
Master of Science Thesis in Electrical Engineering
Department of Electrical Engineering, Linköping University, 2020

Map Partition and Loop
Closure in a Factor Graph
Based SAM System

Emil Relfsson



Master of Science Thesis in Electrical Engineering

Map Partition and Loop Closure in a Factor Graph Based SAM System

Emil Relfsson

LiTH-ISY-EX-20/5350-SE

Supervisor: Dr. Jonatan Olofsson
isy, Linköpings universitet

Jonas Nygårds
FOI

Examiner: Professor Anders Hansson
isy, Linköpings universitet

Division of Automatic Control
Department of Electrical Engineering

Linköping University
SE-581 83 Linköping, Sweden

Copyright © 2020 Emil Relfsson



Abstract

The graph-based formulation of the navigation problem is establishing itself as
one of the standard ways to formulate the navigation problem within the sensor
fusion community. It enables a convenient way to access information from previ-
ous positions which can be used to enhance the estimate of the current position.
To restrict working memory usage, map partitioning can be used to store older
parts of the map on a hard drive, in the form of submaps. This limits the num-
ber of previous positions within the active map. This thesis examines the effect
that map partitioning information loss has on the state of the art positioning algo-
rithm iSAM2, both in open routes and when loop closure is achieved. It finds that
larger submaps appear to cause a smaller positional error than smaller submaps
for open routes. The smaller submaps seem to give smaller positional error than
larger submaps when loop closure is achieved. The thesis also examines how the
density of landmarks at the partition point affects the positional error, but the
obtained result is mixed and no clear conclusions can be made. Finally it reviews
some loop closure detection algorithms that can be convenient to pair with the
iSAM2 algorithm.
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1
Introduction

1.1 Background and Motivation

In military situations the ability to navigate and localize oneself is crucial for
almost any unit. A common way is to use a Global Navigation Satellite System
(GNSS) but since GNSS signals can be disrupted a parallel method is desirable.

A common way is to use Simultaneous Localization And Mapping (SLAM) which
is a well known method within the sensor fusion and robotics community. SLAM
uses a mathematical model of the system together with observations of land-
marks with unknown position to estimate its position. At the same time it es-
timates the position of the landmarks which gives the method its name [1]. A
smoothing approach to the SLAM is the Smoothing And Mapping (SAM) which
considers the full or partial trajectory instead of only the most recent position for
its estimate [2]. Since the trajectory is kept, it grants a convenient way to perform
loop closures detection, recognising previously visited places. More information
on both SAM and loop closures is found in Chapter 2.

1.2 System Overview

The thesis is performed at the Swedish Defence Research Agency (FOI) who has
supplied a SLAM platform which will be used during the thesis. The platform
has been developed by FOI to research positioning without GNSS for some gen-
eral ground vehicle. The SLAM platform, referred to as the platform, can be
divided into the hardware system and the software system.

The hardware system of the platform consists of an Inertial Measurement Unit

1



2 1 Introduction

Figure 1.1: A map over the program’s different modules and some of the
messages that is passed between them. Both the EKF node and the GTSAM
node produces its own estimate of the trajectory and landmarks.

(IMU), an onboard computer on which the software system is running and a ro-
tating LIght Detection And Ranging (LIDAR) unit mounted on a vehicle.

The software system uses a robot development framework called Robot Operat-
ing System (ROS) [3] which manages the internal infrastructure of the software
system. It uses Point Cloud Library (PCL) [4] to represent the LIDAR data and
the Georgia Tech Smoothing And Mapping (GTSAM) library [5] to perform SAM.

The software system comprises four modules, called nodes in ROS, that are com-
municating via message passing. These four nodes are: Input node, Association
node, Extended Kalman Filter (EKF) node and GTSAM node as seen in figure
1.1. The first three nodes are considered frontend and are used to get an initial
estimate of the SLAM platform’s position. The GTSAM node is considered as
backend and is used to improve the initial estimate.

• The Input node is responsible for receiving data from the LIDAR and IMU.
It extracts landmarks from the LIDAR scans and creates a raw estimate of
the pose by integrating the IMU samples which it sends to the Association
node, EKF node and GTSAM node. It also adjusts the velocity that it re-
ceives from the IMU with an estimated velocity from the EKF node.

• The Association node creates landmarks from different LIDAR scans and de-
termines which landmarks are consistent and sends them to the EKF node.

• The EKF node is performing SLAM using an extended Kalman filter (EKF-
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SLAM) to estimate the position of the platform as well as its global map.
The pose estimated by the EKF node, referred to as the filtered pose is sent
to the GTSAM node. The landmarks observed at the current moment by
the platform, referred to as GTSAM landmarks and the global map are also
sent to the GTSAM node.

• The GTSAM node uses a SAM algorithm to further improve the estimate of
the position of the platform and the observed landmarks.

The Input node, Association node and EKF node are described in depth by [6].

1.3 Problem Formulation

The platform is able to estimate a map and position itself in that map but run
into trouble when the platform is turned on for longer periods of time. The Ran-
dom Access Memory (RAM) of the onboard computer fills up and the computer
eventually crashes. To be able to handle this, data from the RAM needs to be
transferred to the hard drive during runtime, thus freeing up space in the RAM.
The part of the software system that uses the most RAM is the GTSAM node since
it not only saves the position of the landmarks but also all the previous platform
positions and all measurements of the landmarks. To limit this problem the esti-
mated map in the GTSAM node can be partitioned into submaps. The previous
submaps can be stored in on the hard drive which often is larger than the RAM.
This thesis will explore what effect map partitioning has on the performance of
the SAM algorithm — by itself and with a simple loop closure. The thesis aims to
investigate the following questions:

• How can map partitioning be integrated into the SAM algortihm?

• How does the size of the partitioned submaps affect the estimated position
of the platform, with and without loop closures?

• How does the number of landmarks at the partition point affect the esti-
mated position with and without loop closures?

• Which loop closure detection techniques are reasonable to consider with
respect to the platform?

1.4 Limitations

To be able to define the problem fully and to focus on the problem formulations,
some limitations have been put on the project:

• The pre-existing platform uses factor graphs to represent the surroundings.
Hence, the map partitioning will only explore how to partition a map that
consists of a factor graph.



4 1 Introduction

• When examining map partitioning with respect to loop closures, identifica-
tion of the loop closure will be performed by hand to be able to fit within
the time frame of the project.

• The submap is considered to be a set of landmarks and a trajectory. The
thesis does not explore the possibility of storing isolated landmarks and
positions.

• Only single loop closures will be considered when examining the effect of
different map partitionings during loop closure.



2
Theory

2.1 Introduction

This chapter gives a theoretical background to the master thesis. It will touch
upon three areas. The first part will present some background theory. The sec-
ond part will examine map partitioning and a method to shift a position and its
uncertainties to a different coordinate which will be needed for map partitioning.
The third will introduce loop closure detection.

2.2 Background Theory

This section will present the Simultaneous Localization And Mapping problem,
factor graphs, Bayesian trees and different Smoothing And Mapping algorithms.

2.2.1 Simultaneous Localization And Mapping

One of the main problems in the mobile robotics community is to localize one-
self within an unknown environment. This can be achieved by incrementally
creating a map and simultaneously use that map to estimate one’s position. This
challenge is referred to as the Simultaneous Localization And Mapping (SLAM)
problem [7].

A SLAM system is considered a dynamic system since the output of a dynamic
system is not only dependent on the input to the system at current sample but
also of the input from previous samples. The information of the system at sample
k, which can be used to predict the effect of inputs at different k is defined as the
state of the system [8]. The current state is written as xk and previous states of
the system as xk−1, xk−2... A series of states is referred to as a trajectory.

5



6 2 Theory

The general problem formulation for SLAM can be expressed in the following
way [1]:

xk+1 = f (xk , uk , vk), (2.1)

mk+1 = mk , (2.2)

yk = h(xk , mk , uk) + ek . (2.3)

• Equation (2.1) describes the motion model of the system and how the sys-
tem moves between iterations. xk is the state of the system and uk the con-
trol signal. vk is the modelling error and k the iteration index.

• Equation (2.2) describes the dynamics of the map with landmarks. In this
case the map is considered static since the next iteration of the map is mod-
elled as the current one.

• Equation (2.3) describes the measurement of the landmarks that ties to-
gether the map with the current state. The measurement model h(xk , mk , uk)
describes the relation between the current state xk , the map mk , any input
uk and the measurement yk . The measurement noise is represented by ek .

Two key methods for solving this problem in the nonlinear case is to use Ex-
tended Kalman filters (EKF-SLAM) or particle filters (FastSLAM) which are de-
scribed in both [1] and [7]. These methods will not be treated in this thesis.

A different variant of the SLAM problem is the SAM problem which is to esti-
mate the trajectory of the system instead of just the current state. Apart from
allowing more advanced state estimation, this also gives the advantage of hav-
ing a dynamic linearization point which filter approaches do not have. Filter
approaches have a static linearization point which can result in inconsistency in
large scale problems [9]. The SAM problem can be formulated as a large scale
inference problem, which can be solved using factor graphs [9].

2.2.2 Factor Graphs

Factor graphs are part of a family of probabilistic graphical models to which
among others Bayesian networks and Markov random fields belong. This fam-
ily of probabilistic graphical models are well known from literature on statistical
modelling and machine learning. Factor graphs provide a powerful abstraction
tool that can be used to solve large scale inference problem. They make it easier
to think of and formulate solutions and to write modular and effective software
to solve the problem [9].

A factor graph is made up of variable nodes, edges and factor nodes. The vari-
able nodes can represent different variables of the system, such as the positions
in the trajectory or observed landmarks. The variable nodes are connected via
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lines, referred to as edges. On the edges, factor nodes are located which symbol-
ize the statistical interactions between the variable nodes such as a measurement
of a landmark [9].

A example of a factor graph is shown in Figure 2.1. The variable nodes that rep-
resent the position of the robot are illustrated by circles with a description key
written within them. The variable nodes that represent the landmarks are illus-
trated by squares, also with a description key within them and the factor nodes
as black dots between them. The figure shows a simple robot trajectory where
xi is the robot positions and lj is the observed landmarks. A prior factor node is
connected to to the first position x0 to add prior information to the factor graph.

