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A B S T R A C T

Comprehensive design ideas on the fused-ring donor-core in state-of-the-art acceptor-donor-acceptor (A-D-A)
nonfullerene acceptors (NFAs) are still of great importance for regulating the electron push-pull effect for the
sake of optimal light-harvesting, frontier molecular orbital levels, and finally their photovoltaic properties.
Herein, thieno[3,2-b]thiophenes were fused in bay-area of naphthalene via six-member-ring connection, result-
ing the formation of dihydropyrenobisthieno[3,2-b]thiophene based octacyclic ladder-type donor core, which
was flanked by two 1,1-dicyanomethylene-3-indanone (IC) acceptor motifs with and without 5,6-diflourination,
namely PTT-IC and PTT-2FIC, respectively, as novel efficient A-D-A fused-ring electron acceptors (FREAs). Com-
pared with PTT-IC, fluorinated PTT-2FIC possesses narrower optical bandgap of 1.48 eV, better π-π stacking, and
its PBDB-T:PTT-2FIC blend film exhibited better morphology, and better hole and electron mobility. As a result,
nonfullerene solar cells using PBDB-T:PTT-2FIC as the active layer achieved a decent PCE of 10.40%, with an
open-circuit voltage (VOC) of 0.87 V, a fill factor (FF) of 0.65, and a much higher short-circuit current (JSC) of
18.26 mA/cm2. Meanwhile, the PBDB-T:PTT-IC cells delivered a lower JSC of 12.58 mA/cm2 but a higher VOC of
0.99 V, thus resulting in a PCE of 7.39% due to its wider optical bandgap of 1.58 eV and higher LUMO energy
level. These results demonstrated that NFAs based on fused-ring donor core from fusing thieno[3,2-b]thiophenes
with naphthalene via six-member-ring connection are promising for organic photovoltaic applications.

1. Introduction

Organic solar cells (OSCs) have been re-sparkled by Zhan et al. since
2015 for the great discovery of fused-ring electron acceptors (FREAs),
represented by ITIC [1], when fullerene derivatives acceptors such as
phenyl-C61/C71-butyric acid methyl ester (PC61BM/C71BM) and in-
dene-C70 bisadduct (IC70BA) had become a bottle neck for fur

ther improvement on photovoltaic performance due to their drawbacks
such as poor light absorption, limited tunability of chemical struc-
tures and energy levels, and morphology instability [2–6]. This break-
through achievement has led to many impressive progresses on these
nonfullerene acceptors (NFAs) and revived OSCs [7–11]. Generally, the
NFAs take great advantages of acceptor-donor-acceptor (A-D-A) struc-
ture for the sake of efficient intramolecular charge transfer (ICT) be-
tween the donor and acceptor units, thus resulting in impressively wide
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absorption range and good light-harvesting capability [12–15]. Very re-
cently, the power conversion efficiencies (PCEs) of OSCs have soared
consistently up to 16–18% [16–29].

Among various donor cores in such A-D-A type NFAs, naphthalene
has been adopted for replacing the benzene core of classic ITIC for im-
proved PCEs in devices due to its rigid and planar structure with the di-
versity of synthetic controls, and endows its derivatives with large π-con-
jugation to reduce energetic disorder and induce strong intermolecu-
lar interactions [30–32]. Recently, a series of NFAs based on naphtha-
lene core have been reported and exhibited promising PCEs of 5–11%
[33–41]. However, in most of these NFAs, the naphthalene core had
been always fused at ortho-positions leading to five-member-ring link-
ages, and the analogues with six-member-ring connection are far less
common, even in all NFAs with spiral structures [40–44]. Bo et al. re-
ported a dihydropyreno[1,2-b:6,7-b']dithiophene-based NFA named PDT
in 2019 demonstrating a PCE of 7.07% for its solar cells based on
PBDB-T:PDT. With additional thiophene bridges, the acceptor PDT-T can
further improve the PCE up to 11% in devices [40]. Guo et al. reported
one of their systematically studied polycyclic aromatic hydrocarbons
(PAHs), namely DTN-IC-2Ph with a donor core of thiophene-fused naph-
thalene at 4,8 positions via six-member-ring connection, but gaining
only a PCE of 5.45% with a low short-circuit current (JSC) of 9.33 mA/
cm2 in their devices paired with PBDB-T as well [41]. It was noticed
that only thiophenes were used to fuse with naphthalene core via five-
or six-member ring connection, therefore, it will be interesting to use
thieno[3,2-b]thiophene (TT) instead of thiophene fused on naphthalene
and extend the conjugation of the donor segments.

