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Abstract

Robot manipulators are getting more and more attention nowadays. This is due
to their high precision and the speed they provide while executing their tasks.
The desires for such high standards are increasing exponentially due to the ex-
tended workspace that manipulators provide. Therefore, a safe controller is
needed to make it possible for the robot to work alongside people considering
the safety precautions. These safety preconditions are widely spread, even when
the needs for better human-friendly robots are rising.

This thesis will introduce and explain a way to model a 6-axis robot by using
its dynamical properties as well as the development of a joint space inverse dy-
namic controller. The controller will be tested in various different ways. Firstly
by adding noise to the measured data. Then testing the robustness of the control
model, while the simulated model includes properties different from those used
for the controller itself. The different properties would for example be payloads
and the inertia of the links. Thereafter, evaluating the precision of a followed
path that is given by an operational space trajectory.

The outcome of these experiments show promising results. The results show that
the controller is able to manage a noise in both the joint angle and joint velocity.
It also shows that an error in the payload data will give a small error in the joint
angles, sequentially that gives an acceptable error for the end-effector in the oper-
ational space. Furthermore, the controller manages to keep the maximum error
in the joint angle low, while it is following a trajectory in the operational space.

iii





Acknowledgments

I would like to start by showing my gratitude to the ABB corporate research group
at ABB for welcoming me and giving me the opportunity to do the thesis. A
special thanks to my supervisor at ABB Jonas larsson for all the feedback and
the knowledge he shared with me. Furthermore I would like to thank my ex-
aminer and supervisor at Linköping University Svante Gunnarsson and Hamed
Haghshenas for their support and advises through my thesis.

I would also like to thank Haitem Haider for crafting Figure 2.2. Lastly I would
like to show a special and monumental appreciation towards my brother, Zain
Al-abideen Shuman, for proofreading the thesis report.

Linköping, December 16, 2020
Ali Murtatha Shuman

v





Contents

List of Figures ix

List of Tables xvi

Notation xvii

1 Introduction 1
1.1 Purpose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3.1 MO-MA Hybrid . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3.2 Rising . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3.3 RB-KAIROS . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4 Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Theory: Dynamic Modeling of Manipulator Structures 5
2.1 Configurations of Rigid Body . . . . . . . . . . . . . . . . . . . . . 5
2.2 Transformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 DH Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.4 Kinematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.5 Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.5.1 Lagrange Formulation . . . . . . . . . . . . . . . . . . . . . 12
2.5.2 Example: Two DoF Non-Planar Robot Arm . . . . . . . . . 15
2.5.3 Example: Validation . . . . . . . . . . . . . . . . . . . . . . 17

3 Theory: Joint Space Inverse Dynamic Control 19
3.1 Simulated Model of the Manipulator . . . . . . . . . . . . . . . . . 19
3.2 Inverse Dynamics Control . . . . . . . . . . . . . . . . . . . . . . . 20

3.2.1 Nonlinear Compensation and Decoupling . . . . . . . . . . 21
3.2.2 PD-Controller . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4 Application to the Robot 23
4.1 Direct Implementation . . . . . . . . . . . . . . . . . . . . . . . . . 25

vii



viii Contents

4.2 Robotics Toolbox RTB . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.3 Robotic System Toolbox RSTB . . . . . . . . . . . . . . . . . . . . . 26

5 Simulation Results 29
5.1 Experiment Baseline Case . . . . . . . . . . . . . . . . . . . . . . . 29
5.2 Measurement Disturbance Influence on the Controller . . . . . . . 36
5.3 Robustness of Control Model . . . . . . . . . . . . . . . . . . . . . . 42

5.3.1 Robustness of Payload Influence Test . . . . . . . . . . . . . 43
5.3.2 Robustness of Inertia Influence Test . . . . . . . . . . . . . 54

5.4 Operational Space Time Path . . . . . . . . . . . . . . . . . . . . . . 64

6 Result 73
6.1 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
6.2 Future Development . . . . . . . . . . . . . . . . . . . . . . . . . . 74

A RTB Definition of The Links Chain 77

B SimulinkModel of the Robot Controller Using RSTB. 79

C RSTB Definition of The Links Chain 81

D Tests of the Noise Disturbance 83

E Payload Tests 95

F Inertia Test 107

Bibliography 119



List of Figures

1.1 ABBprototype of 6-axis robot arm. . . . . . . . . . . . . . . . . . . 1

2.1 The red parts represent a revolute and prismatic joint in two differ-
ent positions: A and B. The arrow shows the rotational and trans-
lational axis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Robot arm, chain of links, with links reference frames. . . . . . . . 6
2.3 A) Cartesian, B) Cylindrical and C) Spherical coordinate systems. . 7
2.4 Center of gravity of link in different reference frames. . . . . . . . 9
2.5 Center of gravity of rigid-body in different reference frames. . . . 15
2.6 Test results of validation of the equation of motion for the two DoF

non-planar robot arm. . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.1 Manipulator simulated model structure, A) using RSTB (Robotics
system toolbox by MATLAB ), B) using MFB (MATLAB function
Block). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2 Joint space inverse dynamics control . . . . . . . . . . . . . . . . . 21
3.3 Exact linearization of the system dynamics. . . . . . . . . . . . . . 21

4.1 The robot and the reference frames for each body link. . . . . . . . 24
4.2 The joint frames according to the DH convention. . . . . . . . . . . 25
4.3 Simulinkmodel of the robot controller using RSTB, further described

in Appendix B. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5.1 Ideal case. From top to bottom: joint angle reference signal qr , joint
angle error qe and actual joint angle q. The legends (J1, LA, J2, UA,
J3, OS) are associated with the joint of each link, see Figure 4.1. . . 31

5.2 Ideal case. From top to bottom: joint velocity reference signal q̇r ,
joint velocity error q̇e and actual joint velocity q̇. The legends (J1,
LA, J2, UA, J3, OS) are associated with the joint of each link, see
Figure 4.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5.3 Ideal case. Top graph: torques from the B(q)q̈. Second graph:
torques from n(q, q̇). The legends (J1, LA, J2, UA, J3, OS) are as-
sociated with the joint of each link, see Figure 4.1. . . . . . . . . . 33

ix



x LIST OF FIGURES

5.4 Ideal case. Top graph: total saturated torques us. Second graph:
saturated values of u. The legends (J1, LA, J2, UA, J3, OS) are
associated with the joint of each link, see Figure 4.1. . . . . . . . . 34

5.5 Ideal case. Top graph: total saturated control signal ys. Second
graph: saturated values of y. The legends (J1, LA, J2, UA, J3, OS)
are associated with the joint of each link, see Figure 4.1. . . . . . . 35

5.6 Noise generator structure. . . . . . . . . . . . . . . . . . . . . . . . 36

5.7 Disturbance case: added noise on joint angle q and joint velocity
q̇. From top to bottom: joint angle reference signal qr , joint angle
error qe and actual joint angle q. The legends (J1, LA, J2, UA, J3,
OS) are associated with the joint of each link, see Figure 4.1. . . . . 37

5.8 Disturbance case: added noise on joint angle q and joint velocity q̇.
From top to bottom: joint velocity reference signal q̇r , joint velocity
error q̇e and actual joint velocity q̇. The legends (J1, LA, J2, UA, J3,
OS) are associated with the joint of each link, see Figure 4.1. . . . . 38

5.9 Disturbance case: added noise on joint angle q and joint velocity
q̇. Top graph: torques from the B(q)q̈. Second graph: torques from
n(q, q̇). The legends (J1, LA, J2, UA, J3, OS) are associated with the
joint of each link, see Figure 4.1. . . . . . . . . . . . . . . . . . . . . 39

5.10 Disturbance case: added noise on joint angle q and joint velocity
q̇. Top graph: total saturated torques us. Second graph: saturated
values of u. The legends (J1, LA, J2, UA, J3, OS) are associated with
the joint of each link, see Figure 4.1. . . . . . . . . . . . . . . . . . 40

5.11 Disturbance case: added noise on joint angle q and joint velocity
q̇. Top graph: total saturated control signal ys. Second graph: satu-
rated values of y. The legends (J1, LA, J2, UA, J3, OS) are associated
with the joint of each link, see Figure 4.1. . . . . . . . . . . . . . . . 41

5.12 Payload test: test weight is 10% higher. From top to bottom: joint
angle reference signal qr , joint angle error qe and actual joint angle
q. The legends (J1, LA, J2, UA, J3, OS) are associated with the joint
of each link, see Figure 4.1. . . . . . . . . . . . . . . . . . . . . . . . 43

5.13 Payload test: test weight is 10% higher. From top to bottom: joint
velocity reference signal q̇r , joint velocity error q̇e and actual joint
velocity q̇. The legends (J1, LA, J2, UA, J3, OS) are associated with
the joint of each link, see Figure 4.1. . . . . . . . . . . . . . . . . . 44

5.14 Payload test: test weight is 10% higher. Top graph: torques from
the B(q)q̈. Second graph: torques from n(q, q̇). The legends (J1,
LA, J2, UA, J3, OS) are associated with the joint of each link, see
Figure 4.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.15 Payload test: test weight is 10% higher. Top graph: total saturated
torques us. Second graph: saturated values of u. The legends (J1,
LA, J2, UA, J3, OS) are associated with the joint of each link, see
Figure 4.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46



LIST OF FIGURES xi

5.16 Payload test: test weight is 10% higher. Top graph: total saturated
control signal ys. Second graph: saturated values of y. The legends
(J1, LA, J2, UA, J3, OS) are associated with the joint of each link,
see Figure 4.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.17 Payload test: test weight is 10% lower. From top to bottom: joint
angle reference signal qr , joint angle error qe and actual joint angle
q. The legends (J1, LA, J2, UA, J3, OS) are associated with the joint
of each link, see Figure 4.1. . . . . . . . . . . . . . . . . . . . . . . . 48

5.18 Payload test: test weight is 10% lower. From top to bottom: joint
velocity reference signal q̇r , joint velocity error q̇e and actual joint
velocity q̇. The legends (J1, LA, J2, UA, J3, OS) are associated with
the joint of each link, see Figure 4.1. . . . . . . . . . . . . . . . . . 49

5.19 Payload test: test weight is 10% lower. Top graph: torques from the
B(q)q̈. Second graph: torques from n(q, q̇). The legends (J1, LA, J2,
UA, J3, OS) are associated with the joint of each link, see Figure 4.1. 50

5.20 Payload test: test weight is 10% lower. Top graph: total saturated
torques us. Second graph: saturated values of u. The legends (J1,
LA, J2, UA, J3, OS) are associated with the joint of each link, see
Figure 4.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.21 Payload test: test weight is 10% lower. Top graph: total saturated
control signal ys. Second graph: saturated values of y. The legends
(J1, LA, J2, UA, J3, OS) are associated with the joint of each link,
see Figure 4.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.22 Inertia test: inertia tensor 10% higher. From top to bottom: joint
angle reference signal qr , joint angle error qe and actual joint angle
q. The legends (J1, LA, J2, UA, J3, OS) are associated with the joint
of each link, see Figure 4.1. . . . . . . . . . . . . . . . . . . . . . . . 54

5.23 Inertia test: inertia tensor 10% higher. From top to bottom: joint
velocity reference signal q̇r , joint velocity error q̇e and actual joint
velocity q̇. The legends (J1, LA, J2, UA, J3, OS) are associated with
the joint of each link, see Figure 4.1. . . . . . . . . . . . . . . . . . 55

5.24 Inertia test: inertia tensor 10% higher. Top graph: torques from
the B(q)q̈. Second graph: torques from n(q, q̇). The legends (J1,
LA, J2, UA, J3, OS) are associated with the joint of each link, see
Figure 4.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.25 Inertia test: inertia tensor 10% higher. Top graph: total saturated
torques us. Second graph: saturated values of u. The legends (J1,
LA, J2, UA, J3, OS) are associated with the joint of each link, see
Figure 4.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.26 Inertia test: inertia tensor 10% higher. Top graph: total saturated
control signal ys. Second graph: saturated values of y. The legends
(J1, LA, J2, UA, J3, OS) are associated with the joint of each link,
see Figure 4.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58



xii LIST OF FIGURES

5.27 Inertia test: inertia tensor 10% lower. From top to bottom: joint
angle reference signal qr , joint angle error qe and actual joint angle
q. The legends (J1, LA, J2, UA, J3, OS) are associated with the joint
of each link, see Figure 4.1. . . . . . . . . . . . . . . . . . . . . . . . 59

