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Abstract
Multi-target tracking (MTT) methods estimate the trajectory of targets from noisy
measurement; therefore, they can be used to handle the pedestrian-vehicle interac-
tion for a moving vehicle. MTT has an important part in assisting the Automated
Driving System and the Advanced Driving Assistance System to avoid pedestrian-
vehicle collisions. ADAS and ADS rely on correct estimates of the pedestrians’
position and velocity, to avoid collisions or unnecessary emergency breaking of the
vehicle. Therefore, to help the risk evaluation in these systems, the MTT needs
to provide accurate and robust information of the trajectories (in terms of posi-
tion and velocity) of the pedestrians in different environments. Several factors can
make this problem difficult to handle for instance in crowded environments the
pedestrians can suffer from occlusion or missed detection. Classical MTT meth-
ods, such as the global nearest neighbour filter, can in crowded environments fail
to provide robust and accurate estimates. Therefore, more sophisticated MTT
methods should be used to increase the accuracy and robustness and, in general,
to improve the tracking of targets close to each other.

The aim of this master’s thesis is to improve the situational awareness with re-
spect to pedestrians and pedestrian-vehicle interactions. In particular, the task is
to investigate if the GM-PHD and the GM-CPHD filter improve pedestrian track-
ing in urban environments, compared to other methods presented in the literature.

The proposed task can be divided into three parts that deal with different
issues. The first part regards the significance of different clustering methods and
how the pedestrians are grouped together. The implemented algorithms are the
distance partitioning algorithm and the Gaussian mean shift clustering algorithm.
The second part regards how modifications of the measurement noise levels and
the survival of targets based on the target location, with respect to the vehicle’s
position, can improve the tracking performance and remove unwanted estimates.
Finally, the last part regards the impact the filter estimates have on the tracking
performance and how important accurate detections of the pedestrians are to
improve the overall tracking. From the result the distance partitioning algorithm
is the favourable algorithm, since it does not split larger groups. It is also seen that
the proposed filters provide correct estimates of pedestrians in events of occlusion
or missed detections but suffer from false estimates close to the ego vehicle due to
uncertain detections. For the comparison, regarding the improvements, a classic
standard MTT filter applying the global nearest neighbour method for the data
association is used as the baseline.

To conclude; the GM-CPHD filter proved to be the best out of the two proposed
filters in this thesis work and performed better also compared to other methods
known in the literature. In particular, its estimates survived for a longer period
of time in presence of missed detection or occlusion. The conclusion of this thesis
work is that the GM-CPHD filter improves the tracking performance and the
situational awareness of the pedestrians.
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Notation

Tracking vocabulary

Notation Description
Tracking Task of detecting and estimating position and ve-

locity of an object.
Bounding box Box, usually a rectangle, defining the region of

interest.
Track The trajectory of the object of interest, for this

master’s thesis the trajectory of the pedestrians.
Detection Any detected object is defined by a bounding box

which shows that a pedestrian has been found.
Data

association
Association of new data with the previous data
to match already existing tracks.

Ego vehicle The vehicle where the camera is mounted and the
tracking is performed.

Group
representation

A representation of the pedestrians that belong
to a group.

Cluster Determine which estimates that belong together
in a group.

Abbreviations

Abbreviation Meaning
phd Probability Hypothesis Density

cphd Cardinalised Probability Hypothesis Density
roi Region of Interest
rfs Random Finite Sets
gm Gaussian Mixture

adas Advanced Driver Assistance System
ads Autonomous Driving System
stt Single-Target Tracking
mtt Multi-Target Tracking

xi



xii Notation

Symbols

Symbol Meaning
p(·) Probability
N (·, ·) Normal distribution
mk Mean vector
Pk Covariance matrix
Qk Process noise covariance matrix
Rk Observation noise covariance matrix
F(X ) Multi-target state space
F(Y) Multi-target observation space

Uk|k−1(·) RFS of surviving targets
Bk|k−1(·) RFS of spawned targets

Γk RFS of spontaneous born targets
Θk(·) RFS of detected targets
Wk RFS of clutter

pS,k(·) Probability of survival
pD,k(·) Probability of detection
γk(·) Intensity of spontaneous birth RFS

βk|k−1(·|·) Intensity of spawned RFS
κk(·) Intensity of clutter RFS

fk|k−1(·|·) Multi-target transition density
gk(·|·) Multi-target likelihood
vk|k−1(·) Predicted intensity
vk(·) Updated intensity

pk|k−1(·) Predicted cardinality distribution
pk(·) Updated cardinality distribution
pΓ,k(·) Cardinality distribution of births
pW,k(·) Cardinality distibution of clutter
D(·) Kernel distribution



1
Introduction

In an environment containing multiple targets the position and veolcity of the
targets can be estimated by using multi-target tracking (MTT) methods. The
purpose of MTT is locating and estimating the trajectory of multiple objects in en-
vironments containing noisy measurements. The estimation of objects in crowded
environments using MTT methods present several difficulties due to different fac-
tors. For instance, objects could be close to each other, or the objects could be
occluded or not detected for some other reason, which increases the difficulty of
estimating the objects position and velocity. A way to overcome these induced
problems is to use more sophisticated MTT methods instead of more classical
methods, e.g., the global nearest neighbour filter. In a post-processing step of the
methods a group representation can also be added to determine which objects that
belong to the same group, and consequently also to retrieve the group’s position
and velocity. The method that will be investigated in this master’s thesis is to
determine if the tracking can be improved for objects close to each other, and if the
group determination gives an understanding of the group’s movement. In Figure
1.1 an overall illustration of the method process is presented, which is divided into
two main parts of the method and a visualisation part for the application layer.
The main parts are the multi-target tracking, which estimates the objects, and
the post-process group step, which determine the different groups of the estimates.
The last part, the plot output, represent a visualisation of the grouped objects in
a bird eye view and in an image representation for the application layer.

The work described in this thesis were performed at Veoneer AB in Linköping.
Veoneer is a company that produces and develops solutions for autonomous ve-
hicles, e.g., Automated Driving System (ADS) and Advanced Driving Assistance
System (ADAS). To be able to know the surroundings the autonomous vehicles
are equipped with cameras, which allows the system to detect and track objects.

1
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Multi-target tracking
Post-process group 

step
Plot output

Estimates
Grouped 
EstimatesMeasurements

Figure 1.1: Illustration of the method process, from the multi-target tracking estimates
to the plot output. In the multi-target tracking part, the input are the measurement of
the objects and the output the estimates of the objects. In the post-process group step the
estimates are group together and, in the plot, output the grouped estimates are visualised.

1.1 Background and Purpose
The automotive industry strives for more and better support systems used in
vehicles, to improve the safety for the driver, the passengers, and the surrounding
traffic. Systems that have been developed to improve this are the Advanced Driver
Assistance System (ADAS) and Autonomous Driving System (ADS). The ADAS
is a vehicle control system that use different sensors to improve the driving comfort
and the traffic safety by assisting the driver to recognise and react to potentially
dangerous traffic situations. The ADS provides the automation of the vehicle,
and is categorised into five levels, from driver assistance to full automation of
the vehicle. The different categories describe how much the driver interacts with
the vehicle. The ADAS and ADS have a need of further improvement to reach
higher automation level of the vehicles. The future use of the ADAS and ADS
requires higher and higher performance, robustness and accuracy of the tracking
algorithm to improve the situational awareness of the surrounding traffic. The
surrounding traffic can be vehicles and vulnerable road users (VRU, which includes
pedestrians, cyclists and motorcyclists) in all traffic scenarios. In the vehicles a
mounted camera system can act as a sensor to detect and estimate the position
and the velocity of the different object types, which can be used in the ADAS for
Autonomous Emergency Braking (AEB) and Adaptive Cruise Control (ACC). The
camera system is often mounted behind the windscreen and pointing towards the
front of the vehicle. A problem that needs to be solved to improve these systems
performance even further is the pedestrian problem. The pedestrian problem is
that pedestrians can move close to each other and that they have an unpredictable
movement pattern. Therefore, they are harder to detect and thus also harder to
estimate. A proposed way to solve this problem is to use more sophisticated
multi-target tracking algorithms than commonly used tracking methods.

To track multiple targets different approaches can be used. One approach is
to use multiple copies of a single-target tracking method to track each introduced
target individually. Two examples of methods to used for this approach are the
nearest neighbour (NN) [1] and the probabilistic data association (PDA) method
[2]. However, using multiple copies is not a good idea since the targets can interfere
with each other and the data association used in these methods only regard the
association to one target at a time. The data association decides which measure-
ments that originate from the existing tracks and potential new tracks. Another
approach is to use a multi-target tracking method, where the data association of
all targets simultaneously is an important part to handle interfering targets. Com-
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monly used multi-target tracking methods are the global nearest neighbour (GNN)
[3] and the joint probabilistic data association (JPDA) method [2]. These basic
methods perform well when the targets are well separated from each other and the
measurements are certain. However, one scenario where these algorithms struggle
to track multiple targets is when they move in a group: the problem is that the
targets are close to each other, and that tracks can be lost [4]. The reason is that
the data association in the two algorithms can suffer from false associations due to
poor separation of the measurements of the targets’ position, and the consequence
is that targets can change tracks or tracks can even be lost permanently. One
approach to avoid this problem of targets close to each other is the use of random
finite set (RFS) methods [5]. One RFS method is the probability hypothesis den-
sity (PHD) filter [6], which is one of the filters that will be investigated in this
master’s thesis since it can model birth of targets and estimate target close to each
other. A different approach to solve this problem instead of using RFS methods
is to improve the performance of targets close to each other by using image anal-
ysis techniques and then apply a Bayesian network to label and recognise all the
detected trajectories [7]. By using one of these two methods the performance of
multi-target tracking may be improved in the ADAS and ADS and could therefore
make it possible to track pedestrians that are close to each other. However, these
methods can still suffer from missed estimates of the objects since, even with a
good detector, missed detection and occlusion of objects can occur. Therefore, the
purpose of this master’s thesis is to investigate and propose methods to estimate
pedestrians in urban environments to increase the tracking performance and to
avoid unnecessary false breaking of the vehicle. A group representation can also
be applied in a post-processing step, before the output is sent to the application
layer, to determine the groups size, position and velocity.

1.2 Problem Statement
The focus of this master’s thesis is to investigate and propose methods for tracking
pedestrians and retrieving the behaviour of the grouped pedestrians. The research
question is:

• Can the PHD or the CPHD filter improve pedestrian tracking in urban envi-
ronments?

This question can be divided into three parts, which can be formulated as following.

1. What is the significance of different group clustering methods?
This regard the determination of the groups in a post-processing step, i.e., to
determine what requirements are needed and what conditions must be met
to group pedestrians. Several issues need to be handled, such as how close
must pedestrians be to each other.

2. How can modifications of the filters be used to improve the tracking?
This regard proposing modifications of the tracking algorithm to improve the
performance. Modifications will be suggested and investigated to determine
if they have any impact on the tracking performance.
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3. What impact does the investigated MTT method have for the tracking perfor-
mance, in particular the estimated groups?
This regard the multi-target tracking, i.e., to define models and investi-
gate different methods to determine the position and the velocity of the
groups. The target tracking is made for each target individually and in a
post-processing step of the filter group the pedestrians and estimate the po-
sition and velocity of the whole group. The position indicates the location
of the group in relation to the ego vehicle and the velocity indicates how the
group moves in relation to the ego vehicle (in particular if it moves towards
or from the ego vehicle).

1.3 Limitations
To complete the master’s thesis within 20 weeks some limitations have been intro-
duced:

• The estimates of the pedestrians are only made in scenarios where the ego ve-
hicle (sensor platform) is standing still or moving forward, thus motions such
as turning of the vehicle will be omitted in this master’s thesis. These limi-
tations are applied to simplify the models that are used; therefore, the focus
lies more on vehicle-pedestrian interaction when the ego vehicle approaches
a crosswalk.

• The detection of the pedestrians is given by Veoneer’s data sets and are
assumed given in this master’s thesis. An estimation of the distance to
the pedestrians is also provided by Veoneer, where the recorded sequences
are made from a stereo camera, and can therefore be used to calculate an
approximate distance to the detections.

1.4 Thesis Outline
The outline of the master’s thesis is described in this section. In Chapter 2 the
theory behind multi-target tracking is presented. It begins with introducing the
Bayesian and Kalman filter, and then introducing single- and multi-target tracking
methods. The theory of random finite sets method is then presented, where the
probability hypothesis density filter and the cardinalized probability hypothesis
density filter with a Gaussian mixture extension are introduced.

In Chapter 3 the group representation is introduced. The two approaches to
solve the clustering problem (i.e., how to determine which estimates that belong in
the same group) are the distance partitioning and Gaussian mean shift clustering
algorithms. Two modifications of the proposed filters are also introduced, and
regards the probability of survival and the measurement noise. Both modifications
have a distance based approach. To determine the tracks of the different groups
and to retrieve their size, a group logic is also introduced.

In Chapter 4 the specifics for the tracking application used in this master’s
thesis are introduced. The specifics regard the coordinate system of the ego vehicle,
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how the measurements of the pedestrians are retrieved and the dynamic model.
The specific parameters used in the proposed methods are also presented in this
chapter.

In Chapter 5 the simulation scenarios, the results for the proposed methods
and a discussion are presented. The two tracking scenarios of pedestrians are first
presented, the results are then discussed and interpreted: comparing the different
filters with the global nearest neighbour (GNN) filter, the clustering methods, and
the modifications of the probability of survival and measurement noise.

Finally, Chapter 6 provides the conclusions and the future work.