In this work, we synthesized two A-D-A type NFAs PTT-IC and
PTT-2FIC, whereas thieno[3,2-b]thiophenes were adopted for fusing
onto naphthalene at 4,8 positions in bay-area via six-member ring link-
ages for the formation of the complete donor core dihydropyreno-
bisthieno[3,2-b]thiophene and then further to flanked with the electron
withdrawing moieties 1,1-dicyanomethylene-3-indanone (IC) or 5,6-di-
fluoro-1,1-dicyanomethylene-3-indanone (2FIC) as the end groups (Fig.
1). Two hexyloxy chains were introduced at the C2 and C6 positions of
the naphthalene ring to not only enhance the solubility of target NFAs
but also prevent from yielding five-member-ring connected isomers. The
thermal, optical and electrochemical properties, charge carrier mobil-
ity, and photovoltaic performance of PTT-IC and PTT-2FIC were stud-
ied systematically. Compared with PTT-IC, fluorinated PTT-2FIC pos-
sessed red-shift absorption and narrower bandgaps, better stacking, and
higher hole and electron mobilities. Under an illumination of AM 1.5G
(100 mW/cm2), solar cells using PBDB-T:PTT-IC or PBDB-T:PTT-2FIC as
active layers have achieved decent PCEs up to 7.39% or 10.40%, respec-
tively.

2. Experimental section

2.1. Materials

All reagents were purchased from TCI Chemicals, Aladdin Co., In-
nochem Co., Derthon Co. and other commercial suppliers. 1,5-Di-
bromo-2,6-bis(hexyloxy)naphthalene (2), 2,2'-(2,6-bis(hexyloxy)naph-
thalene-1,5-diyl)bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolane) (3), and

ethyl 2-bromothieno[3,2-b]thiophene-3-carboxylate were prepared ac-
cording to the literatures [45–47].

2.2. Syntheses

2.2.1. Synthesis of diethyl 2,2'-(2,6-bis(hexyloxy)naphthalene-1,5-
diyl)bis(thieno[3,2-b]thiophene-3-carboxylate) (4)

To a mixture of compound 3 (557 mg, 0.96 mmol), ethyl 2-bro-
mothieno[3,2-b]thiophene-3-carboxylate (699 mg, 2.4 mmol), toluene
(50 mL), ethanol (30 mL) and 2 M potassium carbonate aqueous solu-
tion (20 mL), Pd(PPh3)4 (130 mg) was added under Ar. The mixture
was heated to reflux for 24 h, and then was poured into water and ex-
tracted with dichloromethane. The combined organic layer was dried
over anhydrous MgSO4 and then filtered. The solvent was removed and
the residue was purified by column chromatography on silica gel us-
ing a mixture of petroleum ether/dichloromethane (1:2) as the eluent
to give compound 4 as a light yellow solid (550 mg, 77%). 1H NMR
(CDCl3, 500 MHz, δ/ppm): 7.63–7.59 (m, 2H), 7.50 (d, J = 5.3 Hz,
2H), 7.33 (d, J = 5.3 Hz, 2H), 7.21–7.18 (dd, J = 9.3, 5.3 Hz, 2H),
4.07 (q, J = 7.0 Hz, 4H), 4.00 (t, J = 6.4 Hz, 4H), 1.60–1.55 (m, 4H),
1.33–1.15 (m, 12H), 0.93 (t, J = 7.1 Hz, 6H), 0.77 (t, J = 5.8 Hz, 6H).
13C NMR (CDCl3, 125 MHz, δ/ppm): 161.89, 152.86, 147.56, 139.40,
137.39, 129.20, 128.10, 127.42, 123.88, 119.01, 117.25, 115.64, 69.66,
60.40, 31.32, 29.21, 25.46, 22.44, 13.87, 13.59. MS (MALDI-TOF, m/z):
748.280.

