

Linköping’s university/Linköping University | IDA/Department of Computer and information
Science Bachelor thesis 16 hp | Educational Program: Högskoleingenjör i Datateknik Spring term
2020 | 9-IDA/LITH-EX-G—20/077--SE

Developing a web-application for
collecting conversations in Lab Rooms

Saleh Salim Jaffer Ali Mousa

Tutor, Erik Berglund

Examiner, Sahand Sadjadee

© Jaffer Ali Mousa

© Saleh Salim

Upphovsrätt
Detta dokument hålls tillgängligt på Internet – eller dess framtida ersättare – under 25 år från
publiceringsdatum under förutsättning att inga extraordinära omständigheter uppstår.

Tillgång till dokumentet innebär tillstånd för var och en att läsa, ladda ner, skriva ut enstaka kopior för

enskilt bruk och att använda det oförändrat för ickekommersiell forskning och för undervisning.

Överföring av upphovsrätten vid en senare tidpunkt kan inte upphäva detta tillstånd. All annan

användning av dokumentet kräver upphovsmannens medgivande. För att garantera äktheten, säkerheten

och tillgängligheten finns lösningar av teknisk och administrativ art.

Upphovsmannens ideella rätt innefattar rätt att bli nämnd som upphovsman i den omfattning som
god sed kräver vid användning av dokumentet på ovan beskrivna sätt samt skydd mot att dokumentet

ändras eller presenteras i sådan form eller i sådant sammanhang som är kränkande för upphovsmannens

litterära eller konstnärliga anseende eller egenart.

För ytterligare information om Linköping University Electronic Press se förlagets hemsida

https://ep.liu.se/ .

Copyright
The publishers will keep this document online on the Internet – or its possible replacement – for a period

of 25 years starting from the date of publication barring exceptional circumstances.

The online availability of the document implies permanent permission for anyone to read, to

download, or to print out single copies for his/hers own use and to use it unchanged for non-commercial

research and educational purpose. Subsequent transfers of copyright cannot revoke this permission. All
other uses of the document are conditional upon the consent of the copyright owner. The publisher has

taken technical and administrative measures to assure authenticity, security and accessibility.

According to intellectual property law the author has the right to be mentioned when his/her work is

accessed as described above and to be protected against infringement.

For additional information about the Linköping University Electronic Press and its procedures for

publication and for assurance of document integrity, please refer to its www home page:
https://ep.liu.se/.

© Jaffer Ali Mousa

© Saleh Salim

ii

Abstract

https://ep.liu.se/
https://ep.liu.se/
https://ep.liu.se/
https://ep.liu.se/

iii

During each lab session at Linköping University, it is common that teachers available in the lab rooms are

asked questions about different topics. Each conversation contains the asked question and the answer

given to the question. Unfortunately, it is only the participants in the conversation who benefit from it

even though there can be others who are interested in the content of it.

This thesis will therefore explain how to create a SPA web application which can be used by a lab assistant

in the lab rooms to record each conversation and store it as text in a database. The system that is being
designed and developed is a web-based speech-text system. A database is going to be used to store the

text that we have converted from speech. These texts can be downloaded to a mobile device via a web

application. This thesis will also describe how to make the web app as effective as possible by observing
the performance metrics of the app.

v

Acknowledgement

We want to thank our supervisor for all the help.

And we want to thank everybody that have had anything to do with this work.

