT, UK
9 Department of Radiology, Region Östergötland, Linköping

University Hospital, SE-581 85 Linköping, Sweden
10 ContextVision AB, Klara Norra Kyrkogata 31, SE-111

22 Stockholm, Sweden

Journal of Digital Imaging
https://doi.org/10.1007/s10278-020-00384-4

mailto:caroline.bivik.stadler@liu.se


CXR Database [5], and Image Collection Library for
Histopathology Image Processing [6]. However, the demand
for labeled data is immense, and lack of suitable annotated
data is considered a major bottleneck for AI development in
the field of medical imaging. The lack pertains to several
aspects: amount of cases, coverage of relevant diagnostic
areas, and quality/existence of annotations [7]. With respect
to ground truth annotations, inconsistencies in labeling have
been shown to be problematic [8]. Moreover, since AI models
need to be continuously updated as the underlying imaging
techniques evolve, there will be a persistent need for more
training data even for already trained and proven models.
Therefore, it is of utmost importance to develop sustainable
processes and practices for generation of high-quality anno-
tated imaging data. An important facet of high quality is rep-
resentativeness for clinical tasks, both in terms of pixel data
and annotated components.

In this paper, we describe the construction of an annotated
imaging database including data from both radiology and pa-
thology. The database construction was proactive in the sense
that the intent was to support future AI training across a wide
range of tasks. The proactiveness entails challenges of general-
ity, which do not emerge in annotation projects serving a
predefined and highly specific AI training target. The construc-
tion of the database constitutes an initial phase that was
intended to explore best practices for further work on a larger
scale. We argue that a broad knowledge on organization and
workflow aspects of database construction is of a great value for
AI training in medical imaging. Few such insights have previ-
ously been reported in the literature, and the focus for those
studies has mainly been to describe the database content [9,
10]. Thus, apart from the database as such, our contribution is
lessons learned from its generation, summarized in eight guid-
ing principles covering team, process, and execution facets.
While our work targets proactive database design and construc-
tion, we believe that these guiding principles are valid in many
other cases including specifically targeted annotation efforts.

Materials and Methods

The work presented in this paper was conducted within a pro-
ject called DROID, the Diagnostic Reference Oncology
Imaging Database. The project was run by a triple-helix con-
sortium consisting of an academic institution (CMIV,
Linköping University), the diagnostic division of one public
care provider (Region Östergötland), and two companies work-
ing in AI for medical imaging (Sectra and Context Vision).

The aim of the project was to establish a database with
substantial amounts of detail-annotated oncology imaging da-
ta from pathology and radiology, as a first step towards devel-
oping high-quality collections on a large scale. The database
generation was proactive, in the sense that it was intended to

be useful for unspecified future training of AI models for
many different assistance tasks, such as detection, quantifica-
tion, segmentation, and classification.

This study was approved by the regional institutional re-
view board prior to study commencement (2017-276-31 and
2017-285-31). At the onset of the project, clinically active
physicians evaluated which medical areas within oncology
to target. The first selection criterion was clinical relevance
in terms of demand for AI assistance, feasibility of an AI tool
to successfully contribute, and feasibility to generate sufficient
image data to train an AI model. The second selection criteri-
on was diversity in terms of the tasks requested from AI as-
sistance, such as detection or segmentation. In pathology, four
areas were selected, breast, ovary, skin, and colon, and, in
radiology, two areas, skeleton and liver.

The annotation work was made by medical experts in the
respective field, carefully taking standardized ontologies into
account. In parallel to annotation work based on traditional
polygon drawing, prototypes of annotation tools with tailor-
made interaction design and machine learning assistance were
developed and evaluated [11]. For each of the four pathology
datasets, one physician made the annotations and, thenceforth,
one senior pathologist confirmed them. In total, two senior
pathologists and one other physician were involved in the
project. For each of the two radiology datasets, one radiology
resident was responsible for making the annotations and one
senior radiologist confirmed them. In total, one senior radiol-
ogist and two radiology residents were involved in the project.

The annotation effort was conducted in combination with
AI prototype development using the data, constituting a
usage-centered feedback loop allowing continuous improve-
ments during the database creation. The purpose was to give
early feedback on the annotation protocol design and to inves-
tigate the utility of the database. Three AI models were devel-
oped, two for pathology and one for radiology.