2.2.2. Synthesis of {[2,6-bis(hexyloxy)naphthalene-1,5-diyl]bis(thieno[3,2-
b]thiophene-2,3-diyl)}bis(bis(4-hexylphenyl)methanol) (5)

To a solution of 1-bromo-4-hexylbenzene (1.29 g, 5.34 mmol) in
50 mL THF at −78 °C, 2.1 mL of n-BuLi (2.5 M in hexane) was added
dropwise under Ar. The mixture was stirred at −78 °C for 1 h, then com-
pound 4 (667 mg, 0.89 mmol) in 20 mL THF was added by syringe. The
mixture was stirred at room temperature overnight and then was poured
into water. The mixture was extracted with ethyl acetate and the com-
bined organic layer was dried over anhydrous MgSO4. After removing
the solvent, the orange residue was used in the next step without purifi-
cation.

2.2.3. Synthesis of 5,12-bis(hexyloxy)-7,7,14,14-tetrakis(4-hexylphenyl)-
7,14-dihydrodithieno[2,3-d:2′,3′-d′]pyreno[1,2-b:6,7-b']dithiophene (6)

The crude compound 5 was dissolved in 50 mL dry toluene and 1.1 g
Amberlyst 15 were added, then the mixture was refluxed for 6 h un-
der Ar. After cooling to room temperature, the mixture was filtrated
and the solvent was removed. The crude product was purified by col-
umn chromatography on silica gel using a mixture of petroleum ether/
dichloromethane (10: 1) as the eluent to give compound 6 as a yel-
low solid (448 mg, 40%). 1H NMR (CDCl3, 400 MHz, δ/ppm): 7.18 (d,
J = 5.2 Hz, 2H), 7.14 (d, J = 5.2 Hz, 2H), 7.06 (d, J = 8.3 Hz, 8H),
7.01 (d, J = 8.3 Hz, 8H), 6.96 (s, 2H), 3.97 (t, J = 6.7 Hz, 4H), 2.54
(t, J = 6.7 Hz, 8H), 1.89–1.82 (m, 4H), 1.56–1.52 (m, 8H), 1.49–1.44
(m, 4H), 1.33–1.26 (m, 32H), 0.91–0.84 (m, 18H). 13C NMR (CDCl3,
125 MHz, δ/ppm): 149.59, 143.37, 142.21, 141.20, 140.01, 139.16,

Fig. 1. Chemical structures of NFAs PTT-IC and PTT-2FIC.
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133.81, 133.37, 129.87, 127.83, 127.40, 123.07, 118.90, 118.10,
113.86, 69.60, 58.12, 35.40, 31.70, 31.61, 31.26, 29.33, 28.92, 25.80,
22.61, 22.54, 14.11, 14.07. MS (MALDI-TOF, m/z): 1269.57.

2.2.4. Synthesis of 5,12-bis(hexyloxy)-7,7,14,14-tetrakis(4-hexylphenyl)-
7,14-dihydrodithieno[2,3-d:2′,3′-d′]pyreno[1,2-b:6,7-b']dithiophene-2,9-
dicarbaldehyde (7)

To a solution of compound 6 (240 mg, 0.19 mmol), 3.2 mL DMF,
and 40 mL 1,2-dichloroethane at 0 °C was added POCl3 (0.34 mL,
3.78 mmol) under Ar. The mixture was kept at 0 °C for 0.5 h, then was
heated to 85 °C for 24 h. After cooling to room temperature, the mixture
was poured into water (100 mL) and extracted with dichloromethane.
After removal of the solvent, the crude product was purified by col-
umn chromatography on silica gel using a mixture of petroleum ether/
dichloromethane (2: 1) as the eluent to give compound 7 as yellow solid
(202 mg, 80%). 1H NMR (CDCl3, 500 MHz, δ/ppm): 9.83 (s, 2H), 7.86
(s, 2H), 7.04 (br, 16H), 7.00 (s, 2H), 4.00 (t, J = 6.6 Hz, 4H), 2.56 (t,
J = 7.8 Hz, 8H), 1.89–1.83 (m, 4H), 1.56–1.54 (m, 8H), 1.52–1.46 (m,
4H), 1.34–1.26 (m, 32H), 0.91 (t, J = 6.8 Hz, 6H), 0.87 (t, J = 6.7 Hz,
12H). 13C NMR (CDCl3, 125 MHz, δ/ppm): 183.20, 150.83, 146.51,
144.57, 143.71, 142.38, 141.81, 139.71, 138.96, 133.84, 129.69,
129.07, 128.13, 122.78, 117.93, 112.95, 69.60, 58.06, 35.37, 31.67,
31.56, 31.16, 29.20, 28.94, 25.78, 22.58, 22.51, 14.10, 14.06. MS
(MALDI-TOF, m/z): 1325.240.