vii

Table of Content

1. Introduction .. 8

1.1 Background ... 8

1.2 Problem ... 9

1.3 Purpose and Reaseach Issues ... 9

1.4 Knowledge Stakeholders ... 9

1.5 Disposition .. 10

2. Theory and Related work ... 11

2.1 Front-End Optimization .. 11

2.2 HTTP Optimization .. 11

2.3 Cache Optimization ...

11

 2.4 Code Optimization .. 12

2.2.1 HTML Optimization ... 12

2.2.2 CSS Optimization ... 12

2.2.3 JavaScript Optimization ..

12

2.5 Code Splitting .. 13

2.6 Render-blocking ..

13 2.7 Minify
.. 13

2.8 Web Performance ... 14

2.8.1 Stress Test ... 14

2.8.2 Load Test ... 14

2.8.3 Strength Test ... 14

3. Method ... 14

3.1 Implementation .. 14

3.1.1 Documentation ... 15

3.1.2 Choice of test environment ... 15

3.2 Client ... 15

3.2.1 Implementation In HTML .. 15

3.2.2 JavaScript File ... 17

3.3 Server .. 17

3.3.1 Database ... 18

 ... xviii

5. Discussion .. 25

5.1 Method .. 25
5.2 Discussion .. 25
5.3 Source Criticism ... 27

6. Conclusion ... 27

7. Reference List .. 30

3.4 Measurements .. 18

3.4.1 Method for recommended performance techniques ..

19

3.4.2 Code optimization ...

19

4. Result .. 19

viii

4.1 Performance Metrics .. 19

4.2 Speech Conversation Test ...
20 4.3 Sound Level Test

... 22

4.4 Background Sound .. 22

4.5 Sound Distance Test .. 23

1. Introduction

Web applications have increased in popularity and use over the past decade. This is largely because
nowadays, it is so easy to enrich their web applications with pictures, games, videos, and more.
Along with bigger and nicer web applications follow a negative part with, namely the size of the web
application. The consequence of greater Web applications are the negative impact on performance
and the more performance is affected the longer it takes for the web application to load the page for
the user, especially on for example, a bad network. This is not something that is coveted by users
who over time have has grown to expect good performance from web applications. We will focus on
creating a great web application with great performance.

1.1 Background

Computerized systems that communicate over the Internet are today a common, and growing

solution in modern companies to streamline their enterprise. A common structure of such a
web system is where the company's data is stored centrally in databases and then made

available to the company's employees through software installed on a web server. This type

of system uses a so-called Service Oriented Architecture (SOA), also known as "cloud
computing", where the installed software on the server is called a web service and contains

functionality to retrieve data from the databases.

Web services can also be used directly by other software systems to form large complex web
systems that have access to the same data. [22] Hendrick writes in an article about the

relevance of the SOA system: “The reality is that IT is during a very significant transition from

software to services. This transition is occurring because of architectural, technological, and
business model changes that are designed to expand and enhance the role of IT within the

enterprise. This transition from software to services is the next step in the evolution of SOA

and provides confirmation that the principles behind SOA are sound and remain relevant in
light of the changes occurring in IT. "

The degree project involves developing an IT artifact consisting of such a web system as

described above. The system will, in successful implementation, be used by LIU in another

project where the need for the development of such a system exists.

ix

1.2 Problem

The system to be designed and developed is a web-based speech recognition system. The system will
be able to record and then convert the recordings to text. This will be used by the lab assistant
during labs in Linköping’s university. A database should be used to save the text.

These texts should be downloadable to a mobile device via a web service. The user should be able to

save and delete a text. There will also be search features in the app where u can search for

conversations based on what course the recording was made.

For the implementation of this project, knowledge needs to be obtained in areas such as:

• Database

• Performance metrics

• Web Services

1.3 Purpose and Reaseach Issues

The purpose of the thesis is to describe the development process of the system. It shall describe the

course of how the knowledge needs are met through research in the relevant areas of the research

questions. It also describes how the research results are used to select appropriate techniques and

tools to create a design that can be implemented in the creation of the IT artifact in the best effective
way. issue:

o How can a web-based speech recognition system be developed to reach higher performance?

The following visions is expected by Linköping university:

• SPA Web application that is as effective as possible

• Search engine that allows the user to search for the following Search Phrase, Course

Code, and date

• An effective database

• An effective server

• Should have a Reliability and availability in case of slow internet connection.

• Mobile-view compatible

1.4 Knowledge Stakeholders

x

The main knowledge stakeholder is Linköping’s university, since the thesis work is carried out

under the auspices of them. The author of the project is Sahand Sadjadee, who also acted as
project manager and has compiled the requirements specification for the system. Interest lies in

the techniques and tools used during the development of the IT artifact. Upon successful
implementation of the project, the system as a whole or parts can be used in future projects at

Linköping’s University.

1.5 Disposition
The second chapter includes the method section, where the research methods are presented.
The third chapter contains the theory that the research work deals with. Chapter four presents

the empiricism based on the research from Chapter Three. Chapter five is the concluding part of
the essay where conclusions and reflections are made on how far the work has succeeded or

not.

xi

2. Theory and Related work

To get a better understanding of what can prevent a web application from having a good one

performance, a deeper understanding of web development optimization must be gained. This chapter

presents the techniques and design choices to be used to make one optimized web application. It

includes a list of concepts containing a variety of tools and techniques relevant to the development of

this type of web system. After reading the theory chapter, you as a reader should know that the
question is both well formulated and relevant. This chapter will contain theory that is useful for the

study we are going to do. This applies to both technology and method. We will focus on the

Optimization and on the web testing of the web application.