Results

Database Content

The DROID project resulted in a database containing images
with detailed annotations for training of AI systems for oncol-
ogy diagnostics. The database covers both the area of pathol-
ogy and radiology, and the content is well diversified.
Malignant as well as benign images of liver, skeleton, skin,
colon, breast, and ovary can be accessed for medical AI train-
ing proposes. This includes 754 pathology whole-slide images
and 110 CT examinations (Table 1).

The image database has initially been published for open
use within Sweden through AIDA, Analytic Imaging
Diagnostics Arena [12], a national arena for AI research and
innovation. The AIDA dataset register [13] is open for
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exploration also by international researchers, and access re-
quests are welcome.

The datasets are briefly described below. All imaging data
were anonymized prior to further handling. The data were
mainly collected from the clinical PACS at the Linköping
University Hospital, from the Pathology and Radiology de-
partments, respectively, apart from the breast histopathology
that was scanned from a separate research collection of slides.
An initial subset of the colon and skin datasets have been
described previously [14]. The annotations were made in the
Sectra PACS software (Sectra AB, Linköping, Sweden). For
three of the datasets (breast, ovary, and liver), a corresponding
AI prototype was developed in parallel. For further specifica-
tion of each DROID dataset, please refer to the Appendix.

Histopathology—Ovarian Tissue

The ovarian dataset [15] consists of 193 hematoxylin and
eosin (H&E)-stained whole slide images (WSI) (Fig. 1). The
distribution of diagnostic classifications was selected to reflect
the overall distribution of clinical cases of suspected ovarian
tumors. The dataset consists of 172 malignant tumor cases and
21 normal cases. Eight of the most prevalent, histologically
defined, tumor types were annotated by polygonal outlines.
Normal ovarian tissue was outlined as a whole. In total, 2402
separate annotations were made.

The corresponding developed AI prototype targeted the
prediction of whether additional immunohistochemistry
(IHC) staining is needed for clinical diagnosis. High-grade
serous carcinoma (HGSC) is the most common type of cancer
originating from the ovary/tuba, characterized by low differ-
entiated cells with a high mitosis rate. The H&E stain is,
however, insufficient to set the HGSC diagnosis as other car-
cinoma types can have a similar morphology. If any of these
cancer types are found, the clinical process is to order addi-
tional tissue sections stained by certain IHC markers.

Predicting the need for the additional staining and trigger it
automatically would lead to shorter turn-around times. Thus,
the AI prototype was tasked to detect existence of four tumor
types. Detailed performance results of the prototype are not
the focus here, but results indicate that a majority of IHC
orders could indeed be automatically triggered at a feasibly
low degree of unnecessary orders.

Histopathology—Breast Tissue

The DROID dataset of breast tissue [16] consists of 361 H&E-
stained breast WSI (Fig. 2). Out of these, 296 are malignant
cases sampled from women diagnosed with invasive breast
cancer or a mix of invasive and in situ cancer. The tumors
were classified into four distinct SNOMED-CT categories ac-
cording to morphology: invasive duct carcinoma, invasive
lobular carcinoma, non-invasive in situ carcinoma, and others.
In total, 4144 separate annotations were made on the malig-
nant slides to segment the different tissue structures and link
them to ontological information. The benign WSIs do not
contain any annotations.

The annotation of this breast dataset was also connected to
prototype development of an AI application. The target was to
provide diagnostic assistance in several ways: per-slide flag-
ging of cancer vs normal, segmenting the cancer tissue within
a slide, and finding the greatest tumor diameter. The tumor
diameter is a prognostic factor, commonly used by patholo-
gists in their tumor classification work-up. The results from
this pilot effort indicate that precision at useful levels is within
reach, for example, showing average error margins for tumor
segmentation of 0.7 mm.

Histopathology—Skin Tissue

The WSI collection of skin tissue [17] consists of 99 H&E-
stained slides (Fig. 3). Of those, 49 have abnormal features,
and 50 are considered histologically normal. For the skin data,
a different annotation strategy compared with breast and ovary
was applied. All significant abnormal findings were identified
and outlined, in total, 13 types such as actinic keratosis, basal
cell carcinoma, and dermatofibroma. Other tissue components,
such as epidermis and adnexal structures, were also delineated to
create a complete histological map, as well as the surgical mar-
gin. In total, 16,741 separate annotations were made, all in the
form of drawn polygons with ontological labels.