2.2.5. Synthesis of PTT-IC
To a solution of compound 7 (200 mg, 0.15 mmol), 1,1-di-

cyanomethylene-3-indanone (IC, 293 mg, 1.51 mmol) in 50 mL chlo-
roform, 1 mL pyridine was added under Ar. The mixture was heated
to reflux overnight. After cooling to room temperature, the mixture
was poured into 150 mL methanol and filtered. The crude product was
purified by column chromatography on silica gel using a mixture of
petroleum ether/dichloromethane (1: 1) as the eluent to give PTT-IC
as a brown-black solid (220 mg, 87%). 1H NMR (CDCl3, 500 MHz,
δ/ppm): 8.74 (s, 2H), 8.63 (d, J = 7.0 Hz, 2H), 8.19 (s, 2H), 7.85–7.84
(m, 2H), 7.74–7.69 (m, 4H), 7.13 (s, 2H), 7.12 (br, 16H), 4.06 (t,
J = 6.5 Hz, 4H), 2.58 (t, J = 7.5 Hz, 8H), 1.92–1.86 (m, 4H), 1.60–1.55
(m, 8H), 1.54–1.49 (m, 4H), 1.37–1.22 (m, 32H), 0.93 (t, J = 6.7 Hz,
6H), 0.81 (t, J = 6.9 Hz, 12H). 13C NMR (CDCl3, 125 MHz, δ/ppm):
187.39, 160.84, 154.21, 151.88, 144.87, 142.94, 142.16, 140.89,
140.16, 139.85, 138.18, 136.89, 134.76, 134.60, 134.11, 129.81,
128.36, 125.05, 123.55, 122.94, 122.26, 117.92, 114.88, 114.73,
113.34, 69.88, 68.43, 58.33, 35.49, 31.73, 31.58, 31.24, 29.68, 29.22,
29.03, 25.86, 22.59, 22.53, 14.06. MS (MALDI-TOF, m/z): 1677.568.

2.2.6. Synthesis of PTT-2FIC
PTT-2FIC was synthesized by following the same procedures for

PTT-IC. Compound 7 (200 mg, 0.15 mmol) and 5,6-difluoro-1,1-di-
cyanomethylene-3-indanone (2FIC, 208 mg, 0.90 mmol) were used as
starting materials. PTT-2FIC was obtained as a blue-black solid (237 mg,
90%). 1H NMR (CDCl3, 500 MHz, δ/ppm): 8.74 (s, 2H), 8.49 (dd,
J = 9.8, 6.5 Hz, 2H), 8.20 (s, 2H), 7.60 (t, J = 7.5 Hz, 2H), 7.12 (s,
2H), 7.10 (br, 16H), 4.07 (t, J = 6.5 Hz, 4H), 2.58 (t, J = 7.6 Hz, 8H),
1.94–1.88 (m, 4H), 1.61–1.56 (m, 8H), 1.54–1.49 (m, 4H), 1.37–1.23
(m, 32H), 0.95–0.92 (m, 6H), 0.84–0.81 (m, 12H). 13C NMR (CDCl3,
125 MHz, δ/ppm): 185.12, 158.67, 155.08, 153.13, 152.06, 145.07,
143.85, 142.24, 141.95, 141.00, 140.00, 138.40, 136.60, 134.59,
134.44, 129.74, 128.38, 122.86, 121.09, 117.81, 114.84, 114.67,
114.50, 114.31, 113.21, 112.46, 112.31, 69.85, 68.76, 58.28, 35.48,
31.75, 31.57, 31.30, 29.18, 29.04, 25.87, 22.60, 22.54, 14.08. MS
(MALDI-TOF, m/z): 1749.444.