Figure 2.1: A simple factor graph of a robot trajectory. The robot is transi-
tioning from state x0 through x1, x2, x3 to x4. The landmark l0 is observed at
state x0, x1 and x2. Landmark l1 is observed at state x2 and x3.

A factor graph is closely related to Bayesian networks and conversion between
them are a key operation for manipulations. One of the main differences between
Bayesian networks and factor graphs are that Bayesian networks are described by
directed graphs and can only handle proper, normalized, probabilities whereas
factor graphs are undirected and can handle any factored function over the spec-
ified variables [9]. In a Bayesian network, the variable nodes contain the prob-
ability of the variables whereas in a factor graph, each factor node contains the
statistical relation between two variables [9].

The conversion of a factor graph to a Bayesian network can be seen as a way to
determine evaluation ordering of the inference for the graph [9]. The operation
is referred to as elimination. Figure 2.2 shows the resulting Bayesian network
produced by elimination of the example factor graph shown in Figure 2.1. For
a linear system the elimination of factor graphs is equivalent to sparse matrix
factorization such as QR-factorization [9]. The method is shown in Algorithm 1.
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Input: Factor Graph
Result: Baysian network.
while nodes Θ ∈ factor graph do

1. Chose a variable node Θj to be eliminated. Disconnect all factor
nodes f (Θj ,Θi) connecting Θj to its neighbour variables Θi , where i is
the subscript of the connected neighbours. Define the separator node Sj
as the connected variables Θi .

2. Form the (unnormalized) joint density fjoint(Θj , Sj ) =
∏
i f (Θj ,Θi) as

the product of the disconnected factor nodes.
3. Using the chain rule, factorize the joint density
fjoint(Θj , Sj ) = P (Θj |Sj )fnew(Sj ). Add the conditional P (Θj |Sj ) as a
variable in the Bayes network and the factor fnew(Sj ) back into the
factor graph replacing the disconnected factor nodes f (Θj ,Θi).

end
Algorithm 1: The elimination algorithm for converting a factor graph to a Bayes
Network [10].

Figure 2.2: The Bayesian network resulting from the elimination of the sim-
ple factor graph of a robot trajectory shown in Figure 2.1. The landmarks
have been eliminated first, then the states in rising order from x0 to x4.

2.2.3 SAM Through Inference

In SAM problems the objective is to estimate the trajectory of the system and the
position of its surroundings. The problem can be seen as a factor graph, where
the placement of the variable nodes Θ is desired. The problem becomes:

P (X, L, Z) ∝ f (G) =
∏
j∈g

∏
i∈nj

f (Θi ,Θj ) (2.4)

where P(X,L,Z) is the probability function of the system’s positions X and the
landmark’s positions L given the measurements Z. G is the factor graph, Θi and
Θj are variable nodes in the graph, f(Θi ,Θj ) the factor node connecting Θi and
Θj , g is the set of variable nodes in the factor graph and nj is the set of neighbours
to variable node Θj [11]. If Gaussian noise is assumed and -log is applied to
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Equation (2.4), it can be expressed as:∑
j∈g

∑
i∈nj

− log f (Θi ,Θj ) ∝
(∑

k

‖fk(xk−1) − xk‖2Λk

)
+

(∑
m

‖hm(xk , lm) − zm,k‖2Σm,k
)

(2.5)
where f (xk−1) is the motion model, xk is the system’s state, zm,k is the measure-
ment of landmark m, subscript k is the current sample, lm is the landmark m
and hm is the sensor model for landmark m [11]. The norm notation stands for
the squared Mahalanobis distance with the covariance matrix for the motion Λk
and the covariance for the measurement Σm,k [11]. An estimate Θ∗ of Θ can be
obtained by maximizing the joint probability P (X, L, Z) which is the same as min-
imizing Equation 2.5. The estimate is given by:

Θ∗ = argmin
θi

∑
i

∑
i+j

− log f (Θi ,Θj ) (2.6)

where Θ∗ is the optimal node placements which corresponds to the optimal place-
ments for the trajectory and landmarks [12].
Equation (2.5) and (2.6) yield the following equation through linearization:

∆∗ = argmin
∆

∑
k

‖Fk−1
k ∆xk−1−Gkk∆xk−ak‖

2
Λk

+
∑
m

‖Hk
m∆xk+Jm∆lm−cm‖2Σm,k (2.7)

where ∆ is the change to the current linearization point θlin, Fk−1
k is the Jacobian

of fk(xk−1) from k-1 to k, Gkk is an identity matrix, Hk
m and Jm are the Jacobians of

h with respect to xk and lm respectively. ak is the state prediction error ak = x0
k −

fk(xk−1) and cm is the measurement prediction error cm = zm,k − hm(x0
k , l

0
m), where

x0
k and l0m are linearization points for state k and landmark m [2]. By collecting

all the components into one large linear system the following equation can be
obtained:

∆∗ = argmin
∆

‖A∆ − b‖2 (2.8)

A is the combined Jacobian matrix from Fk−1
k , Hk

m and Jm. b is ak and cm collected
in one term. For full derivation of Equation (2.8), see [2]. Equation (2.8) can be
solved through QR factorization [11]. The step by step QR factorization is shown
in Appendix A.1.

2.2.4 Incremental Smoothing and Mapping

In the post-processing case when all measurements are available a standard SAM
can be applied but when the measurements are incrementally updated, the full
optimization of the graph at each iteration quickly becomes computationally
costly. [11] presents a method to incrementally perform SAM, called incremental
Smoothing And Mapping (iSAM). It uses the so called Givens rotation to obtain
the QR factorization. Though Givens rotation is not the preferred way to per-
form QR factorization it gives the ability to extend a system equation with new



10 2 Theory

measurements [11]. QR factorization results in the upper triangular information
matrix R, which can be extended with new lines from new measurements. Givens
rotation can then be applied to the extended matrix to make it upper triangular
again. The linear system can then be efficiently solved, using back substitution,
to attain Θ∗. The Givens rotation matrix is given by

G(θ) =
[

cos θ sin θ
− sin θ cos θ

]
. (2.9)

Since more measurements are constantly added, the linearization point of the
system will become more and more uncertain. To limit the number of relineariza-
tions of the system equation an iteration count is used to determine if relineariza-
tion is necessary [11].

2.2.5 Bayes Trees

The iSAM algorithm operates in a factor graph environment but the estimation
part of the algorithm is implemented using matrix algebra. To be able to stay
in the graph environment and better capture the algebra, [13] have introduced a
new graph structure. It is derived from the Bayesian network that is formed from
elimination of a factor graph but has a tree structure and is called a Bayes tree
[13].

The Bayes tree is made up by nodes connected by edges and has an upside down
tree structure. It starts at the top with the first node called the root (node). The
root usually represents the most recent node and contains the latest eliminated
node from the factor graph (often the current state). The root has children which
are nodes located beneath it in the tree, see figure 2.3. The root is referred to as
its children’s parent. A child can in turn have children and be their parent. This
pairwise relationship continues throughout the tree down to the bottom layer, see
figure 2.3.

Figure 2.3: The tree structure of a Bayesian tree. N1 is the root and parent
to N2 and N3 which in turn are children to N1. N2 is parent to N4 and N5
which in turn are children to N2. N3 is parent to N6 and N7 which in turn
are children to N3.
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The nodes in the Bayes Tree are called cliques, Ci which correspond to sets
of nodes in the Bayesian network which are grouped together using the maxi-
mum cardinality search algorithm presented in [14]. Two examples of cliques are
shown in Figure 2.4 and 2.5. When nodes from the Bayesian network are grouped
inside a clique Ci in a Bayes tree they are referred to as the clique’s variables. Each
Ci has a conditional probability which is the product of the conditional probabil-
ities from its variables. It forms the product

P (Ci) =
∏
k

P (Fk |Sk) (2.10)

where Sk is the separator and Fk is the frontal variable. The separators are the
nodes/variables from the Bayesian network that separate the clique Ci from its
parent but are part of both the Ci and its parent. The frontal variables are the
remaining nodes that are not shared with its parent. Conversion of a Bayesian net-
work to a Bayes tree is shown in Algorithm 2 and Figure 2.6 shows the Bayesian
tree resulting from the Bayesian Network shown in Figure 2.2.

Figure 2.4: A clique formed from x0, x1 and l0 in the Bayesian network. x1
is the separator since it separates x0 and l0 from the next node x2.

Figure 2.5: A clique formed from x1 and x2 in the Bayesian network.
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Figure 2.6: The Bayes tree resulting from the conversion of the Bayesian
network in Figure 2.2.

Input: Bayesian network
Result: Bayes tree
for Conditional density P (Θj |Sj ) of the Bayes network, in reverse
elimination order:
do

if No parent (Sj = {}) then
Start a new root clique Fr containing Θj

else
Identify parent clique Cp that contains the first eliminated node of
Sj as a frontal variable

if nodes Fp ∪ Sp of parent clique Cp are equal to separator nodes Sj
of conditional
then

insert conditional into clique Cp
else

start new clique C’ as child of Cp containing Θj

end
end

end
Algorithm 2: Creating a Bayes tree from a Bayesian Network resulting from
elimination of a factor graph [10].

When a Bayes tree is edited, the only part of the tree that is affected are the
cliques from the edited clique up to the root. The cliques below are not affected
which is a key property of the Bayes tree [13]. A Bayes tree has this property
because variables in a child clique are eliminated before variables in its parent
clique, making the variables of the child clique unaffected by the variables in the
parent clique [13].
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2.2.6 iSAM2

To evolve the iSAM algorthm, [10] uses the new data structure, Bayesian tree, to
perform its optimization in a graph environment instead of using a matrix en-
vironment. This makes it easier to understand and write efficient and modular
code. The new algorithm is called iSAM2 [10].

Besides staying in a graph environment iSAM2 differs from the previous iSAM
in two major ways. The first one is that the relinearization is done in a more
dynamic and efficient way. iSAM2 keeps track of all the factor graph nodes’ lin-
earization points and compares them to the current solution to see if relineariza-
tion is needed. If any linearization point for a variable moves too far from the
current solution the variable is marked. At the next measurement update, all
marked variables are relinearized. If a marked variable is part of a clique in the
Bayes tree, all the variables within that clique are relinearized. All the parent
cliques from the affected clique to the root clique are also relinearized. It is re-
ferred to as fluid relinearization [10] and shown in Algorithm 3.