Histopathology—Colon Tissue

The WSI collection of colon tissue [18] consists of 101 H&E-
stained slides (Fig. 4). Of those, 52 have abnormal features,
and 49 are considered histologically normal. For the colon
data, a similar annotation strategy compared with the skin
dataset was applied. All significant abnormal findings were

Table 1 Diagnostic reference oncology imaging database (DROID)
content

Pathology WSI

Tissue Images Annotations Size (GB)

Ovarian 193 2402 109

Breast 361 4144 501

Skin 99 16,741 32

Colon 101 756 49

Total 754 24,043 691

Radiology CT

Tissue Cases Lesions Size (GB)

Abdomen (liver) 76 361 34

Skeleton (pelvis) 34 36 15

Total 110 397 49
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identified and outlined, in total, 15 types such as hyperplastic
polyp, high-grade adenocarcinoma and necrosis. Tissue com-
ponents such as mucosa and submucosa were also delineated
to create a complete histological map, as well as the surgical
margin. In total, 756 separate annotations were made, all in the
form of drawn polygons with ontological labels.

Radiology—Liver

The DROID dataset of radiology liver images [19] consists of
76 cases of CT abdomen examinations showing liver metas-
tasis (Fig. 5). The images were acquired in the venous contrast
phase with a slice thickness of 1 mm without overlap. All

Fig. 1 Example images from the DROID ovarian histopathology dataset selected to reflect the overall distribution of clinical cases of suspected ovarian
tumors. (a) Full-slide overview. (b) Close-up showing annotated regions
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cases included liver malignancies. Multiplanar reconstruction
of the CT images was performed to assist localization of the
lesions. All lesions > 5 mm were segmented. Obvious cysts
were excluded as judged by their Hounsfield Unit pixel values
(HU = 0–20). The lesion outlines were done on axial images.
The 317 lesions identified were delineated in all slices where
they were visible.

The dataset was used in an exploratory AI prototype devel-
opment effort focused on detecting and segmenting lesions,
with each slice evaluated separately. Such computer assis-
tance is desirable as it could lead to time savings for the fre-
quent task to follow up oncology patients [20]. The prototype
was developed to a high sensitivity for lesion detection of
lesions but with remaining challenges in false-positive rate
and segmentation precision.

Radiology—Skeletal

The sixth and smallest oncology dataset in DROID consists of
34 radiology cases of abdominal CT [21]. The scans all

include skeletal metastases of lytic or mixed lytic and sclerotic
metastases (Fig. 6). Annotations were made for metastasis that
had been verified by pathology examination of biopsies. The
metastases were given slice-by-slice polygonal outlines by
one radiologist, and the annotations were then confirmed by
a second radiologist. The dataset contains 36 lesion annota-
tions in total.

Guiding Principles

In the course of the DROID project, we explored and evalu-
ated the best practices for this type of annotated database
construction. The resulting summary of guiding principles is
presented in Table 2.

Principle T1 emphasizes that a cross-disciplinary teamwith
both medical and technical expertise is a prerequisite for a
successful outcome. In the concept of medical expertise, we
include knowledge on relevant clinical practices. The interdis-
ciplinary interaction is characterized as a recurrent communi-
cation with joint incentive to make progress, not a one-off

Fig. 2 Example image from the DROID breast histopathology dataset, consisting mainly of malignant cases with invasive breast cancer or a mix of
invasive and in situ cancer. Full-slide overview with annotated regions
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superficial advisory session. Another type of cross-
disciplinary is reflected in T2, which highlights the great ben-
efit of involving several diagnostic applications in the same
project.

The following two guiding principles apply to process as-
pects. P1 states that a flexible and iterative approach is to be

preferred as opposed to adhering closely to a plan established at
the beginning of the effort. The P2 principle means that even
when the goal is to produce a database, and explicitly not to
develop AI solutions, it is nevertheless advantageous to include
AI development to provide feedback on imaging and annota-
tion protocols. An annotation protocol includes many choices

Fig. 3 Example images from the DROID skin histopathology dataset, a balanced mix of normal and abnormal cases, with granular abnormality
annotations. (a) Full-slide overview. (b) Close-up showing annotated regions
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such as granularity of categories, type of annotations, and level
of detail of delineations. Actual prototype implementations can
be used to evaluate whether those choices are appropriate,
which can lead to early protocol adjustments to ensure that
the time is spent on the most valuable input.