3. Results and discussion

3.1. Synthesis and characterization

As shown in Scheme 1, the synthetic routes of PTT-IC and PTT-2FIC
are different from the method reported by Bo et al. [40]. Firstly, 1,5-di-
bromo-2,6-bis(hexyloxy)naphthalene (2) and 2,2'-(2,6-bis(hexy-
loxy)naphthalene-1,5-diyl)bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolane)
(3) were synthesized according to the literature [45,46]. Compound 3
was reacted with ethyl 2-bromothieno[3,2-b]thiophene-3-carboxylate
via the Suzuki coupling reaction to produce diethyl 2,2'-(2,6-bis(hexy-
loxy)naphthalene-1,5-diyl)bis(thieno[3,2-b]thiophene-3-carboxylate)
(4), which was then treated with (4-hexylphenyl)lithium to afford ter-
tiary alcohol intermediate 5. Subsequently, compound 5 was converted
to dialdehyde compound 7 via Amberlyst 15 assisted ring-closure reac-
tion and Vilsmeier-Haack formylation reaction. Finally, PTT-IC and
PTT-2FIC were obtained by Knoevenagel condensation reaction be-
tween compound 7 and end-capping group IC or 2FIC, respectively. The
intermediates and the two targeted NFAs were well characterized by 1H
NMR, 13C NMR, and MS (Figs. S1–S8). These two NFAs possess good
solubility in common organic solvents such as dichloromethane, chloro-
form, and chlorobenzene for solution process. As shown in Fig. S9,
PTT-IC and PTT-2FIC show good thermostability with decomposition
temperatures (Td, 5% wt loss) of 354 and 337 °C, respectively.

3.2. Optical properties

The ultraviolet–visible (UV–vis) absorption spectra of PTT-IC and
PTT-2FIC in chloroform solutions and as films are shown in Fig. 2a,

Scheme 1. Synthetic routes for PTT-IC and PTT-2FIC.
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Fig. 2. Absorption spectra of PTT-IC and PTT-2FIC (a), chemical structure of PBDB-T (b), and energy level diagrams (c).

with corresponding data summarized in Table 1. In dilute chloroform
solution (10−5 M), PTT-IC and PTT-2FIC exhibited good absorption in
the 600–750 nm region with absorption peak at 692 and 707 nm, re-
spectively. It is noteworthy that PTT-2FIC possessed ~50% higher mo-
lar extinction coefficient than that of PTT-IC (1.49 × 105 M−1 cm−1 vs
1.02 × 105 M−1 cm−1), which is beneficial for achieving higher exter-
nal quantum efficiency (EQE). From solution to film, PTT-IC showed
a red-shift of 18 nm with λmax of 710 nm. Interestingly, the absorp-
tion peak of PTT-2FIC was 749 nm with remarkable red-shift of 42 nm,
which suggests much better π-π stacking for higher charge carrier trans-
port. The absorption onsets of PTT-IC and PTT-2FIC are located at 786
and 836 nm, respectively. According to Egopt = 1240/λonset, the opti-
cal bandgap (Egopt) of PTT-IC and PTT-2FIC were calculated as 1.58
and 1.48 eV, respectively. Compared with PTT-IC, PTT-2FIC exhib-
ited much red-shift and much better complementary absorption spec-
trum with PBDB-T. These results all reveal that PTT-2FIC-based de-
vices could afford much higher photocurrents. In addition, the opti-
cal bandgap of PTT-2FIC is much narrower than other naphthalene
core based NFAs fusing via five-member-ring [33–35], probably due to
the extended conjugation and more effective conjugation pathway of
PTT-2FIC [44,48–51].