Input: linearization point θlin, Solution ∆ for linearized tree.
Result: Updated linearization point θ′lin, marked cliques M.
1. Mark variables in ∆ above threshold β: J = {∆j ∈ ∆ | |∆j | ≥ β}
2. Update linearization point for marked variables: θlin,J := θlin,J ⊕ ∆J
3. Mark all cliques M that involve marked variables θlin,J and all their
ancestors.

Algorithm 3: Fluid relinearization [10].

The second difference from iSAM is that iSAM2 updates its solution for the
Bayes tree only partially each iteration instead of fully. It starts at the root of
the tree and compares the difference between the previous solution with the new
solution for all the variables in the clique. If the change in difference exceeds
a small given threshold α between two iterations, it updates the solution and
continues to the clique’s children. If the change in difference doesn’t exceed α ,
the update stops and does not recurse to update the clique’s children. This update
is referred to as partial state update [10] and shown in Algorithm 4.

Input: Bayes tree
Result: Updated solution ∆ to current linearization point θlin
Starting from the root clique Cr = Fr :

1. For current clique, Ck = Fk :Sk , compute updated ∆k of frontal
variables Fk from local conditional density P (Fk |Sk).
2. For all variables ∆kj in ∆k that change by more than threshold α:
recursively process each descendant containing such a variable.

Algorithm 4: Partial state update: Solving the Bayes tree in the nonlinear case
returns an update solution ∆ to the current linearization point θlin [10].

The full algorithm works as follows: It starts by collecting the measurements
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and organizing them into a factor graph. The new factor graph is linearized
around the initial linearization point θlin. An elimination order is then calcu-
lated with an algorithm called ”constrained COLAMD” [15] to conserve sparsity
before the factor graph is eliminated into a Bayesian network using Algorithm 1.
The Bayesian network is in turn converted into a Bayes tree using Algorithm 2.
This Bayes tree, representing the optimization in Equation (2.6), can be evaluated
using back propagation to find the optimal solution ∆ which, when added to Θlin,
solves Eq. (2.6) for the given time.

New measurements update the factor graph at the next time step by adding new
linearized factors to it. The new factors are eliminated to the Bayesian Network
and added to the Bayes Tree. Algorithm 3 is used to mark any linearization points
that differ too much from the current solution. The top of the Bayes tree contain-
ing the marked variables is redone with Algorithm 5 and the linearization point
θlin is updated. A new state update ∆updated is obtained with Algorithm 4. The
updated solution is then given by ∆updated + θlin [10].

Input: Bayes tree T, nonlinear factors F, affected variables J
Result: Modified Bayes tree T’
1. Remove top Bayes tree:

a, For each affected variable in J, remove the corresponding clique and
all parents up to the root.
b, Store orphaned sub-trees Torph of removed cliques.

2. Relinearize all factors required to recreate top.
3. Add cached linearized factors from Torph.
4. Re-order variables.
5. Eliminate the factor graph (Alg. 1) and and create new Bayes tree (Alg.
2).

6. Insert the Torph back into the new Bayes tree.
Algorithm 5: Updating the Bayes tree inclusive of fluid relinearization by recal-
culating all affected cliques [10].

2.3 Map Partition and Manipulations

This section will present different ways to perform map partitioning, different
ways to link partitioned maps together and how to optimize them. The partition-
ing of the map is a crucial operation since it enables the system to store submaps
inactive in long term memory which is necessary for longer runs.

The aim of the available methods is to optimize the solution time for big maps by
partitioning them into submaps, under the assumption that the system can store
the full map in the RAM. The objective of this thesis is rather to use map parti-
tioning to limit the size of the the continuously growing map by storing inactive
submaps on the hard drive of the system. The methods can however be seen as
inspiration and with some modification suited for this thesis.
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2.3.1 Tectonic Smoothing And Mapping

In [16] a method for solving more complex and bigger maps is presented. It is
called Tectonic Smoothing And Mapping (TSAM). The main idea is to partition
the map into smaller submaps which are easy to optimize and then assemble the
solved submaps into the full map. The information from the solved submaps to-
gether with a reduced version of the full map is used to optimize the full map.

The method starts by partitioning the map into submaps. The nodes within
the submaps are divided into two sets, the internal nodes and the separators.
The internal nodes are the nodes that are only connected to nodes within the
submap and the separators are the nodes that are connected to nodes within other
submaps. The submaps are linearized but only the internal nodes are optimized,
using the measurements which are associated to features of that submap. The
separators are cached for the global optimization. Further a node is added to
each submap, referred to as a base node (see figure 2.7). The optimized internal
nodes are parameterized relative to the base node so that the internal structure
and linearization point of the submap is kept intact when global optimization is
performed.

The global set of all separators is extended with the base nodes and optimized.
The global optimization of separators and the base nodes can be seen as an align-
ment of the submaps.

The final step of the algorithm is to update each submap with the updated sepa-
rators and to update the internal nodes in relation to the separators.

Figure 2.7: A divided factor graph with added base nodes. The positions are
marked x1 to x4 and the landmarks l1 to l8 . The base node b1 summarizes
the left submap and the base node b2 summarizes the right submap.

2.3.2 TSAM2

In [12], improvements are proposed to enhance the TSAM algorithm. The idea
is to use a nested dissection to recursively divide the map into smaller submaps
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where direct optimization methods can be used.

Consider the original graph G, which through nested dissection partitioning can
be divided into the three subsets Ai , Bi and Ci . The partition is performed so
that Ai and Bi don’t share any factors. Those are called frontal variables whereas
Ci shares factors with both Ai and Bi , and is called separator. Ai and Bi can in
turn be seen as disjoint graphs which can be be further partitioned into smaller
submaps. This recursive partitioning can continue until the resulting submaps
are small enough.

When the partitioning is finished, the submaps at the lowest level can easily be
solved with direct methods. For each solved submap a base node is added from
which the other nodes’ relative position and orientation will be stored. The base
node will then be added to the parent submap instead of the nodes of the submap,
representing the position and orientation of those nodes. The parent submap will
be optimized and replaced with a base node in its parent submap and so on. This
is performed all the way up to the root.

Once the optimization is complete, the submaps can be optimized again but this
time the base nodes stay fixed within each submap resulting in an optimization
equivalent to a traditional SAM optimization [2].

2.3.3 Condensed Measurement

Similar to TSAM, Condensed Measurements [17] is also a divide-and-conquer
method where the total map is divided into smaller submaps which can be solved
separately. [17] proposes a method to reduce the number of nodes in the submaps.
The method then compresses the information from the reduced nodes into virtual
measurements referred to as condensed measurements. The condensed measure-
ments are then connected to the remaining nodes of the submaps. The reduced
submaps will be much smaller and, when assembled to a sparse factor graph, al-
lows a global optimization to be performed. Again, this global optimization can
be seen as an alignment of the submaps. The submaps are expanded to their
original number of nodes with the configuration from the global optimization
leading to an approximate solution. The global solution can be further improved
if needed by optimizing the full factor graph using the approximate solution as
initial estimate. The following sections will explain the method more thoroughly.

Partitioning the Map

Since the maps are represented by factor graphs, a partitioning of the factor graph
is needed, see Figure 2.8a. All the information in the factor graphs is located in
factors and to avoid using global information multiple times the factor graphs are
partitioned with respect to the factors. This means that no submap will contain
the same factors but can contain the same nodes. The nodes that appear in mul-
tiple submaps are referred to as shared nodes, xi , shown in red in figure 2.8b. An
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origin node xg is determined as the position that lies in the middle of the trajec-
tory of each submap, shown in blue in figure 2.8c. The submap optimization and
calculation of marginal covariances are performed separately for each submap.

In the submap optimization, only measurements associated to fully observable
landmarks are used — the rest are temporarily removed. This can occur when
for instance using bearing only measurements which need two measurements of
a landmark to become fully observable and the partition point of the map ap-
pears between them. The unused measurements can still be used in the global
optimization of the full factor graph if their landmarks are fully observable there.

Computing the condensed measurement

When the submaps have been formed and solved, the condensed measurement
can be calculated. A family of measurement functions is defined as

htypeOf (xi )(xg , xi) , h(xg , xi) (2.11)

where h is the measurement function which depends on the type of the shared
node xi . Assuming that the submaps have been solved correctly the following
term in the joint probability function for the graph, see Equation 2.5, ideally
becomes

h(x∗g , x
∗
i ) − zg,i = 0. (2.12)

To take errors into account, we can define the condensed measurement,

zv , zg,i = h(x∗g , x
∗
i ) (2.13)

between origin node xg and the shared node xi [17]. The measurement will rep-
resent the relation between the origin node and the shared node. The uncertainty
of the measurement can be approximated from the marginal covariance of the
shared node using e.g. the unscented transform [1] applied to its measurement
function. A reduced submap is formed by the origin node xg and the shared
nodes xi connected by condensed measurements as shown in figure 2.8d.

Calculating the global estimate

When the submaps have been reduced they are added together to a sparse factor
graph. The graph is optimized to get the approximate position and orientation
of each submap, as in Figure 2.8e. The submaps are expanded according to that
configuration, giving an approximate solution to the full global factor graph, see
Figure 2.8f. The full global factor graph can be optimized with the approximate
solution as initial guess if needed to gain a better estimate.
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Figure 2.8: a), The partition of a map. b), The shared nodes shown in red. c),
The origin nodes shown in blue. d), The two submaps condensed to submaps
only containing shared and origin nodes. e), The two condensed submaps
globally optimized to find the approximate position of the origin and shared
nodes. f), The submaps reunited using the origin nodes position.
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2.3.4 Uncertain Spatial Relationships

[18] presents an alternative method to the unscented transform that is used when
calculating the covariances of the condensed measurements in section 2.3.3. It is
a way to describe poses and their uncertainties in different world frames. The
method both describes the pose, referred to as p in this section which contains
both the position and orientation, together with the covariance, C(p), of that pose
in different world frames. The two operators presented by [18] are ⊕ and 	. The
⊕ operation adds two 2D poses in different world frames resulting in a pose in
the combined world frame, see Figure 2.9. The 	 flips a 2D pose putting it in the
origin of the global frame and putting the origin of its frame in its previous pose,
see Figure 2.10. [18] also presents a 3D version of the operators but is not shown
here.