2
Multi-Target Tracking

Preliminaries

The purpose of this chapter is to present the underlying theory of multi-target
tracking and filtering of measurements. There is also an introduction of different
types of tracking environment used to track the targets for the proposed filters,
where the tracking of the targets is performed to retrieve the position and velocity
of an unknown number of targets based on observations. The tracked targets can
also suffer from loss of measurements or from spurious false ones (clutter). The
various tracking assumptions that will be used are:

1. Tracking targets without clutter.

2. Tracking single targets in the presence of clutter and missed detection.

3. Tracking multiple targets that are well separated in the presence of clutter
and missed detection.

4. Tracking multiple targets that are close to each other in the presence of
clutter, missed detection and occlusion.

The presented environments are assumed to be linear Gaussian environments. For
target tracking methods in the presence of clutter there are some (standard) as-
sumptions [1, 6]:
Assumption 2.1. All targets evolve and generate observations independently of
each another.
Assumption 2.2. The target-oriented measurement is Gaussian distributed with
appropriate mean and covariance.
Assumption 2.3. The number of clutter measurements is Poisson distributed,
and the clutter uniformly distributed independently of target-originated measure-
ments.

7



8 2 Multi-Target Tracking Preliminaries

Assumption 2.4. The dynamic and measurement model are linear Gaussian

fk|k−1(xk|xk−1) = N (x;Fk−1xk−1, Qk−1) (2.1)

gk(y|x) = N (y;Hkx,Rk), (2.2)

where the model is described with a Gaussian density.
The chapter begins with an introduction of Bayesian filtering and how the

Kalman filter can be derived from it. Then some single- and multi-target tracking
methods are presented before the random finite sets method is introduced. The
chapter concludes with the theory of the probability hypothesis density and car-
dinalized probability hypothesis density filter, which ends up with the description
of the Gaussian mixture approach for the two aforementioned methods. The two
filters with the Gaussian mixture approach are the investigated filters in this thesis.

2.1 Bayesian Filtering
Bayesian filtering is a way to compute estimates of the current state of the object
given the history of measurements, and works by using Bayesian statistics and
Bayes’ rule for the stochastic filtering problem [8]. The filter use a Bayesian way
to formulate the theoretical filter, which is a method to estimate the state of
time-varying system in an environment with noisy measurements [9]. Bayesian
filtering can be seen as a statistical inversion problem, with an unknown quantity
X = {x0, x1, . . . } that is observed through a set of noisy measurements Y =
{y1, y2, . . . }, as illustrated in Figure 2.1.

Hidden:

Observed:

xk-1 xk xk+1

yk-1 yk yk+1

Figure 2.1: Illustration of hidden states, xk, and of the observed measurements, yk, that
originate from the hidden states.

The purpose of Bayesian filtering is to compute the filtering state distribution

p(xk|y1:k)

which is the estimate of the state xk at the time instant k given all the measure-
ments y1:k up to the current time instant. Given the states {x0, . . . , xk} and the
measurements {y1, . . . , yk} the recursive equations for the Bayesian filter can be
divided into three steps, as described in [9];

1. Initialisation step – The recursion begins with the prior distribution

p(x0) (2.3)
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2. Prediction step – The predictive distribution of the state xk at the time
instant k, given a dynamical model, is given by the Chapman-Kolmogorov
equation

p(xk|y1:k−1) =
∫
p(xk|xk−1)p(xk−1|y1:k−1)dxk−1 (2.4)

where

• p(xk|xk−1) is the predictive distribution
• p(xk−1|y1:k−1) is the previous filter state distribution
• p(xk|y1:k−1) is the current predictive state distribution

3. Update step – Given a measurement yk at time instant k the posterior dis-
tribution of the state xk can be computed using Bayes’ rule

p(xk|y1:k) = p(yk|xk)p(xk|y1:k−1)∫
p(yk|xk)p(xk|y1:k−1)dxk

(2.5)

where

• p(yk|xk) is the measurement likelihood
• p(xk|y1:k−1) is the predictive state distribution
• p(xk|y1:k) is the filter state distribution

The recursive Bayesian filter equations (2.3)-(2.5) provide a theoretical filter.
However, to apply and use the recursion some assumptions must be made to make
it realisable. In this case the assumptions regard tracking of targets without the
presence of clutter. A special case of the recursion that can realised it is the
Kalman filter (KF). The KF is the closed form solution of the Bayesian filtering
equations [9], when the dynamical and measurement models are linear Gaussian.
The state and measurement are then given on the form

xk = Fk−1xk−1 + wk−1

yk = Hkxk + rk,

where wk−1 ∼ N (0, Qk−1) is the process noise, and rk ∼ N (0, Rk) is the mea-
surement noise [10]. The two matrices Fk−1 and Hk are the transition matrix for
the dynamical model and the measurement model, respectively. The predictive
distribution p(xk|xk−1) and the measurement likelihood p(yk|xk) are then

p(xk|xk−1) = N (xk|Fk−1xk−1, Qk−1)

p(yk|xk) = N (yk|Hkxk, Rk),

The distributions resulting from the recursive equations in the Bayesian filtering
can, given the linear model and Gaussian distribution, be evaluated on closed form.
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The resulting distributions are then Gaussian [9] on the form

p(xk|y1:k−1) = N (xk|mk|k−1, Pk|k−1)

p(xk|y1:k) = N (xk|mk, Pk)

p(yk|y1:k−1) = N (yk|Hkmk|k−1, Sk).

where mk is the filter mean, mk|k−1 is the predicted mean, Pk is the covariance,
Pk|k−1 is the predicted covariance and Sk is the innovation covariance. The in-
novation is the difference between the observed measurement and the predicted
observed estimates.

The KF recursion is also divided into three steps, the initialisation step, the
prediction step and the update step, as described in [9];

1. Initialisation step – the prior distribution is Gaussian with

x0 ∼ N (m0, P0).

2. Prediction step – the prediction step is given by

mk|k−1 = Fk−1mk−1

Pk|k−1 = Fk−1Pk−1F
T
k−1 +Qk−1.

3. Update step – the update step is given by

εk = yk −Hkmk|k−1

Sk = HkPk|k−1H
T
K +Rk

Kk = Pk|k−1H
T
k S
−1
k

mk = mk|k−1 +Kkεk

Pk = Pk|k−1 −KkSkK
T
k ,

where εk is the innovation and Kk is the Kalman gain.

2.2 Single-Target Tracking Methods
To track single targets different single-target tracking (STT) methods can be used.
These methods use the Kalman filter to predict and update the target state using
the measurements. However, the target can be observed in presence of clutter and
suffer from missed detection. To solve this problem the STT methods need to use
data association to keep track of the true target [11].
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The two STT methods that will be presented in this work are the nearest
neighbour (NN) filter and the probabilistic data association (PDA) filter, which
can track targets in the presence of clutter and missed detection.

2.2.1 Nearest Neighbour Filter
The nearest neighbour (NN) filter is one of the simpler methods for STT and
uses the (standard) assumptions for target tracking described in the beginning
of this chapter. The filter only uses the measurement closest to the expected
measurement, i.e., the nearest neighbour measurement. It is assumed that the
NN measurements are the ones coming from the tracked target. In a cluttered
environment for the target there are three cases that must be considered for the
NN measurement given at any time instant k [1]

1. There is no measurement’ and therefore there is no NN measurement.

2. The obtained NN measurement originate from the target.

3. The obtained NN measurement is clutter and does not originate from the
target.

A measurement is represented by the measurement vector y, and the set of
measurements obtained at time k is denoted Yk = {y(j)

k }
Jk
j=1, where Jk denotes the

number of measurements at time k. The set of measurements, at a certain time
instant, could also be an empty set if there are no measurements [1]. The NN
measurement yNN is then obtained as

yNN,k = {y : min
y∈Yk

D(y)}, (2.6)

where D(y) is the normalised distance squared, defined as:

D(y) = (y − ŷk|k−1)TS−1
k (y − ŷk|k−1) (2.7)

where Sk is the innovation covariance matrix and ŷk|k−1 = Hkxk|k−1 is the pre-
dicted measurement. The validation gate of the NN filter is defined as the region
containing the measurements of interest, meaning that the measurements that are
outside of it are assumed to be generated by a different source than the target.
The validation gate is defined as an elliptical region

Vα = {y : D(y) ≤ α} (2.8)

where α is the gate size [11]. Once gating has been performed the filter is updating
the NN measurement if available.

The filter works by first predicting the targets position and then after gating
is performed the filter updates the NN measurement if available.

2.2.2 Probabilistic Data Association Filter
The basic probabilistic data association (PDA) filter resolves the data association
problem by calculating the association probabilities to the tracked target for every
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validated measurement at the current time instant and makes a combined update
[2]. The filter adopts the same (standard) assumptions as the nearest neighbour
(NN) filter, but it also assumes that there is only one target of interest within the
validation gate of an initialised track. The calculated association probability is
used in the tracking algorithm to account for the measurement origin uncertainty.
If the state and measurement equations are assumed linear, the PDA filter is based
on the Kalman filter [2]. At every time instant a measurement validation gate is
set up around the predicted measurement, in the same way as the NN filter. If the
target is detected inside of this gate only one of the validated measurements can
be the true target, the rest are assumed to be clutter. The detection of the target
can be seen as an independent event for every time instant, where the detection
has a probability pD [12].

The PDA filter is divided into four steps, the prediction step, the measure-
ment validation step, the data association step, and the state estimation step, as
described in [2]. The prediction of the state vector, the measurement and the
covariance between time instants are predicted in the same way as the state pre-
diction in the Kalman filter presented in Section 2.1.

In the measurement validation step the set of validated measurements is defined
as

Yk = {y(j)
k }

Nk
j=1 (2.9)

where Nk denotes the number of validated measurements [13]. To retrieve these
measurements the validation gate and gate size defined in (2.8) are used. In the
validation gate the gate size α corresponds to the gate probability pG, and pG
is used to determine the probability that the gate contains, if detected, the true
measurement [2].

In the data association step of the PDA filter the predicted estimate is asso-
ciated with the measurement. It is calculated by using the spatial density λ and
the data association probability of the measurement set y(j)

k [2]. The association
probability is calculated as

ξ
(j)
k =


L(j)
k

1− pDpG +
∑Nk
i=1 L

(i)
k

, j = 1, ..., Nk

1− pDpG
1− pDpG +

∑Nk
i=1 L

(i)
k

, j = 0

where the likelihood ratio L(j)
k of the measurement y(j)

k is defined as

L(j)
k =

N (y(j)
k |ŷk|k−1, Sk)pD

λ

The term λ in the equation is the uniform pdf of the location of the false measure-
ments [2].

In the last step the state estimation of the PDA filter is calculated based on
the state update equation

x̂k|k = x̂k|k−1 +Kkεk, (2.10)
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where Kk is defined as the Kalman gain and the combined innovation is given as

εk =
Nk∑
j=1

ξ
(j)
k ε

(j)
k .

The covariance of the state update is given by

Pk|k = ξ0,kPk|k−1 + (1− ξ0,k)(Pk|k−1 −KkSkK
T
k )+

Kk(
Nk∑
j

ξ
(j)
k ε

(j)
k (ε(j)

k )T − ε(j)
k (ε(j)

k )T )KT
k

(2.11)

The PDA filter recursion estimate the target’s position by first predicting the
state vector and then retrieving the validated measurements from the validation
gate. The filter then evaluates the association probabilities to finally retrieve the
state update, which is the target estimate. The filter is similar to the NN filter,
but it has a different approach in the data association.

2.3 Classic Multi-Target Tracking Methods
Multi-target tracking methods are more complicated than the single-target track-
ing methods that were proposed in the previous section since more targets need to
be tracked at once. When tracking several targets in an environment with noisy
measurements, the measurements may not originate from the sought of target.
This environment with multiple targets, as in the environment for single-target
tracking, can also receive false measurements from clutter. Lost or broken tracks
may also arise from incorrect measurement associations or from clutter, which
can produce false tracks. Two methods that can solve this problem of multiple
targets in the presence of clutter are presented in this chapter. The first method
is the global nearest neighbour (GNN) filter and the second method is the joint
probabilistic data association (JPDA) filter. Both filters are extensions of the
single-target tracking filters presented in Section 2.2.

2.3.1 Global Nearest Neighbour Filter
A simple multi-target tracking filter is the global nearest neighbour (GNN) filter
[3], which is an extension of the nearest neighbour filter presented in Section 2.2.1.
The GNN filter searches for the unique joint association of measurements from the
targets to the track that maximises the likelihood or minimises the distance to it
[4].

The filter is divided into four parts, the prediction part, the measurement
validation part, the data association part and the measurement update part. The
Kalman filter recursion is used in the filter for predicting and updating the state
vector, the measurement and the state covariance of each known target. The
measurement validation is used to eliminate unlikely observed measurements to
the specific track [3]. Around each predicted position a validation gate is formed,
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as defined in (2.8). All the measurements that satisfy the gate size α are therefore
considered for the track update.

To associate the measurements to the correct tracks an optimal assignment
problem is formed, which can be solved by using the Hungarian method [4]. The
Hungarian method uses a cost matrix where each row represents a detection and
each column a known track. The result of the method is the detection-to-track
assignment that minimises the total cost between detection and known track. By
using this method, the assignment problem can be solved by finding the single
most likely hypothesis at each time instant. The filter then use the associated
measurements with Bayes filtering for every target.

The GNN filter is simple to implement and works well for targets that are
well separated, but for targets close to each other assignment conflicts are likely
to arise [3]. The assignment conflicts can give loss of tracks and consequently
poor performance, as the measurements can be assigned to the wrong target and
cannot be corrected. The basic GNN filter does not model the birth or death
of targets; therefore, the basic filter is limited to a fixed and known number of
targets. However, the logic of modelling the birth or death of targets is typically
always implemented in the filter to solve the limitation of fixed targets close to
each other.

2.3.2 Joint Probabilistic Data Association Filter
The joint probabilistic data association (JPDA) filter is derived from the PDA
filter defined in Section 2.2.2. The difference between these two filters is that the
JPDA filter use joint association events and that the association probabilities are
computed jointly for all targets. The basic JPDA filter is a simple filter in the sense
that it can only track a fixed and known number of targets, however extensions can
be made to the method to accommodate an unknown and time varying number of
targets [14]. The complexity of the filter comes from the calculation of the joint
association probabilities. The complexity grows exponentially with respect to the
number of targets and measurements.