Finally, the guiding principles include four points on how
to prioritize efforts. E1–E4 denote aspects that are easily given

too little attention and effort. Although E1, specifying imaging
material, may sound straightforward, we emphasize the com-
plexities of defining exact inclusion criteria for case types and
technical imaging properties. Such criteria also have a close
interplay with clinical workflows. The E2 principle refers to
the important groundwork on selecting appropriate, standard
ontologies for the annotation work. Being closely related, E3

Fig. 4 Example image from the DROID colon histopathology dataset, a balanced mix of normal and abnormal cases, with granular abnormality
annotations. Full-slide overview with annotated regions

Fig. 5 Example images from the DROID liver radiology dataset. (a)
Axial CT slice of the upper abdomen with seven semi-automated seg-
mented lesions. (b) Volume visualization of the whole abdomen with

several segmented liver lesions in green. The bones and the portal vein
are represented in 3D rendering mode for anatomical orientation. The
grayscale image is presented on one coronal slice
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is about specifying what components to annotate, with what
precision and exhaustiveness, as well as how to handle over-
laps, borderline cases, artifacts, etc. Both E2 and E3 include
investment efforts to ensure that the execution takes place
according to plan, for instance, through discussion and super-
vision activities. E4 reflects the insight that even when basic
annotation tools such as polygon drawing is sufficient for the
task, investing in developing specialized tools can save time
as annotation work typically is highly time-consuming.

Discussion

The presented guiding principles for database creation efforts
stem from our experiences in the DROID project. Some of
them are conclusions from positive outcomes, whereas others
are elicited from obstacles encountered.

The benefit of establishing a cross-disciplinary team, as prin-
ciple T1 suggests, has been apparent in many situations through-
out the project. Essentially, every annotation decision, from low-
resolution features such as which organs to target to high-
resolution details on how to define delineation for fuzzy bound-
aries, has required input from both medical and technical exper-
tise. Physicians have been surprised to learn what AI developers
consider to be difficult or easy problems to solve, and the tech-
nical experts have in turn discovered the many facets of seem-
ingly straightforward clinical decisions. Moreover, we have ex-
perienced that the differences between academic and clinical
agendas within the medical domain affect the priorities for data
collection and annotation. At cross-roads, we have let substantial
clinical workload trump directions that have been more intrigu-
ing. With regard to T2, we have also found it valuable to discuss
difficulties and insights across subprojects. Especially in the his-
topathology efforts, obstacles that arose for one dataset were
often relevant to consider for another as well, such as which level
of precision that was appropriate for the different tissue types.

That an agile approach is preferable (P1) is perhaps not
surprising but should not be underrated. We have clearly seen
that the quality of the data has iteratively increased as initial
plans and strategies have been refined. This also links to the
need of recurrent communication reflected in T1. The ratio-
nale for the P2 principle, to use AI prototyping to provide
feedback to the data collection, has been strengthened during
our effort. The value of annotations is in our context deter-
mined by the usefulness for the AI development. We have
experienced concept evolution effect in machine learning
[22], i.e., that by developing AI prototypes in parallel to the
annotation effort, issues and improvement possibilities for the
annotation strategy have been identified. One example is mu-
cinous cancer in the ovarian dataset. In such diseased tissue,
mucin is considered to be a part of the tumor, whereas it is a
healthy histology component otherwise. Both the annotation
and AI development strategies were refined to handle this
duality. Conversely, for the liver dataset, it was concluded
from the prototyping that addition of a simple bounding box
for the liver would have been very helpful, but at that time,
annotation time resources were no longer available.