Adding two poses

When adding two poses pij and pjk the ⊕ operator is used

pik = pij ⊕ pjk =


xjk cosφij − yjk sinφij + xij
xjk sinφij + yjk cosφij + yij

φij + φjk

 (2.14)

where x, y and φ is the x-coordinate, y-coordinate and bearing of the pose p.
Besides from adding the two poses the ⊕ operator produces the matrix J⊕ which
can be used to approximate the covariances for the new poses

C(pik) ≈ J⊕
[
C(pij ) C(pij , pjk)
C(pjk , pij ) C(pjk)

]
JT⊕ (2.15)

where C(p) is the covariance of p and C(p1, p2) is the cross covariance of p1 and
p2. J⊕ is the Jacobian of the ⊕ operator which is given by

J⊕ =
∂pik

∂(pij , pjk)
=

 1 0 −(yik − yij ) cosφij − sinφij 0
0 1 −(xik − xij ) sinφij cosφij 0
0 0 1 0 0 1

 . (2.16)

The J⊕ matrix can be divided into two 3x3 matrices J1⊕ and J2⊕. They can be used
separately if pij and pjk are independent, shown below

C(pik) ≈ J1⊕C(pij )J
T
1⊕ + J2⊕C(pjk)J

T
2⊕ (2.17)

resulting in J⊕ = [J1⊕ J2⊕].
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Figure 2.9: The operation ⊕ is performed on two different positions, p1 and
p2.

The inverse of a pose

To be able to subtract a pose from another the 	 operator is defined as

pji = 	pij =


−xij cosφij − yij sinφij
xij sinφij − yij cosφij

−φij

 (2.18)

The J	 matrix is given by

J	 =

− cosφij − sinφij yji
sinφij − cosφij −xji

0 0 −1

 .
The J	 matrix can be used to calculate the new covariance in the following way

C(pji) ≈ J	C(pij )J
T
	 . (2.19)

Figure 2.10: The operation 	 is performed on position p1 resulting in the
reverse p1.

Adding a pose and the inverse of an another pose

The two operations ⊕ and 	 can be combined to to get the difference of two poses,
shown in figure 2.11.

pjk = 	pij ⊕ pik (2.20)



2.4 Loop closure 21

and the resulting covariance can be approximated as

C(pik) ≈ J⊕
[
J	C(pij )J

T
	 C(pij , pjk)J

T
	

J	C(pjk , pij ) C(pjk)

]
JT⊕ . (2.21)

Figure 2.11: The combined operaton of 	 and ⊕ is performed on pose p1
with the reverse pose p2 resulting in p3.

2.4 Loop closure

A common way to restrict the ever growing covariance in a SLAM problem is to
use loop closure. A loop closure recognizes a previously visited place and uses
that information to form a loop. The trajectory that forms the loop can then be
optimized with the added loop closure constraint, resulting in a better estimate
and lower covariance. Algorithms that can detect loop closures are investigated
here as a first step towards full loop closure functionality.

2.4.1 Lidar Histogram Methods

The general LIDAR histogram method for loop closure detection uses histograms
as a signature of an area which can be compared with a global set of histograms.
If any of the histograms in the global set resembles the given one, they are marked
as candidates. A more precise method can then be used to determine which, if
any, candidate is the right one. The method projects the landmarks from a LIDAR
scan to the same or a lower dimension. The function that projects the landmarks
usually calculates some property between landmarks such as absolute distance
or some property between a landmark and the system, which also can be abso-
lute distance. The projection is done for all the different configurations of nearby
landmarks and added together and put into bins, forming a histogram. The his-
togram can then be compared via various numbers of metrics to find candidates
for detection [19].

1D histogram method

In [19] a full 360 degree LIDAR scan is used to create the histograms. The dis-
tance between the system and a measured landmark is put in a 1d bin that quan-
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tizes the value into one of b different intervals which gives the quantized value
hb. The quantized value is normalized with the absolute distance between the
system and all the landmarks in the scan in the following way

hkb =
1
|S |
{p ∈ S : v(p) ∈ Ikb } (2.22)

where S is the scan, p is a landmark in the scan, v is distance operator and I is
the interval for a bin in the histogram [19]. This is done for all the landmarks in
the lidar scan for a given area which results in the histogram Hb = (h0

b, ..., h
b−1
b ),

where the quantized values that belong to the same bin are added together. For
histogram comparison a simplified version of the so called Wasserstein metric
[19] is used which in this configuration becomes

W (Gb, Hb) =
∑
i

1
b

∣∣∣∣∣∣∣∣
i∑
j=0

[
g ib − h

j
b

]∣∣∣∣∣∣∣∣ (2.23)

where Gb is the current histogram, Hb a candidate, g ib is a bin value i for his-

togram Gb and hjb the bin value j for histogramHb [19]. The metric is used against
a threshold to find candidates for loop closure [19].

GLARE

In [20] a 2d lidar histogram method is presented called Geometrical LAndmark
RElations. A set of landmarks, l1, l2, ...., lN , is chosen to be examined. The relative
distances ρi,j between the landmarks, together with the relative bearing, θi,j is
obtained from the observed positions prospective. Since the bearing between two
landmarks depends on which one is considered first the positive bearing is chosen
θ+
i,j = max(θi,j , θj,i). The relative distance and positive bearing are quantized and

put in a 2d bin(nρ, nθ) which creates the bin value hi,j . A multivariate Gaussian
distribution with covariance matrix Σi,j is added to the landmark relation. A
bin value is obtained for all the combinations of landmarks and bin values that
correspond to the same bin are added together. The set of bins is then collected
into a 2d histogram HA and normalized for that given area. The histogram can
then be compared with a set of saved histograms H with a L1-norm to achieve
loop closure [20].

GLAROT

A modification to the previous method is presented by [21], making it bearing
invariant. This is is achieved by adding the general angle β to the positive bearing
θ+
i,j which results in a new bearing

θnew,i,j = 〈θ+
i,j + β〉π (2.24)
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where 〈x〉m is the m modulo of x [21].
The comparison between two histograms using L1 norm then becomes a mini-
mization problem

L1(F, G) = min
β

nθ−1∑
t=0

nρ−1∑
r=0

|Ft,r − G〈t+β〉nθ ,r | (2.25)

where nθ is the number of bearing bins, nρ is the number of range bins, F and G
are two different histograms and G is rotated to minimize the norm [21].

GLAROT-3D

In [22] an even more comprehensive histogram method is presented. This one
uses 3d landmarks instead of 2d which adds extra information to the histogram.
Is uses the same distance comparison ρi,j = |pi − pj | between two landmarks that
are put in a bin. The bin is extended to handle 3d bearings in polar coordinates
using a quantized polar sphere. The polar sphere is divided in six faces, creating
a cube. A face, f, can in turn be divided into a l*l grid, shown in Figure 2.12. The
face of a bearing is determined by

f = argmin
f

dTf ri,j (2.26)

where dTf is the normal vector of the face and ri,j is the bearing between two
points [22]. When a face is determined a simple 2d quantization is performed
to divide the face into a 2d grid. The square in the grid that corresponds to the
polar bearing is calculated in the following way:

u = l ∗
( 2
π

arctan(
uTf ri,j

dTf ri,j
+

1
2

)
)

(2.27)

v = l ∗
( 2
π

arctan(
vTf ri,j

dTf ri,j
+

1
2

)
)

(2.28)

where u is the horizontal coordinate and v is the vertical [22]. The quantized
polar bearing and distance are used to form a histogram. A stored histogram can
then be compared with the current one using the rotated L1-norm defined as

RL1(F, G) = min
R∈R
||F − RG||1 (2.29)

where F and G are two different histograms and R the rotation to a quantized
bearing [22].
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Figure 2.12: The cube represent the 6 faces of the quantized polar coordinate
sphere. Within a face a grid depending on l can be formed.

Scan Context

[23] proposes a method where the whole point cloud in a LIDAR scan of a location
is compared with another location. The idea is to create a matrix that corresponds
to the position of points in the point cloud. The perception of the system is
divided into 2D bins creating a matrix where one dimension corresponds to the
range between a point and the origin of the system and the other to the bearing.
When cloud points are detected in a bin, the point with the highest z-coordinate
is chosen to represent that bin with its z-coordinate. The result becomes a low
resolution height map of the surroundings.
To improve robustness the current point cloud is copied and root shifted into
Ntrans copies. The copies are then also transformed into 2D bin matrices. All the
copies and the original 2D bin matrix will be referred to as the query matrices.
A pre-search is then performed to limit the number of candidates for the full
matrix. The pre-search starts by adding the rows of the 2D bins’ matrices together
making a k-vector for each query matrix.

k = (φ(r1), .., φ(rNr )) (2.30)

where φ(rx) is the sum of all bearing bins at range bin rx [23]. The k-vectors of
the query matrices are then compared to find candidates for loop closure. Since
all the bearing bins are summed together the comparison becomes bearing in-
variant. When candidates are found the full matrices are compared between the
candidates and current matrix. The cosine distance between the matrices are cal-
culated with respect to minimum shift

D(Iq, I c) = min
n∈[Ns]

d(Iq, I cn) (2.31)

where Ns is the number of bearing bins in the scans, Iq is the current matrix
and I cn the candidate matrix shifted n number of bearing bins [23]. The cosine
distance d(Iq, I c) is is calculated in the following way

d(Iq, I c) =
1
Ns

Ns∑
j=1

(
1 −

c
q
j · ccj

||cqj || · ||c
c
j ||

)
(2.32)

where cx is a bearing bin in matrix x. If D(Iq, I c) ≤ τ the candidate is accepted as
a loop closure [23].
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2.4.2 Association in LIDAR Data

Though LIDAR histogram methods perform well as a candidate finder a more
exact method is preferred for validation of the different candidates. For that end
a point-to-point association method can be used.

Correspondence graph

The correspondence graph presented in [21] solves the association problem by
creating two graphs P S and P T . P S represents the current submap and is made
up by nodes nS corresponding to the landmarks within the submap. P T repre-
sents the loop closure candidate with nodes nT , corresponding to its landmarks.
The nodes within the graphs are connected by edges εSi,j , where i and j are the
index of two different nodes. The edges are assigned the value of the Euclidean
distance between the two nodes that it connects. The nodes nSi and nSj in graph

P S are then connected to the nodes nTi and nTj in P T if the edges of the nodes
have similar value by some threshold τ shown in Equation (2.33) [21].

|εSi,j − ε
T
i,j | ≤ τ (2.33)

This is done for all the different combinations for both graphs which results in
a combined graph P S,T . The size of the clique in the combined graph then cor-
responds to reliability of the point-to-point association and can be compared be-
tween the candidates [21].