5.28 Inertia test: inertia tensor 10% lower. From top to bottom: joint
velocity reference signal q̇r , joint velocity error q̇e and actual joint
velocity q̇. The legends (J1, LA, J2, UA, J3, OS) are associated with
the joint of each link, see Figure 4.1. . . . . . . . . . . . . . . . . . 60

5.29 Inertia test: inertia tensor 10% lower. Top graph: torques from the
B(q)q̈. Second graph: torques from n(q, q̇). The legends (J1, LA, J2,
UA, J3, OS) are associated with the joint of each link, see Figure 4.1. 61

5.30 Inertia test: inertia tensor 10% lower. Top graph: total saturated
torques us. Second graph: saturated values of u. The legends (J1,
LA, J2, UA, J3, OS) are associated with the joint of each link, see
Figure 4.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.31 Inertia test: inertia tensor 10% lower. Top graph: total saturated
control signal ys. Second graph: saturated values of y. The legends
(J1, LA, J2, UA, J3, OS) are associated with the joint of each link,
see Figure 4.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.32 Trajectory test: the time reference signal in the operational space. . 64
5.33 Trajectory test: 3D representation of the given trajectory and the

robot, in four different frames. . . . . . . . . . . . . . . . . . . . . . 65
5.34 Operational space trajectory test. From top to bottom: joint angle

reference signal qr , joint angle error qe and actual joint angle q.
The legends (J1, LA, J2, UA, J3, OS) are associated with the joint of
each link, see Figure 4.1. . . . . . . . . . . . . . . . . . . . . . . . . 66

5.35 Operational space trajectory test. From top to bottom: joint ve-
locity reference signal q̇r , joint velocity error q̇e and actual joint
velocity q̇. The legends (J1, LA, J2, UA, J3, OS) are associated with
the joint of each link, see Figure 4.1. . . . . . . . . . . . . . . . . . 67

5.36 Operational space trajectory test. Top graph: torques from the
B(q)q̈. Second graph: torques from n(q, q̇). The legends (J1, LA, J2,
UA, J3, OS) are associated with the joint of each link, see Figure 4.1. 68

5.37 Operational space trajectory test. Top graph: total saturated torques
us. Second graph: saturated values of u. The legends (J1, LA, J2,
UA, J3, OS) are associated with the joint of each link, see Figure 4.1. 69

5.38 Operational space trajectory test. Top graph: total saturated con-
trol signal ys. Second graph: saturated values of y. The legends (J1,
LA, J2, UA, J3, OS) are associated with the joint of each link, see
Figure 4.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

6.1 Robustness control, for the future development. . . . . . . . . . . . 74

B.1 Simulinkmodel of the Robot controller using RSTB. . . . . . . . . 80



LIST OF FIGURES xiii

D.1 Disturbance case: added noise on joint angle q. From top to bot-
tom: joint angle reference signal qr , joint angle error qe and actual
joint angle q. The legends (J1, LA, J2, UA, J3, OS) are associated
with the joint of each link, see Figure 4.1. . . . . . . . . . . . . . . . 84

D.2 Disturbance case: added noise on joint angle q. From top to bot-
tom: joint velocity reference signal q̇r , joint velocity error q̇e and
actual joint velocity q̇. The legends (J1, LA, J2, UA, J3, OS) are
associated with the joint of each link, see Figure 4.1. . . . . . . . . 85

D.3 Disturbance case: added noise on joint angle q. Top graph: torques
from the B(q)q̈. Second graph: torques from n(q, q̇). The legends
(J1, LA, J2, UA, J3, OS) are associated with the joint of each link,
see Figure 4.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

D.4 Disturbance case: added noise on joint angle q. Top graph: total
saturated torques uS . Second graph: saturated values of u. The
legends (J1, LA, J2, UA, J3, OS) are associated with the joint of
each link, see Figure 4.1. . . . . . . . . . . . . . . . . . . . . . . . . 87

D.5 Disturbance case: added noise on joint angle q. Top graph: total
saturated control signal yS . Second graph: saturated values of y.
The legends (J1, LA, J2, UA, J3, OS) are associated with the joint of
each link, see Figure 4.1. . . . . . . . . . . . . . . . . . . . . . . . . 88

D.6 Disturbance case: added noise on joint velocity q̇. From top to bot-
tom: joint angle reference signal qr , joint angle error qe and actual
joint angle q. The legends (J1, LA, J2, UA, J3, OS) are associated
with the joint of each link, see Figure 4.1. . . . . . . . . . . . . . . . 89

D.7 Disturbance case: added noise on joint velocity q̇. From top to
bottom: joint velocity reference signal q̇r , joint velocity error q̇e
and actual joint velocity q̇. The legends (J1, LA, J2, UA, J3, OS) are
associated with the joint of each link, see Figure 4.1. . . . . . . . . 90

D.8 Disturbance case: added noise on joint velocity q̇. Top graph: torques
from the B(q)q̈. Second graph: torques from n(q, q̇). The legends
(J1, LA, J2, UA, J3, OS) are associated with the joint of each link,
see Figure 4.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

D.9 Disturbance case: added noise on joint velocity q̇. Top graph: total
saturated torques uS . Second graph: saturated values of u. The
legends (J1, LA, J2, UA, J3, OS) are associated with the joint of
each link, see Figure 4.1. . . . . . . . . . . . . . . . . . . . . . . . . 92

D.10 Disturbance case: added noise on joint velocity q̇. Top graph: total
saturated control signal yS . Second graph: saturated values of y.
The legends (J1, LA, J2, UA, J3, OS) are associated with the joint of
each link, see Figure 4.1. . . . . . . . . . . . . . . . . . . . . . . . . 93

E.1 Payload test: test weight 5% higher. From top to bottom: joint
angle reference signal qr , joint angle error qe and actual joint angle
q. The legends (J1, LA, J2, UA, J3, OS) are associated with the joint
of each link, see Figure 4.1. . . . . . . . . . . . . . . . . . . . . . . . 96



xiv LIST OF FIGURES

E.2 Payload test: test weight 5% higher. From top to bottom: joint
velocity reference signal q̇r , joint velocity error q̇e and actual joint
velocity q̇. The legends (J1, LA, J2, UA, J3, OS) are associated with
the joint of each link, see Figure 4.1. . . . . . . . . . . . . . . . . . 97

E.3 Payload test: test weight 5% higher. Top graph: torques from the
B(q)q̈. Second graph: torques from n(q, q̇). The legends (J1, LA, J2,
UA, J3, OS) are associated with the joint of each link, see Figure 4.1. 98

E.4 Payload test: test weight 5% higher. Top graph: total saturated
torques uS . Second graph: saturated values of u. The legends (J1,
LA, J2, UA, J3, OS) are associated with the joint of each link, see
Figure 4.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

E.5 Payload test: test weight 5% higher. Top graph: total saturated
control signal yS . Second graph: saturated values of y. The legends
(J1, LA, J2, UA, J3, OS) are associated with the joint of each link, see
Figure 4.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

E.6 Payload test: test weight 5% lower. From top to bottom: joint angle
reference signal qr , joint angle error qe and actual joint angle q.
The legends (J1, LA, J2, UA, J3, OS) are associated with the joint of
each link, see Figure 4.1. . . . . . . . . . . . . . . . . . . . . . . . . 101

E.7 Payload test: test weight 5% lower. From top to bottom: joint ve-
locity reference signal q̇r , joint velocity error q̇e and actual joint
velocity q̇. The legends (J1, LA, J2, UA, J3, OS) are associated with
the joint of each link, see Figure 4.1. . . . . . . . . . . . . . . . . . 102

E.8 Payload test: test weight 5% lower. Top graph: torques from the
B(q)q̈. Second graph: torques from n(q, q̇). The legends (J1, LA, J2,
UA, J3, OS) are associated with the joint of each link, see Figure 4.1. 103

E.9 Payload test: test weight 5% lower. Top graph: total saturated
torques uS . Second graph: saturated values of u. The legends (J1,
LA, J2, UA, J3, OS) are associated with the joint of each link, see
Figure 4.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

E.10 Payload test: test weight 5% lower. Top graph: total saturated con-
trol signal yS . Second graph: saturated values of y. The legends
(J1, LA, J2, UA, J3, OS) are associated with the joint of each link,
see Figure 4.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

F.1 Inertia test: inertia tensor 5% higher. From top to bottom: joint
angle reference signal qr , joint angle error qe and actual joint angle
q. The legends (J1, LA, J2, UA, J3, OS) are associated with the joint
of each link, see Figure 4.1. . . . . . . . . . . . . . . . . . . . . . . . 108

F.2 Inertia test: inertia tensor 5% higher. From top to bottom: joint
velocity reference signal q̇r , joint velocity error q̇e and actual joint
velocity q̇. The legends (J1, LA, J2, UA, J3, OS) are associated with
the joint of each link, see Figure 4.1. . . . . . . . . . . . . . . . . . 109

F.3 Inertia test: inertia tensor 5% higher. Top graph: torques from the
B(q)q̈. Second graph: torques from n(q, q̇). The legends (J1, LA, J2,
UA, J3, OS) are associated with the joint of each link, see Figure 4.1. 110



LIST OF FIGURES xv

F.4 Inertia test: inertia tensor 5% higher. Top graph: total saturated
torques uS . Second graph: saturated values of u. The legends (J1,
LA, J2, UA, J3, OS) are associated with the joint of each link, see
Figure 4.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

F.5 Inertia test: inertia tensor 5% higher. Top graph: total saturated
control signal yS . Second graph: saturated values of y. The legends
(J1, LA, J2, UA, J3, OS) are associated with the joint of each link, see
Figure 4.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

F.6 Inertia test: inertia tensor 5% lower. From top to bottom: joint
angle reference signal qr , joint angle error qe and actual joint angle
q. The legends (J1, LA, J2, UA, J3, OS) are associated with the joint
of each link, see Figure 4.1. . . . . . . . . . . . . . . . . . . . . . . . 113

F.7 Inertia test: inertia tensor 5% lower. From top to bottom: joint
velocity reference signal q̇r , joint velocity error q̇e and actual joint
velocity q̇. The legends (J1, LA, J2, UA, J3, OS) are associated with
the joint of each link, see Figure 4.1. . . . . . . . . . . . . . . . . . 114

F.8 Inertia test: inertia tensor 5% lower. Top graph: torques from the
B(q)q̈. Second graph: torques from n(q, q̇). The legends (J1, LA, J2,
UA, J3, OS) are associated with the joint of each link, see Figure 4.1. 115

F.9 Inertia test: inertia tensor 5% lower. Top graph: total saturated
torques uS . Second graph: saturated values of u. The legends (J1,
LA, J2, UA, J3, OS) are associated with the joint of each link, see
Figure 4.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

F.10 Inertia test: inertia tensor 5% lower. Top graph: total saturated
control signal yS . Second graph: saturated values of y. The legends
(J1, LA, J2, UA, J3, OS) are associated with the joint of each link, see
Figure 4.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117



List of Tables

2.1 The parameters for two non-planer links-arm. . . . . . . . . . . . . 15

4.1 The DH parameters used for the direct implementation and RTB
approaches. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

5.1 Noise amplitude, depending on where the noise is added. . . . . . 42

xvi



Notation

Quantities

Notation Meaning

n Total number of Joints.
qi Joint (i) angle [rad].
q̇i Joint (i) angular velocity [rad/s].
q̈i Joint (i) angular acceleration [rad/s2].
q Joints angle vector (n × 1) [rad].
q̇ Joints angular velocity vector (n × 1) [rad/s].
q̈ Joints angular acceleration vector (n × 1) [rad/s2].
qd Desired joints angle vector (n × 1) [rad].
q̇d Desired joints angular velocity vector (n × 1) [rad/s].
q̈d Desired joints angular acceleration vector (n × 1)

[rad/s2].
q̃d Error in joints angle vector (n × 1) [rad].
˙̃qd Error in joints angular velocity vector (n × 1) [rad/s].
¨̃qd Error in joints angular acceleration vector (n × 1)

[rad/s2].
v Linear velocity.
ω Angular velocity.
τ Torque.
ξ Generalized force associated.

u Torque signal to the simulated model.
us Saturated torque signal to the simulated model.
ũ Overshot of the saturated torque signal, ũ = u − us.
y Acceleration signal to the nonlinear compensation and

decoupling.
ys Saturated acceleration signal to the nonlinear compen-

sation and decoupling.
ỹ Overshot of the saturated acceleration signal,

ỹ = y − ys.
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xviii Notation

Quantities

Notation Meaning

L Lagrangian.
T Kinetic energy.
U Potential energy.
F Force.