2.1 Front-End Optimization

When talking about front-end optimization, we talk about a process of refining the website to get to

render the pages faster, to make it more user-friendly so that the user does not have to wait. This

process means to reduce the size of the application files, remove the unnecessary code and minimize

the number of files that needs to be downloaded for the page to be displayed for the user. The

optimization can be done in several ways, which technique or techniques are used varies from page

to page. Below are the most common techniques presented that you use when you want to optimize

the front-end.

2.2 HTTP Optimization

Every time you visit a website for the first time, the visitors must download all the resources instead

of load them through a browsers cache. Reducing the number of HTTP requests is common techniques

to get an optimized page. Every video, image, script, and stylesheet that is available results in a HTTP

request from the browser to the server. As more request are being made the more time it takes for

the page to render.

The loading time only gets worse the more users that use the page. Another reason why the HTTP

request may slow down the performance of the page is that the files of the page is too large. The larger

the files, the longer HTTP requests must be made. How to solve poor performance due to HTTP request

can be done in many ways the most common method is to use tools such as Wireshark, to get a better

overview over how many HTTP request are made and how long it takes [1][2].

2.3 Cache Optimization

The Cache is used to store information such as HTTP request between client and server.

With the optimization of the cache, you can reduce the data exchange that takes place between the

client and the server. This can improve the performance of the web application. The downloaded

components are stored in the browser cache and the browser reads from the cache to reduce HTTP

xii

requests. [4] Expires header is an approach where the webserver communicates with the client and

says that if used, leading to a reduction in HTTP requests. [5] [6]

2.4 Code Optimization

To be able to make a website in the first place, an HTML document is needed which is a language for

describing the structure of a web page. HTML can be said to be the base of a website. To make the

presentation better CSS is used, which is a language that describes the presentation style. When you

then want to make the website a little more interactive with the users, JavaScript comes into the
picture. All these languages are necessary to make a working website. But if no structure is followed

and a lot of duplicate code is written then this will affect the performance of the website. Writing code

with structure that is divided into several files is not just about doing it more readable but also to help
the performance of the web page.

 2.4.1 HTML Optimization

HTML [7] stands for Hypertext Markup Language and is a markup language. HTML is a critical part of

the web application and its performance. When a web page is updated, HTML documents will be

reloaded. If the documents are very large, then it will slow down the whole process of retrieving the

data [8]. This is because the HTTP request are very long or many if there are many documents that

need to be reloaded, as described in section 2.2. It is also good to think about where in the code you

implement you CSS stylesheet and JavaScript. Including your CSS stylesheet at the top of the HTML
document, in the header tag, facilitates progressive rendering. With the help of progressive rendering,

you give the browser a head starts in downloading all the necessary pieces of the webpage. Without

progressive rendering users can experience the loading time as tough as you only get a blank image

while the webpage is loading [9].

 2.4.2 CSS Optimization

CSS [7] stands for Cascading Style Sheets and is as previously mentioned to help with the presentation
of the website. The Easiest way to optimize CSS is to minimize, do more compact and split the CSS

files. This means deleting duplicates of code, delete white characters and divide the files into different

stylesheets. Use of CSS expressions, that is JavaScript implemented in CSS property can be very heavy

for the performance of the webpage when these expressions are run each time the page is scrolled up

or down. Even when something as simple as moving the mouse the CSS expressions is being run

thousands of times.

2.4.3 JavaScript Optimization

Almost all web applications use JavaScript to make the pages more dynamic and user-friendly.

Writing good JavaScript code is important not only to optimize the web page but also because the

things the user does on the web page to get a smoother experience. Such as waiting for a slider to

arrive when you press a button. The first step that should be done is to implement the JavaScript at
the end of the HTML document. If the JavaScript were to be implemented at the top of the HTML

document the download process will be blocked for the HTML and CSS element. This Results in a blank

xiii

page while everything is loading, instead of a page being loaded progressively. If you have too many

packages and other code that must be downloaded it will be a slower experience for the user as
JavaScript can delay the interactive part with the interface. This only gets worse with one bad network

connection. This can be greatly reduced by using code splitting (See section 2.5) and compressing the
files. [10]

 2.5 Code Splitting
Code Splitting is a method to split all JavaScript’s files into several small packages so one large package

does not need to be downloaded. Reason to do this is to avoid downloading JavaScript which is not
used to the current page displayed to the user. For example, if the user is sitting with the login page

then you will only need the JavaScript to integrate with the page. But many modern sites do that when
you are on the login page, they download the whole webpage and not only the login page. This is

something that is not necessary at all and something that just slows down the performance of the web

page. It is even worse especially for mobiles that have a little worse performance and a bad network

connection. Code splitting can be done as follows [11].

