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ABSTRACT  

The oxygen reduction reaction (ORR) is an essential process in electrocatalysis limiting the 

commercialization of sustainable energy conversion technologies, such as fuel cells. The use of 

conducting polymers as molecular porous and conducting catalysts obtained from the high 

abundance elements enables the route towards low cost and high-throughput fabrication of 

disposable plastic electrodes of fuel cells. Poly(3,4-ethylenedioxythiophene) (PEDOT) is a 2-

electron ORR electrocatalyst yielding specifically hydrogen peroxide that limits the full utilization 

of chemical energy of oxygen. Here, we demonstrated an innovative product-to-intermediate relay 

approach achieving complete oxygen reduction reaction (cORR) with Prussian blue (PB) 

integrated microporous PEDOT cathode in fuel cells. The microporous structured PEDOT 

electrode prepared via a simple cryosynthesis allows the bulk integration and stabilization of the 

poor conducting PB co-catalyst into the PEDOT ion-electron conductor, while the microporous 

PEDOT allows effective oxygen diffusion into the matrix. We evaluated systematically the effect 

of sequential PEDOT 2-electron ORR followed by PB co-catalysis launching hydrogen peroxide 

reduction reaction (HPRR) into H2O. This resulted in the establishment of electronic and ionic 

transport between PEDOT and PB catalyst enabling the combination of enhanced ORR 

electrocatalysis by means of the ORR course extension from 2- to 4-electron reduction to achieve 

cORR. The cORR performance delivered by the product-to-intermediate relay between 

microporous PEDOT and PB co-catalysis led to four times increase of power density of model 

proton-exchange membrane fuel cell (PEMFC) assembled from the polymer-based air-breathing 

cathode. 
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INTRODUCTION  

The sluggish kinetics of the ORR limits the efficiency of oxygen-associated chemical-to-

electrical energy interconversion technologies such as fuel cells and metal-air batteries. Cost-

ineffective platinum group metals are commonly utilized as catalysts to speed up the ORR and to 

enhance the conversion performance[1, 2]. This motivates an intensive research on ORR catalysts 

based on non-critical raw materials and manufactured by low-cost processes. 

The M–N–C (M = Fe, Ni, Co) system with N-coordinated transition metal structures as an 

active sites [3-10] is one of the most attractive among various platinum group metal-free ORR 

catalysts, because it may achieve comparable performance to that of platinum group metal 

catalysts by proper structure design[11]. Synthesized by pyrolysis, the M–N–C ORR catalysts 

reveal the ORR activity dependent on the structure of metal-, carbon- and nitrogen-containing 

precursors. Among the variety of precursors[8, 12-16], the pre-organized metal complexes have a 

benefit of high probability to maintain the active structure after the pyrolysis[17-19].  

Among the M–N–C catalysts, PB is a cheap and well-known coordination compound with 

an ordered 3D framework structure that possesses a high density of iron II/III sites coordinated 

with nitrogen of cyanide groups [20], which is ideal for M-N-C ORR catalysts [11]. This inspired 

the use of PB and its analogs as pyrolysis precursors [21-25]. Surprisingly, there are still rare 

examples of PB and its analogs direct use as ORR catalysts due to the poor stability towards the 

desorption [26] and dissolution in alkaline media [27, 28]. The PB incorporation into the 

conducting polymer matrix is a strategy to achieve the operational stability [29], which was utilized 

in cathode of microbial fuel cell [30]. Conducting polymers are considered among the best mixed 

electron-ion conductors, which are crucial for all electrochemical technology. They are 

synthesized via low temperature processing of organic molecules and enable variety of upscaling 

strategies. Moreover, the electronic and ionic transport can be controlled by both morphology and 

composition [31, 32], which enables the possibilities of maximization of density of triple-phase 

boundaries and bulk integration of poor conductors. Poly(3,4-ethylenedioxythiophene) (PEDOT) 
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complexed with polystrenesulfonate (PSS) is one of the most widely used intrinsically conducting 

polymer due to water processability, high electrical conductivity (up to about 1,000 S/cm), and 

good air stability due to oxidative polymerization [33]. Importantly, PEDOT has an ORR activity 

[34, 35] via two electron process with a close to 100% yield of hydrogen peroxide [36]. 