Hw
e Homogeneous transformation matrix (4 × 4) from end-

effector frame (e) to the world frame (w), if nothing is
mentioned in the exponent it is referred by default to
the world frame.

H i−1
i Homogeneous transformation matrix (4 × 4) for joint

(i) to frame (i − 1).
HR Homogeneous transformation matrix with only rota-

tion quantities (4 × 4).
HT Homogeneous transformation matrix with only

Transnational quantities (4 × 4).
R Rotational matrix (3 × 3).
T Transnational vector (3 × 1).
H̃ Homogeneous transformation matrix (4 × 4), the error

between the homogeneous transformation matrix of
the desired angle qd and the transformation matrix of
actual joint angle q.

R̃ Rotational matrix (4 × 4), the error between the rota-
tional matrix of the desired angle qd and the rotational
matrix of actual joint angle q.

T̃ Transnational vector (3 × 1), the error between the
transnational vector of the desired angle qd and the
transnational vector of actual angle q.

J(q) Geometric Jacobian matrix.
JP (q) Linear part of the Geometric Jacobian matrix (3 × n).
JO(q) Angular part of the Geometric Jacobian matrix (3× n).
B(q) Mass matrix (n × n).
C(q, q̇) Coriolis/Centrifugal matrix (n × n).
G(q) Gravity vector (n × 1).
n(q, q̇) Coriolis/Centrifugal and Gravity vector (n × 1).
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Abbreviation Meaning

DoF Degree of Freedom
3D Three-dimensional

CoG Center of gravity
RTB Robotics toolbox by Preter Corke

RSTB Robotics system toolbox by MATLAB
MFB MATLAB function Block

B Base
J1 Joint 1
LA Lower Arm
J2 Joint 2

UA Upper Arm
J3 Joint 3
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1
Introduction

The word “robot” itself, was popularized for the first time a hundred years ago in
the 1920s, in Karel Čapek’s play R.U.R. Rossum’s Universal Robots. With that said,
it took approximately 30 years until the invention of a "real" functional robot to
come into an existence, it went by the name "Unimate #001". It was invented by
Joseph Engelberger and George Devol. The task of this robot was to assist a hot die-
casting machine [15]. Now, after a century from popularizing the word ”robot"
and development in robotics, this master thesis project, is one of the continued
projects that aim to expand the development and understanding of robotics.
The goal of this thesis is to derive a joint space inverse dynamic controller for
a six degree of freedom (DoF) robot arm and simulate the performance using
MATLAB . The prototype of the robot can be seen in Figure 1.1. This project
is the building block for future improvements, where there will be a possibility
to integrate the dynamics as well as the controller for the robot using a mobile
platform. This makes it possible for the manipulator and mobile platform to
enact as a singular unit.

Figure 1.1: ABBprototype of 6-axis robot arm.
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2 1 Introduction

This chapter contains the purpose and the problem statement of this work as well
as the related work. An introduction about how to derive the dynamic model that
describes the dynamics of this robot or any manipulator can be found in chapter 2.
Thereafter, a joint space inverse dynamic method will be introduced in chapter 3,
which will also be implemented in Simulink. Chapter 4 includes the methods
that are available and used to apply the dynamics and control algorithms of the
robot. Lastly, the simulation experiment can be found in chapter 5, followed by
the conclusion and results of this work in chapter 6.

1.1 Purpose

This master thesis was proposed at ABB in purpose of developing a dynamical
model and the controller of a 6DoF robot arm. The purpose of this work is to
study and develop a full body control of a manipulator robot, by using the dy-
namical properties of the manipulator. This is done in hopes of developing ma-
nipulators that are collaborative with humans at workplaces such as hospitals
where both humans and robots coexist.

1.2 Problem Statement

The problems handled in this thesis are:

• Creating a kinematic and dynamic model that describes a 6DoF robot arm.

• Making a joint space inverse dynamics controller for a 6DoF robot arm.

• Testing and evaluating the model and control approach.

1.3 Related Work

The mobile manipulators have gotten the attention of many companies, due to
their varied work possibilities and flexibility. The text below will present some
mobile manipulators that are comparable to putting the robot on a mobile base.
A similar project that derives the dynamic as well as the controller, for a manipu-
lator arm with 6DoF, has been studied earlier in [1] and [5].

1.3.1 MO-MA Hybrid

The MO-MA hybrid is a two-part robot that has Omron Cart Transporter as a mo-
bile platform and TM Collaborative Robot as the manipulator arm.

The Cart Transporter is mainly used for transporting payloads up to 130 kg and
with 0.9m/s max speed. The mobile platform is intended to be used in ware-
houses and busy factories, as well as collaborating with other mobile platforms
Omron Cart Transporter [11].
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1.3.2 Rising

Rising is a relatively small robot with up to 7 DoF robotic arm. This platform
is designed for interventions, reconnaissance, and EOD (Explosive ordnance dis-
posal) missions. The mobile platform uses 2 tracks and 2 flippers to manoeuvre.
This makes it possible for the robot to climb with a maximum of 80% climbing
angle [13].

1.3.3 RB-KAIROS

RB-KAIROS is also a two part mobile manipulator, where the mobile platform has
a Swedish wheel [3], and the manipulator has 6 DoF. This mobile manipulator has
the most similarities to the robor, in both size and functionality [16]. The main
distinction is the Swedish wheel.

1.4 Resources

To achieve the goal of this thesis work, the following resources were provided by
Linköping University and ABB :

• Place to work (ABB )

• PC (ABB )

• The robor characteristic parameters (ABB )

• MATLAB license (LiU)

• Supervisor (ABB /LiU)





2
Theory: Dynamic Modeling of

Manipulator Structures

This chapter will include the theory that was studied and used for the project.
It will in other words consist of a brief introduction of how to describe a robot
as well as homogeneous transformation to transform the representation of the
reference frames from one point to another. Lastly how to derive the DH pa-
rameters (Denavit–Hartenberg), a convention to help finding the expressions for
the transformation matrices. Thereafter, a proper introduction will be presented.
This introduction will consist of the kinematics and dynamics concepts, as well
as the differential kinematics and the inverse-dynamics [6]. There will lastly be
an example of how to derive the dynamical equation of 2 DoF non-planar arm.

2.1 Configurations of Rigid Body

Describing a robot in 3-dimensions will require the configuration for that said
robot. The configuration includes the specifics of all the position points. In
robotics there are two types of bodies, a flexible body, which can be deformed
like RBO Hand 2 [2], and a rigid body, which will be the focus of this project,
since the robot can be perceived as entirely rigid. The rigid bodies, also called
links, are connected to each other by a revolute or prismatic joint, see Figure 2.1.
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Figure 2.1: The red parts represent a revolute and prismatic joint in two dif-
ferent positions: A and B. The arrow shows the rotational and translational
axis.

Robot manipulators, in general, are built by two or several links. Each link has
its own mass center, moment of inertia, etc. It is easier to define a link in a
fixed coordinate system for each link part, in the Figure 2.2 a fixed coordinate
system (world frame) shown with the black axis. This coordinate system does
not move its position nor the orientation with the change of robot joint variable.
However, the links’ fixed coordinate system (reference frames) which is shown
with (red, green and blue) representing (x, y and z)-axis can change the position
and orientation. The change occurs alongside the change of the joint variables, a
definition of the joint variables will be introduced in section 2.3. Thereafter, to
describe the position of the mass center of any link part, a transformation can be
used between the frames.

Figure 2.2: Robot arm, chain of links, with links reference frames.
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There are many ways to describe the position of a point in the 3D space, such
as using the Cartesian, cylindrical and/or spherical coordinate systems, see Fig-
ure 2.3. The Cartesian coordinate systems will be used all throughout this thesis.

Figure 2.3: A) Cartesian, B) Cylindrical and C) Spherical coordinate systems.

2.2 Transformation

Using matrices to apply a translation and/or rotation to a point is beneficial due
to the associative property of the matrix multiplication. The homogeneous trans-
formation matrix, is a (4x4) matrix, which gives the information that changes the
representation vector pl of a certain point from one frame to another, which gives
vector pw. A general homogeneous transformation matrix looks as follows:

Hw
l =

[
R T
0 1

]
=


ax bx cx px
ay by cy py
az bz cz pz
0 0 0 1


pw = Hw

l p
l

(2.1)

The first (3 × 3) elements are the rotation matrix R and the first 3 elements in
the last column contains the translation T . The rotations around the axis (x, y, z)
with angles (φ, γ, θ) are given by the following homogeneous transformations:
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HRx (φ) =


1 0 0 0
0 cosφ − sinφ 0
0 sinφ cosφ 0
0 0 0 1


HRy (γ) =


cos γ 0 sin γ 0

0 1 0 0
− sin γ 0 cos γ 0

0 0 0 1


HRz (θ) =


cos θ − sin θ 0 0
sin θ cos θ 0 0

0 0 1 0
0 0 0 1



(2.2)

This makes it easy to calculate the end-effectors position/rotation, by multiplying
the transformation matrices of the joints frames with each other. With that, the
final transformation matrix can be obtained from the link frame coordinate to
the world coordinate system or vice versa by inverting it.

H0
e =H0

1H
1
2 . . . H

i−2
i−1H

i−1
e

H e
0 =(H0

e )−1
(2.3)

Steiner Theorem

The inertia tensor of a link is often defined w.r.t. the mass center. After using the
Steiner theorem (2.4), also called the parallel axis theorem, the inertia tensor can
be redefined w.r.t. the reference frame [14].

If = Ic + mS(rfc )T S(rfc ) (2.4)

The Ic is the inertia tensor w.r.t. the center of gravity, m is the mass of the link,
and the S(rfc ) is the skew-symmetric matrix of the distance rfc from the reference
frame to the center of gravity [14]. The skew-symmetric matrix is given by equa-
tion (2.5),

S(r) =

 0 −rz ry
rz 0 −rx
−ry rx 0

 (2.5)

where r = [rx, ry , rz]T . With that said, to translate the inertia tensor of the link
from one reference frame i to another reference frame i−1 as shown in Figure 2.4
without knowing Ic, the inertia tensor in the center of mass, the following calcula-
tion is used. By recasting the equation in (2.4) with the knowledge of the inertia
tensor in the reference (i = 1) to be I1, and with that deriving the inertia tensor
I0 in the reference (i − 1 = 0).
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I1 =Ic + mS(r1
c )T S(r1

c )⇔
Ic =I1 −mS(r1

c )T S(r1
c )

(2.6)

I0 =I1 −mS(r1
c )T S(r1

c ) + mS(r0
c )T S(r0

c )⇔ /r0
c = r0

1 + r1
c /

I0 =I1 + m
(
S(r0

1 + r1
c )T S(r0

1 + r1
c ) − S(r1

c )T S(r1
c )

) (2.7)

Figure 2.4: Center of gravity of link in different reference frames.

The inertia tensor also depends on the orientation of the reference frame, and
if the origin of the reference frame rotates with rotation matrix R. The inertia
tensor I ′o in the new frame is related to Io by the following relationship:

Io = RI ′oR
T (2.8)

2.3 DH Parameters

DH parameters are four parameters that describe the convention for attaching a
reference frame to the links of a robot manipulator [14], or in general, a kinematic
chain, see Figure 2.2. This convention is based on four transformations, first
rotation around ẑ followed by a translation in ẑ and then a rotation around x̂
and lastly a translation in x̂. The resulting Homogeneous transformation of these
operations are given by equation (2.9).