The JPDA filter is also divided into the four steps presented for the PDA
filter. The prediction of the state vector, the measurement and the covariance
are predicted in the same way as the state prediction in the Kalman filter. The
measurement validation can be calculated using individual validation gates for
each measurement as in the PDA filter. In the validation logic the key in the
JPDA filter is the evaluation of the conditional probabilities based on the joint
events θk, where the joint event is defined as

θk =
N⋂
i=1

θ
(i,ji)
k (2.12)

where θ(i,ji)
k is the event that measurement i originates from target ji. j is the

fixed set of targets, j = 0, 1, ...,M with M as the number of targets, and i is the
candidate measurement, i = 1, ..., N with N as the number of candidate measure-
ments [2]. The only feasible events are those with one measurement originating
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from each target. To calculate these joint events the Bayes’ rule is used, see [12].
Each event can be represented by a validation matrix defined as

Ω̂k(θk) = [ω̂(i,j)
k (θk)]ij (2.13)

where every unit corresponds to the association assumed in θ and is given as

ω̂
(i,j)
k (θk) =

{
1, if θ(i,j)

k occurs
0, otherwise

(2.14)

The data association is calculated by summarising all the feasible events θk
with the probability of measurement i associated to the target j as

ξ
(i,j)
k =



∑
θk

p{θk|Yk}ω̂(i,j)
k (θk), i = 1, ..., N

1−
N∑
i=1

ξ
(j)
j , i = 0

(2.15)

where Yk is defined in (2.9), and p{θk|Yk} is the probability of joint events for
all measurements up to the time instant k. In (2.15) i = 1, ..., N if the target is
detected and i = 0 if the target is not detected.

The state estimate of interfering targets in the JPDA filter is based on the
state update (2.10) with the innovation

ε
(i,j)
k = y

(i)
k − ŷk

(j) (2.16)

where y(i)
k is the set of candidate measurements and ŷk(j) is the predicted measure-

ment of the target. The covariance of the state update is calculated as defined in
(2.11). The combined weighted innovation is therefore defined as

ε
(j)
k =

N∑
i=1

ξ
(i,j)
k ε

(i,j)
k (2.17)

The target estimate is calculated in the same way as in the PDA filter, except it
applies joint association events and that the association probabilities are computed
jointly for all targets.

2.4 Random Finite Set Methods
The classical multi-target tracking methods see Section 2.3, can handle targets
that are close to each other, but association conflicts can arise. Another approach
for tracking multiple targets closes to each other or with targets that can appear
or disappear in the surveillance area is the use of random finite set methods. The
theory behind these methods for multi-target tracking will be described in this
section, together with two filters that can handle targets close to each other, by
modelling the birth and death of targets. The two filters that will be presented are
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the probability hypothesis density (PHD) filter and the cardinalized probability
hypothesis density (CPHD) filter.

In a multi-target system, the multi-target state and the multi-target measure-
ment can be modelled as random finite sets (RFS) [15]. An RFS is simply a set
of finite-set-valued random variables and consists of a random number of points
(cardinality). For a random finite set with the instance X = {x1, . . . , xn} the
points are random, distinct and unordered, where the integer n also may differ
and that the multi-target distribution is a probability distribution [16]. Therefore,
with RFS methods the multi-target tracking problem can be seen as a filtering
problem with the multi-target state space F(X ) and the observation space F(Y).
The target and measurement sets can then be used as multiple-target state Xk

and multiple-target measurement Yk defined as

Xk = {xk,1, ..., xk,Mk
} ∈ F(X ) (2.18)

Yk = {yk,1, ..., yk,Nk} ∈ F(Y) (2.19)

where Mk denotes the number of targets and Nk the number of measurements at
time k.

For a given multiple-target state Xk−1 at time k − 1, each target represented
by the state xk−1 ∈ Xk−1 have two possibilities [6]:

1. It survives and continues to exist at time k with the probability pS,k(xk−1)

2. It dies with the probability 1− pS,k(xk−1)

The condition of existence at time k for the probability density from state xk−1
to xk is given by the transition function. The next multi-target state Xk, given a
multi-target state Xk−1, can be retrieved as

Xk =

 ⋃
ζ∈Xk−1

Uk|k−1(ζ)

 ∪
 ⋃
ζ∈Xk−1

Bk|k−1(ζ)

 ∪ Γk (2.20)

where

• Uk|k−1(ζ) – is a RFS of targets that contains the propagated ζ if it survives
or it is ∅ if the target dies.

• Bk|k−1(ζ) – is a RFS of targets at time k that spawned from the targets
since time k − 1.

• Γk – is a RFS of spontaneous birth of targets that appears at time k. [6]

Uk|k−1(ζ) is similar to the prediction of the state vector and covariance as presented
for the classical methods, see 2.3, as it also predicts the new state from xk−1 to xk
using the state transition fk|k−1(xk|xk−1). The difference is that it also applies a
probability of survival for the state between each time instant.

The detection uncertainty of the RFS measurement model can be described
from a given target xk ∈ Xk. That it is either detected with the probability
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pD,k(xk) or missed with the probability 1 − pD,k(xk). The probability density of
obtaining an observation yk from xk at time k is described by a RFS [6, 17]

Θk(xk) =
{
yk, with probability pD,k(xk)
∅, with probability 1− pD,k(xk).

(2.21)

There are also false detections that must be considered when obtaining the obser-
vations, i.e., clutter with respect to a target. Clutter can be modelled as a set of
false measurements Wk. From this set of false measurements, it follows that the
multi-target measurements Yk received by the sensors can be formed by the union
of the generated measurements and the clutter [6] as

Yk = Wk ∪

[ ⋃
x∈Xk

Θk(x)
]
. (2.22)

The multi-target probability density of all the states given all observation is
denoted by

pk(·|Y1:k),

and is called the multi-target posterior density (filtering density). From an initial
density the multi-target Bayes filter propagates the multi-target posterior from
the recursion

pk|k−1(Xk|Y1:k−1) =
∫
fRFS
k|k−1(Xk|X)pk−1(X|Y1:k−1)µs(dX) (2.23)

pk(Xk|Y1:k) =
gRFS
k (Yk|Xk)pk|k−1(Xk|Y1:k−1)∫

gRFS
k (Yk|X)pk|k−1(X|Y1:k−1)µs(dX)

(2.24)

where fRFS
k|k−1(·|·) is the multi-target transition density, which integrate the aspects

of the motion of multiple targets such as time-varying number of targets, target
births, spawning and interaction of targets [15]. gRFS

k (·|·) is the multi-target likeli-
hood, which integrate the sensors behaviour such as the measurement noise, proba-
bility of detection and clutter models [15]. The multi-target transition density and
the multi-target likelihood captures the randomness of the multiple-target transi-
tion and observation described in (2.20) and (2.22). µs is an appropriate reference
measure on F(X ) [18].

2.4.1 Probability Hypothesis Density Filter
The first presented RFS method is the probability hypothesis density (PHD) fil-
ter. The PHD filter propagates the first order moment of the RFS (the PHD)
representing an approximation of the multi-target Bayes filter.

From the definition of the RFS formulation of multi-target filtering in Section
2.4, the notation used in the PHD filter is

• γk(·) – intensity of the spontaneous birth RFS Γk at time k.
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• βk|k−1(·|ζ) – intensity of the RFS Bk|k−1(ζ) spawned at time k by a target
with previous state ζ.

• pS,k(ζ) – probability that a target still exists at time k given that its previous
state is ζ.

• pD,k(x) – probability of detection given a state x at time k.

• κk(·) – intensity of clutter RFS Wk at time k.

The PHD filter can be simplified by using the (standard) assumptions described
in the beginning of this chapter, but the filter also needs an assumption regarding
the multi-target RFS [19] and can be described as
Assumption 2.5. The predicted number of targets governed by pk|k−1 is Poisson
distributed.

From the recursion of the multi-target posterior density pk and the multi-target
predicted density pk|k−1, defined in (2.23) and (2.24), the posterior intensity can
propagate in time as a PHD. With vk|k−1 as the prediction PHD and vk as the
update PHD, the recursions can be described as

Prediction recursion

vk|k−1(x) =
∫
pS,k(ζ)fk|k−1(x|ζ)vk−1(ζ)dζ

+
∫
βk|k−1(x|ζ)vk−1(ζ)dζ + γk(x)

(2.25)

Update recursion

vk(x) = [1− pD,k(x)]vk|k−1(x)

+
∑
y∈Yk

pD,k(x)gk(y|x)vk|k−1(x)
κk(y) +

∫
pD,k(ξ)gk(y|ξ)vk|k−1(ξ)dξ

(2.26)

The output from the PHD filter is the intensity vk, which is the probability
hypothesis density of the targets. This density can be interpreted as a target
density, where the peaks indicates the likelihood of a target in that specific area
[16].

2.4.2 Gaussian Mixture-PHD filter
A closed-form solution to the PHD filter can be derived by using linear assump-
tions for the system and observation equations, and for the Gaussian process and
observation noises. This closed-form solution is the Gaussian Mixture PHD [18].
The implementation of the GM-PHD filter require some more assumptions than
the already applied (standard) assumptions [19].
Assumption 2.6. The survival and detection probabilities are state independent:

pS,k(x) = pS,k (2.27)
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pD,k(x) = pD,k, (2.28)

Assumption 2.7. The RFS’s of the birth and spawn are Gaussian mixtures

γk(x) =
Jγ,k∑
i=1

w
(i)
γ,kN (x;m(i)

γ,k, P
(i)
γ,k) (2.29)

βk|k−1(x|ζ) =
Jβ,k∑
j=1

w
(j)
β,kN (x;F (j)

β,k−1ζ + d
(j)
β,k−1, Q

(j)
β,k−1), (2.30)

where the parameters in γk(x) are given model parameters for the birth intensity.
Meanwhile the parameters in βk|k−1(x|ζ) determine the shape of the spawning
intensity of a target from the previous state ζ. w(j)

γ,k and w
(j)
β,k are the weight of

the Gaussian components of the spontaneous birth and spawned targets, m(i)
γ,k and

m
(i)
β,k are the mean state vector of the Gaussian components of the spontaneous

birth and spawned targets, and P (i)
γ,k and P (i)

β,k are the covariance of the Gaussian
components of the spontaneous birth and spawned targets. The variables Jγ,k
and Jβ,k denote the number of spontaneous births and spawned targets from the
previous to the current state.

The mathematical formulas for the initialisation, prediction and measurement
update are presented below, and for the implementation of the GM-PHD filter see
the pseudo code in [6]. The GM-PHD filter uses the same model as the Kalman
filter for predicting and updating the target estimates in the target state.

Initialisation

The GM-PHD filter is initialised with a Gaussian mixture intensity for the initial
state as

v0(x) =
J0∑
j=1

w
(j)
0 N (x;m(j)

0 , P
(j)
0 ) (2.31)

which use J0 weighted Gaussian components to represent the PHD. w(j)
0 is the

weight of the initial j:th target, m(j)
0 is the initial j:th target state, and P (j)

0 is the
corresponding covariance for the target state [20].

Prediction

The predicted intensity at time k − 1 is assumed to be a Gaussian mixture and
given on the form

vk|k−1(x) = vS,k|k−1(x) + vβ,k|k−1 + γk(x) (2.32)

where γk(x) is given by (2.29), vS,k|k−1(x) and vβ,k|k−1 are Gaussian mixture
representations of the PHD of the surviving targets and spawned targets, where
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the PHD is an approximation of RFS’s. The terms of the predicted intensity are
then given by

vS,k|k−1(x) = pS,k

Jk−1∑
j=1

w
(j)
k−1N (x;m(j)

S,k|k−1, P
(j)
S,k|k−1) (2.33)

m
(j)
S,k|k−1 = Fk−1m

(j)
k−1 (2.34)

P
(j)
S,k|k−1 = Qk−1 + Fk−1P

(j)
k−1F

T
k−1 (2.35)

vβ,k|k−1(x) =
Jk−1∑
j=1

Jβ,k∑
l=1

w
(j)
k−1w

(l)
β,kN (x;m(j,l)

β,k|k−1, P
(j,l)
β,k|k−1) (2.36)

m
(j,l)
β,k|k−1 = F

(l)
β,k−1m

(j)
k−1 + d

(l)
β,k−1 (2.37)

P
(j,l)
β,k|k−1 = Q

(l)
β,k−1 + F

(l)
β,k−1P

(j)
β,k−1(F (l)

β,k−1)T (2.38)

Measurement update

Given that the predicted intensity is Gaussian mixture, the updated intensity is
also Gaussian mixture at time k on the form

vk(x) = (1− pD,k)vk|k−1(x) +
∑
y∈Yk

vD,k(x; y) (2.39)

where vD,k(x; y) is defined as

vD,k(x; y) =
Jk|k−1∑
j=1

w
(j)
k N (x;m(j)

k|k, P
(j)
k|k) (2.40)

where Jk|k−1 is the number of predicted components. However, in the measurement
update the number of components are a combination of the number of predicted
components j = 1, . . . , Jk|k−1 and the number of measurements y. The number
of components is therefore given as i = 1, . . . , Jk, where Jk is the number of
components resulting from combining Jk|k−1 and y in all possible ways. The
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terms in vk(x) can then be described as

w
(i)
k =

pD,kw
(i)
k|k−1q

(i)
k

κk(y) + pD,k
∑Jk|k−1
l=1 w

(l)
k|k−1q

(l)
k

(2.41)

q
(i)
k = N (y;Hkm

(i)
k|k−1, HkP

(i)
k|k−1H

T
k +Rk) (2.42)

m
(i)
k|k = m

(i)
k|k−1 +K

(i)
k (y −Hkm

(i)
k|k−1) (2.43)

P
(i)
k|k = (I −K(i)

k Hk)P (i)
k|k−1 (2.44)

K
(i)
k = P

(i)
k|k−1H

T
k (HkP

(i)
k|k−1H

T
k +Rk)−1 (2.45)

Merging and Pruning

The GM-PHD filter suffer from computational problems due to the increasing num-
ber of Gaussian components as time progresses. To solve this problem a pruning
and merging solution can be applied. The first step (pruning) is to discard the
components that have weights below a threshold Tprune, and the second step (merg-
ing) is to merge components that have a Mahalonobis distance below a threshold
Tmerge. The Mahalanobis distance is defined as

dM =
√

(m(i)
k −m

(j)
k )T (P (j)

k )−1(m(i)
k −m

(j)
k ) (2.46)

and the merging of the components is then done according to

w̃
(l)
k =

∑
i∈L

w
(i)
k (2.47)

m̃
(l)
k = 1

w̃
(l)
k

∑
i∈L

w
(i)
k m

(i)
k (2.48)

P̃
(l)
k = 1

w̃
(l)
k

∑
i∈L

w
(i)
k (P (i)

k + (m̃(j)
k −m

(i)
k )(m̃(j)

k −m
(i)
k )T ) (2.49)

where L is the set of Gaussian components that have a Mahalanobis distance below
the threshold Tmerge. If there still are too many Gaussian components left after
the merging and pruning, the Jmax Gaussian components with the largest weights
are saved, with Jmax being a prespecified parameter.