To achieve a high efficiency of chemical-to-electrical energy conversion of gaseous 

reactants, it is necessary to optimize electronic, ionic and reactant (gas) transports and to integrate 

all of them in a unified gas diffusion electrode. Here we explored the use of cryosynthesis 

involving freezing and thawing steps [37-39] as a strategy to control the morphology and the 

composition in PB- PEDOT composite for high efficiency air-breathing cathode fabrication. The 

effects of PB integration on both semiconductor properties of conducting polymer and the 

efficiency of chemical-to-electrical energy conversion via ORR elecrocatalysis were 

systematically evaluated. The enhancement of ORR efficiency by the PB integration within 

PEDOT was observed during material characterization and fuel cell operation. It was mainly 

attributed due to the addition of hydrogen peroxide reduction reaction (HPRR) triggering product-

to-intermediate relay towards the series (2+2) complete ORR (cORR) process (Fig. 1A). 

EXPERIMENTAL METHODS 

Materials. 3,4-ethylenedioxythiophene (EDOT), poly-(sodium 4-styrenesulfonate) (NaPSS; MW 

~1,000,000 g/mol), iron (III) chloride (FeCl3) and potassium ferricyanide (K3[Fe(CN)6]) were 

from Sigma-Aldrich (St. Louis, USA). Potassium chloride (KCl), potassium hydrogen phosphate 

(K2HPO4) and potassium dihydrogen phosphate (KH2PO4) were from Merck (Damstadt, 

Germany). All chemicals used were of analytical grade and used as received without any further 

purification. Phosphate buffer solution (PBS, 0.10 M containing 0.10 M KCl, pH 7.40) was freshly 

prepared in ultrapure water purified using a Millipore-Q system (Scientific Support, Inc., USA). 

Electrode preparation. A glassy carbon electrode (GCE) in a configuration of rotating disk 

electrode (RDE) (Pine, USA) or rotating ring-disk electrode (RRDE) setups (Pine, USA) (5.0 mm 

diameter) were sequentially polished to a mirror-like surface with 1.0, 0.3 and 0.05 μm alumina 
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slurry and rinsed thoroughly with distilled water in each polishing step. To prepare the 

PEDOT:PSS-PB composite, 0.038 g of NaPSS (0.038 µmol) dissolved in 0.50 mL of deionized 

water was mixed with 160 µL of EDOT monomer (1.5 mmol) followed by a 10 min sonication to 

obtain a uniform milky dispersion. A 25 µL of the EDOT:PSS suspension was then combined with 

2.5 µL of 4.4 M FeCl3 (oxidizing agent) and 5.0 µL of PB, prepared in advance by mixing of 500 

mM FeCl3 and 500 mM K3[Fe(CN)6] in 10 mM HCl solution. After a 5 min vigorously stirring, 

1.5 µL aliquot was drop casted onto the electrode surface, stored at −20 ◦C for at least 24 h before 

thawing at 4 ◦C for 30 min to achieve the PEDOT:PSS-PB cryogel. The modified electrode was 

then dried at 60 ◦C for 1 hour in an oven. For comparison, PB-free PEDOT:PSS cryogel-modified 

electrodes were also prepared by the same procedure. Bulk-structured non-porous PEDOT:PSS-

PB modified electrodes were prepared without freezing and thawing steps. 

Surface morphologies of the cryogel-modified electrodes were observed using a scanning 

electron microscope (SEM, PHENOM PRO, FEI, Netherlands). Fourier Transform Infrared (FT-

IR) spectra were from a VERTEX 70 (Bruker, USA) spectrophotometer. 

Electrochemical measurement. Electrochemical measurement of the modified electrodes were 

performed in a batch cell equipped with a gas flow system Autolab type III bi-potentiostat 

(Metrohm Autolab, Netherlands). The electrolyte is 0.10 M PBS containing 0.10 M KCl (pH 7.40). 

Cyclic voltammetry measurements were carried out with a three-electrode system comprised a 

modified glassy carbon working electrode, a silver/silver chloride reference electrode and a 

platinum wire counter electrode. The hydrodynamic electrode measurements were done on 

rotating disk electrode and rotating ring disk electrode (Pine Research Instrumentation Inc.) at 

room temperature in oxygen- or argon-saturated electrolyte. The LSV results were subtracted by 

the background current recorded in an argon-saturated electrolyte. 