Hi =HRz (θi)HTz (di)HRx (αi)HTx (ai)

=


cos(θi) − cos(αi) sin(θi) sin(αi) sin(θi) ai cos(θi)
sin(θi) cos(αi) cos(θi) − sin(αi) cos(θi) ai sin(θi)

0 sin(αi) cos(αi) di
0 0 0 1


(2.9)

The four quantities are θi , di , αi and ai , and indexing with the frame number i.
These quantities represent the following:
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• θi : Link twist angle from xi−1 to xi measured along zi−1.

• di : The distance from xi−1 to xi measured along zi−1.

• αi : Link twist angle from zi−1 to zi measured along xi .

• ai : The distance from zi−1 to zi measured along xi .

One of those quantities θi or di can either be a variable or a constant. If the joint
i is prismatic then di is a variable and θi is the constant. If the joint is revolute
then the variable is θi and the di is constant. The variable parameter θ will be
referred to as a joint angle or q. In the occasion that both would turn out to be
constants then the link i is a fixed link.

This convention applies a set of rules for how the frames coordinates are cho-
sen and oriented.

1. Use right-hand frames for each joint.

2. Set zi-axis along the revolution or translation axis for the Joint i + 1.

3. Select the origin Oi at the intersection point of axes zi and the common
normal with axis zi−1.

4. Select the xi-axes in the same direction of common normal from zi−1 and
zi .

2.4 Kinematics

The forward kinematics goal is to find the relationship between a robot/ manip-
ulator’s joint angles (q), and its end-effector’s position [14]. The forward kine-
matics are used to compute the end-effector’s position relatively to the base of
the manipulator using the kinematics equations, where the base is referred to the
link of the manipulator that is fixed in the room if the manipulator is mounted on
a table or working station, otherwise where the mobile platform center reference-
frame is, that is if the manipulator is mounted on a mobile platform . In other
words, it provides the end-effector’s position (pe) in the room, when all the joint
angles (q) are known.

These kinematic equations can easily be obtained by using the DH param-
eters to compute the transformation matrices (2.9) for each joint frame in the
kinematic chain. Thereafter using (2.3) for computing the end-effector to base
transformation H0

e , which gives the position of the end-effector, w.r.t the base
frame, in the first three elements of the last column, as noted in (2.1).

pe =


xe
ye
ze
1

 = H0
e p0 =

[
Re(q) Te

0 1

] 
0
0
0
1

 (2.10)

The pe is a homogeneous vector of the end-effectors position.
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Differential Kinematics

The differential kinematics goal is to get the relationship between the joint veloc-
ities and the end-effector angular as well as the linear velocities [6], [14], which
is expressed in (2.11).

ṗe =JPe (q)q̇

ωe =JOe (q)q̇
(2.11)

The Jp and Jo are (3 × n) matrices, where n is the number of joints, Jp is the
contribution of joint velocities q̇ to end-effector linear velocities ṗe and the Jo
for the angular velocities ωe. This can be rewritten as

ve =
[
ṗe
ωe

]
=

[
JPe (q)
JOe (q)

]
q̇ = Je(q)q̇ (2.12)

where J(q) expresses the system differential kinematics equation, with (6 × n)
matrix that goes by the name "geometric Jacobian". The Jacobian matrix elements
are computed as follows:

[
JPi
JOi

]
=



zi−1

0

 for a prismatic jointzi−1 × (pe − pi−1)
zi−1

 for a revolute joint

(2.13)

where pe is given in (2.10) and zi−1 is derived from the rotation matrix R0
i−1, the

third column of the rotation matrix.

zi−1 = R0
1 . . . R

i−2
i−1z0 where z0 is

[
0 0 1

]T
(2.14)

Lastly the pi−1 is given by the following equation (2.15).

pi−1 = H0
1 . . . H

i−2
i−1p0 where p0 is

[
0 0 0 1

]T
(2.15)

2.5 Dynamics

Generally, the mechanism of a robot is modelled as a rigid-body system. There-
fore, robot dynamics can be used as an application of the rigid-body dynamics.
This is followed by two main problems, the forward- and inverse-dynamics. The
forward-dynamics are used to compute the accelerations q̈ of the joint from the
given joint angle q, joint velocity q̇ and the applied torque on the actuators τ .
From the other side, the inverse-dynamics are given the joint angle q, joint veloc-
ity q̇ and joint accelerations q̈ and works out the needed torque on the actuators
τ [4].
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The benefits of deriving a dynamical model of a manipulator are as follows: Hav-
ing the ability of simulating a motion, analysis of the manipulator structure and
the designing of the control algorithms.

Simulating the manipulator motion, allows testing for the control strategies as
well as the motion planning, without the use of the physical system. This is
beneficial in case the real system is not available, or if the test subjects, be it
either the system or the user/developer, are exposed to some sort of risks.

2.5.1 Lagrange Formulation

One way to derive the dynamical model of the system is to use the Lagrange
Formulation, a variation approach based on the kinetic and potential energy of
the link system (robot)[14], [6]. The Lagrangian is given by:

L(q, q̇) = T (q, q̇) − U (q) (2.16)

where T is the total kinetic energy and U is the total potential energy of the
system. The kinetic energy can be computed by:

Ti =
n∑
i=1

1
2
ṗTi mi ṗi +

1
2
ωTi Ri I

i
`iR

T
i ωi (2.17)

where ṗ and ω are the linear and angular velocities as mentioned in 2.4. I i`i is the
inertia tensor relative to the center of mass of link i when expressed in the base
frame, and the Ri is the rotation matrix from link i frame to the base frame. This
is mentioned in 2.2 equation (2.8), and can be rewritten as:

T (q, q̇) =
1
2

n∑
i=1

n∑
j=1

bij (q)q̇i q̇j =
1
2
q̇T B(q)q̇ (2.18)

where

B(q) =
n∑
i=1

(mli J
(li )T
p J

(li )
p + J (li )T

o Ri I
i
li
RTi J

(li )
o + mmi J

(mi )T
p J

(mi )
p + J (mi )T

o Rmi I
i
miR

T
mi J

(mi )
o )

=
n∑
i=1

(mi J
(i)T
p J

(i)
p + J (i)T

o Ri I
i
i R

T
i J

(i)
o )

(2.19)

where B(q) is the mass-matrix with (n × n) elements, which is symmetric and pos-
itive definite and in general configuration-dependent [14]. The Jp and Jo are the
linear and angular parts of the geometric Jacobian matrix section 2.4, and the
indexing (l) refers to the link mass and inertia and (m) refers to the motor mass
and inertia. In this thesis, a combined version will be used where a motor and
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a link is seen as a one-body-part. This is evident according to the data given by
ABB . The potential energy can be computed by:

U (q) =
n∑
i=1

mig
T
0 pmi (2.20)

where g0 is the gravity acceleration homogeneous vector in the base frame, e.g.,

g0 =
[
0 0 g 0

]T
if z is the vertical axis, and pmi is the center of mass position

of link (i) in the world frame.
Thereafter, the Lagrange equation is expressed by (2.21), or in vector form by
(2.22).

d
dt
∂L
∂q̇i
− ∂L
∂qi

= ξi i = 1, 2, . . . , n (2.21)

d
dt

(∂L
∂q̇

)T
−
(∂L
∂q

)T
= ξ (2.22)

where ξi is the generalized force associated with the generalized coordinate qi .
That is given by the contributions of the actuation torque τi at the joint i and of
the viscous friction torques. This can be computed by equation (2.23).

ξi =

Nf∑
i=1

(
~Fi ·

∂~vi
∂q̇i

)
+

Nτ∑
i=1

(
~τi ·

∂ ~ωi
∂q̇i

)
(2.23)

where Nf and Nτ is the number of active non-conservative forces respectively
torques. Lagrangian’s derivatives in equation (2.22) gives the following:

B(q)q̈ + n(q, q̇) = ξ (2.24)

ξ and B(q) as mentioned above, and n(q, q̇) is:

n(q, q̇) = Ḃ(q)q̇ − 1
2

( ∂
∂q

(
q̇T B(q)q̇

))T
+

(∂U (q)
∂q

)T
=C(q, q̇)q̇ + G(q)

(2.25)

The C(q, q̇) is known as the coriolis-matrix with (n× n) elements. This can also be
computed with equations (2.26) and (2.27), using the mass-matrix (2.19). cij are
the elements of the coriolis-matrix, and bxx are the mass-matrix elements.

cij =
n∑
k=1

cijk q̇k (2.26)

cijk =
1
2

(∂bij
∂qk

+
∂bik
∂qj
−
∂bjk
∂qi

)
(2.27)
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where G(q) is known as the gravity term vector, under the assumption that the po-
tential energy comes only from the gravity. But in case of the existence of springs
at the joints, the springs terms will be added to G(q), due to the contribution that
the springs has to the potential energy. This can be obtained by equation (2.28).

G(q) =
∂U (q)
∂q

(2.28)

The final equation of motion, which describe the relationship between the de-
sired torque and acceleration is given by the equation (2.29). This is obtained by
combining both equation (2.23) and (2.24).

B(q)q̈ + C(q, q̇)q̇ + Fv q̇ + Fssgn(q̇) + G(q) = τ − JT (q)he (2.29)

where

• τ is the actuation torques.

• Fv q̇ is the viscous friction torques. Fv denotes the (n× n) diagonal matrix of
viscous friction coefficients.

• Fssgn(q̇) is the Coulomb friction torques, where Fs is an (n × n) diagonal
matrix and sgn(q̇) denotes the (n × 1) vector whose components are given
by the sign functions of the single joint velocities.

• he denotes the vector of force and moment exerted by the end-effector on
the environment.

The friction torques occur from the motor shaft spinning in its bearings and the
brushes sliding on the commutator, that may also depend on external loads. At
no load the friction torques are given by:

τf ric = Fv q̇ + Fssgn(q̇) = KtI0 (2.30)

to obtain Fv and Fs an estimation of each of Fv and Fs can be made by running
the motor at two different voltages with no load.

This thesis consider all forces and torques that were mentioned above to be equal
to zero, except for the actuation torques which is the desired input to the manip-
ulator. This assumption is based on the lack of information for the quantities of
these forces. They were therefore neglected for simplification proposes. That led
to the following equation of motion:

B(q)q̈ + C(q, q̇)q̇ + G(q) = τ (2.31)

Equation (2.31) is also called the inverse-dynamic equation, and the forward-
dynamical equation is obtained by solving the joint acceleration (q̈) from the
(2.31), which gives:

B(q)−1
(
τ − C(q, q̇)q̇ − G(q)

)
= q̈ (2.32)
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that gives a linear function with respect to the actuators torques τ . The manipu-
lation of this function is possible, due to the mass matrix B(q) which is a full-rank
matrix, that can be further inverted for any manipulator configuration. The bene-
fit of the Lagrange-Formulation approach is to derive the dynamical equation in
a systematic way, independently of the reference coordinate frame.

Another way to derive the dynamical model of the system is to use the Newton-
Euler Formulation, which relies on F = ma applied to each individual link of the
robot. In other words, it describes the motion of the link based on a balance of all
forces and moments acting on it. This leads to a set of equations whose structure
is a recursive type of solution.

2.5.2 Example: Two DoF Non-Planar Robot Arm

As an example of the mentioned method, a computation of 2 DoF non-planar
arm dynamical equation can be derived as shown below. The properties of this
robot arm is shown in figure Figure 2.5 as well as table Table 2.1. This example
is inspired by a tutorial from MathWorks® [10].

Figure 2.5: Center of gravity of rigid-body in different reference frames.

Table 2.1: The parameters for two non-planer links-arm.