Hough Data Association

The Hough Data Association is also presented in [21] and is based on comparing
the position of landmarks with each other. A landmark compared with another
gets a parameter vector that contains the positions [tx, ty] at some given rotations
tθ . For computational reasons the three components are quantized and bounded
within a given span [maxx, minx] ∗ [maxy , miny] ∗ [maxθ , minθ]. When applied to
two sets of landmarks pSi ∈ P

S and pTi ∈ P
T where T stands for target and S for

source the following expression is calculated:[
txi,j
tyi,j

]
= pTj − R(θi,j )p

S
i (2.34)

where R(∗) is a 2d rotation matrix [21]. The calculation is performed for all the
quantized θ within the bounded limit [maxθ , minθ] which will result in a vector
of positions and rotations [tx, ty , θ]. If the vector is drawn it will look like a
helix. The optimal matching is then given by the subsets of matching pairs with
maximum cardinality [21].

Generalized-ICP

A common algorithm in data association is Iterative Closest Point (ICP). The stan-
dard ICP computes the two following things:
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1. The correspondence between two sets of points.

2. The transformation T that minimizes the distance between two correspond-
ing sets of points.

The full algorithm is shown in Algorithm 6 where dmax is the threshold for the
error function di = ||T bi −mi ||2 that is used to filter out overlapping points.

Input: Two point clouds A = ai , B = bi and initial transform T0
Output: Estimated transform T, which aligns A and B.
while not converged do

for i = 1:N do
mi = findClosestPointInA(T*bi)
if ||T bi −mi ||2 ≤ dmax then

wi = 1;
else

wi = 0;
end

end
T* = argminT {

∑
i wi ||T bi −mi ||2}

end
Algorithm 6: Standard ICP [24].

To improve the performance of the standad ICP the point-to-plane variant of
the ICP is proposed by [24] which has proven to be more robust and accurate.
The algorithm works in a 2.5d environment and minimizes the error function
along the surface normal T ∗ = argminT {

∑
i wi ||ηT bi − mi ||2} where η is the sur-

face normal of mi [24].

The Generalized-ICP [24] is a further improvement of the standard where a stochas-
tic model is used in the error function instead of a deterministic. A Gaussian
distribution is added to points in A and B resulting in ai ∼ N (µai , σai ) and
bi ∼ N (µbi , σbi ). The distribution of the error function then becomes:

d
(T )
i ∼ N (µbi − (T*)µai , σbi + (T*) ∗ σai (T*)T ) = N (0, σbi + (T*) ∗ σai (T*)T ) (2.35)

where full correspondence is assumed: µbi = T*µai [24].
The computation of T* becomes:

T* = argmin
T
{
∑
i

dTi (σbi + Tσai (T)T )−1di} (2.36)

[24].
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Software System Modules

This section will describe the developed software system and tools used in the
master thesis to investigate the problem formulation.

3.1 Visualization Tool

As a first step in the thesis a visualization tool was developed to visualize the
performance of different map partitions and get a way to evaluate them. The
visualization tool is also developed to gain hands-on experience of the software
system and data that it produces.
The visualization tool is developed in Python and uses the library matplotlib to
visualize the output of the software system. It plots different kinds of trajectories
and landmarks to form a local map that is either the final output of the software
system or sent internally between different nodes. The trajectories are made up
of a series of estimated positions that is represented by a custom data structure.
The estimated position of the landmarks is represented by a point cloud from the
C++ library Point Cloud Library.
The visualization tool is able to plot the following different kinds of trajectories
and landmarks:

• The raw trajectory that is the trajectory of the platform before the EKF-
estimation.

• The absolute trajectory and total map which is the EKF-estimated trajectory
and landmarks.

• The trajectory and landmarks estimated by the GTSAM node.

• The GTSAM landmarks.

27
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Figure 3.1: An example of a trajectory and landmarks of the platform when
driving around a residential block in an urban environment. Dots are land-
marks and the line is the trajectory.

• The divided submaps which is the divided GTSAM-estimated trajectory
and landmarks.

An example of how the trajectories and landmarks can be plotted is shown in Fig-
ure 3.1. It is also able to plot the absolute error between the estimated trajectory
and a reference trajectory against time which is shown in Figure 3.2.

Figure 3.2: An example of the positional error for different submap sizes
when driving around a residential block in an urban environment.
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3.2 The Frontend System

The frontend system consists of three ROS nodes: The Input node, the Associa-
tion node and the EKF node. It is used to collect and process the data received
from the rotating LIDAR in form of point clouds and from the IMU unit in form
of linear accelerations and rotational velocities. Landmarks are extracted from
the point cloud and are processed together with IMU data by a SLAM algorithm.
The algorithm builds a map of its surroundings and locates the platform within
it. The map and the position estimate is sent to the GTSAM node for refinement.
This section will describe the three frontend nodes in short. For more informa-
tion, see [6].

3.2.1 Input Node

The Input node is responsible for collecting incoming IMU measurements into
a pose estimate referred to as raw pose. It also receives point clouds from the
rotating LIDAR and extracts features from the point cloud. The type of features
that can be extracted are edge features from edges such as house corners and
circular features from circular landmarks such as thicker tree trunks. A flow
chart of the node is shown in Figure 3.3. The Input node has the functionality to
improve the raw pose by using a GNSS receiver to calculate its velocities. This
functionality is only used as a ground truth reference and when it is enabled the
platform is referred to as the GNSS aided platform.

Figure 3.3: A flow chart for the Input node.
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3.2.2 Association Node

The Association node associates new landmarks with old ones and determines
which ones are consistent. The consistent landmarks are stored in a vector called
consistent landmarks. The landmarks that are consistent get an id key and are
sent to the EKF Node. A flow chart for the Association node is shown in Figure
3.4.

Figure 3.4: A flow chart for the Association node.
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3.2.3 EKF Node

The EKF node performs SLAM using an Extended Kalman filter. It takes the
constant landmarks produced by the Association node and creates a global map
in which it localizes the platform. It also performs a χ2-test as a sanity check on
the incoming landmarks discarding landmarks too close to each other. Figure 3.5
shows a flow chart of the node.

Figure 3.5: A flow chart for the EKF node.
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3.3 The Original GTSAM Node

To be able to understand the modifications to the GTSAM node the original GT-
SAM node is described in the following section.

The original GTSAM node is used to improve the initial estimate performed by
the frontend EKF node. It uses the GTSAM C++ library to calculate an estimate
for the full trajectory and observed landmarks. It builds a factor graph from
measurements which are added to the iSAM2 estimator together with an initial
estimate from the EKF node. iSAM2 estimator refines the initial estimate accord-
ing to section 2.2.6. The current pose in the estimate is saved as a pose in the
trajectory. Figure 3.6 shows a flow chart of the node.

Figure 3.6: The flow chart for the current GTSAM node is shown.
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3.4 The Modified Software System

The software system is modified with added map partitioning functionality to be
able to handle larger areas. The partitioned submaps are reduced according to a
modified version of the Condensed Measurement described in section 2.3.3. The
modified Condensed Measurement method uses ⊕ and 	 operations, described
in section 2.3.4, instead of the unscented transform to estimate the covariances
of the condensed measurements. An overview of the modified software system is
shown in figure 3.7.

Figure 3.7: A map over the modified software system. To the left is the
unmodified front-end system. To the right the back-end system composed
of the modified GTSAM node together with the two new nodes, the Modify
submaps node and the Loop closure node.

3.4.1 The Modified GTSAM Node

The modified GTSAM node has the same basic structure as the current GTSAM
node but with the added functionality of partitioning the map. The main dif-
ference is that when the total distance travelled within a map exceeds a given
threshold the loop is broken and the map is partitioned into two submaps. The
second goes back into the loop as a prior and the first is stored, see figure 3.8.
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Figure 3.8: Overview of the modified GTSAM node.

Partitioning of the map

The partitioning is performed after a given travelled distance which will corre-
spond a position node in factor graph referred to as a partition node. The par-
tition node will be copied and belong to both submaps and considered a shared
node. Any landmarks observed by both the partition node and the node after
the partition node will also be considered a shared node, see Figure 3.9. All the
shared nodes are marked when the map is partitioned to grant easy access for the
calculation of the condensed measurement.

The partition point of the map can also be selected depending on how many
landmarks that are observed at that point. This feature will make it possible to
determine the impact of landmarks at the partition point by forcing the software
system to partition the map at either a landmark dense or a landmark sparse area.

The functionality for map partitioning in landmark sparse areas is implemented
in the following way: At a given sample the software system stores the number
of landmarks. When the platform has travelled a predetermined distance a pre-
liminary partition point is set and a function is called to determine the number
of landmarks observed by the platform. A mean of the number of landmarks ob-
served in the 16 latest samples is compared to an upper threshold. If the mean
exceeds the threshold, indicating that the platform is located in a landmark dense
area, the partition point is pushed one sample forward and thereby lengthening
the distance travelled before partitioning the map. The same check will then be
performed next sample and continue until the mean does not exceed the thresh-
old. If the mean does not exceed the threshold the partition point is kept as it
is. The functionality for map partitioning in a dense area is implemented in the
corresponding way but with a lower threshold instead.



3.4 The Modified Software System 35

Figure 3.9: The partitioning of a map into two submaps. The shared nodes
are marked in red.

Storing the submaps

When the software system has partitioned the map into two submaps the first
submap is stored. This is performed by breaking apart the factor graphs into
factors. The factors are in turn broken apart into measurements, covariances and
stored together with identification keys of the two nodes that are connected by
the factor. The current estimation of each landmark and position is also stored
together with a vector with the keys of the shared nodes. A stored submap can
then be loaded by rebuilding the factor graph with the stored factor components
and initiated with the stored estimate.

3.4.2 Modify Submaps Node

To compute the condensed measurements for each submap a ROS node named
Modify submaps was created. It starts by optimizing the submaps from the GT-
SAM node individually without any influence from each other. The optimized
submaps are used to compute the condensed measurements for each submap,
creating reduced submaps, which are sent to the Loop closure node together with
the optimized submap.