In-situ resistometry was carried out on a two-terminal gold interdigitated microelectrode 

array on glass (15 µm gap; MicruX Technologies, Spain) using bi-potentiostat to control two 

independent working electrodes. The channel current was calculated by means of subtraction of 
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current recorded on first working electrode with 0 mV bias with respect to the second working 

electrode from the current recorded with 50 mV bias. The apparent film resistance was calculated 

as a quotient of 50 mV bias to channel current. 

Fuel cell measurements. The PEMFC were elaborated from activated Nafion 115 membranes, 

Teflon gaskets and fuel cell body (FuelCellStore Inc.) with air-breathing cathode and constant flow 

of humidified hydrogen through anode. A 500 µL of the PEDOT:PSS-PB composite slurry was 

drop casted on a 3x3 cm2 gas diffusion electrode (graphite paper AvCarb GDS2230, FuelCellStore 

Inc.), kept at −20 ◦C for at least 24 h, thawed at 4 ◦C for 30 min and dried at 60 ◦C for 1 h in an 

oven, respectively. Graphite cloth with high platinum load (0.3 mg/cm2 PtC, 40 % on gas diffusion 

electrode; FuelCellStore Inc.) was utilized as a hydrogen anode. The membrane electrode 

assembly was elaborated by pressing (at 60 ◦C) with anode and cathode on activated Nafion 115 

membrane using 100 µL of 5.0% Nafion solution (Sigma-Aldrich). The devices were evaluated at 

room temperature by steady-state polarization using decade resistor box (Swema, Sweden) and 

multimeter (Keithley, Tektronix, Germany). 

 

RESULTS AND DISCUSSION 

The simplified landscape of experimental ORR pathways [40] includes two alternative 

trails: 4-electron (‘direct’) pathway, where water is formed without any detectable intermediates, 

and 2-electron (‘series’) pathway, where the hydrogen peroxide is formed as an intermediate [41]. 

The mechanism of ORR on pure PEDOT can be rationalized as series pathway [36, 42], where 

two-electronic reduction precede O-O bond breaking yielding the hydrogen peroxide as a major 

product. Being advantageous for a certain applications [36], series pathway of ORR with a 

hydrogen peroxide production is objectionable in chemical-to-electrical energy conversion 

technologies, because, firstly, the resource of oxygen as an oxidizer is not fully utilized, and, 

secondly, the hydrogen peroxide management complicates the device operation due to the possible 

destabilization [43-45]. The transition metal ions impurities can change the ORR pathway [46, 
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47]. We utilized this effect here for elongation of electrocatalysis pathway from 2-electron to series 

4-electron to accomplish cORR to water by addition of PB as a co-catalyst of hydrogen peroxide 

reduction reaction (HPRR) [48, 49]. PB can be considered as a true 2-electron HPRR catalyst 

within ca. 0.30 V window of applied cathodic polarization preceding ORR [26]. This allowed us 

the systematic evaluation of the effect of product-to-intermediate relay on cORR electrocatalysis 

efficiency. The porosity of catalyst composite achieved by aqueous cryosynthesis, an 

environmentally-friendly one-step protocol, allowed the functional evaluation of composite-based 

hydrogen PEMFC. To achieve the porosity of polymer-based catalysts for effective gaseous 

reactant/product mass transport in the course of the PEMFC operation we utilized aqueous 

cryosynthesis of PEDOT:PSS-based composites followed by thawing [50] on graphite gas 

diffusion electrode, which, as we believe, possess a technological relevance. The cryosynthesis 

yielded the microscale phase-segregated frozen composite available for subsequent water phase 

removal during thawing. The structured films showed a honey comp-like porous structure (Fig. 

1B, S1) with an average pore diameter of 0.43±0.23 µm. We further compared the morphologies 

of PEDOT:PSS-PB prepared by bulk synthesis (Fig. S1A) and cryosynthesis (Fig. S1B). SEM 

images show the cryosynthesis leading to the formation of porous microstructured film, while the 

control bulk synthesis resulted in a non-porous compacted bulk film. 