Table 2 Guiding principles for
proactive database construction ID Area Guiding principle

T1 Team Ensure rich communication between medical and technical expertise

T2 Team Promote exchanges across medical subspecialties

P1 Process Adopt an agile project approach

P2 Process Use pilot AI development as validation strategy

E1 Execution Invest in detailed specification of imaging material

E2 Execution Invest in annotation consistency

E3 Execution Invest in the development of an annotation strategy

E4 Execution Invest in customized annotation tools

Fig. 6 Example image from the DROID skeletal radiology dataset. Axial
CT slice with two segmented lesions. On the right side of the patient, one
sclerotic lesion is segmented. On the left side of the patient, one lytic
lesion is segmented. Observe that the whole pelvic bone is disseminated
by both sclerotic and lytic bone metastases
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However, for proactive database construction, there is a
fundamental and difficult challenge in that all the future po-
tential AI applications are obviously not known. Thus, any
validation effort would be incomplete. Nevertheless, there
are mitigation strategies. One strategy is to gather broad AI
development expertise (compare T1), so that general experi-
ence of AI approaches can be considered even if explicit pro-
totypes are built. Another is to plan for refinement and exten-
sion of annotations as new needs arise (compare P1).

The reason for including E1, specifying imaging material,
as a focus area is simply the many intricate discussions we
have had on this topic. As for clinical studies, case inclusion
criteria are vital. In addition, decisions as which sequences or
immunohistochemistry staining to include are important ques-
tions to deliberate. Image resolution, reconstruction parame-
ters, and diversity of scanner equipment are among the tech-
nical considerations. Standard ontologies (E2) are a prerequi-
site for reuse of annotated data, which is further discussed in
[14]. In the ovary subproject, the successive refinement of the
annotation protocol (E3) concerned outline precision, where
the annotator first used an unnecessarily low error tolerance
that did not benefit AI training but caused low productivity.
The ovary annotation is also an example of benefit of
investing in specialized tools (E4). A lesson learned is that
time would have been better spent by first developing a highly
automated stroma vs epithelium classifier, allowing the man-
ual effort to focus on the epithelial sub-compartments. This
type of approach harmonizes very well with P2, as an initial
AI prototype for coarse annotation is likely to be a wise path
for the more advanced AI development on the same data.
Moreover, the benefit of tailor-made annotation tools with
the interaction designed to utilize machine learning assistance
was demonstrated by positive results from the parallel
prototyping effort of the TissueWand tool [11].

Our hope is that this annotated imaging database in its
current form will become a valuable steppingstone for future
medical AI research. Notably, the pathology datasets are al-
ready very mature and rich annotation wise. While the data
collections are substantial contributions in relation to currently
available data, it is also evident that expansion on a larger
scale is a high priority. This is a community effort to which
we strive to continue to contribute through our future work.

Conclusions

Several insights have been made regarding construction of
annotated imaging data collections for machine learning.
The main points for future similar efforts to consider are that
extensive communication in the cross-disciplinary team is es-
sential, an iterative and agile approach is beneficial, and
investing in careful preparation is a success factor.
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Appendix

Pathology

For the pathology images, the annotations were saved sepa-
rately from the whole-slide images and are available in a stan-
dardized format (DICOM CSPS). In all figures, the annota-
tions are rendered on top of the original images. All renderings
were made using Sectra PACS 22.1.0.4548 (Sectra AB,
Sweden).

Ovarian Tissue

The DROID dataset consists of 193 HE stained, anonymized
ovary WSI collected from women of an age range of 17–
86 years. The overall distribution of diagnostic classifications
was assessed to reflect the overall distribution of clinical cases
of suspected ovarian tumors over the time period of 2015–
2017. This includes 172 malignant tumor cases sampled from
women in the age range 17–86 years and 21 normal cases
from women in the age range 51–75 years. The WSIs were
scanned on a Scanscope AT (Aperio, US), a NanoZoomer XR
(Hamamatsu, Japan), or a NanoZoomer XRL (Hamamatsu,
Japan). Eight of the most prevalent, histological defined, tu-
mor types were chosen to be annotated: high-grade serous
carcinoma (HGSC), low-grade serous carcinoma (LGSC),
clear-cell carcinoma (CC), endometrioid adenocarcinoma
(EN), metastatic serous carcinoma (MS), serous borderline
tumor (SB), mucinous borderline tumor (MB), and metastatic
adenocarcinoma (MO). In total, 2402 separate annotations
were made to define the different tissue structures. Normal
ovarian tissue was outlined as a whole.