2.4.3 Cardinalized Probability Hypothesis Density Filter
The cardinalized probability hypothesis density (CPHD) filter addresses the prac-
tical limitations that the PHD filter have. The strategy for the CPHD recursion
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is to propagate both the intensity function and the cardinality distribution. The
cardinality distribution is the probability distribution of the number of targets.

From the definition of the RFS formulation of multi-target filtering in Section
2.4, the notations used in the CPHD filter, in addition to those from the PHD
filter, are defined as

• pΓ,k(·) – cardinality distribution of births at time k.

• pW,k(·) – cardinality distribution of clutter at time k.

The CPHD filter have similar assumptions as those defined for the PHD filter, see
Section 2.4.1. However, in this case the cluster processes are independent and
identically distributed (i.i.d.) also called a generalised Poisson RFS, while in the
PHD filter the cluster processes are strictly Poisson [6, 21]. For the CPHD filter
the spawning of targets from another target can no longer be explicitly modelled
[16], which they can be with the PHD filter.

The CPHD recursion are divided into two steps: the prediction step and the
measurement step. The two steps are described below.

Prediction step

The prediction step in the CPHD-filter is divided into two parts, one to predict
the intensity vk|k−1, which is calculated in the same way as the PHD filter (2.25),
and the other to predict the cardinality distribution pk|k−1 and is given as

pk|k−1(n) =
n∑
j=0

pΓ,k(n− j)Πk|k−1[vk−1, pk−1](j) (2.50)

Πk|k−1[v, p](j) =
∞∑
l=j

Clj

∫
(pS,k(ζ)vk−1(ζ))jdζ

∫
((1− pS,k(ζ))vk−1(ζ))l−jdζ∫

vk−1(ζ)ldζ
p(l)

(2.51)

where Clj is the binomial coefficient [21, 22].

Update step

In the update step for the CPHD-filter the cardinality distribution pk and the
intensity vk are updated as

pk(n) =
Υ0
k[vk|k−1, Yk](n)pk|k−1(n)∫

Υ0
k[vk|k−1, Yk](n)pk|k−1(n)dn

(2.52)

vk(x) =
∫

Υ1
k[vk|k−1, Yk](n)pk|k−1(n)dζ∫

Υ0
k[vk|k−1, Yk](n)pk|k−1n)dζ

× [1− pD,k(x)]vk|k−1(x)

+
∑
y∈Yk

∫
Υ1
k[vk|k−1, Yk\{y}](n)pk|k−1(n)dζ∫
Υ0
k[vk|k−1, Yk](n)pk|k−1(n)dn

× ψk,y(x)vk|k−1(x)
(2.53)
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where

Υu
k [vk|k−1, Y ](n) =

min(|Y |,n)∑
j=0

(|Y | − j)pW,k(|Y | − j)Pnj+u

×
∫

((1− pD,k(ζ))vk|k−1(ζ))n−(j+u)dζ∫
vk|k−1(ζ)ndζ

ej(Ξk(v, Y ))

(2.54)

ψk,y(x) =
∫
κk(ζ)dζ
κk(y) gk(y|x)pD,k(x) (2.55)

Ξk(v, Y ) = {
∫
vk(ζ)ψk,y(ζ)dζ : y ∈ Y } (2.56)

with Υu
k [vk|k−1, Y ](n) as the likelihood of the multi-target observation Yk and ej(·)

as the elementary symmetric function of order j [21, 22].

2.4.4 Gaussian Mixture-CPHD filter
With the previous recursion of the CPHD filter a closed form solution can be
derived by using linear Gaussian assumptions for the transition and observation
models and a Gaussian mixture for the birth PHD. The closed form solution of
the CPHD is therefore the GM-CPHD filter, which have the same assumptions
as the GM-PHD filter, see Section 2.4.2. With these assumptions the dynamical
and measurement models are linear Gaussian, the survival and detection probabil-
ities are state independent and the RFS’s of the spontaneous birth are Gaussian
mixture.

The mathematical formulas for the initialisation, prediction and measurement
update are presented below (see also [21]), where the addition, with respect to the
GM-PHD filter, is the implementation of the cardinality distribution.

Initialisation

The GM-CPHD filter is initialised with a Gaussian mixture intensity for the initial
state as

v0(x) =
J0∑
j=1

w
(j)
0 N (x;m(j)

0 , P
(j)
0 ) (2.57)

which uses J0 weighted Gaussian components to represent the PHD. w(j)
0 is the

weight of the initial j:th target, m(j)
0 is the initial j:th target state, and P (j)

0 is the
corresponding covariance for the target state. The cardinality distribution p0(n)
is initialised as one.



24 2 Multi-Target Tracking Preliminaries

Prediction

The predicted intensity for the GM-CPHD filter is calculated in the same was as
in the GM-PHD filter, see Section 2.4.2 under prediction. By using the Gaussian
mixture model the predicted cardinality distribution pk|k−1(n) and the predicted
intensity vk|k−1(x) can be simplified as

pk|k−1(n) =
n∑
j=0

pΓ,k(n− j)
∞∑
l=j

Cljpk−1(l)pjS,k(1− pS,k)l−j (2.58)

vk|k−1(x) = vS,k|k−1(x) + γk(x) (2.59)

Measurement update

Given that the predicted intensity is a Gaussian mixture, the updated intensity is
also a Gaussian mixture and the CPHD update can be simplified as

pk(n) =
Ψ0
k[wk|k−1, Yk](n)pk|k−1(n)∫

Ψ0
k[wk|k−1, Yk](n), pk|k−1(n)dζ

(2.60)

vk(x) =
∫

Ψ1
k[wk|k−1, Yk](n)pk|k−1(n)dζ∫

Ψ0
k[wk|k−1, Yk](n)pk|k−1(n)dζ

(1− pD,k)vk|k−1(x)

+
∑
y∈Yk

Jk|k−1∑
j=1

w
(j)
k (y)N (x;m(j)

k (y), P (j)
k ),

(2.61)

where

Ψu
k [w, Y ](n) =

min(|Y |,n)∑
j=0

(|Y | − j)pW,k(|Y | − j)Pnj+u

× (1− pD,k)n−(j+u)∫
w(ζ)j+udζ

ej(Λk(w, Y ))

(2.62)

Λk(w, Y ) =
{∫

κk(ζ)dζ
κk(y) pD,kw

T qk(y) : y ∈ Y
}

(2.63)

q
(j)
k (y) = N (y;Hkm

(j)
k|k−1, HkP

(j)
k|k−1H

T
k +Rk) (2.64)
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w
(j)
k (y) = pD,kw

(j)
k|k−1q

(j)
k (y)

×
∫

Ψ1
k[wk|k−1, Yk\{y}](n)pk|k−1(n)dζ∫
Ψ0
k[wk|k−1, Yk](n)pk|k−1(n)dζ

∫
κk(ζ)dζ
κk(y)

(2.65)

m
(j)
k (y) = m

(j)
k|k−1 +K

(j)
k (y −Hkm

(j)
k|k−1) (2.66)

P
(j)
k = [I −K(j)

k Hk]P (j)
k|k−1 (2.67)

K
(j)
k = P

(j)
k|k−1H

T
k (HkP

(j)
k|k−1H

T
k +Rk)−1. (2.68)

Here
∫

Ψ1
k[wk|k−1, Yk\{y}](n)pk|k−1(n)dζ is a normalising constant.

Merging and Pruning

As for the GM-PHD filter, the GM-CPHD filter also suffer from computational
problems due to the increasing number of Gaussian components as time progresses.
The problem is solved in the same way as for the GM-PHD filter, which can be
seen in Section 2.4.2.





3
Group Representation and Filter

Modifications

Some extensions have to be introduced to obtain a group representation of the
estimates from the proposed methods, presented in Chapter 2. In Figure 3.1 a sys-
tem illustration of the filter recursion and the post-process group step is presented.
In this chapter the post-process group step, including the group representation
and the clustering, and the modifications to improve the tracking performance of
uncertain detections of the two filters are presented. The modifications regard the
probability of survival and measurement noise, and depends on the distance from
the ego vehicle to the pedestrians.
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Initialisation 
step

Prediction step

Measurement 
update step

Merging and 
Pruning

Post-process 
group step

Gaussian components

Gaussian components

Gaussian components

Gaussian components
Gaussian components

Birth components

Measurements

Figure 3.1: Illustration of the system process, from the filter recursion to the input for
the post-process group step. The filter recursion for the GM-PHD and GM-CPHD filter
predicts and updates the Gaussian components with respect to the birth components and
the measurement. The output from the recursion is then send to the post-process group
step for clustering and group association.
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3.1 Clustering
In the post-processing of the filters tracking result clustering is used to determine
which pedestrians belong to the same group. To cluster the pedestrians two algo-
rithms are proposed: the distance partitioning algorithm and the Gaussian mean
shift clustering algorithm. Both of these algorithms use the Gaussian components
from the set of target states Mk = {m(i)

k }
Jk
i=1, which is retrieved after the pruning

and merging in the two filters.

3.1.1 Distance Partitioning
The distance partitioning algorithm determines the clusters of the components
based on the distance and velocity difference between two components (m(i)

k ,m
(j)
k ).

Two components separated by less then δp ≥ 0 in distance and δv ≥ 0 in velocity
are put into the same cluster. The thresholds δp and δv are chosen in such way
that the algorithm can handle pedestrians with different velocities or if they are
moving in opposite direction. The distance and velocity between the components
are calculated by

∆(i,j)
p =

√
(Ipm(i)

k − Ipm
(j)
k )T (Ipm(i)

k − Ipm
(j)
k ) (3.1)

∆(i,j)
v =

√
(Ivm(i)

k − Ivm
(j)
k )T (Ivm(i)

k − Ivm
(j)
k ), (3.2)

where ∆p and ∆v are matrices with the distance and velocity differences between
two components in each element. Ip and Iv are identity matrices of the position
and velocity, respectively. The components in each cluster are determined by first
adding one component to a cluster and then compare it with the other components.
If the comparison fulfils two defined conditions, the compared component is added
to the same cluster, and if it does not fulfil the two conditions, it is not added
to the cluster. The algorithm compares the components inside of each cluster
with all other components that are not added to a cluster until there are no more
components that fulfils the conditions. If there are still components that are not
added to a cluster a new cluster, consisting of an unassigned component, is created
and compared to all other components (except of those already added to a cluster).
The conditions that have to be met for components to be added into a cluster are
given as

Cn += m
(j)
k if

{
∆(i,j)
p ≤ δp

∆(i,j)
v ≤ δv

for 1 ≤ i 6= j ≤ N (3.3)

where Cn is the n:th cluster of components and N is the number of components.
The different clusters could also include only individual components if the above
conditions are not met. An example of how the algorithm works is that the
component m(i) is added to a cluster C1 and if the comparison of m(i) and m(j)
fulfils the condition in (3.3), m(j) is also added to the same cluster. Then if the
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comparison of the components m(j) and m(j+ 1) satisfies the two conditions, the
component m(j + 1) is also added to the cluster C1. If the comparison of m(j)
and m(j+ 1) instead does not satisfy the two conditions, m(j+ 1) is placed into a
new cluster C2. However, if the comparison of m(i) and m(j+ 1) satisfies the two
conditions the component m(j + 1) is added to the cluster C1. The pseudocode
for the implementation of the distance partitioning algorithm is presented in [23,
p. 3273].

3.1.2 Gaussian Mean Shift Clustering
To separate Gaussian components into different clusters the mean shift clustering
algorithm can be used [24]. The mean shift clustering algorithm does not need
any prior knowledge of the number of clusters and there is also no need of any
assumptions about the clusters’ shape [25]. The mean shift clustering algorithm
is a simple procedure that shifts each centre of the cluster’s into the average of
all data points of its surroundings, i.e., the algorithm works by iterative shift each
cluster centre towards the nearest peak of the kernel density estimation. [26]. In
each iteration the centre of the clusters is shifted closer to the peak and stops when
the shifting distance is below a certain threshold. The algorithm starts by using
the n original components m(i)

k from the set of components Mk = {m(i)
k }

Jk
i=1 and

then shift the cluster’s centre xn simultaneous towards the nearest peak given as

xn+1 =

∑Jk
i=1D

(
m

(i)
k − xn

)
m

(i)
k∑Jk

i=1D
(
m

(i)
k − xn

) , (3.4)

where the difference xn+1 − xn is the mean shift of the observations in the region
surrounding the point xn. The difference is a gradient estimation pointing towards
the largest probability density function. The mean shift points therefore the cen-
tre towards the direction of the largest peak that is nearest and have a length
proportional to the gradient [26]. D(·) is the kernel function, a weighting function,
and in this master’s thesis this kernel is assumed to be Gaussian distributed

D
(
m

(i)
k − xn

)
= N (xn;m(i)

k , P ) (3.5)

where P is a covariance matrix. The kernel is used to determine the distribu-
tion of the components on the surface and to retrieve the densest regions of the
components, i.e., the kernel density estimation (KDE). This distribution of the
components is retrieved by placing the kernel, i.e., the weighting function, on each
component and then add all the individual kernels within a threshold h together
to retrieve a density surface of the components. Depending on the threshold, the
KDE surface may vary. With a small kernel threshold, the KDE surface will have a
peak for each component, and thus each component is placed into its own cluster.
However, if the kernel threshold is large enough the KDE surface only has one
peak containing all the components and thus all the components belongs to the
same cluster. The peaks in this density surface represent the weighted centre’s of
the surface, where the cluster’s centre will shift towards. The size of these regions
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is determined by the covariance matrix P , where P is assumed to be proportional
to the identity matrix, i.e., P = h2I. The main advantage of this choice is that
the threshold h is the only parameter that has to be set in advance [25]. The
threshold denotes how far away the components can be from the cluster centre
and indicates how large the cluster can be. Therefore, all the components inside
this threshold h belongs to the same cluster. The number of clusters is determined
from the cluster size to cover all the components, the value of the threshold h is
therefore the key factor of how many clusters needed to enclose all components.
If h is sufficiently large it could cover all the components and if it is sufficiently
small only one component can be in each cluster.