Firstly, we confirmed the integration of co-catalyst into the conducting polymer matrix by 

physio-chemical methods. The presence of the small absorption band on composite FTIR spectrum 

(2067 cm−1) assigned to CN stretching vibration in FeII−CN−FeIII of PB [51, 52] in combination 

with a typical set of bands for PEDOT [53, 54] and sulfonic acid group of PEDOT:PSS (Fig. 1C, 

Supporting Note 1) confirmed the integration of PB into PEDOT:PSS matrix. X-ray photoelectron 

spectroscopy (XPS) was performed to investigate the chemical characteristics of the 

PEDOT:PSS/PB composites. The full survey spectrum in Figure 1D showed the sharp bands of 

S2p, C1s and O1s at 165.6, 284.8 and 531.8 eV respectively, which are ascribed to the PEDOT 

and PSS moieties. Except these, the two bands at about 396.5 and 707.5 eV are assigned to N1s 
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and Fe2p, indicating the existence of C≡N and Fe element originating from Prussian blue 

(Fe4[Fe(CN)6]3). The voltammetry on composite-modified electrodes (Fig. 2A) revealed the 

overlay between the box-shaped capacitive region of conducting polymer and sharp redox peaks 

corresponding to PB/Prussian white faradaic phenomena. The increase of the inorganic material 

content represented by the increase of redox peak currents led the extension of the conductivity 

window of polymer. The cathodic limit (e.g. -1.2 V) of applied potentials is featured with small 

values of recorded currents due to the achievement of de-doped insulator state of conducting 

polymer. On the contrast, large currents assigned to the electrocapacitive phenomena within the 

doped highly conductive state of the polymer are observed at the anodic limit (e.g. 0.50 V) [55]. 

Importantly, the capacitive currents observed for the PB-doped PEDOT:PSS composite electrode 

are almost equal for various PB content, which illustrate the maintenance of the same amount of 

conducting polymer in the composite and allows the systematic evaluation of the role of PB. The 

presence of PB in the composite led to the cathodic shift of the potential threshold for the 

doping/de-doping transition of PEDOT (Inset of Fig. 2A; ca. -0.80 V for 500 mM, -0.60 V of 300 

mM and -0.50 V for 100 mM of PB), which is a feature of the redox doping of conducing polymer 

[56].  

To quantify the effect PB on the redox doping threshold potential of the polymer, we 

utilized in-situ resistometry on microelectrochemical electrode setup [57, 58] (Fig. 2B). The clear 

transition between highly conductive state of polymer characterized with low film resistance (0.70 

V – 0 V) and partial de-doped state of higher resistance (0 V – -0.80 V) is observed for both blank 

and PB-doped PEDOT. The integration of PB led to the additional kinetic effect on polymer 

conductivity visible as a film resistance decrease in both highly-doped and partial de-doped states 

of polymer (20% and 80% at 0.50 V and -0.40 V, respectively). The significant kinetic effect on 

doping/de-doping behavior of films is seen at the high scan rate (see Fig. S2) characterized with 

an ionic transport control as a rate determining step of an electrode process. The presence of the 

inorganic redox material yielded the significant decrease in film resistance in comparison with 
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blank conducting polymer. This effect illustrates the kinetic decoupling of the slow redox 

conversion of PB from the fast PEDOT de-doping due to the ion trapping within the inorganic 

material [59]. 

The cORR electrocatalysis has been investigated by the steady-state voltammetry on film-

modified hydrodynamic electrode setup (Fig. 3A). The ohmic drop-compensated steady-state 

voltammetry showed both higher faradaic currents (e.g. more than 60% increase at 0.25 V) and 

lower overpotential of PB-PEDOT composite electrode compared to both the glassy carbon and 

the PEDOT:PSS electrode. The appearance of hydrogen peroxide electrocatalysis for both 

oxidation and reduction reactions is manifested by the increase of steady-state currents in both 

negative (0.3 V – -0.6 V) and positive (0.5 V – 0.6 V) directions, respectively, observed in oxygen-

free environment in the presence of hydrogen peroxide. The increase of reduction rate also enables 

the achievement of the limitation by the hydrogen peroxide diffusion (Figure S3, lower than 0 V). 

Thus, the observed increase of ORR electrocatalytic currents illustrates the contribution from 

additional HPRR process accomplishing a series 4-electron reduction on PB-doped PEDOT. 

Below 0.1 V, PB can contribute also with its inherent 4-electron ORR [26].  