• Vendor Splitting: Separates vendor code from the code that is contained in the application.

This hinders the negative performance that may occur in case of invalid cache for returning
visitors when either vendor or the ap code changes. This is something that should be

implemented by every application.

• Entry Point Splitting: Separates code by looking at entry points, that is where scripts for

various tools such as webpack or parcel start. Works best for applications that do not use

client-side routing.

• Dynamic splitting: Is the separation of code where dynamic “import ()” is used. This is best to

implement for single page applications.

2.6 Render-blocking

Render blocking is a problem where the rendering of the web page is blocked. Some of the most

common errors are to include JavaScript in the header tag of the HTML document. What happens is

that the rendering of the webpage is stopped to execute the JavaScript. This is not necessary; the script
is something that can be downloaded after the page itself has finished loading. Therefore, it is best to

include the JavaScript at the end of the body tag or in the footer tag. Same applies with CSS /
stylesheets, if the disabled attribute is active only when the page is to be rendered does not download

browser stylesheets. This attribute can be set to false after the webpage is preloaded to avoid render

blocking.

2.7 Minify
Minify JavaScript means reducing the size of the JavaScript files and thus, speed up the rendering of
the web page. To achieve this, there are two common techniques that are usually followed. The first

technology is called Minification which is to remove all white characters and code that is not necessary,

this to make a smaller JavaScript file. One compression tool can be used to help with this. The Second
Data Technology compression means compressing the code using tools that use compression

algorithms, some tools that are good for this are Gzip [10].

xiv

2.8 Web Performance
We need to look at the performance factors to be able to implement the application in the right way.

To be able to answer our research question.

Our primary purpose with the testing is to find failures in the application. Web Performance testing

generally can be divided into three types: stress testing, load testing and strength test. Each test using

the same script, testing tool, and environment, but different testing time intervals [1].

2.8.1 Stress Test

Stress testing is a technique used to determine whether a system under study meets its performance

objectives. It involves emulating the request patterns of real users of a system within a controlled

environment. The workloads used in such tests, called synthetic workloads, are intended to mimic a

range of workload conditions including those observed at real systems. Performance measurements

such as user response times and server utilizations are collected during the tests and used to support

sizing, capacity planning, and service level management exercises [2].

2.8.2 Load Test

Web application load testing is an important part of web performance engineering. Load testing

measures the response time, throughput, and availability of a target website from a client’s

perspective (usually a web browser). Loading test is made by degrees increasing the load, testing the
changes in system performance [4].

2.8.3 Strength Test

Strength test is a longer interval load test or stress test. Unlike other tests is that the weight-bearing

or tension testing interval of only tens of seconds to maintain the strength test should be delayed a

few hours or even days. Strength testing often finds some inexplicable errors. For example, memory
leaks, that is, memories, rollback segments exist in the database transaction were not submitted, or

have a cumulative impact on system resources, errors and so on [5].

3. Method
This chapter describes how the group has gone about developing the product. Here, the structure of

the development is described, which includes the creation of the server, Database and User interface.

 3.1 Implementation

We made a sketch of the system's database through ER diagrams and table sketches. The system we
had outlined did not require any complicated database to work, which meant that the table sketch

was simple to create. We used SQLite because it is the most used database engine in the world. SQLite

is a C-language library that implements a small, fast, self-contained, high-reliability, full featured, SQL
database engine. SQLite is included all mobile phones and most computers and comes bundled inside

countless other applications that people use every day.[25]

We then started to create a code skeleton of the system to get the page navigation to work as we

wanted and to get the correct file structure and structure overall before we started to implement all

xv

the functionality. This also enabled us to work in parallel with the system to streamline work and

quickly get a grasp of the system's functionality. We had a picture of what the system would technically
be able to do, so we focused on implementing as much of the functional requirements as we could

before we started on the graphic piece.

The web application was implemented using previous experiences from the course TDDD97 Web

programming at Linköping University. The application was based on the same structure. Further
information needed during implementation was obtained from guides on the website

www.W3Schools.com. The website has documentation and tutorials for both Html, CSS, JavaScript,

and database storage.

One of the requirements placed on the system was that it should be efficient and achieve great

performance as possible, which meant that we spent a lot of time meeting these criteria. We focused
on a simple flow in the system and its functionality. The visual communication that the system requires

to achieve this was a big part of what we worked with after we had been able to implement the
functional requirements. We designed the graphical interface as simple as possible to achieve great

performance. Throughout the implementation phase, our focus was on what could be streamlined and

refined in the code as well as the implementation to achieve the best performance.