All the components that are within the threshold h to the cluster centre are
assigned to the same cluster. The output from the algorithm are the cluster’s
centre and the components that belong to the different clusters. However, there
can be problems with the mean shift clustering algorithm for larger groups of
components. When a group consists of a large number of components, it can be
divided into several clusters, since h is too small. If h is too small the group
will get several cluster centre’s to cover all the components. This problem can be
solved by increasing h, which instead can cause the smaller cluster to suffer and
becoming one cluster.

3.2 Filter Modifications
In this tracking application there can be uncertain detections for far away pedes-
trians with respect to the ego vehicle. To handle this problem and to improve the
tracking performance of the two proposed filters, two modifications are proposed.
The modifications regard the probability of survival pS and the measurement noise
R. The modifications are made to give better estimates of the true position and
to avoid false estimates of the pedestrians.

3.2.1 Modification of the Probability of Survival
The probability of survival pS is the probability that a target survives between
two time instants and is used in the prediction step for the intensity in the PHD
recursion. With the Gaussian mixture extension, the probability of survival is
assumed to be constant. However, by not applying this constant assumption for
the pS , the filters can depend on the state in the state prediction for this probability.
By applying this trick for far away targets, with respect to the ego vehicle, the
two filters can handle uncertain detections better and thus avoid false estimate of
the pedestrians. If the pS has a high value, the target is certain to survive and
if the pS has a low value the target is uncertain to survive between time instants.
Therefore, with a low value for the pS for targets far away from the ego vehicle
there is a higher probability that they disappear if there are no detections. In this
master’s thesis the value of pS is depending on the distance from the ego vehicle
to the pedestrians.

With the distance dependency to the ego vehicle the pS have a maximum value
close to the ego vehicle pclose

S and a minimum value far from the ego vehicle pfar
S ,
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but also a decreasing value that decreases between the maximum and minimum
value.

p
(i)
S =


pclose
S , if r ≤ rclose

pclose
S + pfar

S −p
close
S

rfar−rclose (r − rclose), if rclose < r < rfar

pfar
S , if r ≥ rfar.

(3.6)

The different areas of the probability of survival are defined as semicircles, which
is illustrated in Figure 3.2. Inside the first semicircle the maximum value of pS is
used. For the area between the two semicircles the decreasing value of pS is used,
which decreases until it reaches the minimum value of pS outside of the second
semicircle. The distance-based modification of pS calculates the distance r from

𝑝𝑆
𝑓𝑎𝑟

𝑝𝑆
𝑐𝑙𝑜𝑠𝑒

𝑝𝑆 = 𝑝𝑆
𝑐𝑙𝑜𝑠𝑒 +

𝑝𝑆
𝑓𝑎𝑟

− 𝑝𝑆
𝑐𝑙𝑜𝑠𝑒

𝑟𝑓𝑎𝑟 − 𝑟𝑐𝑙𝑜𝑠𝑒
(𝑟 − 𝑟𝑐𝑙𝑜𝑠𝑒)

Figure 3.2: Illustration of the distance modification of the probability of survival pS . The
two red semicircles denote the distance for the minimum and maximum values and the
black dotted lines denote the field of view of the ego vehicle.

the ego vehicle to the predicted i:th component m(i)
k = (x(i), y(i), v

(i)
x , v

(i)
y )T at

time instant k and is given as

r =
√

(x(i))2 + (y(i))2, (3.7)

By modifying the probability of survival, the assumptions for pS in the GM-
PHD and GM-CPHD filter in Section 2.4.2 and 2.4.4 are broken. However, as
argued in [27], the broken assumption of the state independent probability of de-
tection pD is an acceptable approximation to make, if the pD vary slowly compared
to the components in the intensity. The probability of survival pS in this master’s
thesis also vary slowly compared to the components in the intensity and is therefore
also an acceptable approximation to make.

3.2.2 Modification of the Measurement Noise
The measurement noise covariance R can also be modified to compensate for the
noisier measurements in the distance that come from the uncertain detections.
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The measurement noise is modified in the measurement update depending on the
distance to the target given as

R =
{
Rclose, if r ≤ rclose

Rfar, if r ≥ rfar,
(3.8)

where the distance r is calculated as in (3.7). By increasing R for components
above a specific distance, the target intensity peaks are more even.

3.3 Group Logic
For the group representation in the post-processing of the filter output a continuity
of the tracked pedestrians and the movement of the different groups have to be
obtained. Since the proposed filters does not have any data association of the
estimates a group logic has to be implemented. The group logic is divided into
three parts: the group assignment, position and velocity of the groups, and the
shape of the groups. The group assignment handles the tracking consistency of
the clusters, with the ID assignment and the continuity of the group ID for the
clusters. The position and velocity of the groups are calculated by the weighted
components in the clusters. Lastly, the shape of the groups is determined by the
components covariance to retrieve the uncertainty of the position and velocity.

3.3.1 Group Assignment
To obtain a continuity for the tracking of the groups, every Gaussian component
in each cluster is assigned a group ID. The group ID belongs to a set of ID’s for
all the groups and is defined as Ik = {I(i)

k }
Ng,k
i=1 with Ng,k as the number of groups

at time k. The group IDs are assigned after the cluster algorithms have grouped
the components and are redone in each iteration to update the ID of the groups.

The group ID algorithm starts by initialise the set of group ID’s by assigning
an ID to each grouped component for the first time instant. For the next time
instants, the set of group ID’s is updated by associating the new groups with the
groups from the previous time instant with respect to how close they are to each
other. This association is an approximation of the association step in the GNN
filter presented in Section 2.3.1, where the approximation calculates the difference
between the groups for the current time k with the previous time k− 1 and match
those that have the lowest difference. To update the group ID’s for the current
groups the distance comparison is made by comparing the position of the current
groups with the predicted position of the previous groups. Those groups that
are associated with groups from the previous time instant are given the same ID
I

(i)
k = I

(i)
k−1, the ID from I

(i)
k−1 is also removed to avoid having the same ID for

several groups. Those groups that are not associated with any of the previous
groups are given a new ID.

The inputs to the algorithm are the grouped components, the previous ID Ik−1,
the number of groups, and the position and velocity from the cluster algorithm for
the current time instant and the predicted groups from the previous time instant.
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The outputs from the algorithm are the group ID’s for the current time instant Ik
and an ordered set of the grouped components with respect to the ID’s in Ik. The
group ID algorithm is run immediately after the clustering algorithm step.
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3.3.2 Position and Velocity Estimation for a Group
To determine the position and velocity for a group g, where the number of estimates
in g is known, the merging equations for the weight, mean vector and covariance
from Section 2.4.2 are used and can be rewritten as

w̄
(g)
k =

J
(g)
k∑
i=1

w
(g,i)
k

(3.9)

m̄
(g)
k = 1

w̄
(g)
k

J
(g)
k∑
i=1

w
(g,i)
k m

(g,i)
k , (3.10)

P̄
(g)
k = 1

w̄
(g)
k

J
(g)
k∑
i=1

w
(g,i)
k (P (g,i)

k + (m̄(g)
k −m

(g,i)
k )(m̄(g)

k −m
(g,i)
k )T ) (3.11)

where J (g)
k is the number of Gaussian components in each group g, w̄(g)

k denotes
the total weight of the group, m̄(g)

k denotes the mean state vector of the group,
and P̄

(g)
k denotes the covariance of the group. (g, i) denotes the i:th Gaussian

component in group g.

3.3.3 Shape Estimation of a Group
To determine the shape of the groups the estimated covariance P

(g,i)
k of each

component in the groups is used. The covariance for each component has the
shape of an ellipse, see Figure 3.3a. This ellipse changes size with respect to the
uncertainty of the component’s position and velocity. A small ellipse means that
the position and velocity of the component are certain, while a large ellipse means
that the position and velocity of the component are uncertain. The elliptic shape
of the covariance is a result of the Gaussian assumption [28].

To obtain the shape of the whole group, the shapes of the covariance for each
component are connected together, as illustrated in Figure 3.3b. The convex hull
is retrieved by connecting the covariance to give a minimum shape of the group,
which contains all the individual components shape. By connecting the elliptic
shape for each component covariance, an illustration of the size and shape of the
groups are given. The shape is used to illustrate which components belong to
which group and, with the changing of the size, to get an understanding of the
certainty of the estimated groups. The shape of several components is retrieved
by adding points on the elliptic shape of each component, and then connect the
points together between the ellipses to enclose all the points.
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(a) The elliptic shape of the co-
variance for two components.

(b) The connected elliptic shapes
of covariance for two compo-
nents.

Figure 3.3: Illustration of the elliptic covariance shape for two components and the con-
nected covariance shape for two components representing a group.



4
Data Conversion and Setup

This chapter describes the specific application addressed in this report, which is
the setup with sensors and suitable models, handling of the measurements, and
approximations and assumptions regarding the coordinate systems needed to apply
the described methods. The chapter also presents the values of the parameters
used in the two methods.

4.1 Specifics of the Data Conversion
To apply the proposed tracking methods, the GM-PHD and the GM-CPHD, to
the tracking application in this master’s thesis, there are four approximations and
assumptions needed. The firs one regard the coordinate systems for the ego vehicle,
which are the vehicles fixed, camera fixed and the image coordinate system. The
second one regard the conversion between image to worlds coordinates. The third
one regard how the measurements are retrieved from the camera sequence. Finally,
the last one regard modifications of the dynamical model used by the filters.

4.1.1 Coordinate Systems
In the master’s thesis three different coordinate systems are used. The first, illus-
trated in black in Figure 4.1, is a vehicles fixed coordinate system {X,Y, Z}. It
has the Y - and X-axis lie in the horizontal plane, the X-axis pointing forward and
Y -axis pointing left from the camera’s position and has its origin in the top of the
vehicle windshield. The second, illustrated in light blue in Figure 4.1, is a camera
fixed coordinate system {XR, YR, ZR}, which has its origin in the camera. The
X-axis corresponds to the optical axis of the camera and the other two axes are
aligned with the image plane. The origins of the two coordinate systems do not
coincide (their distance is however very small), due to how the camera is mounted
inside of the windshield in the ego vehicle. The last coordinate system is the image

37
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Z ZR

X
XR

(a) Coordinate system from the side

Z

Y

YR

ZR

(b) Coordinate sys-
tem from the front

YR

XR

Y

X

(c) Coordinate sys-
tem from the top

Figure 4.1: Illustration of both the vehicle fixed (black) and camera fixed (light blue)
coordinate systems, where the subscript R denotes the camera fixed coordinate system.
The X-axis point in the camera’s direction, the Y -axis point left of the camera’s direction
and the Z-axis points upwards. The camera fixed coordinate systems is rotated due to how
the camera is mounted.
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coordinate system, with the image axes U for the horizontal position and V for
the vertical position, with the origin in the top left corner of the image as seen in
Figure 4.2b. The detection of the pedestrians comes from the images in the cam-
era sequence and corresponds to the coordinates in the camera fixed coordinate
system. To go from image coordinates to camera fixed coordinates a conversion
model is used, and in this master’s thesis the pinhole camera model is used [29,
p. 49]. This model gives a relation between the world position pR and the pixel
position pI in the image plane. The XR-axis from the camera fixed coordinate
system is defined from the image plane through the camera centre, which is seen
in Figure 4.2a. From the pinhole camera model, the relation between pR and pI

pR

pI

XR

ZR
YR

f

Camera
centre

(a) Pinhole camera model

U

V

cu,cv

pI

(b) Image plane

Figure 4.2: Illustration of the pinhole camera model and the image plane.

can be described as follows

pR =
[
xR yR zR

]T (4.1)

pI =
[
u v

]T (4.2)

u = cu − fu
yR
xR

(4.3)

v = cv − fv
zR
xR

(4.4)

where fu and fv are the focal lengths, u and v are the horizontal and vertical pixel
coordinates of the image, and cu and cv define the horizontal and vertical centre
of the image plane, respectively. All the parameters are given in the data set.

To convert from the camera fixed to the vehicle fixed coordinate system a
transformation is needed, since the tracking is made in the vehicle fixed coordinate
system. The transformation from camera fixed coordinate system {XR, YR, ZR}
to vehicle fixed coordinate system {X,Y, Z} is described by[

p
1

]
= HR

[
pR
1

]
(4.5)

p =

xy
z

 , HR =
[
Rcoord T coord

0 1

]
, pR =

xRyR
zR
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where Rcoord and T coord defines the fixed rotation matrix and the fixed transla-
tion vector between the vehicle fixed coordinate systems and the camera fixed
coordinate systems. Both the rotation matrix and the translation vector are given
parameters in the data set. HR is the transition matrix and, accordingly, H−1

R

describes the inverse transformation of coordinates.