Link Mass Dimensions Angle
Base mB h, r θ1
Arm mA Lx, Ly , Lz θ2
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The inertia tensors of the base and the arm can be computed as a simple cylinder
respectively cube inertia tensor for simplicity by:

IA =


mA (Ly2+Lz2)

12 0 0

0
mA (Lx2+Lz2)

12 0

0 0
mA (Lx2+Ly2)

12


IB =


mB (h2+3 r2)

12 0 0

0
mB (h2+3 r2)

12 0

0 0 r2 mB
2


(2.33)

The positions of the mass-center in the world frame are given by:

pB =
[
0 0 h/2

]T
pA =

[
− Ly cos(θ2) sin(θ1)

2
Ly cos(θ1) cos(θ2)

2 h +
Ly sin(θ2)

2

]T (2.34)

Thereafter, the translation as well as the rotational velocity’s can be obtained by:

[
ṗB
ωB

]
=



0
0
0
0
0
θ̇1


,

[
ṗA
ωA

]
=



Ly θ̇2 sin(θ1) sin(θ2)
2 − Ly θ̇1 cos(θ1) cos(θ2)

2

− Ly θ̇1 cos(θ2) sin(θ1)
2 − Ly θ̇2 cos(θ1) sin(θ2)

2
Ly θ̇2 cos(θ2)

2
θ̇2

θ̇1 sin(θ2)
θ̇1 cos(θ2)


(2.35)

With the expressions of the positions and the velocities of each link, the kinetic
(T ) as well as the potential (U ) energies can be computed as shown in 2.5.1, equa-
tion (2.18) and (2.20).

When the energy expressions are acquired, the Lagrangian as well as its gener-
alized forces can be obtained by applying the derivations according to the La-
grangian equation (2.21) and (2.23).

L =
mA Lx

2 θ̇2
1

24
−
mA Ly

2 θ̇2
1 sin(θ2)2

6
+
mA Ly

2 θ̇2
1

6
+
mA Ly

2 θ̇2
2

6
−
g mA Ly sin(θ2)

2

+
mA Lz

2 θ̇2
1 sin(θ2)2

24
+
mA Lz

2 θ̇2
2

24
+
mB θ̇

2
1 r

2

4
− g hmA −

g hmB
2

(2.36)

In this example the generalized forces will be considered equal to the actuation
torque ξ = τ . This is done by considering all the other forces to zero. This gives
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the following equation of motion:

τ1 = θ̈1
(mA Lx2 − 4mA Ly2 sin(θ2)2 + 4mA Ly2 + mA Lz2 sin(θ2)2 + 6mB r2)

12

−
θ̇1 θ̇2 mA sin(2 θ2) (4 Ly2 − Lz2)

12

τ2 = θ̈2
mA (4 Ly2 + Lz2)

12
+

mA (4 sin(2 θ2) Ly2 θ̇2
1 + 12g cos(θ2) Ly − sin(2 θ2) Lz2 θ̇2

1)

24
(2.37)

which can also be expressed in matrix form just as in equation (2.24).

B(q) =

 mA Lx
2−4mA Ly2 sin(θ2)2+4mA Ly2+mA Lz2 sin(θ2)2+6mB r2

12 0

0
mA (4 Ly2+Lz2)

12


n(q, q̇) =

 − θ̇1 θ̇2 mA sin(2 θ2) (4 Ly2−Lz2)
12

mA (4 sin(2 θ2) Ly2 θ̇2
1+12g cos(θ2) Ly−sin(2 θ2) Lz2 θ̇2

1 )
24


(2.38)

Note that the expressions of the mass-matrix B(q) as well as the coriolis/centrifu-
gal and gravity vector n(q, q̇) can be much longer, with consideration to the simpli-
fication that was used in this example. The simplifications that are being referred
to are:

• The simplification of the inertia tensors, it has been simplified to be diago-
nal with the moments of inertia (Ixz , Iyy and Izz), without the off-diagonal
elements (Ixy , Ixz and Iyz), also known as the products of inertia", which is
often included.

• The simplification in the generalized forces ξ = τ .

Aside from that the example is only considering a two DoF, which will be gradu-
ally longer with each link (DoF), added to the system.

2.5.3 Example: Validation

To validate the equation in (2.37) and/or (2.38) three tests were made. First a
test, testing what happens when no torque are applied to the system. Thereafter,
a test to see what happens when only applying the torque required to keep the
system in the steady state. Lastly, testing what happens when applying bigger
torque than the torque that keeps the system in the steady state.

The first test gave that the second link behaved as a pendulum, which gave an
oscillation between zero and −π on the angle of the arm link, see the top graph
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in Figure 2.6. This behavior is correct due to the gravity force and the lack of
any other forces/torques that stops the oscillation. The second test showed that
the required torques that needed to keep the system in the steady state on the

start position are τ1 = 0 and τ2 =
gmALy

2 . The result of this test can be seen in
the middle graph on Figure 2.6, note that y-axis is multiplied by 10−13, which
means that this increase on θ2 is due to numerical error in MATLAB . This test
also proved that the equation of motion is correct, since the τ2 is equal to the
gravitation force multiplied by the distance between the mass center and the ro-
tational axes. Finally the last test when applying torques bigger then 0 on τ1 and
gmALy

2 on τ2 the system started to rotate nonstop. The result of this test is shown
on the bottom graph in Figure 2.6, both joint angles are increasing rapidly. With
that, the elements of the equation of motion for the two DoF non-planar robot
arm are given by (2.38).

Figure 2.6: Test results of validation of the equation of motion for the two
DoF non-planar robot arm.



3
Theory: Joint Space Inverse Dynamic

Control

This chapter will cover how to create a model of the manipulator and the control
method studied and used in this thesis [14].

3.1 Simulated Model of the Manipulator

To test and verify the controller approach and its results, it is necessary to start by
creating a simulated representation of the robot/manipulator. Specially if there
is not a physical robot available. It is also safer to use a simulated model of a
robot/manipulator in the beginning of the tests of the controller, to minimize the
risks of damaging the robot/manipulator or the developer.

The control input-signal (u) which is the torque to the actuators, is used to move
the robot joints. By knowing the input signal representation, a simulated model
can be created by deriving the dynamical model of the robot from the forward-
dynamical equation (3.1). That will work out the joint accelerations (q̈).

B(q)−1
(
τ − C(q, q̇)q̇ − G(q)

)
= q̈

B(q)−1
(
τ − n(q, q̇)

)
= q̈

(3.1)

By knowing the joint accelerations (q̈) of each link of the manipulator, a computa-
tion of the joint velocities and joint angles (q̇, q) can easily be done by integrating
the joint accelerations (q̈).

19
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Feeding the computed joint velocity and joint angle back to the equation, that
gives the following model structure, see Figure 3.1, which is a simulated model
of the manipulator implemented in MATLAB .

Figure 3.1: Manipulator simulated model structure, A) using RSTB
(Robotics system toolbox by MATLAB ), B) using MFB (MATLAB function
Block).

3.2 Inverse Dynamics Control

The selection of this controller approach was made based on the future use of
the robot, as well as the requirement from ABB which was to use a joint space
controller, and not an operational space controller. In other words, the reference
framework is to use a control of nonlinear multi-variable systems. The structure
of this control method is shown in the figure below Figure 3.2.
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Figure 3.2: Joint space inverse dynamics control

The control structure can be divided into two parts, first the nonlinear compen-
sation and decoupling, and the second part is the PD-controller.

3.2.1 Nonlinear Compensation and Decoupling

The purpose of the nonlinear compensation and decoupling is to make it pos-
sible to control each joint by separating the input/output-signals [14]. In other
words, without any cross-connection between the signals. Additionally to that, to
linearize the system in order for it to gain better and easier control over the varia-
tion in the input/output relationship. The desired performance of this part is not
only an approximate linearization, but an exact linearization of system dynamics,
obtained by means of a nonlinear state feedback [14]. This can be illustrated in
figure Figure 3.3.

Figure 3.3: Exact linearization of the system dynamics.

The linearization is guaranteed to be found by the particular form of system dy-
namics. In fact, using the equation in (2.32) gives this relationship:

B(q)−1
(
u − C(q, q̇)q̇ − G(q)

)
= y

q̈ = y
(3.2)

This nonlinear control law in (3.2) is called the inverse dynamics control, since it
is based on the computation of manipulator inverse dynamics. The system itself
under the control of the equation (3.2) is linear and decoupled with respect to
the new input y. In other words, the component yi can only influence the joint
angle qi , with a double integrator relationship, independently of the motion of
the other joints.
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3.2.2 PD-Controller

The control problem, after the nonlinear compensation and decoupling, is re-
duced to that of finding a stabilizing control law y, which can be formulated as a
PD-controller using the following expressions:

y = r − KP q − KD q̇ (3.3)

with the knowledge of y = q̈, a reformulation of the equation can be done as a
second-order equation:

q̈ + KD q̇ + KP q = r (3.4)

with the assumption of positive definite matrices KP and KD , is asymptotically
stable. That means when the solutions of the controller, starts to get close enough
to the equilibrium it does not only remain close enough, but also eventually con-
verge to the equilibrium. That gives the following choice of KP and KD as diago-
nal matrices (3.5).

KP = diag{ω2
n1, . . . , ω

2
nn}

KD = diag{2ξ1ωn1, . . . , 2ξ1ωn1}
(3.5)

The matrices Kp and KD are a diagonal, because it is a decoupled system. In other
words the reference signal ri influences only the joint angle qi with a second-
order input/output relationship. This relationship is characterized by a natural
frequency ωni and a damping ratio ζi . With that said, to track a path given by a
desired trajectory qd and the output q is ensured by choosing:

r = q̈d + KD q̇d + KP qd (3.6)

and by substituting (3.6) into (3.4) and using q̃ = qd − q gives the homogeneous
second-order differential equation (3.7):

¨̃qd + KD ˙̃qd + KP q̃d = 0 (3.7)

where q̃ is the error between the desired angle qd and actual q angle. This kind
of error only occurs if q̃(0) and/or ˙̃q(0) are different from zero and converges to
zero with a speed depending on the chosen matrices KP and KD .

Lastly the implementation of this kind of control scheme requires computation
of the inertia matrix B(q) as well as the gravitational, damping, Coriolis and cen-
trifugal terms vector n(q, q̇) to be computed on-line. This is because the control
is based on nonlinear feedback of the current angle, therefor it is not possible to
be pre-computed.



4
Application to the Robot

This chapter includes the methods that were tested to implement the dynami-
cal model, as well as the control algorithms to control and simulate the robot
according to the given parameters from ABB . All the following implementation
methods for the controller as well as the simulated model, use MATLAB as a pro-
gramming platform [9]. The first method uses MATLAB symbolic toolbox to im-
plement all the kinematic and dynamical functions by direct implementation [8].
The second method makes use of Robotics toolbox (RTB) [12], which is an open-
source toolbox for MATLAB created by Peter Corke, for the study and simulation
of robotics, such as arm-type robot manipulators and mobile robots. The last
method uses the Robotics system toolbox (RSTB) [7], which is created by Math-
Works as an additional toolbox for MATLAB that requires a license. The Robotics
toolbox and Robotics system toolbox will be referred to as RTB and RSTB in this
chapter.

23
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The first two methods were studied but not implemented. Therefore, those two
methods will only be introduced briefly with the essential weaknesses and bene-
fits.

Figure 4.1: The robot and the reference frames for each body link.

The parameters that were available for the robot are the masses of each links,
rigid-body mass center position, links lengths as well as the inertia of the links.
All the characteristic parameters for the robot are given in the link reference
frame, as seen in Figure 4.1 above.
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4.1 Direct Implementation

The first approach that was considered and tested to be implemented was the di-
rect implementation using the symbolic toolbox. It is because of the convenience
of using the symbolic toolbox, which also provides the ability to manipulate the
system definition more freely. That was done by firstly identifying the DH pa-
rameters to be as shown in Figure 4.2, according to the convention mentioned in
section 2.3.

Figure 4.2: The joint frames according to the DH convention.

By using the parameters shown in Table 4.1, the expression of the homogeneous
transformation matrix for each link can be obtained by using equation (2.9).

Table 4.1: The DH parameters used for the direct implementation and RTB
approaches.

Link (i) θi[rad] di[m] ai[m] αi[rad]
1 θ1 0.185 0 π

2
2 θ2 0 0.380 0
3 θ3 0 0 π

2
4 θ4 0.420 0 −π2
5 θ5 0 0 π

2
6 θ6 0 0.318 0

Thereafter computing the Jacobian matrix using (2.13), which gives all the vari-
ables needed to compute the mass-matrix B(q) and the Coriolis matrix C(q, q̇)
using (2.19), (2.26) and (2.27). Lastly computing G(q) using the equation for the
potential energy (2.20).