The condensed measurements are computed in the same way as they are in [17]
with the exception that it uses the ⊕ and 	 operators from [18] to calculate the
spatial relations between the shared nodes and the origin node, both for the poses
and the uncertainties. It starts by getting the pose of the origin node po and its
marginalized covariance C(po) together with the pose of the shared nodes pi and
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the marginal covariance for those poses C(pi). The joint marginal covariance for
the origin node and the shared nodes C(po, pi) is also obtained. For every shared
node, the following calculations are performed:

po,i = (	pe,o) ⊕ pe,i (3.1)

and

C(po,i) ≈
[
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where J1⊕ and J2⊕ are parts of the Jacobian matrix for the ⊕-operation. J	 is the
Jacobian for the 	-operation. Subscript e stands for entrance node, o for origin
node and i for the current shared node. The po,i is used as the measurement in the
condensed measurement and the C(po,i) is the uncertainty of that measurement.
These calculations are made for all the shared nodes of the submap except for
the entrance node (the first pose node in the submap) for which the following
calculations are performed:

pe,o = (	pe) ⊕ pe,o (3.2)

and
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where pe is the marginal covariance for the entrance node.

3.4.3 Loop Closure Node

A ROS node that performs manual loop closure is implemented as a first concept
for loop closure. It is also used to examine how the partitioning of the map influ-
ences the estimate of the trajectory and landmarks when loop closure is achieved.
It is called The Loop closure node and uses the optimized submaps together with
the reduced submaps from the Modify submaps node to perform its estimate.

The node begins by adding together the condensed measurements of the submaps
that are in the loop, creating a sparse factor graph of the full trajectory. A last
factor is added between the first and the last node of the factor graph, clos-
ing the loop. The measurement of the last factor is manually calculated from
a GNSS aided reference trajectory and its uncertainty is selected to an arbitrar-
ily low value compared to the other factors in the graph, forcing it to close the
loop. The sparse factor graph is then batch optimized and a global solution is
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obtained. The optimized submaps are then once again optimized but with con-
straints on the nodes that coincide with the global solution of the sparse factor
graph. This forces the submaps to obtain the position, orientation, twist and
scale of its reduced counterpart in the sparse factor graph. The resulting submap
is then stored and referred to as a loop closed optimized submap.

3.5 Tools and Software

The software system is working in an open environment based on ROS, distribu-
tion release Melodic Morenia and is developed using C++. It uses, among others
the two C++ libraries, GTSAM and Point Clouds library (PCL). Most of the soft-
ware system is written in C++ since it uses some C++ libraries but also because
C++ is a mid-level programming language, able to write direct low level func-
tions. The software system is run on a Dell Precision Workstation T3500 with a
Intel Xeon CPU on 2.80 GHz.
For the data recording a Gigabyte Ultra compact PC is used together with the Li-
dar and IMU. The platform and the recording setup is mounted on a Toyota Land
Cruiser. Git is used for version control.





4
Initial Investigation

An initial investigation was performed to limit the number of test cases to be
examined in the thesis. It was mainly used to give some background to how
many landmarks the vehicle should observe in an area in order for that area to
be considered a landmark sparse area and how many should be considered as
a landmark dense area. During the initial investigation the platform used the
original GTSAM node. The different test cases will be presented followed by
the results. The last section will present some discussion and conclusion of the
investigation.

4.1 Test Cases

The first test examines the absolute error change between the GNSS aided plat-
form, which is considered ground truth, and the platform. The absolute error
between two samples is not of interest since it could be accumulated from previ-
ous samples and does not therefore give a good measure of the current sample.
The change in errors is proposed as a better measure and should give a crude
estimate of how the platform performs at a given sample observing a number of
landmarks. The absolute error change is calculated using the expression shown
in Equation (4.1).

ė =
∣∣∣∣x[k] − xref [k] − (x[k − 1] − xref [k − 1])

2

∣∣∣∣ (4.1)

where x[k] is the position of the platform at sample k and xref [k] is the ground
truth position of the GNSS aided platform at sample k. The second test examines
the change in error as a histogram over samples with a given number of land-
marks. The test is performed to get a notion of how a given number of landmarks
affects the absolute error of the platform.

39
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4.2 Results of the Investigation

Three different runs were made during the investigation where the first two had
the same route. The first run started in a residential block in an urban environ-
ment and headed out to the countryside. It is referred to as City to country 1. The
second run had the same route as the first and will be referred to as City to coun-
try 2. The last run was a little longer drive at the countryside and will be referred
to as the Countryside.

4.2.1 Routes

The following routes were followed during the investigation: City to country 1 is
shown in Figure 4.1, City to country 2 is shown in Figure 4.2 and Countryside is
shown in Figure 4.3.

Figure 4.1: The trajectory and estimated landmarks for run City to country
1. The lines are the estimated trajectories and the dots landmarks. The num-
bers show the current sample number of that position.



4.2 Results of the Investigation 41

Figure 4.2: The trajectory and estimated landmarks for run City to country
2. The lines are the estimated trajectories and the dots landmarks. The num-
bers show the current sample number of that position.

Figure 4.3: The trajectory and estimated landmarks for run Coutryside. The
lines are the estimated trajectories and the dots landmarks. The numbers
show the current sample number of that position.
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4.2.2 Absolute Error Change

The following figures shows how the absolute error change depends on the num-
ber of observed landmarks in a given sample. City to country 1 is shown in Figure
4.4, City to country 2 is shown in Figure 4.5 and Countryside is shown in Figure
4.6.

Figure 4.4: The absolute error change together with the number of land-
marks at a sample for run City to country 1.

Figure 4.5: The absolute error change together with the number of land-
marks at a sample for run City to country 2.
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Figure 4.6: The absolute error change together with the number of land-
marks at a sample for run Countryside.

4.2.3 Histogram of the Absolute Error Change

Histograms of the absolute error change at a given sample is shown in the follow-
ing figures. City to country 1 is shown in Figure 4.7, City to country 2 is shown in
Figure 4.8 and Countryside is shown in Figure 4.9.

Figure 4.7: The mean error change at a specific number of landmarks to-
gether with the number of samples at that number of landmarks for the City
to country 1.
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Figure 4.8: The mean error change at a specific number of landmarks to-
gether with the number of samples at that number of landmarks for the City
to country 2.

Figure 4.9: The mean error change at a specific number of landmarks to-
gether with the number of samples at that number of landmarks for the
Countryside.
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4.3 Discussion and Conclusion of the Investigation

The results of the investigation give some indication of how the number of ob-
served landmarks affects the change in positional error. In Figures 4.4, 4.5 and
4.6 the absolute error change is presented for the three runs. There is a clear rise
in absolute error change when the platform is located in a landmark sparse area
compared to a landmark dense area. The most obvious behaviour that contra-
dicts this conclusion is that in both the dataset City to country 2 and Countryside
the rise in error change starts in a fairly landmark dense area at one point each.
In City to country 2 this occurs around sample 1300 and in Countryside around
sample 2000. The Countryside dataset is overall more fluctuating as can be seen
between sample 4250 and 5250 but the behaviour is clear in City to country 2.

When looking at the histograms, the same trend is present. In Figure 4.7, 4.8 and
4.9 the absolute error change histograms are shown. The error change is clearly
largest when the platform does not observe any landmarks and falling with in-
creasing number of landmarks. This can be said about all the three runs with one
added note. Both City to country 1 and Countryside show a rise in absolute error
change when the number of observed landmarks becomes more than 9 for City to
country 1 and 6 for Countryside. The number of samples with that many observed
landmarks is very low though, making it hard to draw any conclusions from that
note.

Disregarding this and the irregular behaviour in the absolute error change of
run City to country 2, the overall trend is that the platform has a lower absolute
error change when the number of observed landmarks is high and higher when it
is low. When examining the histograms there seems to be a rapid decrease in the
mean absolute error change between zero landmarks and three landmarks. This
trend is seen as motivation to consider a landmark sparse area to be less than one
to three landmarks. The subsequent number of landmarks, four to six, is some-
what stable when compared to one to three. This trend is seen as a motivation to
consider a landmark dense area to have more landmarks than four to six. These
configurations of dense and sparse areas are more closely looked into in the next
chapter.





5
Map Partitioning Results

This chapter presents the result of map partitioning and loop closure performed
by the platform using the modified software system described in Chapter 3. The
scenarios tested were chosen with respect to the problem formulation in Chapter
1. The issues studied were as follows:

• The effect that partitioning the map with different static submap sizes has
on the estimated trajectory.

• The effect that partitioning the map with different static submap sizes dur-
ing loop closure has on the estimated trajectory.

• The effect that partitioning the map with dynamic submap sizes depend-
ing on the number of landmarks observed at the partition point has on the
estimated trajectory.

• The effect that partitioning the map with dynamic submap sizes depending
on the number of landmarks observed at the partition point during loop
closure has on the estimated trajectory.

47



48 5 Map Partitioning Results

5.1 Static Partitioning of the Map without Loop
Closure

When different static submap sizes were examined, the following results were ob-
tained. The results show the effect of partitioning the map with different submap
sizes compared to a full map. The platform was working on the same data that
was recorded in advance which resulted in the same conditions for all the dif-
ferent submap sizes. The previously recorded data that the platform used was
played at 0.5 real-time speed which affected the different time measures taken.

5.1.1 Urban Route

The platform was tested in an urban environment with a route around a residen-
tial block. The result is presented in Figure 5.1, where the trajectories of different
submap sizes are shown and in Figure 5.2, where the error between the different
submap sizes and an uncut map is shown.

Figure 5.1: The trajectories with different submap sizes when the platform
was driven around a residential block. The dots represent partition points.
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Figure 5.2: The positional error between trajectories when different submap
sizes where used and an uncut trajectory.

The Root Mean Square Error (RMSE) between the differently partitioned tra-
jectories and the uncut trajectory was calculated and is shown in Table 5.1. The
table also shows the mean partition time, which was the time the map partition-
ing function took for the different submap sizes. It also shows the mean iteration
time, which was the time one iteration in the GTSAM node took for the different
submap sizes.

Table 5.1: The RMSE, mean partition time and mean iteration time at differ-
ent static submap sizes.

Submap size RMSE Mean partition time Mean iteration time

100m 0.1569m 0.0239s 0.0014s
200m 0.2637m 0.0390s 0.0038s
300m 0.0295m - -
400m - - -
500m - - -

Figure 5.1 shows that on a larger scale the difference between the uncut trajec-
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tory and a partitioned one is quite small when compared to distance travelled. It
also shows that in this short drive the platform quickly accumulates a quite large
error when compared to the GNSS aided trajectory.