 3.1.1 Documentation

When making a project of larger scale it is important to have a good structure on the files and
documents you create and use. Logs, programming files and design documents are some of the

documents we have worked on jointly. Since we have been two people in our degree project, smooth

file sharing has been extra important, and we have used our help Google Drive cloud service. Google

Drive is a free Google service where you can create and share folders, Google documents, files, and

drawings with a Google account. A very useful service in the tool is that you can sit at one time and

edit in a document from different computers. This service has been a great asset to us throughout the

project, from start to finish.

 3.1.2 Choice of test environment

To check the performance of a test environment, built-in tools in browsers can be used. The most
popular tools for this are FireFox Developer Tools available in Firefox and DevTools such as
available in Google Chrome. To be able to answer which tool works best for just this purpose, a
deep dive was performed in the various functions found in the tools.

 3.2 Client
The client page in a web application is the visual in the browser that the user integrates with. The

interface is made with HTML which is the global standard. The programming was made the structure

of HTML while visual choices such as colors and sizes object in a separate CSS file. To make a web

application dynamic, so that something happens if you press more buttons for example, you need to

use a front-end program language. For this purpose, we have selected JavaScript. To communicate

with the server side, the JavaScript object is used XMLhttprequest, which allows us to retrieve and

send data to the server without having to load about the page.

 3.2.1 Implementation In HTML

The only HTML-document that have been created is “static/index.html”, that contains two main views.

The first needs to identify the document type for the web browser to translate it. It can simply be done

using html tag like following:

xvi

<!DOCTYPE html>

…

</html>

All html code lies between these two lines. The code starts directly after declaring the document type

by using the head element. The head element is used to declare a title, document encoding and the

location for the resources.

 <head>

• Title

• Encoding

• Resources

 </head>

The head-element is then followed by the actual structure of the page (body-element). The body

element declares the content of the page, the views, and tabs etc.

We have decided to make two different views that can be selected depending on what functions the

user need. The views are simple div elements with specific content.

• Home-view: Has the necessary content that converts the speech to text

and saves it.

In this page (tab) the user can convert a speech to text or type in the text directly to store it. The user

has also to type in course name for the text to be saved. The start button starts listening to the user

xvii

and converting the speech, pause button pauses the listening process and the save button saves the

conversation.

• Search-view: Has the necessary content to search the saved notes.

The second page enables the user to search for stored conversations. The user can search for notes by

date, word and/or course name. The notes can be searched by combining the several search inputs or

using only one.

When the user searches for notes, each note is shown like above. First the course name is shown

followed by the date followed by two buttons, lastly the note is displayed in a new line. The buttons

provide two functions, reading the note or delete it.

 3.2.2 JavaScript File

The speech to text conversion occurs mainly on client side, and the code is created in “static/script.js”.

The speech recognition API is limited to chrome and has a prefixed interface that is included in the
code.

 3.3 Server

xviii

When choosing programming languages on the server side, there were several good alternatives to

choose from, Python, PHP, C++, and Java are some of the most popular back-end languages used
today. After having compared the programming languages, Python was chosen. As a hallmark, Python

has a very clear and readable code, the language is common so there are plenty of resources to learn
and we both have previous experiences with it. To save data in our web application, a database

manager was required. Given that the size of the company and the function of the product, we realized

that the type of database manager would not have a major impact on the performance of the web
application. We evaluated both the database managers SQLite and MySQL, of which we then decided

on SQLite. SQLite is the most used database manager and was preferred over MySQL when making an

application like ours.

 3.3.1 Database

A little information about the database. The notes are being stored in a server after being converted

to text. Active communication between the server and user interface is needed to be able to store the

notes or delete them. The communication between the user interface and database occurs manly in

the JavaScript file and is done by using XMLHttp-Requests.

A database contains different types of data that are in some way related to each other. The database

consists of tables and the tables in turn consist of columns and rows. Each row is assigned one data

type depending on what needs to be stored.

To work with the database, a connection must be established by a function.

Once the connection is established, the database can be used to store data and manipulate it by using

some internal commands provided by the database itself like SELECT, INSERT, DELETE and other

commands.

 3.4 Measurements
The application has been measured on two devices, a Samsung galaxy S7 (android phone) and a

custom-made (Windows 10 PC) with Ryzen 5 2600 (6 core 12 thread) CPU. Both devices have been

provided with the same internet connection. The devices have different internet adapters, which in

turn gives different speed despite having the same internet connection.