Breast Tissue

The DROID dataset consists of 361 HE-stained, anonymized
breast WSI. Out of these, 296 are malignant images sampled
from women diagnosed with invasive breast cancer or a mix
of invasive and in situ cancer. The WSI were all scanned on a
NanoZoomer (Hamamatsu, Japan): XR C12000 series 2013
or a 2.0 HT C9600 series 2013. The dataset also contains 65
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benign breast images scanned on a NanoZoomer 2.0 HT
C9600 series 2013. The tumors were classified into four dis-
tinct SNOMED-CT categories upon morphology: invasive
duct carcinoma, invasive lobular carcinoma, non-invasive in
situ carcinoma, and others. In total, 4144 separate annotations
were made on the malignant WSI to segment the different
tissue structures and link them to ontological information.
The benign WSI does not yet have any annotations.

Skin Tissue

The DROID dataset consists of 99 HE-stained, anonymized
skinWSI. 49 skinWSI show abnormal features sampled from
male and females in the age range of 29–93 years.
Furthermore, 50 normal skin WSI were sampled from males
and females in an age range of 20–93 years. All skin WSI
were scanned on a Scanscope AT (Aperio, US), a
NanoZoomer XR (Hamamatsu, Japan), or a NanoZoomer
XRL (Hamamatsu, Japan). Careful detailed annotations were
made to segment all abnormal findings identified, i.e., actinic
keratosis, basal cell carcinoma, dermatofibroma, dysplastic
nevus, intradermal nevus, keratoacanthoma, lentigo malignant
melanoma, malignant melanoma, malignant melanoma in
situ, scar, seborrheic keratosis, squamous cell carcinoma,
and squamous cell carcinoma in situ. Other areas annotated
are abnormal, acanthosis, artifacts, dermis, epidermis, fibrosis,
fibrin body, granuloma, inflammation, inflammatory edema,
normal, perichondrium, reactive cellular changes, skin ap-
pendage structure, surgical margins, structure of cartilage of
auditory canal, subcutaneous fatty tissue, subcutaneous tissue,
and from which body part the skin was excised. In the normal
skin cases, the following structures were annotated: artifact,
dermis, epidermis, normal skin, perichondrium, skin and sub-
cutaneous structure, skin appendage structure, skin structure,
structure of cartilage of auditory canal, subcutaneous fatty
tissue, subcutaneous tissue, and surgical margins. In total,
16,741 separate annotations were made on the WSI to seg-
ment the different tissue structures and link them to ontolog-
ical information.

Colon Tissue

The DROID dataset consists of 101 HE-stained, anonymized
colon WSI. All colon WSI were scanned with Scanscope AT
(Aperio, US), NanoZoomer XR (Hamamatsu, Japan), or
NanoZoomer XRL (Hamamatsu, Japan). 52 abnormal colon
cases were collected frommale and females in an age range of
22–90 years. These WSI were detailed annotated, and the
following structures were labeled: acute and chronic inflam-
mation, acute inflammation, adenocarcinoma, atrophy, chron-
ic inflammation, diverticula, diverticulitis, dysplasia, edema,
fibrosis, granulation tissue, hemorrhage, hyalinization, hyper-
plasia, hyperplastic polyp, inflammation, lymphoma,

mucinous adenocarcinoma, necrosis, serrated adenoma, stasis,
tubular adenoma, tubulovillous adenoma, and ulceration.
Other areas annotated were abnormal, artifact, cecum, colon,
colonic mucous membrane, colonic muscularis propria, co-
lonic submucosa, colonic subserosa, descending colon, ileum,
normal, rectum, sigmoid colon, and transverse colon.
Furthermore, 49 normalWSI sampled from the same age span
were annotated to label the following structures: artifact, ce-
cum, colon, colonic mucous membrane, colonic muscularis
propria, colonic submucosa, colonic subserosa, descending
colon, ileum, normal, rectum, sigmoid colon, and transverse
colon. In total, 756 separate annotations were made according
to a similar, very detailed, annotation strategy as for the skin.

Radiology

For the radiology images, the segmentations were saved sep-
arately from the axial radiology images and are available in a
standardized format (DICOM SEG and DICOM GSPS). All
2D renderings were made using Sectra PACS 22.1.0.4548
(Sectra AB, Sweden) apart from the 3D rendering, which
was made using Slicer 4.10.2 r28257.