Conducting polymers are recognized as mixed electron-ion conductors [60, 61]. Indeed, 

the modulation of electronic charge within the polymer film imposed by the change of applied 

potential is ensured with the counter-ion transport for the film electroneutrality maintenance. This 

assigns a distinctive role of PEDOT as advanced matrix for inorganic electrocatalyst 

immobilization. Firstly, it enables the electronic access to the inorganic insulator by bulk 

integration. Secondly, it maintains ionic transport essential for the PB redox process stability and 

for the neutralization of the final product (hydroxide). The microstructuring facilitates the ionic 

transport, which leads to the slight increase of redox material accessibility (Fig. S4). Thirdly, it 

contributes with intrinsic 2-electron electrocatalysis yielding convertible product. Fourthly, the 

polymer prevents PB desorption from hydrodynamic electrode.  
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Importantly, the increase of PB content in the catalytic composite led to the increase of the 

total ORR currents (see Fig. S5), which shows that HPRR is a rate determining step in a whole 

series 4-electron ORR. The modulation of the rotation speed allowed the observation of Tafel 

regions for ORR on the investigated electrocatalysts (see Fig. S6). The change of rate determining 

step of a whole ORR with the integration of inorganic co-catalyst has been confirmed with a stabi 

slope change observed for PB-doping of catalyst (from 140 mV dec-1 on PEDOT:PSS to 80 mV 

dec-1 on PB-doped PEDOT:PSS), which is approaching to the slope for commercial platinum-on-

carbon catalyst (~ 66 mV dec-1) [62]. Being relevant for the PEMFC operational conditions, the 

acidic electrolyte showed the change of rate determining step of cORR electrocatalysis on 

PEDOT:PSS-PB composite manifested with a higher Tafel slope up to 170 mV dec-1.  

The half-wave potential calculated from the steady-state voltammetry data (Fig. 3A) and 

estimated maximum kinetic current (Fig. S6) of ORR on PB-PEDOT:PSS composite electrode 

were 0.33 V (vs RHE) and 0.5 mA cm-2, respectively, which is humble in comparison with the 

characteristics of state of the art platinum group metal-free ORR electrocatalysts [9, 10]. 

The mechanistic evaluation of developed cORR catalysts was carried out on rotating ring 

disk electrode setup (Supporting Note 2). The presence of inorganic HPRR catalyst in the polymer 

composite led to the significant decrease of yield of hydrogen peroxide in comparison with blank 

and PEDOT:PSS-modified rotating disk electrode (Fig. 3B, S8). This confirms the launching of 

HPRR co-catalysis in a whole cORR electrocatalysis phenomenon visible as decrease of the 

quantified amount of intermediate peroxide (e.g. peroxide yields of 3.2 %, 13 % and 21% for PB-

doped PEDOT:PSS, glassy carbon and PEDOT:PSS at -0.50 V). Coherently, the Koutecky-Levich 

analysis of recorded disk electrode currents on thin films of catalytic composite [63] showed larger 

numbers of electrons transferred per oxygen molecule (Fig. 3C) from PB-doped PEDOT:PSS 

electrode compared to the pristine PEDOT:PSS. The number of electrons transferred is close to 4 

electrons with PB-doped PEDOT:PSS at some potential. Being relevant for PEMFC, the 

evaluation of cORR electrocatalysts in acidic environment yielded the conformed larger number 
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of transferred electrons per reactant molecule on PB-doped polymer composite (see Fig. S9). The 

kinetic analysis in the frame of Damjanovic approach [64, 65] showed up to one order increase of 

HPRR rate constant in the course of ORR in the presence of PB (Supporting Note 3) compared to 

the pristine PEDOT:PSS. The obtained quantification data of electrocatalysis in combination with 

larger total currents recorded on PB-doped polymer-based composite systematically illustrate the 

impact of the additional 2-electron co-catalysis of HPRR on the efficiency of whole cORR 

electrocatalysis maximizing the generated power output [44].  

To appraise the HPRR co-catalysis impact on the efficiency of chemical-to-electrical 

energy conversion, we performed a comparative evaluation of polymer-based air-breathing 

cathodes in hydrogen PEMFC (Fig. 4). The polarization curves obtained on cathode-limited 

PEMFC in a presence of PB (3.7 mg cm-2) on air-breathing gas diffusion electrode showed both 

significantly smaller activation loss and larger open circuit potential in comparison with the device 

based on blank PEDOT:PSS, which resulted in a significantly larger value of maximum power 

density. Although the design of the fuel cell was not optimized, we varied one parameter, i.e the 

type of material at the air cathode of the hydrogen fuel cell. The PB-doped PEDOT:PSS electrode 

appears as true platinum group metal-free catalytic composite because of the an additional HPRR 

co-catalysis of PB compared to PEDOT:PSS. As soon as HPRR is a rate-determining step in in a 

whole 2+2 ORR, we utilized the composite of maximized PB content for air cathode modification. 