The application is run on the latest version of the chrome version 85.0.4183.102 for the PC and

85.0.4183.101 for the android phone. Google Chrome has built in tools that is used to measure the

performance of the application.

We also used DevTools that is provided by google to complete the measurements. The measured

values that we look for are the following:

● First Content Paint (FCP). This parameter checks how long it takes before the first

the image or text is displayed on the website.

● Speed Index. This parameter measures how quickly the page content is displayed
on the website below page load.

● Time to Interactive (TTI). This parameter checks how long it takes before the
website is fully interactive.

● First Meaningful Paint (FMP). The parameter measures how fast the primary
content appears on the page. Since this parameter is so like FCP, this parameter is not used.
18

xix

● First CPU Idle (FCI). This parameter measures how long it takes a website to

become minimally interactive. For example, when most of all UI elements are interactive.

● First Input Delay (FID). This parameter measures the time between the first

interaction and the time it takes the browser to respond to this interaction.

The data also shows information about changes that can be implemented as potentially possible
increase the performance of the website. Some of the changes that came after running tests on
the web application was to eliminate render-blocking resources, Minify JavaScript, Pre connect to
required origins. Below are methods presented to try to tackle these problems. Then a little
deeper diving will take place where more general methods to improve the front-end
performance.

3.4.1 Method for recommended performance techniques

To solve the problem of render-blocking resources, it will first be looked at if

Inclusions with JavaScript and CSS templates and stylesheets are done correctly. It means that
JavaScript is included at the end of the body tag or in the footer tag and that stylesheets have one

disabled attribute that changes to true only when the web page has finished rendering [21]. What will

be checked here is to check in the JavaScript and if there is a possibility for to make the code smaller

by minification. [16]

To know if Pre connect to required origins is worth implementing, each must resource
priority is carefully checked. This is to avoid problems such as wasted time with one
connection or to download a resource twice double-fetching.

3.4.2 Code optimization

After checking out tips on improvements released by DevTools, we checked the web

application on the more general techniques to increase the performance of

web applications. This then means that the code must be examined for potential optimization, if
cache optimization is used and if code splitting is implemented. What to look for is how the
passcode uses the methods presented in section 2.4 “Optimizing codes”.
When it comes to Cache optimization, it should be examined whether the expire header is used and if
not used, how can this be implemented. Finally, an investigation into code splitting will be done. It will

be checked if it is used and if so how.

4. Result
This chapter describes the results that came up by performing the methods presented in Chapter
3. The results will be presented in sections, one section for each technology that has examined.

 4.1 Performance Metrics

We have produced a few data that shows the difference between the speed from the application while
it performs some of the functions in the app. Both with a mobile device and a computer. We in this

section measure load speed.[4]

xx

 o Mobile-device (same internet connection) PC-device (235 MB/S

Internet speed) (116 MB/S Internet speed)

 4.2 Speech Conversation Test

0

, 5 0

1

5 , 1

2

5 , 2

first content paint speed index time to interactive

Google DevTools test (seconds)

mobile device PC device

0

20

40

60

80

100

120

140

160

180

page refresh input latency post voice
message

post text
message

search messages delete message

speed test in chrome (ms)

mobile device PC device

xxi

Here we want to try how our speech-text engine was working so we performed a test where we see

how well the engine converts the words you say to text. We tried to test the accuracy of 10 different
sentences in both English and in Swedish.

 The following sentences were spoken in Swedish

• Jag behöver hjälp.

• Hur kan man klara den här uppgiften.

• Kan du förklara vad den här innebär.

• Jag undrar vad menas med detta.

• Vilka krav har den här uppgiften.

• Vi glömde våra väskor på busstationen.

• Jag tycker det är svårt.

• Hur ska ja tillväga.

• För länge sedan fanns en stad som heter Linköping.

• I förrgår såg jag min favorit och som börjar på TV.

The Application converted these Swedish sentences as following:

• Jag behöver hjälp.

• Hur kan man klara av den häruppgiften?

• Kan du förklara vad det här innebär?

• Jag undrar vad som menas med detta?

• Vilka krav har den här uppgiften?

• Vi glömde våra väskor på busstationen.

• Jag tycker det är svårt. o Hur ska ja gå tillväga?

• För länge sen fanns det en stad som heter Linköping.

• I förrgår såg jag min favorit popsångerska på tv.

 •

The same sentences where translated to English to measure accuracy.

• I need help.

• How can I finish this task?

• Can you explain what this means?

• What conditions does this task have?

• We forgot our bags at the bus station.

• I think it is hard. o How should I approach it?

• A long time ago there was a city called Linköping.