In Figure 5.2 the positional errors appear to change in steps which seems to co-
incide with the partition points for the submaps. The 400m and 500m submaps
do not partition in this short drive which is why they don’t show any errors. The
steps seem to either increase or decrease the positional errors at each map par-
titioning but with such a short route compared to the submap length it is hard
to draw any conclusions for the submap sizes. One remark that can be said is
that the map partitioning error seems to be negligible compared to the overall
positional error.

The RMSE shown in Table 5.1 seems to be somewhat stable for 100m and 200m
and then drop by one order of magnitude for 300m. Both the Mean Partition Time
and the Mean Loop Time seems to be increasing with larger maps but since the
result only shows two samples it is hard to say much about the time consumption.

When the platform was used it needed to stand still for 20 seconds so the IMU
could calibrate. Since the partitioning was governed by distance travelled, the
first submap became much larger than the rest creating an outlier for the time
measurements. The last submap became much smaller than the rest since the
platform was turned off in the middle of it which also creates an outlier for time
measurements. These two samples were excluded from the calculation of the
mean time. The 300m submap therefore does not have any mean partition time
and mean iteration time because it only consisted of two submaps.
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5.1.2 Urban to Countryside Route

The platform was tested on a route that went from the urban environment in
previous section to the countryside. The result is presented in Figure 5.3 where
the trajectories of different submap sizes are shown and in Figure 5.4 where the
error between the trajectories with different submap sizes and a trajectory with a
full map is shown.

Figure 5.3: The trajectories for different submap sizes when the platform was
driven from an urban area to the countryside. The dots represent partition
points.
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Figure 5.4: The absolute error for different partition points when the plat-
form was driven from an urban area to the countryside.

Table 5.2: The RMSE, mean partition time and mean iteration time at differ-
ent static submap sizes.

Submap size RMSE Mean partition time Mean iteration time

100m 0.0261m 0.0134s 0.0012s
200m 0.0044m 0.0229s 0.0009s
300m 0.0045m 0.0262s 0.0007s
400m 0.0012m - -
500m 0.0027m - -

The result for the Urban to countryside route is quite similar to the Urban
route. The map partitioning doesn’t affect the trajectory noticeably on a larger
scale as shown in Figure 5.3.

The same step errors can be seen in Figure 5.4 as in the urban route and the RMSE
seems to get smaller with larger submaps. The mean partition time seems to get
longer with bigger submaps. The mean iteration time looks somewhat stable or
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even shorter with larger submaps.

5.2 Static Partitioning of the Map with Loop Closure

When the different submap sizes under loop closure were examined the follow-
ing results were obtained. The result shows the effect of partitioning the map
with different submap sizes when loop closure is performed compared to a GNSS
aided estimate of the full map. The uncut trajectory and GNSS aided trajectory
were kept as reference and have not been loop closed. The platform was work-
ing on prerecorded data which created the same conditions for all the different
submap sizes. The prerecorded data was played at 0.5 real-time speed.

5.2.1 Urban Route

The platform was tested in an urban environment with a route around a resi-
dential block. The result is presented in Figure 5.5 where the trajectories with
different submap sizes are shown and in Figure 5.6 where the absolute error be-
tween the trajectories with different submap sizes and a trajectory with GNSS
reference is shown.

Figure 5.5: The trajectory for different submap sizes with loop closure when
the platform was driven around a residential block in an urban environment.
The dots are the partition points.
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Figure 5.6: The positional error for different submap sizes with loop clo-
sure when the platform was driven around a residential block in an urban
environment.

Table 5.3: The RMSE for different static submap sizes.

Submap length RMSE

100m 3.1915m
200m 4.4185m
300m 3.4109m
400m 4.2739m
500m 5.7739m

The partition points of submaps seem to be quite on point with the GNSS
reference in Figure 5.5 and the accumulated error is rather a result of the trajec-
tory between partition points. This error might be solved by either increasing
the number of iterations in the final optimization of the submaps or by chang-
ing the initial estimate of the submaps to match the loop closed partition points.
Either way this shows that the loop closed reduced submap greatly decreases
the positional error and that the final optimized submap could be improved for
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this configuration and route. Shorter submaps that create more partition points
should be preferred since the reduced loop closed submap, containing only the
partition points, performs quite well. Trajectories comprised of shorter maps
should therefore contain more accurate nodes, the partition points, which is seen
in the RMSE. The RMSE appears to get lower with smaller submaps apart from
the 200m sample.

The positional errors shown in Figure 5.6 don’t have the same step appearance as
the open trajectories. The starting point and the finish point have a low absolute
error since they were forced to the same location by the loop closure. The middle
of the trajectories have the highest absolute error as they were the farthest away
from the loop closure point.

5.3 Dynamic Partitioning of the Map without Loop
Closure

To investigate how the number of observed landmarks affects the map partition-
ing, a new requirement was put on the partition points. The requirement was
that the partition points were forced to a landmark dense or a landmark sparse
area. The submaps were initially set to a size of 100m but could be lengthened
depending on the density of landmarks at the partition points. Six different cases
were tested.

• The first case forced the submaps to be lengthened if the number of ob-
served landmarks were more than or equal to 1 at the partition point. The
submaps were therefore lengthened until the partition point ended up in
an area with less than 1 observed landmark.

• The second case forced the submaps to be lengthened if the number of ob-
served landmarks were more than or equal to 2 at the partition point, forc-
ing the partition point to an area with less than 2 observed landmarks.

• The third case forced the submaps to be lengthened if the number of ob-
served landmarks were more than or equal to 3 at the partition point, forc-
ing the partition point to an area with less than 3 observed landmarks.

• The forth case examined the opposite scenario, forcing the submaps to be
lengthened if the number of observed landmarks were less than or equal
to 4 at the partition point, forcing the partition point to an area with more
than 4 observed landmarks.

• The fifth case forced the submaps to be lengthened if the number of ob-
served landmarks were less than or equal to 5 at the partition point, forcing
the partition point to an area with more than 5 observed landmarks.

• The sixth case forced the submaps to be lengthened if the number of ob-
served landmarks were less than or equal to 6 at the partition point, forcing
the partition point to an area with more than 6 observed landmarks.
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The number of current observed landmarks was determined by a mean over the
last 16 samples of observed landmarks as explained in Chapter 3. The platform
was working on the same prerecorded data creating the same conditions for all
the different requirements on the partition points and played at 0.5 of real-time
speed.

5.3.1 Urban Route

The platform was again tested on the urban route. The result is presented in
Figure 5.7, showing the trajectories of submap with different requirements put
on the partition points and in Figure 5.8 where the absolute error between those
trajectories and an uncut trajectory is shown.

Figure 5.7: The trajectories with different partitioning requirements put on
the partition points when the platform was driven around a residential block
in an urban environment. The dots show the partition points.
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Figure 5.8: The absolute error between the trajectories with different re-
quirements put on their partition points and the uncut trajectory when the
platform was driven around a residential block in an urban environment.

Table 5.4: The RMSE, mean partition time and mean iteration time and av-
erage submap size at different dynamic submap requirements.

Partition point RMSE
Mean
partition
time

Mean
iteration
time

Average
submap size

Sparse < 1 0.0297m 0.0267s 0.0015s 121.6m
Sparse < 2 0.1326m 0.0208s 0.0014s 101.3m
Sparse < 3 0.1194m 0.0222s 0.0013s 101.4m
Dense > 4 0.1523m 0.0351s 0.0013s 121.7m
Dense > 5 0.2526m 0.0366s 0.0004s 121.7m

Dense > 6 0.1342m - - 202.7m

In Figure 5.7 the difference between submaps and the uncut map seems to be
relatively small. In Figure 5.8 the same step appearance is present as with the
statically partitioned submaps shown in Figure 5.2 and 5.4
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When looking at the RMSE measure, it seems quite constant except for Sparse
< 1 which is 1 order of magnitude smaller. The Mean Partition Time is a little
bit longer for the partition point in dense areas and the Mean Loop Time is quite
constant.

5.3.2 Urban to Countryside Route

The platform was again tested on the urban to countryside route. The results
are presented in Figure 5.9 where the trajectories of submaps with different re-
quirements put on the partition points are shown and in Figure 5.10 where the
absolute error between those trajectories and the uncut trajectory is shown.

Figure 5.9: The trajectories with different requirements put on the partition
points when the platform was driven from a residential block to the coun-
tryside. The dots are partition points.
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Figure 5.10: The absolute error between the trajectories with different re-
quirements put on their partition points and an uncut trajectory when the
platform was driven from a residential block in an urban environment to the
countryside.

Table 5.5: The RMSE, mean partition time and mean iteration time and av-
erage submap size at different dynamic submap requirements.

Partition point RMSE
Mean
partition
time

Mean
loop time

Average
submap size

Sparse < 1 0.1997m 0.0137s 0.0004s 111.2m
Sparse < 2 0.6562m 0.0131s 0.0014s 101.1m
Sparse < 3 0.5809m 0.0135s 0.0013s 101.0m
Dense > 4 0.0626m 0.0447s 0.0008s 222.2m
Dense > 5 0.0989m 0.0449s 0.0007s 222.3m

Dense > 6 0.1075m 0.0475s 0.0010s 222.2m

Figure 5.7 show the same trends as the results from the Urban route. The
RMSE measure seems overall smaller for partitioning in a dense area with a
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higher Mean partition time than for a sparse area. The Mean loop time is rela-
tively constant. The Average submap size for partitioning the map in a landmark
sparse area is around 100m and for partitioning the map in a landmark dense
area around is 200m.

5.4 Dynamic Partitioning of the Map with Loop
Closure

In this section, we present the results from the different cases of dynamic parti-
tioning when combined with loop closure. The cases are the same as Section 5.3.
The results show the effect of partitioning the map in either a landmark dense or
a landmark sparse area when loop closure was performed, compared to a GNSS
aided estimate of the full map. The uncut trajectory and GNSS aided estimate
were kept as reference and have not been loop closed. The platform was work-
ing on prerecorded data which resulted in same conditions for all the different
configurations.