Liver Tissue Radiology Images

The DROID dataset consists of 76 cases of CT abdomen ex-
aminations showing liver metastasis. All datasets were per-
formed in the venous contrast phase with a slice thickness of
1 mm and no overlap. All cases included showed liver malig-
nancies. Lesions > 5mmwere segmented with a custom-made
semi-automatic segmentation tool integrated with the Sectra
PACS system with a pen on a tablet computer. When delin-
eating a lesion with the pen, the software would compute a
probable segmentation based on the areas indicated by the
user simply by drawing a line across the lesion. This helped
in increasing the speed of the delineation process. The sug-
gested delineation was then adjusted slice by slice on the axial
images. From the sum of all segmentations, a volume was
generated. Obvious benign liver cysts were excluded as de-
fined by Hounsfield Units (HU = 0–20). In total, 317 lesions
were annotated. The modality models were mainly Siemens
SOMATOM Definition AS/AS+, but other Siemens
SOMATOM models were also included: Force, Drive, and
Definition Edge.

Skeletal Metastasis Radiology Images

The DROID dataset consists of 34 radiology cases of CT
abdomen showing lytic (bone degrading) and mixed lytic/
sclerotic metastasis from prostate, breast, and lung primary
cancer. Annotations were made for biopsied metastasis that
had been pathologically proven as malignancies. The data
contains 36 lesion annotations in total. The same annotation
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process as for the liver data was used. The modality models
were mainly Siemens SOMATOM Definition AS/AS+, but
several other models were also included: Siemens
SOMATOM models Force, Drive, and Definition Edge,
Philips Ingenuity Core, and GE Discovery CT750 HD.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, pro-
vide a link to the Creative Commons licence, and indicate if changes were
made. The images or other third party material in this article are included
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licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. The Cancer Imaging Archive (TCIA). Available at: https://www.
cancerimagingarchive.net/. Accessed 28 September 2020

2. re3data.org - Registry of Research Data Repositories. Available at:
https://doi.org/10.17616/R3D. Accessed 28 September 2020

3. Grand Challenges in Biomedical Image Analysis. Available at:
https://grand-challenge.org. Accessed 28 September 2020

4. Chest-Xray8. Available at: https://nihcc.app.box.com/v/
ChestXray-NIHCC. Accessed 28 September 2020

5. Johnson AEW, Pollard TJ, Berkowitz SJ, GreenbaumNR, Lungren
MP, Deng C-Y, et al: MIMIC-CXR, a de-identified publicly avail-
able database of chest radiographs with free-text reports. Sci Data
6(1):317,2019

6. Kostopoulos S, Ravazoula P, Asvestas P, Kalatzis I,
Xenogiannopoulos G, Cavouras D, et al: Development of a
Reference Image Collection Library for Histopathology Image
Processing, Analysis and Decision Support Systems Research. J
Digit Imaging 30(3):287–95,2017

7. Litjens G, Kooi T, Bejnordi BE, Setio AAA, Ciompi F, Ghafoorian
M, et al: A survey on deep learning in medical image analysis. Med
Image Anal 42:60–88,2017

8. Oakden-Rayner L: Exploring the ChestXray14 dataset: problems.
Available at: https://lukeoakdenrayner.wordpress.com/2017/12/18/
the-chestxray14-dataset-problems/. Accessed 28 September 2020

9. Wang X, Peng Y, Lu L, Lu Z, Bagheri M, Summers RM: ChestX-
ray8: Hospital-Scale Chest X-Ray Database and Benchmarks on

Weakly-Supervised Classification and Localization of Common
Thorax Diseases, 2017, pp 2097–106

10. Goldberger AL, Amaral LAN, Glass L, Hausdorff JM, Ivanov PC,
Mark RG, et al: PhysioBank, PhysioToolkit, and PhysioNet,
Components of a New Research Resource for Complex
Physiologic Signals. Circulation 101(23):215–220,2000

11. Lindvall M, Sanner A, Petré F, Lindman K, Treanor D, Lundström
C, et.al: TissueWand, a Rapid Histopathology Annotation Tool. J
Pathol Inform 11:27,2020