4.1.2 Measurements of Pedestrians
The measurements from the data set are the bounding boxes which define the
Region of Interest (ROI) of the detections, i.e. a box enclosing the detected object.
An example of how the bounding boxes and the ROI are presented in the camera
sequence can be seen in Figure 4.3. To retrieve the world position for a pedestrian

Figure 4.3: Bounding box of a pedestrian, with the red box defining the region of interest
and the white cross defining the extraction of the position of the pedestrian.

the bottom centre point, marked in Figure 4.3, of each ROI measurement is used.
By knowing the pixel coordinate from the ROI measurement, the position in the
camera fixed system can be computed by rewriting (4.3) and (4.4) as[

yR
zR

]
=
[

(cu−u)
fu

(cv−v)
fv

]
xR (4.6)

where the coordinate xR is the distance from the ego vehicle to the pedestrian. In
this master’s thesis the distance is measured using a stereo camera [30]. A mono
camera can also be used to retrieve the distance. However, to measure the distance
using a mono camera further assumption about the world or object must be made.
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4.1.3 Dynamical Model
The motion of target (i) is described by the dynamical model

x
(i)
k = f(x(i)

k−1) +Gw
(i)
k−1, (4.7)

where w(i)
k−1 is the Gaussian process noise, and x(i)

k−1 is the state vector that repre-
sents the longitudinal and lateral position, and corresponding velocity with respect
to the world, at time instant k − 1 in the vehicle fixed coordinate system

x
(i)
k−1 =

[
p

(i)
x,k−1 p

(i)
y,k−1 v

(i)
x,k−1 v

(i)
y,k−1

]T
. (4.8)

The transition function f(x(i)
k−1) is a linear time dependent function of the previous

estimated position due to the motion of the ego vehicle. It is given by

f(x(i)
k−1) =

[
Rprev,k Rprev,kTs

0 Rprev,k

]
x

(i)
k−1 +

[
Tprev,k

0

]
, (4.9)

where the targets are assumed to have a constant velocity. The constant velocity
model is used to model the motion of the pedestrians and to compensate for the
motion of the ego vehicle. Rprev,k and Tprev,k are the rotation matrix and trans-
lation vector from previous to current time instant of the vehicle fixed coordinate
system [31, p. 81]. G is a 4× 2 matrix given by

G =
[
T 2
s

2 I2
TsI2

]
(4.10)

where Ts is the sample time and I2 is the 2× 2 identity matrix.
The dynamical model in (4.7) can now be rewritten as

x
(i)
k =

[
Rprev,k Rprev,kTs

0 Rprev,k

]
x

(i)
k−1 +

[
Tprev,k

0

]
+
[
T 2
s

2 I2
TsI2

]
w

(i)
k−1 (4.11)

4.2 Setup of the Method Parameters
In this section the values of the tuning parameters used in the filters and the group
representation for the tracking application are presented.

Merging and Pruning

In the proposed filters, merging and pruning are used (as defined in Section 2.4.2).
However, as Table 4.2 shows, the threshold parameters differ between the two
filters. The parameter values were chosen after testing the filters behaviour to
get a desired number of estimates of the pedestrians. The pruning threshold was
chosen after inspecting the weight of the components. The merging threshold
was chosen after observing how large the value needed to be to get the desired
behaviour of the components to estimate the detected pedestrians.
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Table 4.1: Threshold values for the merging and pruning for the GM-PHD and GM-CPHD
filter.

Parameter GM-PHD GM-CPHD
Tprune 0.0005 0.0001
Tmerge 4 7

Probability of Survival and Detection

To estimate the pedestrians when there are occlusion and missed detection, the
probability of detection pD has to have a lower value. In the proposed filters the
value is set to pD = 0.3, which is lower than it reasonably should. However, using
this low value of the pD in the filters a desired result of the pedestrian estimates
when they are in the presence of occlusion or missed detections is obtained. With
the proposed modification of the probability of survival pS , defined in Section
3.2.1, the value changes depending on the distance to the ego vehicle. In (2.27)
the equation of the distance based pS is described, where the parameters values
are defined as, The parameter r is the distance between the estimated component

Table 4.2: The equation parameter values for the distance-based probability of survival
pS the GM-PHD and GM-CPHD filter.

Parameter Value
pclose
S 0.99
pfar
S 0.1

rclose 15m
rfar 25m

and the ego vehicle.

Measurement Noise Covariance

With the proposed modification of the measurement noise covariance R, defined
in Section 3.2.1, the value changes depending on the distance. The measurement
noise covariance is

Rk =


(

0.01 0
0 0.004

)
if r ≤ 15(

0.02 0
0 0.1

)
if r > 15

(4.12)
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Clustering Algorithm

In the clustering algorithms, defined in Section 3.1, a threshold parameter is needed
to determine if the components belong to the same cluster. The threshold values
are presented in Table 4.3, with δp and δv for the distance partitioning and h for
the mean shift clustering. The values were chosen in a way to retrieve a distance
difference between pedestrians to have a desired group representation of them.

Table 4.3: Threshold values for the clustering algorithms.

Parameter Value
δp 1.7
δv 1.7
h 1.7





5
Simulation, Result and Discussion

In this chapter the scenarios used in the simulations, the results from the imple-
mented filters, the group representation, and the comparison of the proposed filters
with a classical multi-target tracking method are presented. Lastly, the result of
the modifications and the different clustering algorithms are presented. The data
used in the simulations were retrieved from a camera sequence containing detec-
tions of the pedestrians. The sequences presented in the result give a general
representation of how the filters performs during the different cases for the whole
scenario.

5.1 Tracking Scenarios of Pedestrians
The performance evaluation of the proposed filters was made from using two dif-
ferent scenarios. One with the vehicle approaching an intersection and one with
the vehicle stopping before a crosswalk. The idea with these two scenarios is to
see how the filters and the group representation behaves and how they handle the
detection of pedestrians in relevant situations, and if the Gaussian components,
filter estimate of the pedestrians, give feasible results of the groups.

5.1.1 Scenario 1 - Approaching an Intersection
In the first scenario the pedestrians are observed walking around in an intersection,
see Figure 5.1. In this scenario the pedestrians are spread out over the intersec-
tion, where they are well separated and moving individually or in smaller groups.
The idea with this scenario is to see how the filter and group representation per-
form when the pedestrians are well separated, when there is occlusion, and for
pedestrians at a greater distance.

45
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Figure 5.1: An image from the camera sequence of the environment for scenario 1. With
pedestrians walking in an intersection.

5.1.2 Scenario 2 - Approaching a Crosswalk
In the second scenario the pedestrians are observed walking across a crosswalk, see
Figure 5.2. In this scenario there are several events that can be used to evaluate
the performance of the filters. There are pedestrians moving close to each other,
moving in opposite direction, in small groups and there is also occlusion. The idea
with this scenario is to see how the filter and group representation perform when
there are dense areas of pedestrians moving close to each other and in opposite
directions.

Figure 5.2: An image from the camera sequence of the environment for scenario 2. With
pedestrians moving across a crosswalk.

5.2 Problems with Classical Multi-Target
Tracking Methods

There are some problems using classical multi-target tracking (MTT) methods for
estimating and tracking objects in crowded areas, which will be demonstrated in
this section. The classical method investigated in this thesis was a standard MTT
method that use the global nearest neighbour (GNN) method for the data associ-
ation [3]. In Figure 5.3 and 5.4 different frames of the two scenarios are presented,
which presents some problems that can occur by using the classical method in the
two presented scenarios. In Figure 5.3 some detected pedestrians are not estimated
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by the filter, even if they have been present for some time instants. The reason of
the missed detections is that the method have problems with handling birth of new
targets and therefore confirming that they are true detections, therefore it takes
some iterations before the new targets can be estimated. In Figure 5.4 another
problem with the classical method can be seen, that is, estimates can slide off from
the target; in the figure it refers to the pedestrians with a green bounding box.
The estimate of the pedestrian moves since it is given a false velocity, which is
the result of a combination of the pedestrian being occluded and a false detection
appearing.

(a) Scenario 1 - Frame 8 (b) Scenario 1 - Frame 165

(c) Scenario 2 - Frame 9 (d) Scenario 2 - Frame 227

Figure 5.3: Frames from both scenario 1 and 2 highlighting the problems that can occur
using the classical MTT method, the GNN filter. In all panels the red dots represent the
detections of the pedestrians, the black crosses the estimated pedestrian’s position. In the
figures it can be seen that several of the detected pedestrians are not estimated by the GNN
filter, even if they have been present for some time instants.
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(a) Scenario 1 - Frame 238 (b) Scenario 1 - Frame 252

Figure 5.4: In the figures a problem that can occur using the classical MTT method
between two frames is illustrated. In the figures the rectangles represent the bounding box
of the estimated position of the pedestrians, and in these two figures it can be observed
that the green bounding box of the pedestrian to the left slides off between the two frames.

5.3 Method Comparison
To evaluate if the proposed methods give better performance when tracking pedes-
trians than the classical method, a comparison is made between them. The evalu-
ation is performed considering the following three cases:

1. Occlusion and missed detection – Occlusion is when a pedestrian cannot be
detected since it is behind another object and missed detection is when the
detector does not detect the pedestrian.

2. False positive track – A false positive track is the false estimation of a pedes-
trian and the false track it creates. The false positive track comes either
from a false detection, uncertain detection or from a noisy measurement.

3. Grouping of the pedestrians – Grouping refers to how the clustering of pedes-
trians work and how it can handle pedestrians moving in opposite direction.

By studying these cases the performance of the proposed filter can be determined,
by investigate how the filter estimate the pedestrians and how accurate the group
representation behaves. The first case is used to evaluate how the filters handle
occlusion and missed detection of pedestrians, to understand how accurate the
filters can estimate the pedestrians in events of occlusion or missed detection and
to avoid losing track of pedestrians too quickly. The second case evaluate how the
filters handle false positive tracks from false detections or noisy measurements. The
last case is divided into two parts, where the first one is to evaluate the estimate
of the pedestrians from the filters and the second one is to evaluate how the group
representation works. This case is to determine how well the Gaussian components
represent the pedestrians in the groups and to verify that the group representation
works properly. The focus for the group representation is to evaluate the grouping
of pedestrians, in order to ensure that pedestrians moving in opposite directions
are not grouped together. In the comparison between the methods the distance
partitioning algorithm is used for the proposed filters to group the pedestrians.
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5.3.1 Occlusion and Missed Detection
To evaluate how the different methods handle occlusion and missed detection, a
sequence of frames from the two scenarios is used. The evaluation of the filters
is made by comparing how the filters can handle the proposed case and for how
long estimates can survive, i.e., comparing how the filters behaves if there are no
detection of the pedestrians.

For the PHD filter the spawned birth of targets is omitted in this master’s
thesis, as it does not improve the obtained results.

Scenario 1

In Figure 5.5 a sequence from Scenario 1 is presented, which includes occlusion
and missed detection of the pedestrians. The sequence contains the first frame and
the last frame of the occlusion. The targets of interest are the group of pedestrians
closest to the ego vehicle. At the first frame, frame 196, all the pedestrians are
detected by the detector and all three filters have estimates of the pedestrians.
At frame 200 the three filters still have estimates of the pedestrians, even though
one pedestrian is occluded, and one is missed by the detector. At the last frame,
frame 212, the GM-PHD and GNN filters only have one estimate left for the group,
whereas the GM-CPHD filter still have estimates of the three pedestrians. The
reason behind this is that the GM-CPHD filter still estimates the three pedestrians,
while the other two only estimates one of them, since the filter can keep estimates
alive for a longer time period. In Table 5.1 the number of detected and estimated
pedestrians of interest are presented for the three different frames.

Table 5.1: Scenario 1, number of detections (Det.) and estimates (Est.) from the three
filters during each frame for the pedestrians of interest.

Filters Frame 196 Frame 200 Frame 212
Det. Est. Det. Est. Det. Est.

GM-PHD 3 3 1 3 0 1
GM-CPHD 3 3 1 3 0 3

GNN 3 3 1 3 0 1
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Frame 196 Frame 200 Frame 212

GM-PHD

GM-CPHD

GNN

Figure 5.5: The panels in the figure shows a sequence from scenario 1 for the three filters,
when there are occlusion and missed detection of the pedestrians. The pedestrians of
interest for the occlusion and missed detection are indicated by the red arrow; the red dots
are the detection and the black crosses are the estimated component of the pedestrians. The
bounding boxes represent the region of interest from the filter estimates. In the panels the
group closes to the ego vehicle suffers from occlusion and missed detection of the pedestrians,
and it can be observed that the GM-CPHD filter still estimate all three pedestrians at the
last frame while the other two filters do not.
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Scenario 2

In Figure 5.6 a sequence from scenario 2 is presented, which includes occlusion and
missed detection of pedestrians. The sequence contains the first frame and the last
frame of the occlusion. The targets of interest are the top middle pedestrian and
the two groups in the middle of the figure. In the first frame, frame 52, all the
pedestrians are detected by the detector and the three filters have estimates of the
pedestrians. At frame 57 the three filters still have estimates of the pedestrians,
even though two pedestrians are occluded, and one is missed by the detector. At
the last frame, frame 62, the GM-PHD and GNN filter lose track of the pedestrian
above the two groups, meanwhile the GM-CPHD filter still has an estimate of
it. The reason that the GM-CPHD filter still have an estimate of the occluded
pedestrian, while the other two filters have no estimate of it comes from that the
GM-CPHD filter keeps estimates alive for a longer time period than the other
two filter does. In Table 5.2 the number of detected and estimated pedestrians of
interest are presented for the three different frames.

Table 5.2: Scenario 2, number of detections (Det.) and estimates (Est.) from the three
filters during each frame for the pedestrians of interest.

Filters Frame 52 Frame 57 Frame 62
Det. Est. Det. Est. Det. Est.