The problem with this method was the number of links, number of DoF, which
is six, which makes the expression of the mass matrix and Coriolis-matrix very
long. That resulted in difficulty for the computer to compile the expression into
a MFB (Matlab Function Block), requiring a lot of computing power and time.
The decision to select the MFB was made due to the ability of the MFB to be code
generated to C-language for the installation on the hardware of robot. Therefore,
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this approach was discarded, and the focus was instead put on selecting a toolbox
without this weakness. That led to chose RTB, since it is an open source toolbox.

4.2 Robotics Toolbox RTB

In the RTB the kinematic and dynamic functions are predefined, but it requires
the definitions of links according to the DH parameters convention, with all other
data of the links such as mass, inertia and center of gravity etc. See Appendix A
for the code of the link declaration in MATLAB . Thereafter, a Simulink "Interpreted
MATLAB Function-Block" was created for the computation of the Mass-matrix
B(q), coriolis-matrix C(q, q̇), gravity-vector G(q) as well as one block for the sim-
ulated model of the robot.

The problem with this approach is the predefined functions and "Interpreted
MATLAB Function-Block" are not compatible to MATLAB code-generation func-
tion. That means it has to be rewritten into a MATLABFunction block or in C-
language to be able to install it into the hardware of the robot. Another problem
in RTB is that it gives comparatively slow simulations. This problem worsens
the more links the system has. But the main problem is that it did not have any
validation of the given data. In other words, it is not known if the input data
is appropriate or not. This imperfection was mainly noticed in the input data of
the inertia. But it has very educational and user friendly 3D representation of the
link configuration. That was used to confirm the identification of DH parameters,
but due to its imperfection and weaknesses and the slow response, this approach
was also discarded. That led to testing the Robotic System Toolbox (RSTB). RSTB
is MATLAB ’s own toolbox, which required a license to use, that is why it was the
last choice.

4.3 Robotic System Toolbox RSTB

The RSTB also has the kinematic and dynamic functions predefined, however it
does not necessarily require the definition of the links according to the DH con-
vention. Additionally to that it has also the Simulinkblock with those function
predefined. The benefits of the RSTB is that it checks the given data to the link,
which makes it more trustworthy than the RTB. The RSTB is also well optimized,
that results in faster simulations than RTB. The model below, Figure 4.3 shows
how the controller was built in the Simulinkusing the RSTB.
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Figure 4.3: Simulinkmodel of the robot controller using RSTB, further de-
scribed in Appendix B.

In addition to the control approach, which was mentioned in section 3.2, Fig-
ure 3.2, two saturation blocks were added. This was done considering the hard-
ware of the robot and the required behaviors. One saturation block was added
to give a limitation to the output signal, torque signal, of the controller and an-
other one was added to limit the control signal to the "Nonlinear Compensation
and Decoupling". Furthermore the definition of the links was made according to
the given data from ABB , which is not following the DH convention as shown in
Figure 4.1. The most noticeable difference to the DH convention, is that not all
the reference frames pointing in the same direction of the links rotation axis etc.
see Appendix C for the code of the link declaration in MATLAB . This approach
seen to be the most trustworthy one of all the other three approaches. With that
said, a validation of the model as well as the controller are required to justify the
results of this thesis.





5
Simulation Results

To evaluate the result of the controller method as well as the implementation
approach that was chosen using RSTB, there were four tests considered. First, to
test the capability of the output signal to converge to the reference signal. This
test will be repeated while facing a noise in the measured output signal, which is
fed back to the controller. Thereafter, testing the robustness of the system, if the
given data is not fully accurate. That is done by modifying the model parameters
of the simulated model. Finally, testing the accuracy of a path following in the
operational space.

5.1 Experiment Baseline Case

Every single robot that will be set into a work-space requires thorough testing.
Specially if it will be in close contact with fragile components or even humans for
that matter. They are tested for their capability of performing the task they were
intended for. Therefore, the simulated model as well as the controller approach
will be tested. The tests are divided into four cases:

• Ideal case,

• Measurement disturbance,

• Robustness,

• Operational space time path.

The first case will test the capability of the controller to follow the reference sig-
nal. This case will also work as a baseline case for the other cases. Therefore, a
comparison will be made between the first case and each one of the other cases.

29
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That will give a good estimate of how the system will be affected by those differ-
ent case scenarios.

The ideal case was chosen to be a sequence of steps in the joint angles. The steps
sequence starts at second one with the first joint (J1) and each second a new joint
takes a step until the last joint (OS) makes the last step in the sixth second. For
more clarification of which link is connected to which joint see Figure 4.1. The
amplitudes of the steps are different in some of the joints. These differences in the
steps amplitude are due to the maximum allowed acceleration that each joint can
have. The chosen amplitude of the joints steps are qi,amp = (15, 30, 30, 90, 90, 90)
degree, which is qi,amp = (0.2618, 0.5236, 0.5236, 1.5708, 1.5708, 1.5708) rad.
To give a better reference velocity and acceleration to the controller a filter was
added to the angle reference signal and thereafter the filtered step first and sec-
ond derivative was used as the reference velocity and acceleration. This filterH(s)
was chosen to have a rise time less than one second and without any overshoot.

H(s) =
4

0.05s2 + s + 4
(5.1)

The outcome of the ideal case is shown in the graphs below:
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Figure 5.1: Ideal case. From top to bottom: joint angle reference signal qr ,
joint angle error qe and actual joint angle q.
The legends (J1, LA, J2, UA, J3, OS) are associated with the joint of each link,
see Figure 4.1.
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Figure 5.2: Ideal case. From top to bottom: joint velocity reference signal q̇r ,
joint velocity error q̇e and actual joint velocity q̇.
The legends (J1, LA, J2, UA, J3, OS) are associated with the joint of each link,
see Figure 4.1.
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Figure 5.3: Ideal case. Top graph: torques from the B(q)q̈. Second graph:
torques from n(q, q̇).
The legends (J1, LA, J2, UA, J3, OS) are associated with the joint of each link,
see Figure 4.1.
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Figure 5.4: Ideal case. Top graph: total saturated torques us. Second graph:
saturated values of u.
The legends (J1, LA, J2, UA, J3, OS) are associated with the joint of each link,
see Figure 4.1.
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Figure 5.5: Ideal case. Top graph: total saturated control signal ys. Second
graph: saturated values of y.
The legends (J1, LA, J2, UA, J3, OS) are associated with the joint of each link,
see Figure 4.1.

The ideal case scenario shows that this control method is capable of following
the reference angles, see Figure 5.1. The occurrence of error in the angle is re-
lated to the saturation of both the acceleration and torque, and also the response
time for the controller to react to the error. These occurrences can be seen when
comparing the error graphs in Figure 5.1 and the acceleration limitation on Fig-
ure 5.5, also when comparing the acceleration limitation in Figure 5.5 and torque
limitation in Figure 5.4. Although the error is less than the 40% of the step am-
plitude, at the start of the step. That is acceptable with the knowledge that the
error converges to zero after one second.



36 5 Simulation Results

5.2 Measurement Disturbance Influence on the
Controller

Testing the performance of the controller while facing noise to the output signals
is necessary. This is due to the fact that there will be noise distortion occurring
in the output signal. Therefore, it is necessary to know the impact that this dis-
turbance has, on the system and its behaviour.

To test how the noise might affect the performance of the controller, a normal
distributed noise generator Band-Limited White Noise block was added to each
one of the output signals, which are the joint angles q and also to the joint veloc-
ities q̇. The maximum amplitudes of the noise to the joint angles q were chosen
to be 1.5 × 10−3rad ≈ 0.085 degrees, and 0.05rad/s ≈ 2.9 degree/s for the joint
velocity. These values are anticipated to occur in the real system and thus chosen
to be simulated. Figure 5.6 shows the Simulinkstructure of how the noise was
generated. The output of this structure is added to the joint angle, in the same
way the noise was generated for the joint velocity.

Figure 5.6: Noise generator structure.

The "Noise power" parameter is set to 5 × 10−9 to get a noise amplitude around
1.5 × 10−3rad for the joint angle. The "Sample time" is set to 0.01s for both joint
angle and joint velocity. The "Seed" parameter is set to different values in each
noise generator to give different values for each noise generator in the same time
stamp. To ensure that the amplitude does not exceed the maximum value for
joint angle and joint velocity, a saturation block was added after the noise gener-
ator with the limits ±1.5 × 10−3rad and ±0.05rad/s respectively.
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The graphs below show the test results when the noise is added in both the joint
angle q and joint velocity q̇. The graphs for the test results, where the noise is
only added to the joint angle q or only to the joint velocity’s q̇ are included in
the Appendix D. The reference signal is the same in all these cases, which is also
similar to the ideal case.

Figure 5.7: Disturbance case: added noise on joint angle q and joint velocity
q̇. From top to bottom: joint angle reference signal qr , joint angle error qe
and actual joint angle q.
The legends (J1, LA, J2, UA, J3, OS) are associated with the joint of each link,
see Figure 4.1.
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Figure 5.8: Disturbance case: added noise on joint angle q and joint velocity
q̇. From top to bottom: joint velocity reference signal q̇r , joint velocity error
q̇e and actual joint velocity q̇.
The legends (J1, LA, J2, UA, J3, OS) are associated with the joint of each link,
see Figure 4.1.
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Figure 5.9: Disturbance case: added noise on joint angle q and joint velocity
q̇. Top graph: torques from the B(q)q̈. Second graph: torques from n(q, q̇).
The legends (J1, LA, J2, UA, J3, OS) are associated with the joint of each link,
see Figure 4.1.
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Figure 5.10: Disturbance case: added noise on joint angle q and joint velocity
q̇. Top graph: total saturated torques us. Second graph: saturated values of
u.
The legends (J1, LA, J2, UA, J3, OS) are associated with the joint of each link,
see Figure 4.1.
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Figure 5.11: Disturbance case: added noise on joint angle q and joint velocity
q̇. Top graph: total saturated control signal ys. Second graph: saturated
values of y.
The legends (J1, LA, J2, UA, J3, OS) are associated with the joint of each link,
see Figure 4.1.

The result shows that the error converging to zero, with some minor noise. Other-
wise, the error kept to the same as the noise amplitude except for some curves, see
Figure 5.7 and Figure 5.8 between the 2nd and 3rd second. Those curves on the
joint angle and velocity depend on the control signal, the acceleration y, which
gets disturbed by the noise and gives some peaks in the same time period. With
that said, the graphs indicate that the system is more sensitive to the noise on the
joint velocity q̇ than the noise for the joint angle q, see Appendix D. Specially
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when comparing the behaviors of the system when a noise signal was added to
either a joint angle or joint velocity, see Appendix D. The amplitude of the error
that is influenced by the noise is the same as the noise amplitude, when the noise
is added only to the joint angle. However, the error gets bigger when the noise is
added on both the joint angle and joint velocity, see Table 5.1.

Table 5.1: Noise amplitude, depending on where the noise is added.

Added noise on Error noise amplitude on q Error noise amplitude on q̇
q 1.5 × 10−3rad 4 × 10−3rad/s
q̇ <1.5 × 10−3rad 50 × 10−3rad/s

q and q̇ 3 × 10−3rad 50 × 10−3rad/s

The mass-matrix torque B(q)q̈ tends to oscillate, in other words adapt to the noise.
Whilst the coriolis and gravity torque n(q, q̇) is not affected at the same grade by
the noise, even if the noise is added to the joint angle, joint velocity or both.
This is evident in all three cases, where the signal of the Coriolis and gravity
torque n(q, q̇) is smoother than the signals of the mass-matrix B(q)q̈. Overall, the
controller follows the reference signal and keeps the error 40% less than the step
signal, in the same way as the ideal case.This leads to the investigation of the next
case scenario, which is the robustness of the model.