12. Analytic Imaging Diagnostics Arena. Available at: https://
medtech4health.se/en/aida-en-2/. Accessed 28 September 2020

13. AIDA dataset register. Available at: https://datasets.aida.
medtech4health.se/. Accessed 28 September 2020

14. Lindman K, Rose JF, Lindvall M, Lundström C, Treanor D:
Annotations, Ontologies, and Whole Slide Images - Development
of an Annotated Ontology-Driven Whole Slide Image Library of
Normal and Abnormal Human Tissue. J Pathol Inform 10:22,2019

15. Lindman K, Rose JF, Lindvall M, Bivik Stadler C: Ovary data from
the Visual Sweden project DROID, 2019. https://doi.org/10.23698/
aida/drov

16. Bodén A, Rose JF, Lindvall M, Bivik Stadler C: Breast data from
the Visual Sweden project DROID, 2019. https://doi.org/10.23698/
aida/drbr

17. Lindman K, Rose JF, Lindvall M, Bivik Stadler C: Skin data from
the Visual Sweden project DROID, 2019. https://doi.org/10.23698/
aida/drsk

18. Lindman K, Lindvall M, Bivik Stadler C, Lundström C, Treanor D:
Colon data from the Visual Sweden project DROID, 2019. https://
doi.org/10.23698/aida/drco

19. Woisetschläger M, Blomma J, Dahlström N, Bivik Stadler C,
Forsberg D: Liver data from the Visual Sweden project DROID,
2019. https://doi.org/10.23698/aida/drli

20. Fenerty KE, Patronas NJ, Heery CR, Gulley JL, Folio LR.
Resources Required for Semi-Automatic Volumetric
Measurements in Metastatic Chordoma: Is Potentially Improved
Tumor Burden Assessment Worth the Time Burden? J Digit
Imaging 2016;29(3):357–64.

21. Woisetschläger M, Landgren F, Bivik Stadler C, Forsberg D:
Skeletal data from the Visual Sweden project DROID, 2019.
https://doi.org/10.23698/aida/drske

22. Kulesza T, Amershi S, Caruana R, Fisher D, Charles D, Kulesza T,
et al: Structured labeling for facilitating concept evolution in ma-
chine learning. In: Proceedings of the 32nd annual ACM confer-
ence on Human factors in computing systems - CHI ‘14. ACM
Press, New York, USA, 2014. pp 3075–84

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

J Digit Imaging

https://doi.org/
https://www.cancerimagingarchive.net/
https://www.cancerimagingarchive.net/
https://doi.org/10.17616/R3D
https://grandhallenge.org
https://nihcc.app.box.com/v/ChestXray-IHCC
https://nihcc.app.box.com/v/ChestXray-IHCC
https://lukeoakdenrayner.wordpress.com/2017/12/18/thehestxray14ataset-roblems/
https://lukeoakdenrayner.wordpress.com/2017/12/18/thehestxray14ataset-roblems/
https://medtech4health.se/en/aidan-
https://medtech4health.se/en/aidan-
https://datasets.aida.medtech4health.se/
https://datasets.aida.medtech4health.se/
https://doi.org/10.23698/aida/drov
https://doi.org/10.23698/aida/drov
https://doi.org/10.23698/aida/drbr
https://doi.org/10.23698/aida/drbr
https://doi.org/10.23698/aida/drsk
https://doi.org/10.23698/aida/drsk
https://doi.org/10.23698/aida/drco
https://doi.org/10.23698/aida/drco
https://doi.org/10.23698/aida/drli
https://doi.org/10.23698/aida/drske

	Proactive Construction of an Annotated Imaging Database for Artificial Intelligence Training
	Abstract
	Introduction
	Materials and Methods
	Results
	Database Content
	Histopathology—Ovarian Tissue
	Histopathology—Breast Tissue
	Histopathology—Skin Tissue
	Histopathology—Colon Tissue
	Radiology—Liver
	Radiology—Skeletal
	Guiding Principles

	Discussion
	Conclusions
	Appendix
	Pathology
	Ovarian Tissue
	Breast Tissue
	Skin Tissue
	Colon Tissue

	Radiology
	Liver Tissue Radiology Images
	Skeletal Metastasis Radiology Images


	References