GM-PHD 5 5 2 5 4 4
GM-CPHD 5 5 2 5 4 5

GNN 5 5 2 5 4 4
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Frame 52 Frame 57 Frame 62

GM-PHD

GM-CPHD

GNN

Figure 5.6: The panels in the figure shows a sequence from scenario 2 for the three
filters, when there are occlusion and missed detection of the pedestrians. The pedestrians
of interest for the occlusion and missed detection are indicated by the red arrow; the red
dots are the detection and the black crosses are the estimated component of the pedestrians.
The bounding boxes represent the region of interest from the filter estimates. In the panels
the pedestrian farthest away from the ego vehicle suffers from occlusion, and it can be
observed that the GM-CPHD filter still estimate the pedestrians at the last frame while
the other two filters do not.
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5.3.2 False Positive Tracks
To evaluate how the three filters behave when there are false positive tracks from
the detected pedestrians, different frames from the two scenarios are used.

Scenario 1

In Figure 5.7-5.9 three sequences from scenario 1 for each filter containing false
positive tracks are presented. False positive tracks are false estimates of falsely
detected pedestrians. The sequence contains the first and last frame from when
the false positive track is present. The false positive track for the GM-PHD filter
comes from a false estimate of the pedestrians closest to the ego vehicle. The false
positive track for the GM-CPHD filter comes from the uncertain detections of the
pedestrian on the left-hand side in the field of view. Lastly, the false positive track
for the GNN filter comes from an estimate of another pedestrian that changes
track.

The false positive track for the GM-PHD filter can be seen in Figure 5.7. In
the first frame, frame 164, there are two detections of the pedestrians and both
pedestrians are estimated. However, the right most detection and estimate of
the pedestrian, marked with the red arrow, is a false detection and therefore the
estimate have initiated a false positive track. At frame 166 the false detection
has disappeared and there is a true detection of the pedestrian, the false positive
track from the false detection is however still present. At the last frame, frame
167, the true detection of the pedestrian is now properly estimated, however the
false positive track is still active. This behaviour of the filter comes from that the
detector has wrongfully detected a pedestrian and the filter wrongfully given an
estimate, since the detection should be assumed as clutter.

GM-PHD
Frame:
164,166,167

Figure 5.7: The panels in the figure shows a sequence from scenario 1 for the GM-PHD
that suffers from a false positive track. The estimated pedestrian of interest is indicated
by the red arrow; the red dots are the detection and the black crosses are the estimated
component of the pedestrians. The bounding boxes represent the region of interest from
the filter estimates. In the figures a false positive track is observed for the right most
pedestrians due to a false detection of the pedestrian.
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The false positive track for the GM-CPHD filter can be seen in Figure 5.8. At
the first frame, frame 219, the filter give an estimate of the detected pedestrian.
At frame 220 the detection has moved since there is an uncertainty in the detec-
tion, and the new detection is not estimated due to it being assumed as clutter.
The estimate however is still present from the previous time instant and estimate
the pedestrians’ position. In the last frame, frame 221, a new detection of the
pedestrian has appeared and an estimate of it is present. However, the previous
estimate of the pedestrian is still present and with two estimates of the pedestrian
a false positive track has appeared of the pedestrian. The behaviour of the de-
tected pedestrian having two estimates comes from that the GM-CPHD filter can
have estimates present for a longer time and can therefore be hard to remove. This
behaviour gives that two estimates of the same pedestrian can be present if the
pedestrian has uncertain detections.

GM-CPHD
Frame:
219,220,221

Figure 5.8: The panels in the figure shows a sequence from scenario 1 for the GM-CPHD
filter that suffers from a false positive track. The estimated pedestrian of interest is indicated
by the red arrow; the red dots are the detection and the black crosses are the estimated
component of the pedestrians. The bounding boxes represent the region of interest from the
filter estimates. In the figures a false positive track is observed for the left most pedestrians
due to a uncertain detection of the pedestrian.

The false positive track for the GNN filter can be seen in Figure 5.9. At
the first frame, frame 274, the filter has an estimate of the occluded pedestrian
farthest away from the ego vehicle and have detections of the two pedestrians
below it, where one of the pedestrians is estimated. At frame 227 the estimate of
the farthest pedestrian has disappeared and instead moved down to the detected
pedestrian below. In the last frame, frame 279, the estimate has moved downwards
to a false detection of the right closest pedestrian to the ego vehicle. With this
movement of the estimate a false positive track is created. The behaviour of the
filter comes from that the filter have wrongfully associate the movement of the
pedestrian.
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GNN
Frame:
274,277,279

Figure 5.9: The panels in the figure shows a sequence from scenario 1 for the GNN filter
that suffers from a false positive track. The estimated pedestrian of interest is indicated
by the red arrow; the red dots are the detection and the black crosses are the estimated
component of the pedestrians. The bounding boxes represent the region of interest from
the filter estimates. In the figures a false estimate is observed for a false detection of the
farthest pedestrian, the false estimate then shifts to the pedestrian closest to the ego vehicle
and creates a false positive track.

Scenario 2

In Figure 5.10-5.12 there are three sequences from scenario 2 for each filter, in
which false positive tracks appears. The sequence contains the first frame and the
last frame the false positive track is present. The false positive track for the GM-
PHD filter comes from the uncertain detection of a moped rider closest to the ego
vehicle, the measurements are noisy and jumps therefore back and forth, which
gives two estimates. The false positive track for the GM-CPHD filter appears from
a false detection, and the false positive track gives a false estimate. Lastly, the
false positive track from GNN filter is the estimate of a pedestrian that leaves the
line of sight, but it is still detected as inside of it.

The false positive track for the GM-PHD filter can be seen in Figure 5.10, which
comes from uncertain detections of the moped rider closest to the ego vehicle (it
was estimated as a pedestrian in the sequence). At the first frame, frame 177, the
noisy detection of the moped rider has two estimates, and therefore one of them
is a false positive track. At frame 182 the two estimates are still present due to
the detections are uncertain and have moved back and forth, and there still is a
false positive track present. At the last frame, frame 190, the same pattern is still
present of the uncertain detections and the two estimates of the moped rider are
also still present. The behaviour of the filter comes from that the filter is unable to
assume the detection as clutter and that it can estimate newly detected pedestrian
quicker since it models the birth from new detections.
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GM-PHD
Frame:
164,166,167

Figure 5.10: The panels in the figure shows a sequence from scenario 2 for the GM-
PHD filter that suffers from a false positive track. The estimated pedestrian of interest
is indicated by the red arrow; the red dots are the detection and the black crosses are
the estimated component of the pedestrians. The bounding boxes represent the region of
interest from the filter estimates. In the figures a false positive track is observed from
the uncertain detections of the moped rider closes to the ego vehicle, which creates two
estimates of it.

The false positive track for the GM-CPHD filter can be seen in Figure 5.11.
At the first frame, frame 176, a false detection of a pedestrian is present and an
estimate of the pedestrian is given. This estimate therefore creates a false positive
track of the pedestrian, since the detection is false. At frame 182 the false positive
track is still present and has moved towards the ego vehicle. In the last frame,
frame 186, the false positive track has continued moving towards the ego vehicle,
and it has been unable to be removed due to the filter setup of estimating occluded
or missed detection of pedestrians. This setup keeps estimates of the pedestrians
present for a longer period of time.

GM-CPHD
Frame:
176,182,186

Figure 5.11: The panels in the figure shows a sequence from scenario 2 for the GM-
CPHD filter that suffers from a false positive track. The estimated pedestrian of interest
is indicated by the red arrow; the red dots are the detection and the black crosses are
the estimated component of the pedestrians. The bounding boxes represent the region of
interest from the filter estimates. In the figures a false estimate is observed from a false
detection of a pedestrians in the middle of the figures, which creates a false positive track
that moves towards the ego vehicle.
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The false positive track for the GNN filter can be seen in Figure 5.12. At the
first frame, frame 238, a detection appears from the pedestrian moving out of the
line of sight on the left hand side, where there is no estimate of the pedestrian.
At frame 240 the pedestrian is not detected, but a stationary estimate of the
pedestrian has appeared. However, the pedestrian has moved out of the line of
sight and the estimate is therefore a false positive track of the pedestrian. At the
last frame, frame 245, the stationary estimate is still present in the same place,
but the pedestrian is not in the line of sight anymore and therefore a false positive
track of the non-existing pedestrian is still present.

GNN
Frame:
274,277,279

Figure 5.12: The panels in the figure shows a sequence from scenario 2 for the GNN filter
that suffers from a false positive track. The estimated pedestrian of interest is indicated
by the red arrow; the red dots are the detection and the black crosses are the estimated
component of the pedestrians. The bounding boxes represent the region of interest from
the filter estimates. In the figures a false estimate is observed for the left most pedestrian.
However, the pedestrian has left the line of sight, but a stationary false estimate is still
alive and creates therefore a false positive track of the pedestrian.
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5.3.3 Grouping of the pedestrians
To evaluate the performance of grouping and estimating the pedestrians’ position
and velocity two frames from the two scenarios are used. These frames are used
to give an understanding of the result of the three filters.

Scenario 1

The two frames from Scenario 1 that are used for evaluating the performance of the
filters can be seen in Figure 5.13-5.14. In the first frame, frame 84, the three filters
give similar estimates of the detected pedestrians, which can be seen in Figure 5.13.
However, there are some differences between the filters. One difference is that the
GM-CPHD filter only gives one estimate of the the two detected pedestrians of
the right most group, meanwhile the GM-PHD gives one estimate per detected
pedestrian. This difference comes from the filter setup regarding the merging of the
filter estimates, where the merging distance for the GM-PHD is lower than for the
GM-CPHD filter and can make this behaviour happen for targets farther away from
the ego vehicle. Another difference is that the GNN filter does not have a estimate
of the farthest detected pedestrian, which both of the proposed filters have. This
difference comes from that the proposed filters better estimates pedestrians from
new detection faster than the GNN filter. There are also differences of the velocity
estimation for the three filters, where the GNN have a better velocity estimate
of the pedestrians than the other two filters. However, all three filters have a
larger estimated velocity of one pedestrian, compared to the other pedestrians,
and comes from that the estimate comes from an uncertain detection.

In the second frame, frame 206, there is a difference between the three filters’
estimates regarding the group of pedestrians closest to the ego vehicle, where there
are only one of three pedestrians detected and can be seen in Figure 5.14. The
GM-CPHD filter still have estimates for all three pedestrians in the group, even if
there is only one detected pedestrian. For the GM-PHD filter and GNN filter there
is only one estimated pedestrian. This behaviour comes from that the GM-CPHD
filter can estimate targets longer after there is occlusion or missed detection. The
GM-PHD filter and the GNN filter does not handle occlusion and missed detection
as accurate as the GM-CPHD filter, therefore they only have one estimate since
there is only one detection. The velocities from the filters are overall correct and
reasonable, but the GNN filter give a slightly larger value for the velocity for the
farthest detection which is not correct.



5.3 Method Comparison 59
GM-PHD GM-CPHD

GNN

Figure 5.13: The panels in the figure present the groups, the estimated pedestrians and
the bounding boxes of the pedestrians during frame 84 for scenario 1 for the three filters.
The arrows denote the velocity of that specific group or individual pedestrian. In the
figures the estimated pedestrians and corresponding groups can be seen for the different
filters, both from a birds eye view and from the camera output.
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GM-PHD GM-CPHD

GNN

Figure 5.14: The panels in the figure present the groups, the estimated pedestrians and
the bounding boxes of the pedestrians during frame 206 for scenario 1 for the three filters.
The arrows denote the velocity of that specific group or individual pedestrian. In the figure
the estimated pedestrians and corresponding groups can be seen for the different filters,
both from a bird’s eye view and from the camera output.
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Scenario 2

The two frames that will be used for evaluating the performance of the filters in
the second scenario can be seen in Figure 5.15-5.16. In the first frame, frame 69,
the three filters have similar estimates of the pedestrians, they all estimate the
pedestrian that suffer of occlusion in the middle of the field of view as seen in
Figure 5.15. However, the GNN filter does not have any estimate of the right
most pedestrian, which the proposed filters have. The pedestrian has just been
detected after being occluded by the moped rider, and because the proposed fil-
ters can model birth of new targets better, than the GNN filter, they have an
estimate of it while the GNN does not. The velocity estimate of the groups is also
similar and reasonable, where the weighted velocity for the groups have a correct
representation of the group’s movement.

In the second frame, frame 158, there is a difference in how the three filters
estimate a group of two pedestrians, where none of the pedestrians are detected
due to occlusion. For the GM-CPHD filter both of the pedestrians are estimated,
while for the GM-PHD filter only one of the two pedestrians is estimated and can
be seen in Figure 5.16. However, the GNN filter does not have any estimate of
the pedestrians in the group. The proposed filters estimate the pedestrians since
the filters can handle occlusion better than the GNN filter, and the GM-CPHD
filter have estimates of both the pedestrians since the filter keeps estimates alive
longer than the GM-PHD filter. The velocity estimation of all the pedestrians is
also reasonable and similar between the filters, where the weighted velocity for the
groups is a correct estimate of the group’s movement.
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GM-PHD GM-CPHD

GNN

Figure 5.15: The panels in the figure present the groups, the estimated pedestrians and
the bounding boxes of the pedestrians during frame 69 for scenario 2 for the three filters.
The arrows denote the velocity of that specific group or individual pedestrian. In the figure
the estimated pedestrians and corresponding groups can be seen for the different filters,
both from a bird’s eye view and from the camera output.
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GM-PHD GM-CPHD

GNN

Figure 5.16: The panels in the figure present the groups, the estimated pedestrians and
the bounding boxes of the pedestrians during frame 158 for scenario 2 for the three filters.
The arrows denote the velocity of that specific group or individual pedestrian. In the figure
the estimated pedestrians and corresponding groups can be seen for the different filters,
both from a bird’s eye view and from the camera output.
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5.3.4 Discussion of the Method Comparison
In the two scenarios the three filters have accurate estimates of the pedestrians’
position and velocity, even when the pedestrians are occluded or suffer from missed
detections. However, the two proposed methods handle occlusion and missed
detection better than the GNN filter do in some sequences from the two scenarios.
In most of the cases the GM-PHD filter and the GNN filter have similar estimates,
while (in comparison) the GNN took longer time to start tracking pedestrians
when they reappear after occlusion or if there were missed detections.