5.4.1 Urban Route

The platform was tested on the urban route. The result is presented in Figure
5.11, picturing the trajectories of submaps with different requirements put on
their partition points and in Figure 5.12 where the absolute error between those
trajectories and the GNSS reference is shown.
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Figure 5.11: The trajectories with different requirements put on their parti-
tioning points when the platform was driven around a residential block in
an urban environment.
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Figure 5.12: The absolute error between the trajectories and the GNSS ref-
erence when the platform was driven around a residential block in an urban
environment.

Table 5.6: The RMSE and average submap size for different dynamic submap
requirements.

Partition point RMSE
Average
submap size

Sparse < 1 5.1349m 139.4m
Sparse < 2 4.4431m 118.4m
Sparse < 3 5.1750m 118.7m
Dense > 4 4.8201m 144.4m
Dense > 5 4.0145m 143.2m

Dense > 6 5.2813m 232.1m

In Figure 5.11 the partition points do not follow the GNSS aided trajectory
as well as with the static submaps. This is especially clear in the top side of the
rectangle. Figure 5.12 shows a similar picture as for the static submaps except
that it has a lot more noise. The RMSE shows no clear trend.



6
Discussion

In this chapter a discussion is presented about the results from Chapter 5 and
the chosen methods of the master thesis. The presented loop closure detection al-
gorithms are also discussed. Finally some conclusions and suggestions of further
research is presented.

6.1 Result

When looking at static partitioned submaps, the different submap sizes do not ap-
pear to affect the positional error very much when compared to the overall error.
The trend seems to be that longer submaps have a smaller positional error which
would agree with conclusions from a pure theoretical point of view. When parti-
tioning the map into submaps the smoothing becomes closer to the plain filtering
case as the submaps gets smaller. This limits the information the algorithm has
access to and limits its performance. More specifically this limits the ability of
the algorithm to handle the growing linearization error that appears with larger
maps, which for iSAM2 is handled by Algorithm 3 in Chapter 2.

When looking at the placement of the partition points, it seems hard to draw
any conclusion about if it is better to partition the map in a dense or sparse area.
In both the unclosed routes the Sparse < 1 seems to have a low positional error
leading to the conclusion that it might be preferable. This result is contradicted
by the result shown in the route Urban to Countryside where the partition points
in dense areas have a lower positional error. This can be the result of larger
submaps as a consequence of a shortage of landmark dense areas along the route,
which can be seen in Table 5.5. This behaviour is not present in the Urban route
though, shown in Table 5.5.
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The partition points for the submaps seem to be quite on point with the GNSS
reference when closing the loop as discussed before. This implies that smaller
submaps with more partition points would be advantageous. However, it is diffi-
cult to verify this idea since no RMSE measure is gathered at only the partition
points. A thought is that, when just looking at the geometrical placement of the
partition points, it would be preferable to partition the map in sharp turns and
corners of the trajectory. This remark needs to be further explored to be able
to conclude anything and is somewhat contradicted by the dynamic loop closed
submaps which don’t have all the partition points on the GNSS reference.

One aspect of submap sizes and loop closure is that the reduced loop closed fac-
tor graph will at some point be too large to optimize. This event will happen
later when using larger submaps, since more nodes will be reduced, making it
possible to form longer loops. The event will eventually occur however, on the
assumption that larger and larger loops are formed. One way to solve this is to
recursively reduce the submaps but this solution needs to be further explored.

When looking at submap sizes from a loop closure detection point of view, us-
ing the GLARE, GLAROT or GLAROT 3D, the chosen number of landmarks
could correspond to a submap for convenience, though this is not a requirement.
Smaller submaps would in that case be quicker than a larger map, whereas a
larger map would grant fewer candidates that needs to be further validated. A
configuration with smaller submaps could also detect loop closure more easily
when just crossing a previous trajectory than one with larger submaps. The over-
lapping area of two candidates would be bigger compared to the full size of those
candidates.

6.2 Test Setup

When looking at the test setup, such as chosen routes, algorithms etc. a lot of
remarks can be made. First of all, the chosen routes turned out to be too short
with respect to the chosen submap sizes. This resulted in missing RMSE, Mean
Partition Time and Mean Loop Time for some results. It also resulted in quite
small sample sizes for the different submap sizes.

Another remark about the chosen submap sizes is that a larger range of sizes
could have been chosen. Larger steps between the static submap sizes might re-
sult in bigger differences between large and small submaps.

The Condensed Measurement algorithm was chosen since it seemed easier to
combine with submap storage and loop closure than the TSAM algorithms. The
TSAM algorithms seemed more focused on solving big factor graphs using map
partitioning instead of storing them.

When optimizing the separate submaps for calculation of the Condensed mea-
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surements the optimization was fixed to 100 iterations. The reason for this was
that the normal threshold bound optimization would not optimize the submaps
more than one iteration for unknown reason. The impact of this iteration bound
optimization might be that with larger submaps optimization does not have the
time to converge assuming that larger submaps are more difficult to optimize.
This in turn would increase the positional error for larger submaps.

6.3 Loop Closure Detection

Loop closure detection was planned to have a bigger part of the thesis but due to
shortage of time only a short theory chapter was added. The methods presented
were chosen to fit the software system modules and their interfaces. When choos-
ing a candidate algorithm GLARE, GLAROT or GLAROT 3D seems most promis-
ing due to simplicity and that they seem to be easy to integrate with the current
platform. Since they have a rising complexity, with GLARE being the simplest
and GLAROT 3D being the most complex, a good idea might be to start with an
implementation of GLARE and continue with more complex methods if needed.
The Scan Context method can be an alternative to GLARE methods but needs
LIDAR scans to work. It seems more bound to roads since it is more dependent
on the origin of the scan and might not work as well in open terrain.

When looking at the different validation methods presented, the Generalized-
ICP appears to be a good starting point for implementation, mostly due to the
fact that an open implementation of the algorithm already exists in PCL [4]. It
also produces a transform between the two submaps which is needed to close
the loop. The Correspondence graph only compares the Euclidean distances and
does not produce a direct estimate of the transform between the two submaps
which makes it less attractive. This is true for the Hough Data Association as
well though it is considering the rotation between the submaps during its calcu-
lation which might make it easier to estimate a submaps transform from it.

The Scan Context method can also be considered as a validation candidate since it
uses LIDAR scans and is therefore independent of landmarks. This would make
the platform more robust towards faulty loop closure detection due to bad land-
mark estimates.

6.4 Conclusion

This master thesis set out to investigate the effect of map partitioning and loop
closure in a factor graph based SAM system. To concretize the problem, four
questions were formulated which are stated in Chapter 1.

The first question is:

• How can map partitioning be integrated into the GTSAM algorithm?
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Map partitioning could be integrated into the GTSAM algorithm in mainly two
direct ways. Either by partitioning of the factor graph which has been done in
this thesis or by partitioning the Bayes tree which was considered but discarded
in this thesis due to a more complicated implementation. There are a lot more
ways map partitioning can be achieved but since the main data structures used
by the GTSAM algorithm are a factor graph and a Bayes tree these are considered
the main ones. The partitioning of the factor graph breaks apart the latest part of
factor graph until the partition point is reached and saves the components. The
components are then put together into a new factor graph and map partitioning
has been achieved.

Continuing with the second question:

• How does the size of the partitioned submaps affect the estimated position
of the platform, with and without loop closures?

When partitioning the map without loop closure a bigger submap seems prefer-
able with respect to positional error. On the other hand when partitioning the
map and loop closure is achieved smaller submaps seem preferable with respect
to positional error.

The third question is:

• How does the number of landmarks at the partition point affect the esti-
mated position with and without loop closures?

No clear conclusion can be drawn in the thesis about the landmark density at the
partition points during this thesis. The result shows in one case that partitioning
the map in really landmark sparse areas might be preferable and in another that
partitioning the map in landmark dense areas might be preferable.

The last question is:

• Which loop closure detection techniques are reasonable to consider with
respect to the platform?

When comparing the chosen loop closure detection and validation algorithm the
GLARE algorithm together with the Generalized-ICP seems like a good starting
point. If more complex algorithms are needed GLAROT and GLAROT 3D might
be considered together with the Scan Context algorithm as validation method.

6.5 Further Research

In the scope of this master thesis a method for partitioning the map has been pre-
sented together with some loop closure detection theory. It is one step towards
achieving full scalability and automatic loop closure detection but to accomplish
that further work is required.
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One way to continue the project would be to investigate how to implement an
efficient loop closure detection algorithm. This could be coupled with some sort
of database implementation to efficiently keep track of the stored submaps which
the algorithm would compare against its current map.

Another way to continue the research is to investigate some sort of recursive im-
plementation of the map partitioning. Since the reduced factor graph used to
obtain loop closure can become too large to optimize one would have to reduce it
in order to handle bigger loops. The new reduced factor graph could be consid-
ered its own submap consisting of smaller submaps. This direction could also be
coupled with an implementation of a database to keep track of the submaps at
different submap levels. If this can be achieved then the platform would obtain
full scalability.

A third suggestion would be to research how to use the stored submaps, either
explored previously by the platform itself or explored by another system? To de-
termine if the factor graph of a submap can be used to improve the estimated
position, by predicting the previously observed landmarks when revisiting that
area. Submaps that are revisited a lot would need more and more memory since
not only the position of a landmark is saved but also every measurement of the
landmark that are gathered within the submap. All the previous positions of
the platform together with the transitions between them would also be saved. A
pruning of the revisited submap would therefore be needed. One way could be
to fuse sets of connected factors into one factor that would summarize their infor-
mation. A method for fusing factors together is presented in [25] which could be
a direction to explore.
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A
Linear Algebraic Operations

Appendix A shows how different algebraic operations are performed.

A.1 QR Factorization

This section shows how QR factorization is performed on a linear system. This is
equivalent to the elimination algorithm presented in Chapter 2.
The factorization is performed to avoid performing inverses of the sparse mea-
surement Jacobian matrix A ∈ Rmxn. A is divided as follows

A = Q

[
R
0

]
(A.1)

Where R ∈ Rnxn is the upper triangular information matrix and Q is an orthog-
onal matrix. (QQT = I). When used to solve equation y = Ax, where x ∈ Rmx1

and y ∈ Rn the solution is given by[
y0
ye

]
= QT y = QTQ

[
R
0

]
x (A.2)

where (yeyTe ) becomes the residual of the least square problem. The solution
can be gained from

y0 = Rx̂ (A.3)

where simple back substitution can be used to solve for x̂. [11] [1]
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