3.3. Electrochemical properties and theoretical calculations

As shown in Fig. 3, cyclic voltammetry (CV) was used to investi-
gate the electrochemical properties of these nonfullerene acceptors, and
all potentials were calibrated against ferrocene/ferrocenium (Fc/Fc+)
redox couple. The onset of oxidation potential (Eoxon) of PTT-IC and
PTT-2FIC were observed at 0.71 V and 0.74 V, corresponding to the
HOMO energy level at −5.51 eV and −5.54 eV, respectively. The onset
of reduction potential (Eredon) of PTT-IC and PTT-2FIC were observed
at −1.02 V and −0.93 V, corresponding to the LUMO energy level at
−3.78 eV and −3.87 eV, respectively. PTT-2FIC exhibited slightly low-
ered HOMO and much lowered LUMO energy levels, and eventually
narrower electrochemical bandgap (1.67 eV) compared to non-fluori-
nated PTT-IC (1.73 eV). These trends are also consistent well with the
optical results. The energy levels of PTT-IC and PTT-2FIC exhibited

good match with the well-known polymer donor PBDB-T (Fig. 2c),
and higher LUMO energy level of PTT-IC could endow its devices with
higher open-circuit voltage (VOC) [52–54].

Density functional theory (DFT) calculations at the B3LYP/
6-31G(d,p) level were carried out to investigate optimal geometric con-
figurations and molecular frontier orbitals for these two NFAs (Fig.
S10). There found two major conformers for PTT-IC and PTT-2FIC,
respectively, and then Boltzmann distribution calculation was further
performed [55]. As shown in Table S1, for PTT-IC, the two conform-
ers are calculated to have a population of 87.89% vs 12.11% by the
Boltzmann distribution law, the predominant PTT-ICa being 4.908 kJ/
mol (1.17 kcal/mol) lower in Gibbs free energy in gas phase than its
conformer PTT-ICb. For PTT-2FIC, the Boltzmann distribution reveals
that the predominant conformer (PTT-2FICa) takes up 95.06% and is
7.324 kJ/mol (1.75 kcal/mol) lower in Gibbs free energy in gas than
PTT-2FICb. Taken solvents such as chloroform into consideration, the
Boltzmann population of the predominant conformer will become
98.65% and 99.57% for PTT-ICa and PTT-2FICa, respectively. In both
cases, the calculated Boltzmann distribution results are consistent with
the conformational preference as evidenced by the crystal studies in
the literature [56,57]. However, the conformational effect on the cal-
culated HOMO and LUMO energies is negligible (Fig. S10). The calcu-
lated HOMO and LUMO levels at the B3LYP-D3(BJ)/6-31G(d,p) level are
−5.23/-3.14 eV and −5.35/-3.29 eV for PTT-IC and PTT-2FIC, respec-
tively, which showed the same trends with the values evaluated in the
CV measurement. Just as the reported PDT with six-member-rings [40],
PTT-IC and PTT-2FIC both exhibited similar twisted molecular confor-
mation. For both NFAs, the HOMOs are mostly localized on the elec-
tron-donating units, while the LUMOs are delocalized on the terminal
electron-withdrawing units, suggesting effective ICT effect [58].

TD-DFT calculation based on the optimized molecular geometries at
the CAM-B3LYP-D3(BJ)/6-31G(d,p) level suggests the lowest excitations
from the ground state (S0) to the excited state (S1) correspond to π-π*
transitions and are all a consequence of combined contributions from
several pairs of molecular orbitals, with around 70% dominated by the
HOMO→LUMO transitions (Table S2). As shown in Table S3, elec-
tron-hole analysis of the transitions from the ground state to the ex-
cited states reveals that these NFAs feature high overlap of well distrib

Table 1
Optical and electrochemical properties of PTT-IC and PTT-2FIC.

NFAs λsol [nm] λfilm [nm] λonset [nm] Eg opt [eV] a Eox on [V] Ered on [V] HOMO [eV] b LUMO [eV] b HOMO [eV] c LUMO [eV] c

PTT-IC 692 710 786 1.58 0.71 −1.02 −5.51 −3.78 −5.23 −3.14
PTT-2FIC 707 749 836 1.48 0.74 −0.93 −5.54 −3.87 −5.35 −3.29

a Eg opt = 1240/λonset.
b HOMO = -(Eox on + 4.8) eV, LUMO = -(Ered on + 4.8) eV.
c Calculated from DFT.
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Fig. 3. Cyclic voltammograms of PTT-IC and PTT-2FIC measured in 0.1 M Bu4NPF6 ace-
tonitrile solution at a scan rate of 100 mV/s.