In one sequence from Scenario 2, as seen in Figure 5.6, the GNN filter fails to
maintain any estimate of the occluded pedestrians to the right, where the proposed
filters instead have estimates of the pedestrians. In the case of false positive
tracks, all three filters suffer from it. The proposed filters suffer from having
estimates of false detections and have estimates of pedestrians that should not
appear. However, the GNN filter tends to get estimates that move away from
the target or have estimates that move from one target to another. The GNN
filter however also suffers from false positive tracks. The proposed filters have
estimates of the false detection due to the filters are setup to estimate pedestrians
that are occluded or suffer from missed detection, i.e., have estimates present for
a longer time after the detection of the pedestrian has disappeared. Therefore,
these two filters suffer more from wrongfully detection than the GNN filter does.
The velocity estimation for the three filters give a similar overall result, with the
weighted grouped velocity giving a correct representation of the different group’s
movement. There are however some velocities that have a larger value then they
should have (in all filters), due to the uncertain detections affect the velocity vy.

There are some performance differences between the GM-PHD, the GM-CPHD
and the GNN filter. For the GM-PHD filter the estimates of occluded and missed
detected pedestrians worked well for a short while since the estimates disappeared
after some time instant without any detection of the pedestrians. However, the
GM-PHD filter handle false positive tracks well, as they are either assumed as
clutter or they are removed quickly and are therefore not present for a longer
time period. Therefore, the false positive tracks for the GM-PHD does not affect
the overall performance much. For the GM-CPHD filter the estimates of occluded
and missed detected pedestrians work better than for the GM-PHD filter, since the
filter can estimate the pedestrian’s movement over a longer time period. In most
events the GM-CPHD filter have an estimate of the pedestrian from the point when
the detection were lost until the pedestrian were detected again, without a greater
loss of its true position or velocity. However, the GM-CPHD filter suffer more
from false positive tracks when the detections are uncertain since the estimated
objects survives for a longer time and are therefore harder to remove. One case
that this is clearly visible in comes from scenario 2 and can be seen in Figure 5.11,
where a false detection gives a false positive track. The reason that the GM-CPHD
suffer more of false positive tracks is that the estimates survive for a longer time
due to the filter keep estimates alive for a longer time period and that the applied
modifications for the filter are for uncertain detections above a certain distance to
the ego vehicle. For the GNN filter the estimates of occluded and missed detected
pedestrians are similar to the ones given from the GM-PHD filter, but the filter
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takes a longer time to start tracking the pedestrians when they reappear after
occlusion. The filter also encounters false positive tracks as the other two filters,
but not in as many cases due to the filter takes some time to start giving estimates.
However, the filter suffer from estimates sliding of the true pedestrian’s position
and is clearly seen in Figure 5.4, where the occluded pedestrian gets a false velocity,
and the estimate slides off the target.

5.4 Modifications and Clustering
The proposed filter modifications and the clustering methods are evaluated and
investigated in this section. To determine the performance impact of the modifi-
cations for the two filters and how the clustering methods group the pedestrians.

5.4.1 Performance Impact Using the Proposed
Modifications

To make the estimates from the proposed filters work as desired for far away
targets suffering from uncertain detections, some modifications of the filters could
be applied to retrieve a desired result of the estimates. The modifications regard
the probability of survival pS and the measurement noise R and are essential to
retrieve accurate estimates from the noisy measurements. The modification of pS
is a trick to remove false estimates quicker and the modifications of R is made
to make the measurement noise intensity peak more even. The impact of the
modifications for both the proposed methods can be viewed in Figure 5.17, which
shows that applying the modifications for the proposed filters the estimates are
more accurate for far away targets suffering from uncertain detections. In the
figures it is clearly seen that without these modifications several false positive
tracks from the uncertain detections would be present. With the modifications
applied the targets are either estimated correctly or the detections are assumed to
be clutter.
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Frame 79
With mod.

Frame 79
Without mod.

Frame 340
With mod.

Frame 340
Without mod.

Frame 82
With mod.

Frame 82
Without mod.

Frame 339
With mod.

Frame 339
Without mod.

Figure 5.17: In the figure the comparison of the modified and unmodified filters is pre-
sented. The first row of panels presents the comparison of the GM-PHD filter and the
second row the GM-CPHD filter. The red dots represent the detections and the black
crosses the Gaussian components, and the red arrow indicates the difference between the
modified and unmodified filter. In the figures it can be seen that in those frames the filters
are using the proposed modifications there is either one estimate of the detected pedestrian
or the detection is assumed to be clutter. In the same frames but without the applied
modifications for the filters there are several false estimates of the uncertain detections of
the pedestrian.
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5.4.2 Clustering Algorithm Comparison
The two proposed clustering algorithms differ in how the clusters are obtained,
see the groups on the right-hand side of Figure 5.18. The distance partitioning
algorithm calculates the clusters using the distance and velocity between each
pedestrian and the mean shift clustering use the distance of the pedestrians to the
cluster centre. In Figure 5.18 the distance partitioning divides the pedestrians into
one group, while the mean shift clustering divides the pedestrians into two groups.
The pedestrians have similar velocities; therefore, the position is the decisive factor
for the composition of the cluster. For the distance partitioning in the figure a true
representation of the group is obtained, by clustering all the pedestrians together.
This occurs due to the limitation in the mean shift clustering algorithm, which is
that the threshold h decides the distance the components must have to the cluster
centre. However, in this case it is not necessary a problem that the pedestrians
are divided into two groups with the mean shift clustering algorithm. The clusters
made from the mean shift clustering algorithm gives a better representation of
the pedestrians by dividing them, instead of including them into one single group,
since the group is larger than necessary.

(a) Distance partitioning (b) Gaussian mean shift clustering

Figure 5.18: The grouping of pedestrians during one frame from scenario 2 is presented,
with the red dots for detections and the crosses for the Gaussian components. Both of
the clustering algorithms are used with the GM-CPHD filter. The red arrow indicates the
group of interest: notice the difference in the determination of the groups using the two
methods. In the figures it can be seen that in the right-hand side the distance partitioning
algorithm groups the three pedestrians into one group, while for the Gaussian mean shift
clustering algorithm the three pedestrians are divided into two groups.
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5.4.3 Discussion of Filter Modifications and Clustering
The modifications introduced for the filters increased the tracking performance in
the presence of uncertain detections to avoid creating false positive tracks as seen
in Figure 5.17. The modifications apply for the probability of survival and the
measurement noise in the two filters. To be able to track occluded pedestrian with
the proposed filters the value of the probability of detection needs to be set to a
low value, therefore the proposed modifications are essential for having accurate
estimates over the whole field of view, especially for the detections that are farther
away from the ego vehicle. The applied modifications removed a large number
of false positive tracks that would appear from the uncertain detections or noisy
measurement of pedestrians farther away from the ego vehicle. The application
of the modifications regarding the probability of survival were more of a trick to
retrieve a desired result, instead of a proper filter modification, and to remove
unwanted estimates from the uncertain detections.

The cluster algorithms give correctly constructed groups in both scenarios,
with no group containing pedestrians moving in the opposite direction. There is
however an implementation difference between the two clustering algorithms; there
is a difference in how the clusters are created from the two methods, as seen in
Figure 5.18. In the figure the mean shift clustering can split one group into two,
while the distance partitioning algorithm cluster the estimates as one group. This
difference comes from that the distance partitioning algorithm can cluster larger
groups of pedestrians, while the Gaussian mean shift clustering cannot. The reason
is that the distance partitioning is based on a distance and velocity threshold
between each estimate, while the Gaussian mean shift clustering depends on a
threshold from the cluster centre to the estimates. The threshold determines the
largest distance estimates can have to the cluster centre. Therefore, large groups
of pedestrians can be divided into several groups since the threshold can be too
small. If the threshold is increased, smaller groups can instead suffer, and they
can become one large group. The distance partitioning algorithm does not suffer
from this, because the algorithm calculates the distance between two estimates
and adds them to the same cluster.
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Conclusions and Future Work

In this chapter the conclusion of the master’s thesis is presented. As presented in
Section 1.2 the focus of this master’s thesis is to investigate and propose methods
for tracking pedestrians and to determine the group behaviour. In particular,
to investigate if the PHD or the CPHD filter can improve pedestrian tracking in
urban environments. The three questions stated in Section 1.2 will be answered by
examining how the tracking worked and if the group representation gave a desired
behaviour. A discussion of possible future work in this area is also introduced,
explaining how the proposed methods could be developed further or helping to set
the base to further improve the solution of the investigated problem.

6.1 Conclusions
To answer the first question "What is the significance of different group clustering
methods?", two clustering algorithms, the distance partitioning and the Gaussian
mean shift clustering algorithm, were examined and compared. As presented in
the result for the two clustering algorithms in Section 5.4.2, a difference in the per-
formance was observed. The difference in behaviour between the two algorithms
was that during some frames the distance partitioning algorithm would cluster
several pedestrians into one group, while the Gaussian mean shift clustering algo-
rithm would instead dived the pedestrians into two or more groups. This comes
from that the distance partitioning is based on a distance and velocity threshold
between each pedestrian, while the Gaussian mean shift clustering depend on a
threshold to the cluster centre. These two algorithms could therefore be used in
different ways, depending on if the clusters would create large groups containing
all pedestrians that were close to each other or if the cluster would create smaller
but several groups to determine the pedestrian’s position. In this master’s thesis
the distance partitioning algorithm was the preferred algorithm of the two, since it
would cluster all pedestrians close to each other and therefore indicate that there
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is an object in front of the ego vehicle.
To answer the second question "How can modifications of the filters be used to

improve the tracking?", the applied modifications of the GM-PHD and the GM-
CPHD filter were examined. The introduced modifications of the probability of
survival and the measurement noise made the filters work as desired and estimates
from uncertain detection or noisy measurement were avoided. The uncertain de-
tection of the pedestrians either had no estimates or they were removed quickly
after the uncertain detection had disappeared. The modifications would therefore
increase the performance of the estimation for far away uncertain detections, which
were presented in the result of the modifications in Section 5.4.1.

To answer the last question "What impact does the chosen MTT method have
for the tracking performance, in particular the estimated groups?", the individual
tracking and group representation from the proposed methods were examined. As
presented in the result of the comparison between the proposed methods and the
classical multi-target tracking method, the GNN filter, in Section 5.3 the tracking
performance were increased by using the proposed filters. The improvement was
visible in the events of occlusion and missed detection of the pedestrians. In most
of the cases the GM-PHD filter and the GNN filter gave similar estimates, while
(in comparison) the GNN took longer time to start tracking the pedestrians when
they reappear after occlusion. The proposed methods and the GNN also suffered
from false positive tracks, which happened seldom in the tracking and did not
interfere with the overall performance of the filters.

Lastly, with the proposed methods the overall tracking, in the two investigated
scenarios were improved with respect to the performance of the GNN filter. The
two proposed methods gave better results and estimates of the pedestrians than
the classical method did, since the algorithm properties of the PHD and CPHD
filter modelled the birth of new detection better. Even though the GM-PHD and
the GNN gave similar results, in some cases the overall performance was better
since the proposed methods could handle the birth of new targets faster, which
the classical method suffered from. The method that gave the best result was
the GM-CPHD filter, since it could track occluded pedestrians for a longer time
than the other two filters did and still had accurate estimates of the position and
velocity. With the GM-CPHD filter the greater goal of improving the situational
awareness of pedestrians moving in groups was made, because of the continuity and
consistent tracking of the individual pedestrians. Even when there were occlusions
and missed detections, the filter gave an accurate result.

6.2 Future work
An attempt of increasing the performance and to improve the tracking and esti-
mation of pedestrians in group, other types of filters, modifications and extension
of the multi-target tracking could be investigated. In this section four different
improvements that could be investigated further in an attempt of increasing the
performance of tracking pedestrians in urban environments are presented. The
improvements regard:



6.2 Future work 71

• Applying extended target tracking methods,

• Using a different multi-target tracking filter,

• Filtering the measurements,

• Applying group tracking.

One way that could improve the tracking of multiple targets is to extend the
multi-target tracking to extended target tracking, since multiple measurements
can be generated for each target and the measurements can be spatially structured
around the targets. By applying extended target tracking methods the clustering
made in this master’s thesis would not be necessary, since these methods would
solve the problem instead. One method that could be implemented is the gamma
Gaussian inverse Wishart (GGIW) extension for the PHD and CPHD filter. The
GGIW extension have a different estimation probability than the Gaussian mix-
ture (GM) have, since GM only use a Gaussian distribution while the GGIW use
three different distributions for the prediction of the existing targets. The gamma
distribution handles the measurement rate, the Gaussian distribution handles the
kinematics, and the inverse Wishart distribution handles the extension [32, 33].
By using this extension for the filters the overall result should be improved in the
estimation of the components.

Other multi-target tracking filters could also be used to increase the tracking
performance. One filter that could be used instead of the proposed filters is the
newly developed filter called Poisson multi-Bernoulli mixture filter (PMBM) pro-
posed in [4, 34]. This filter is a combination of the Poisson Point Process (PPP)
and the multi-Bernoulli mixture (MBM), where the PPP describes the distribution
of undetected targets and the MBM describes the distribution of targets that have
been detected at least once. This filter could also use the extension presented in
this master’s thesis but also the Gamma Gaussian inverse-Wishart extension.

To avoid uncertain detection and noisy measurement from the pedestrians, the
detections from the detector could be filtered before they are used in the two
proposed filters. Filtering the detections could help removing detections that are
highly uncertain or noisy, which could reduce the risk of receiving false positives
and possible clutter.

Another possible way to increase the tracking performance of pedestrians close
to each other is to use group tracking in the filter process. Group tracking would
estimate the whole group as one, instead of estimating each pedestrian individually.
By estimate the pedestrians in group, each estimate in the same group would be
predicted in the same way for the next time instant.
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