• The day before yesterday I watched my favorite pop singer on TV.

The Application converted these English sentences as following:

• I need help o How can I Finish This task?

• Can you explain what this means?

• What conditions Does this has had.

• Reaper got our bags at the bus station.

• I think it is hard.

• How should I approach it? o

xxii

• a long time ago I was a City called Linköping.

• The Day Before Yesterday I watch my favorite pop singer on TV.

The following misunderstanding occurred in Swedish:

What was said What the application converted to.

Kan du förklara vad det här innebär? Kan du förklara vad den här innebär.

Hur ska ja gå tillväga? Hur ska ja tillväga.

I förrgårsåg jag min favorit popsångerska på tv. I förrgår såg jag min favorit och som börjar på TV.

And in English the following errors occurred:

What conditions does this task have? What conditions Does this has had.

We forgot our bags at the bus station Reaper got our bags at the bus station.

 4.3 Sound Level Test
As we described we are going to test the decibel level of your voice for the microphone to be able to

recognize the words that are coming out of your mouth.

conversation

30 db whisper Voice not recognized

35 db Voice not recognized

40 db Voice not recognized

45 db Voice not recognized

50 db (conversation with low voice) Voice recognized

55 db Voice recognized

60 db (normal conversation) Voice recognized

>60 db Voice recognized

 4.4 Background Sound
We started a recording of a conversation in a speaker in the background and tried to see how well the

application was able to convert our conversation without it being affected by the background noise.

xxiii

Background noise

30 db whisper No effect

35 db No effect

40 db Small disruption

45 db Small disruption

50 db (conversation with low voice) Noticeable disruption

55 db High disruption

60 db (normal conversation) Total disruption

>60 db Total disruption

 4.5 Sound Distance Test

In previous test we focused on the decibel level for how the background noise effects the application.

But how far away can you stand from the mobile device or the computer for the application to be able

to understand you. We used our mobile device to record and started to see how far away we were

able to stand until the application started to misunderstand us.

Voice recognition at normal conversation (60

db)

180 cm Voice not recognized

175 cm Small recognition

170 cm Small recognition

165 cm Mostly recognized

160 cm Recognized

155 cm Recognized

150 cm Recognized

>145 cm Recognized

25

5. Discussion
This project resulted in a fully functional web-application that converts speech to text and stores the

conversation in a database. The application gives several options to search for saved notes. The

application is running on Heroku which is an online platform that made it possible to run the
application and operate in the cloud entirely.

First content paint is the first metric measured, the time for first content paint is the time it takes to
render a defined object. The object could be anything defined such as text or an image. In this case

there is significant difference between the desktop and mobile version of the application. The desktop
version outperformed the mobile version by 1.1 seconds and that is mainly because of the hardware

of the two devices. The desktop has more powerful CPU and GPU resulting shorter loading time for

the content.

We have also measured the speed index of the two versions of the application. The speed index is the

average time taken for visible objects to be displayed. The results are as expected being much lower
in the desktop version (1.4 seconds faster than mobile version), due to same reasons (faster

hardware).

The application showed slight time difference when calling the server requests. The results show that

the desktop version is always faster than the mobile version although the desktop had much slower

internet speed compared to the mobile (the phones internet adapter is better although the devices

were connected to same network). The differences are negligible and will not make any noticeable

difference for the users, and they manly exist because of the difference in hardware in the tested

devices as mentioned previously.

5.1 Method
There are a lot of ways speech recognition can be executed, the method we chose only works in one

web browser (Google Chrome). This is a huge drawback because some users may prefer to use other

browsers but for this application, they will be forced to use Chrome. Additional measurements could

also have been taken to compare how the application would perform on several web browsers,

however this is not possible in our case.

The tests have been made on mainly two devices, a mobile phone, and a PC. We tried to make all

variables beside the devices as equal as possible, but a few things could not be controlled to give equal
advantage for both devices. The most obvious difference is in the internet speed the mobile phone

had more than double the internet speed. The study would have been much more specific if the

internet speed could have been then same.

As previously mentioned, the results are performed on two devices that represent two categories,
however more test subjects would give a better and more scientific view on how the application would

act on different devices. The cellphone category was represented by an android phone and the

desktops were represented by a windows computer. If the study would have included IOS and mac
devices, then we would have made a clearer point of view on the performance and we might be able

to conclude what environment the application prefers.

5.2 Discussion
As we can see in the result the application starts to get a disturbance when you reach a little below

normal conversation level. It starts to pick up the words from the background as well. This is not
something good but if you want the application to pick up your conversation then this is a side effect.