The presence of PB showed a minor change of porosity in comparison with blank PEDOT:PSS 

(Tab. S1) defining the negligible effect of the mass transport variation in polymer cathodes by the 

inorganic co-catalyst integration. As a result, the PEM fuel cell, with approximately the same open 

circuit voltage of 0.50 V deliver 0.018 mW cm-2 of the maximum power density at 0.18 V (0.10 

mA cm-2), which is almost 4 times higher than obtained with the device based on the 2-electron 

ORR PEDOT:PSS cathode. 

CONCLUSIONS 
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To conclude, we successfully integrate PB as inorganic HPRR catalyst into the conducting 

polymer PEDOT:PSS matrix via the aqueous cryosynthesis. The PB-doped PEDOT:PSS 

nanocomposite is evaluated by physical-chemical methods and support the stabilization of PB, 

which elongates the ORR pathway from 2- to a series of 4-electronic reduction to achieve cORR 

process as revealed by hydrodynamic voltammetry. In the nanocomposite, the PEDOT:PSS matrix 

reduces oxygen to hydrogen peroxide, while the PB doping acts as co-catalysis via HPRR as a 

product-to-intermediate relay. PEDOT:PSS is thus an advanced matrix to immobilize an inorganic 

co-catalyst in its bulk because the conducting polymer is a good mixed ionic-electronic conductor, 

thus bringing both electrons and ions in close vicinity of the PB particles stored within the bulk of 

the nanocomposite electrode. The addition of PB-associated redox process into the 

electrocapacitive phenomena of polymer led to the changes of charge storage kinetics of composite 

semiconductor. The cORR performance enhancement by inorganic co-catalyst was demonstrated 

with the construction of an effective plastic air-breathing gas diffusion electrode in a hydrogen 

PEMFC: one of the first half polymer-based fuel cells. 

 

FIGURES  

Figure 1. PB-doped PEDOT:PSS air breathing cathode. (A) The enhancement of cORR efficiency 

by the PB-doped PEDOT:PSS resulted from the addition of hydrogen peroxide reduction reaction 

(HPRR) triggering product-to-intermediate relay towards the series (2+2) cORR; (B) SEM images 

of the microporous PB-doped PEDOT:PSS (lower insert shows the PB-doped PEDOT:PSS air 

breathing cathode); (C) FTIR spectrum and (D) XPS spectrum of the PEDOT:PSS/PB composite. 

 

Figure 2. Integration of PB into PEDOT:PSS. (A) Cyclic voltammograms recorded on glassy 

carbon modified with PEDOT:PSS cryogel film fabricated from different PB concentrations (100, 

300 and 500 mM as black, red and blue curves, respectively; scan rate 100 mV s-1); (B) in-situ 
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resistometry on blank and PB-modified PEDOT:PSS (scan rate 5.0 mV s-1, 0.10 M PBS (pH 7.40), 

0.10 M KCl). 

 

Figure 3. The elongation of electrocatalysis pathway from 2- to 4-electron ORR. (A) Ohmic drop-

corrected steady-state polarization curves obtained in oxygen- and argon-saturated electrolyte 

(filled and open symbols, respectively; 0.10 M PBS (pH 7.4), 0.10 M KCl) on blank, PEDOT:PSS- 

and PEDOT:PSS-PB film-modified glassy carbon rotating disk electrode (black, red and blue 

symbols, respectively; magenta – in the presence of hydrogen peroxide (3.0 mM; argon-saturated 

electrolyte; 2500 rpm)); (B) and (C) – potential dependencies of peroxide yield and the number of 

electrons transferred per oxygen molecules estimated for ORR on blank, PEDOT:PSS- and 

PEDOT:PSS-PB film-modified glassy carbon rotating disk electrode (black, red and blue symbols, 

respectively). 

 

Figure 4. The effect of HPRR co-catalysis on the efficiency of hydrogen PEMFC. A: Sketch of 

polymer cathode PEMFC; B: The polarization curves and power density plots of cathode-limited 

PEMFC with blank and PB-doped PEDOT:PSS-based air-breathing cathode (red and blue 

symbols, respectively; 3.7 mg cm-2 of PB). Inset: photo of hydrogen PEMFC. 
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