5.3 Robustness of Control Model

In the most cases there may occur some errors in the given data. Therefore, the
robustness of the controller has to be tested. First to be considered is which
parameter, from the given data such as mass, inertia, center of gravity (CoG),
payload and links lengths, can for the most part be assumed to be wrong or not
precisely correct. The obvious one is the payload mass that can vary from task
to task. The second thing to consider is the inertia parameters, which is difficult
to achieve with good precision. Last but not least is the CoG, which can also
be difficult to estimate with good precision. The masses and the lengths of the
links are mostly measured with great precision. Therefore, two tests had to be
run, where the controller keeps the given data from the specification of the robot
according to ABB and changing the simulated model values. The tests are made
by changing the values on:

• The payload by ±5% and ±10%.

• The inertia tensor by ±5% and ±10%.

The results of those tests, where the variation is only by ±5%, are in Appendix E
and Appendix F. Hence, the result of the test, where the variation is ±10%, are
shown below.
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5.3.1 Robustness of Payload Influence Test

The test is made by multiplying 0.9, 0.95, 1, 05 and 1.10 to the mass of the last
link (OS), which is including the mass of the test weight. Thereafter, a simula-
tion of the behavior is done by giving the same reference signal as the ideal case
scenarios. The result of those tests, where the variation is only by ±5%, are in
Appendix E. Otherwise, the result of the test, where the variation is ±10%, are
shown below.

Figure 5.12: Payload test: test weight is 10% higher. From top to bottom:
joint angle reference signal qr , joint angle error qe and actual joint angle q.
The legends (J1, LA, J2, UA, J3, OS) are associated with the joint of each link,
see Figure 4.1.
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Figure 5.13: Payload test: test weight is 10% higher. From top to bottom:
joint velocity reference signal q̇r , joint velocity error q̇e and actual joint ve-
locity q̇.
The legends (J1, LA, J2, UA, J3, OS) are associated with the joint of each link,
see Figure 4.1.
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Figure 5.14: Payload test: test weight is 10% higher. Top graph: torques
from the B(q)q̈. Second graph: torques from n(q, q̇).
The legends (J1, LA, J2, UA, J3, OS) are associated with the joint of each link,
see Figure 4.1.
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Figure 5.15: Payload test: test weight is 10% higher. Top graph: total satu-
rated torques us. Second graph: saturated values of u.
The legends (J1, LA, J2, UA, J3, OS) are associated with the joint of each link,
see Figure 4.1.
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Figure 5.16: Payload test: test weight is 10% higher. Top graph: total satu-
rated control signal ys. Second graph: saturated values of y.
The legends (J1, LA, J2, UA, J3, OS) are associated with the joint of each link,
see Figure 4.1.



48 5 Simulation Results

Figure 5.17: Payload test: test weight is 10% lower. From top to bottom:
joint angle reference signal qr , joint angle error qe and actual joint angle q.
The legends (J1, LA, J2, UA, J3, OS) are associated with the joint of each link,
see Figure 4.1.
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Figure 5.18: Payload test: test weight is 10% lower. From top to bottom: joint
velocity reference signal q̇r , joint velocity error q̇e and actual joint velocity q̇.
The legends (J1, LA, J2, UA, J3, OS) are associated with the joint of each link,
see Figure 4.1.
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Figure 5.19: Payload test: test weight is 10% lower. Top graph: torques from
the B(q)q̈. Second graph: torques from n(q, q̇).
The legends (J1, LA, J2, UA, J3, OS) are associated with the joint of each link,
see Figure 4.1.
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Figure 5.20: Payload test: test weight is 10% lower. Top graph: total satu-
rated torques us. Second graph: saturated values of u.
The legends (J1, LA, J2, UA, J3, OS) are associated with the joint of each link,
see Figure 4.1.
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Figure 5.21: Payload test: test weight is 10% lower. Top graph: total satu-
rated control signal ys. Second graph: saturated values of y.
The legends (J1, LA, J2, UA, J3, OS) are associated with the joint of each link,
see Figure 4.1.
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The results show that a change in payload gives a static error in the joint angle.
The error is linearly dependent on the error in the payload, that can be seen when
comparing the ideal with all other payload tests (+5%,+10%,−5% and −10%).
With that said, the amplitude of the highest static error is ≈ 0.016rad ≈ 0.9167
degree when the error in mass is ±5% and ≈ 0.032rad ≈ 1.8335 degree when the
error in mass is ±10%. With the knowledge that this error in the joint space yields
an error in the operational space equal to 0.0047m, it get acceptable. This error
is calculated by (5.2)

H̃e = He,q − He,qr =
[
R̃e T̃e
0 1

]
=⇒

T̃e =
[
0.0002 0.0002 0.0047

]T
=⇒ ‖T̃e‖ = 0.0047

R̃e =


−0.0037 −0.0087 −0.0038
−0.0017 0.0314 0.0136
0.0352 0.0005 0.0004


(5.2)

where the H̃e is the error between the homogeneous transformation matrix of the
desired angle qd and the actual angle q. The homogeneous transformation matrix
is for the end-effector w.r.t the base. The T̃e and R̃e are the rotational and trans-
lational component of the H̃e. The data in the equation above are from the test
where 10% is subtracted to the payload, which has the largest error amplitude
in joint angle ≈ 0.032rad ≈ 1.8335. The difference in the payload also has an
impact on how much of the torque is saturated, which is reasonable. The lower
the weight is, the less required torque is needed to move and vice versa.
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5.3.2 Robustness of Inertia Influence Test

This test was made in the same way as the payload test, where the change was
made in the inertia tensors of all the links. The result of those tests, where the
variation is only by ±5%, are in Appendix F. Otherwise, the result of the test,
where the variation is ±10%, are shown below.

Figure 5.22: Inertia test: inertia tensor 10% higher. From top to bottom:
joint angle reference signal qr , joint angle error qe and actual joint angle q.
The legends (J1, LA, J2, UA, J3, OS) are associated with the joint of each link,
see Figure 4.1.
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Figure 5.23: Inertia test: inertia tensor 10% higher. From top to bottom:
joint velocity reference signal q̇r , joint velocity error q̇e and actual joint ve-
locity q̇.
The legends (J1, LA, J2, UA, J3, OS) are associated with the joint of each link,
see Figure 4.1.
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Figure 5.24: Inertia test: inertia tensor 10% higher. Top graph: torques from
the B(q)q̈. Second graph: torques from n(q, q̇).
The legends (J1, LA, J2, UA, J3, OS) are associated with the joint of each link,
see Figure 4.1.
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Figure 5.25: Inertia test: inertia tensor 10% higher. Top graph: total satu-
rated torques us. Second graph: saturated values of u.
The legends (J1, LA, J2, UA, J3, OS) are associated with the joint of each link,
see Figure 4.1.
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Figure 5.26: Inertia test: inertia tensor 10% higher. Top graph: total satu-
rated control signal ys. Second graph: saturated values of y.
The legends (J1, LA, J2, UA, J3, OS) are associated with the joint of each link,
see Figure 4.1.
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Figure 5.27: Inertia test: inertia tensor 10% lower. From top to bottom: joint
angle reference signal qr , joint angle error qe and actual joint angle q.
The legends (J1, LA, J2, UA, J3, OS) are associated with the joint of each link,
see Figure 4.1.
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Figure 5.28: Inertia test: inertia tensor 10% lower. From top to bottom: joint
velocity reference signal q̇r , joint velocity error q̇e and actual joint velocity q̇.
The legends (J1, LA, J2, UA, J3, OS) are associated with the joint of each link,
see Figure 4.1.
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Figure 5.29: Inertia test: inertia tensor 10% lower. Top graph: torques from
the B(q)q̈. Second graph: torques from n(q, q̇).
The legends (J1, LA, J2, UA, J3, OS) are associated with the joint of each link,
see Figure 4.1.
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Figure 5.30: Inertia test: inertia tensor 10% lower. Top graph: total saturated
torques us. Second graph: saturated values of u.
The legends (J1, LA, J2, UA, J3, OS) are associated with the joint of each link,
see Figure 4.1.
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Figure 5.31: Inertia test: inertia tensor 10% lower. Top graph: total saturated
control signal ys. Second graph: saturated values of y.
The legends (J1, LA, J2, UA, J3, OS) are associated with the joint of each link,
see Figure 4.1.

This test shows that the error in the inertia has a minimal affect on the output
joint angles, only the error max amplitude change with a small margin. The dif-
ference is in the maximum error amplitude, it gets lower the lower the inertia
value is and vice versa. There are also some minimal oscillations on the joint
that does not make the step, which means the nonlinear compensation and de-
coupling get affected. On the other hand, the torque gets unstable and get some
occasional peaks. The same goes for the acceleration.
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5.4 Operational Space Time Path

In this test, a trajectory was created in the operational space, in the shape of a
half moon as shown in Figure 5.32 and 5.33. This trajectory was given to a Inverse
Kinematics-block from the RSTB. This block calculate the joint angle q from the
given operational space position. Thereafter, these joint angles are given to the
controller through a filter, H(s) Equation 5.1, as a reference joint angle qr , as well
as its derivative q̇r and the second derivative q̈r . The outcome of this test is shown
in the graphs below:

Figure 5.32: Trajectory test: the time reference signal in the operational
space.
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Figure 5.33: Trajectory test: 3D representation of the given trajectory and
the robot, in four different frames.
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Figure 5.34: Operational space trajectory test. From top to bottom: joint
angle reference signal qr , joint angle error qe and actual joint angle q.
The legends (J1, LA, J2, UA, J3, OS) are associated with the joint of each link,
see Figure 4.1.
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Figure 5.35: Operational space trajectory test. From top to bottom: joint
velocity reference signal q̇r , joint velocity error q̇e and actual joint velocity q̇.
The legends (J1, LA, J2, UA, J3, OS) are associated with the joint of each link,
see Figure 4.1.
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Figure 5.36: Operational space trajectory test. Top graph: torques from the
B(q)q̈. Second graph: torques from n(q, q̇).
The legends (J1, LA, J2, UA, J3, OS) are associated with the joint of each link,
see Figure 4.1.
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Figure 5.37: Operational space trajectory test. Top graph: total saturated
torques us. Second graph: saturated values of u.
The legends (J1, LA, J2, UA, J3, OS) are associated with the joint of each link,
see Figure 4.1.
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Figure 5.38: Operational space trajectory test. Top graph: total saturated
control signal ys. Second graph: saturated values of y.
The legends (J1, LA, J2, UA, J3, OS) are associated with the joint of each link,
see Figure 4.1.
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The result of this test shows that the controller manages to keep the error below
0.01rad ≈ 0.5730 degree. The error gets bigger only in the change of the path
direction which happens in the following time stamps 0.30s, 3s, 5s, 7s and 10s,
which is understandable. The torque graph shows that some peaks and rapid os-
cillations happens in the first 2 seconds, see Figure 5.36. Although, these changes
do not result in a big amplitude, which is even lower than the amplitude of the
ideal case. These peaks also appear in the acceleration graph.
To conclude this test, the results are promising and the controller shows a good
response time and it is also able to follow the reference signal with a low error
amplitude.





6
Result

This chapter conclude the results of this thesis and some ideas for the future
development on this thesis.

6.1 Discussion

To conclude the result, a dynamical model of the robot as well as a joint space
inverse dynamic controller have been developed. The control model as well as the
simulated model of the robot was developed with the help of the RSTB Robotic
System Toolbox. To justify the approach of the development of the control and
the simulated model several experiments were made. The result of the controller
was promising, specially in the ideal case scenario. The controller also managed
to converge the output signal to the reference signal with a minor error while
encountering a noise disturbance. The error which is influenced by the noise
is unavoidable, this is due to the fact that there will always be distortions in the
measured signals. The only solution is to add a filter to suppress the amplitude of
the noise. Operational space path following experiment indicates that the error
is mainly related to the step size. With that said, a softer trajectory can keep
the error to the minimum. Although, more experiments are needed to be made,
such as a combination of the noise and the other experiment also testing other
maneuvers. Some of the combination experiments ware made but were chosen
not to be presented, that is mainly for the limited size of the report and simplicity
for the reader.
However, the results only show the behavior of a simulated model, which does
not guarantee the same results for the real robot. Therefore, more tests are
needed to be done on the real robot to confirm the results of the controller as
well as the simulated model.