uted holes and electrons of the transitions, where the S0→S1 transitions
have the highest oscillator strengths compared to other transitions of the
same systems. The excited-state vertical transition energies show similar
trends to the HOMO-LUMO gaps. That is to say, the introduction of fluo-
rine atoms on the NFA molecules led to lowered HOMO and much low-
ered LUMO energy levels, therefore also resulting in narrower bandgaps,
as many other reported fluorinated NFAs [5,8].

3.4. Photovoltaic properties

In order to investigate the photovoltaic performance of PTT-IC and
PTT-2FIC, OSCs with a configuration of ITO/PEDOT:PSS/Active layer/
PFN-Br/Al were fabricated, and the widely used polymer PBDB-T was
chosen as electron donor material for the above-mentioned reasons. Un-
der an illumination of AM 1.5 G (100 mW/cm2), PBDB-T:PTT-IC cells
exhibited a PCE of 7.39%, with a VOC of 0.99 V, a JSC of 12.58 mA/
cm2 and a fill factor (FF) of 0.59 (Fig. 4a and Table 2). Meanwhile,
solar cells using PBDB-T:PTT-2FIC as the active layer achieved a bet-
ter PCE of 10.40%, with a VOC of 0.87 V, and a FF of 0.65, and a
much higher JSC of 18.26 mA/cm2. As far as we know, this PCE is
among the highest value for OSCs based on naphthalene-core NFAs.
The high VOC of 0.99 V for PBDB-T:PTT-IC cells could originate from
the higher LUMO energy level, as VOC is roughly proportional to the
difference between the HOMO energy levels of the donor material
(PBDB-T) and the LUMO energy levels of the acceptor materials (PTT-

IC or PTT-2FIC) [52]. The photocurrent density versus effective volt-
age (Jph-Veff) curves (Fig. S11) showed that under short-circuit con-
dition, the exciton dissociation efficiency of PBDB-T:PTT-IC and
PBDB-T:PTT-2FIC solar cells are 94% and 96%, respectively. These
results were consistent with the higher JSC in OSCs based on
PBDB-T:PTT-2FIC.

PBDB-T:PTT-2FIC cell showed ~50% higher JSC than that of
PBDB-T:PTT-IC cells, which was confirmed by the EQE. As shown in
Fig. 4b, PBDB-T:PTT-2FIC cell possessed ~10% higher and ~50 nm
broader EQE response than that of PBDB-T:PTT-IC cell, consisting well
with the absorption spectra of blend films (Fig. S12). The EQE spec-
tra exhibited obvious peaks at ~710 nm for PBDB-T:PTT-IC cell and
~760 nm for PBDB-T:PTT-2FIC cell, which are consistent with the ab-
sorption of PTT-IC and PTT-2FIC, respectively. The integrated currents
from EQE spectra are 10.42 and 15.40 mA/cm2 for these two cells, and
these values agree well with those from J-V measurements.

3.5. PL quenching

Steady-state photoluminescence (PL) measurements were taken to
study charge transfer between donors and acceptors, and the PL spec-
tra (excited at 532 nm) are shown in Fig. 5 and Fig. S13. For the
PL spectra of films of pure donor and its blend films with the two
NFAs (PTT-IC and PTT-2FIC), PBDB-T alone shows a broad emission
between 680 and 750 nm, then was almost quenched to 63% and 42%
of its original emission when mixing with PTT-IC and PTT-2FIC, re-
spectively. This clearly indicates efficient charge transfer from PBDB-T
to these NFAs. However, comparing with the quenching ratio of ei-
ther 98% or 92% for PTT-IC or PTT-2FIC, such significant inefficient
quenching strongly indicates effective energy transfer from the donor
PBDB-T to the two acceptors in their respective blend films, which
can be primarily confirmed by the effective overlapping between the
strong emission of PBDB-T (680–750 nm) and the predominant absorp-
tion of either PTT-IC or PTT-2FIC (550–800 nm or 600–850 nm) [59].
The PL of PTT-IC and PTT-2FIC films show emission peaks at 800 nm
and 825 nm, respectively. Compared to the PL spectra of pristine ac-
ceptor films, PBDB-T:PTT-2FIC exhibits nearly complete PL quenching
(98%), suggesting a good mixture between donor and acceptor and ef-
ficient charge transfer at PBDB-T:PTT-2FIC interface, while reduced PL
quenching efficiency was observed in PBDB-T:PTT-IC blend [60,61].