73



74 6 Result

6.2 Future Development

The most important thing to develop in the future is to add a filter on the mea-
sured signals, due to the impact that the noise has on the oscillation in the torque.
These rapid changes in the torque may shorten the lifetime of the material used
in the robot, it also requires more power (ampere). Another thing to keep in mind,
is to add a robustness controller. That is to minimize the impact of the inaccuracy
of the properties given to the controller, see Figure 6.1.

Figure 6.1: Robustness control, for the future development.
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A
RTB Definition of The Links Chain

1 n = 6; % number of links (rigid-body)
2 L (1:n) = Link();
3 for i = 1:n
4 L(i) = Revolute('d', d(i), ... % link length ...

(Dennavit-Hartenberg notation)
5 'a', a(i), ... % link offset ...

(Dennavit-Hartenberg notation)
6 'alpha', alpha(i), ... % link twist ...

(Dennavit-Hartenberg notation)
7 'I', Body(i+1).I, ... % inertia tensor of ...

link with respect to center of mass I = [L_xx, L_yy, ...
L_zz, L_xy, L_yz, L_xz]

8 'r', Body(i).COG, ... % distance of i:th ...
origin to center of mass [x,y,z] in link reference frame

9 'm', Body(i).m, ... % mass of link
10 'Jm', 0, ... % actuator inertia
11 'G', 0, ... % gear ratio
12 'B', 0, ... % actuator viscous ...

friction coefficient (measured at the motor)
13 'Tc', [0 0]);%, ... % actuator Coulomb ...

friction coefficient for direction [-,+] (measured at ...
the motor)

14 end
15 Robot_CM = SerialLink(L, 'name', 'ROBOT_CM');
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B
SimulinkModel of the Robot

Controller Using RSTB.
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80 B SimulinkModel of the Robot Controller Using RSTB.
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C
RSTB Definition of The Links Chain

1 % joint 1 2 3 4 5 6
2 Rot_axis = [0 0 0 1 0 1; % x
3 0 1 1 0 1 0; % y
4 1 0 0 0 0 0];% z
5 Transform = eye(4);
6 %Rigid-body tree decleration (Joint and body names)
7 joints_name = "jnt" + (1:6);
8 Visual_name = "3D/" + ["Base.stl", "Joint1.stl", "LowerArm.stl", ...
9 "Joint2.stl", "UpperArm.stl", "Joint3.stl", "OS.stl"];

10

11 ROBOT_CM = rigidBodyTree('DataFormat','row');
12 ROBOT_CM.Base.addVisual("Mesh", Visual_name(1));
13 n = 6; % number of links (rigid-body)
14 Link(1:n) = rigidBody(' ');
15 Joint(1:n) = rigidBodyJoint(' ');
16 %Rigid-body tree defintions from the Body data
17 for i = 1:n
18 Link(i) = rigidBody(Body(i+1).name); % ...

Rigit-body name
19 % adding properties to the joint
20 Joint(i) = rigidBodyJoint(joints_name(i), 'revolute'); % Joint ...

object that defines how a rigid body moves relative to ...
another.

21 Joint(i).JointAxis = Rot_axis(:,i); % ...
JointAxis represents the rotation axis of a revolute ...
joint, vector with one in the desierd position ([0 0 1] ...
rotation in z).

22 Transform(1:3,4) = Body(i).L; % Body ...
length

23 setFixedTransform(Joint(i), Transform); % Sets ...
JointToParentTransform to the user-supplied 4x4 ...
homogeneous transform matrix T and ChildToJointTransform ...
to an identity matrix.
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24 % adding properties to the link
25 Link(i).Joint = Joint(i);
26 Link(i).Mass = Body(i+1).m; % Mass of the ...

rigid body, Body mass cannot be negative. Unit: kilogram (kg).
27 Link(i).CenterOfMass = Body(i+1).COG; % Center of ...

mass vector of the rigid body, relative to the body frame. ...
Unit: meter (m).

28 Link(i).Inertia = Body(i+1).I; % Inertia of ...
the rigid body relative to the body frame. I = [Ixx Iyy ...
Izz Iyz Ixz Ixy] Unit: kilogram-meter-squared (kg*m^2).

29 Link(i).addVisual("Mesh", Visual_name(i+1)); % Add visual ...
geometry data to rigid body

30 addBody(ROBOT_CM,Link(i), Body(i).name); % Add a body to ...
the robot

31 end
32

33 ROBOT_CM.Gravity = [0,0,-9.81];
34 clear Link Joint i n Visual_name joints_name Transform Rot_axis



D
Tests of the Noise Disturbance
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Figure D.1: Disturbance case: added noise on joint angle q. From top to
bottom: joint angle reference signal qr , joint angle error qe and actual joint
angle q.
The legends (J1, LA, J2, UA, J3, OS) are associated with the joint of each link,
see Figure 4.1.
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Figure D.2: Disturbance case: added noise on joint angle q. From top to
bottom: joint velocity reference signal q̇r , joint velocity error q̇e and actual
joint velocity q̇.
The legends (J1, LA, J2, UA, J3, OS) are associated with the joint of each link,
see Figure 4.1.
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Figure D.3: Disturbance case: added noise on joint angle q. Top graph:
torques from the B(q)q̈. Second graph: torques from n(q, q̇).
The legends (J1, LA, J2, UA, J3, OS) are associated with the joint of each link,
see Figure 4.1.
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Figure D.4: Disturbance case: added noise on joint angle q. Top graph: total
saturated torques uS . Second graph: saturated values of u.
The legends (J1, LA, J2, UA, J3, OS) are associated with the joint of each link,
see Figure 4.1.
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Figure D.5: Disturbance case: added noise on joint angle q. Top graph: total
saturated control signal yS . Second graph: saturated values of y.
The legends (J1, LA, J2, UA, J3, OS) are associated with the joint of each link,
see Figure 4.1.
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Figure D.6: Disturbance case: added noise on joint velocity q̇. From top to
bottom: joint angle reference signal qr , joint angle error qe and actual joint
angle q.
The legends (J1, LA, J2, UA, J3, OS) are associated with the joint of each link,
see Figure 4.1.
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Figure D.7: Disturbance case: added noise on joint velocity q̇. From top to
bottom: joint velocity reference signal q̇r , joint velocity error q̇e and actual
joint velocity q̇.
The legends (J1, LA, J2, UA, J3, OS) are associated with the joint of each link,
see Figure 4.1.
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Figure D.8: Disturbance case: added noise on joint velocity q̇. Top graph:
torques from the B(q)q̈. Second graph: torques from n(q, q̇).
The legends (J1, LA, J2, UA, J3, OS) are associated with the joint of each link,
see Figure 4.1.
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Figure D.9: Disturbance case: added noise on joint velocity q̇. Top graph:
total saturated torques uS . Second graph: saturated values of u.
The legends (J1, LA, J2, UA, J3, OS) are associated with the joint of each link,
see Figure 4.1.
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Figure D.10: Disturbance case: added noise on joint velocity q̇. Top graph:
total saturated control signal yS . Second graph: saturated values of y.
The legends (J1, LA, J2, UA, J3, OS) are associated with the joint of each link,
see Figure 4.1.
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Figure E.1: Payload test: test weight 5% higher. From top to bottom: joint
angle reference signal qr , joint angle error qe and actual joint angle q.
The legends (J1, LA, J2, UA, J3, OS) are associated with the joint of each link,
see Figure 4.1.
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Figure E.2: Payload test: test weight 5% higher. From top to bottom: joint
velocity reference signal q̇r , joint velocity error q̇e and actual joint velocity q̇.
The legends (J1, LA, J2, UA, J3, OS) are associated with the joint of each link,
see Figure 4.1.
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Figure E.3: Payload test: test weight 5% higher. Top graph: torques from the
B(q)q̈. Second graph: torques from n(q, q̇).
The legends (J1, LA, J2, UA, J3, OS) are associated with the joint of each link,
see Figure 4.1.
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Figure E.4: Payload test: test weight 5% higher. Top graph: total saturated
torques uS . Second graph: saturated values of u.
The legends (J1, LA, J2, UA, J3, OS) are associated with the joint of each link,
see Figure 4.1.
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Figure E.5: Payload test: test weight 5% higher. Top graph: total saturated
control signal yS . Second graph: saturated values of y.
The legends (J1, LA, J2, UA, J3, OS) are associated with the joint of each link,
see Figure 4.1.
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Figure E.6: Payload test: test weight 5% lower. From top to bottom: joint
angle reference signal qr , joint angle error qe and actual joint angle q.
The legends (J1, LA, J2, UA, J3, OS) are associated with the joint of each link,
see Figure 4.1.
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Figure E.7: Payload test: test weight 5% lower. From top to bottom: joint
velocity reference signal q̇r , joint velocity error q̇e and actual joint velocity q̇.
The legends (J1, LA, J2, UA, J3, OS) are associated with the joint of each link,
see Figure 4.1.
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Figure E.8: Payload test: test weight 5% lower. Top graph: torques from the
B(q)q̈. Second graph: torques from n(q, q̇).
The legends (J1, LA, J2, UA, J3, OS) are associated with the joint of each link,
see Figure 4.1.
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Figure E.9: Payload test: test weight 5% lower. Top graph: total saturated
torques uS . Second graph: saturated values of u.
The legends (J1, LA, J2, UA, J3, OS) are associated with the joint of each link,
see Figure 4.1.
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Figure E.10: Payload test: test weight 5% lower. Top graph: total saturated
control signal yS . Second graph: saturated values of y.
The legends (J1, LA, J2, UA, J3, OS) are associated with the joint of each link,
see Figure 4.1.
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Figure F.1: Inertia test: inertia tensor 5% higher. From top to bottom: joint
angle reference signal qr , joint angle error qe and actual joint angle q.
The legends (J1, LA, J2, UA, J3, OS) are associated with the joint of each link,
see Figure 4.1.
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Figure F.2: Inertia test: inertia tensor 5% higher. From top to bottom: joint
velocity reference signal q̇r , joint velocity error q̇e and actual joint velocity q̇.
The legends (J1, LA, J2, UA, J3, OS) are associated with the joint of each link,
see Figure 4.1.
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Figure F.3: Inertia test: inertia tensor 5% higher. Top graph: torques from
the B(q)q̈. Second graph: torques from n(q, q̇).
The legends (J1, LA, J2, UA, J3, OS) are associated with the joint of each link,
see Figure 4.1.
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Figure F.4: Inertia test: inertia tensor 5% higher. Top graph: total saturated
torques uS . Second graph: saturated values of u.
The legends (J1, LA, J2, UA, J3, OS) are associated with the joint of each link,
see Figure 4.1.
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Figure F.5: Inertia test: inertia tensor 5% higher. Top graph: total saturated
control signal yS . Second graph: saturated values of y.
The legends (J1, LA, J2, UA, J3, OS) are associated with the joint of each link,
see Figure 4.1.
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Figure F.6: Inertia test: inertia tensor 5% lower. From top to bottom: joint
angle reference signal qr , joint angle error qe and actual joint angle q.
The legends (J1, LA, J2, UA, J3, OS) are associated with the joint of each link,
see Figure 4.1.
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Figure F.7: Inertia test: inertia tensor 5% lower. From top to bottom: joint
velocity reference signal q̇r , joint velocity error q̇e and actual joint velocity q̇.
The legends (J1, LA, J2, UA, J3, OS) are associated with the joint of each link,
see Figure 4.1.
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Figure F.8: Inertia test: inertia tensor 5% lower. Top graph: torques from the
B(q)q̈. Second graph: torques from n(q, q̇).
The legends (J1, LA, J2, UA, J3, OS) are associated with the joint of each link,
see Figure 4.1.
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Figure F.9: Inertia test: inertia tensor 5% lower. Top graph: total saturated
torques uS . Second graph: saturated values of u.
The legends (J1, LA, J2, UA, J3, OS) are associated with the joint of each link,
see Figure 4.1.
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Figure F.10: Inertia test: inertia tensor 5% lower. Top graph: total saturated
control signal yS . Second graph: saturated values of y.
The legends (J1, LA, J2, UA, J3, OS) are associated with the joint of each link,
see Figure 4.1.
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