Fig. 4. J-V curves (a) and EQE spectra (b) of PBDB-T:NFA solar cells.

Table 2
Photovoltaic performance of PBDB-T:NFA solar cells.

Active layer Voc [V] Jsc [mA/cm 2] FF PCE [%]

PBDB-T:PTT-IC 0.99 (0.99 ± 0.01) 12.58 (12.72 ± 0.15) 0.59 (0.56 ± 0.03) 7.39 (7.10 ± 0.29)
PBDB-T:PTT-2FIC 0.87 (0.87 ± 0.01) 18.26 (17.87 ± 0.38) 0.65 (0.64 ± 0.01) 10.40 (9.98 ± 0.42)

a The averaged values of device parameters with standards deviation from ~10 cells are included in parentheses.
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Fig. 5. PL spectra (excitation wavelength of 532 nm) of pure PTT-IC and blend film (a) and pure PTT-2FIC and blend film (b).

The incomplete PL quenching (92%) is consistent with the smaller JSC in
PBDB-T:PTT-IC device and larger phase size in corresponding morphol-
ogy.

3.6. Mobilities and morphology

We also used the space-charge limited current (SCLC) method to
investigate the reasons for the better photovoltaic performance of
PBDB-T:PTT-2FIC cell (Fig. S14). It was found that PBDB-T:PTT-2FIC
based devices exhibited the hole and electron mobilities of 6.62 × 10−4

and 6.69 × 10−4 cm2 V−1 s−1, respectively. While, the hole and elec-
tron mobilities of PBDB-T:PTT-IC blend film were just 1.09 × 10−4 and
4.68 × 10−5 cm2 V−1 s−1. The much higher and balanced charge carrier
mobilities could contribute to the higher JSC and FF for the correspond-
ing PBDB-T:PTT-2FIC cell [62–64].

As shown in Fig. 6, atomic force microscopy (AFM) was used to
study the morphology of the blend films. When compared with
PBDB-T:PTT-IC blend films with root mean square (RMS) roughness
of 3.69 nm, PBDB-T:PTT-2FIC film present finer nano-sized domains
and smoother surface with the reduced RMS roughness of 2.10 nm for
slightly shorter fibrils. Moreover, the smaller domain size as indicated
in PBDB-T:PTT-2FIC film are beneficial for charge separation and thus
higher photocurrents [52,53], therefore, enhanced photovoltaic perfor-
mance for PBDB-T:PTT-2FIC cell can be expected.

4. Conclusions

In conclusion, we have developed an octacyclic core unit dihy-
dropyrenobisthieno[3,2-b]thiophene by fusing thieno[3,2-b]thiophenes
at the bay position of naphthalene via two six-member-ring connection.
When combined with electron withdrawing moieties IC or 2FIC, two

NFAs PTT-IC and PTT-2FIC have been synthesized, respectively.
Non-fluorinated PTT-IC possessed an Egopt of 1.58 eV. Meanwhile, fluo-
rinated PTT-2FIC exhibited narrower Egopt of 1.48 eV, better intermol-
ecular stacking. Furthermore, the higher and balanced hole and elec-
tron mobilities, and optimized morphology of the PBDB-T:PTT-2FIC
blend film endowed corresponding OSCs with enhanced photocurrent of
18.26 mA/cm2 and higher FF of 0.65, thus resulting in a much higher
PCE of 10.40%. In contrast, the control devices based on PBDB-T:PTT-IC
just achieved a PCE of 7.39%. Our results demonstrated that naphtha-
lene fused with thieno[3,2-b]thipohenes via six-member-ring connection
as donor core for NFAs is a promising strategy to develop efficient NFAs
and worth for further investigation.
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