26

There should be a noise filter programmed but this is not something that was in the requirement and

is hard to implement.

The application is accurate in converting simple sentences and it has been showing some
misunderstanding of some words in both Swedish and English. This problem could be minimized by

using a spelling correction tool to correct all words before converting them, however this method will
slow down the conversion process especially when the application will be used for several languages

because every language will need a specific spelling control tool and the words need to be inspected

by them.

The application has been shown to recognize low voices and converting the speech around 50 dB sound

level. However, it gets disturbed when the background noise is around 50 db.

The application can convert the sound from 145 cm and less distance from the phones microphone

making it easy for users to speak to the application while holding the phone comfortably without

having to take in consideration the distance to the phone.

The conversion of the sound does not have to be as we implemented in the frontend, it could also be

done in the backend. To convert the sound in the backend we must send over the sound instead of
the text to the server. However, the sound is always much larger in size compared to text, for example

a 150 000-word text file is only 0.8 MB in size and 18 MB in size as a sound file [26]. This would make

the application much slower especially with long speeches and therefore we decided it is better to
convert the speech before sending it over the network.

It is obvious that the phone has a better internet adapter and has higher internet speed over the same

network connection compared to the desktop in our case. Although the internet speed is an important

factor in many applications, it is not as important as the previously mentioned factors due to the small

sized packages sent over the network. We only send text over the network to be handled at the

backend which does not need many bytes. However, the internet speed would be more important if

we would send the sound instead of text to the backend.

To further improve the application, we could have:

• Separate the page content into separate .CSS, .js and .html files so that each is separate

file can be saved by the browser in its cache. For example, we currently use the following code:

However, if we instead put all stylings in the CSS files, we could see more improvements.

• Minimize the total number of style templates and JavaScript library files as included in
the page. This because that the browser only makes two file requests included in the page. Each file

that the browser must wait for each request to be completed will create delays.

We use the following libraries in our application, they are 6 in total and the browser needs to make

three calls to get all of them.

The performance would have been better if we could reduce the number of libraries, but we found all

these libraries important for the application

27

• Consider using gzip compression on the data being sent. This would minimize the size

of the traffic being sent over the network. However, the text being sent is already small sized and

using the gzip would probably improve by an unnoticeable margin. It might even be more time

consuming to compress the data instead of sending it directly, especially when it is relatively small.

The application scored very high in benchmarks and it is being bottlenecked by the hardware of the
device it runs on and further improvements in the code will be unnoticeable for users.

5.3 Source Criticism
In an area that is constantly evolving in the form of new libraries, technologies, languages,

etc., it seems that the focus on performance is lagging. This

was noticed when scientific articles were to be found. One of the bigger challenges was finding

scientific articles where the web application is in focus. After searching a lot for good scientific articles
on performance it was clear that this area was not something that people focus their research on. This

feels a little strange then the importance of the performance of a web application is one of the most

important factors for it to be useful. Only a few articles were found while the majority found were in

other languages which made it useless for us in our study. This in turn led us turned to Google

Developers a lot. Google Developers is Google's site for devtools, APIs and similar technical areas.
There is also documentation on how these tools should be used as well as forums where the tools are

discussed. With a little deeper diving would one probably finds even more scientific articles that could

have been useful. But thank you whether the prevailing situation in the world as well as any other
factors that were beyond our control were time limited.

6. Conclusion
In this article a web application has been implemented in flask and is being deployed to Heroku online
server. Many performance tests have been performed and with the help of DevTools and chrome

(provided by google). The results have been presented to help understand the application works and

the possibilities for further improvements have been discussed.

The performance test tool assigned a very high score to the web application (99% for the mobile
version and 10% for the desktop version). The results show that the application is very fast and further

improvements can be made, however, the improvements will not be noticeable for the user.

28

7. Reference List

1. LSinha Neeta, Aror Poonam.” Effects of growing mobile usage at workplace and its impact on

work productivity- A detailed analysis”, 2005

2. B. Cao, et al."The solution of web font-end performance optimization," 2017 10th

International Congress on Image and Signal Processing, BioMedical Engineering and

Informatics (CISP-BMEI), Shanghai, 2017, pp. 1-5, doi: 10.1109/CISP-BMEI.2017.8302083.

3. Cassone, G., et al. "Web Performance Testing and Measurement: a complete approach." CMG

ITALIA 2001 and CMG USA 2001 conference proceedings. 2001.

4. Jeff Posnick, Ilya Grigorik, “Prevent unnecessary network requests with the HTTP Cache”, Apr.

17, 2020. web.dev/http-cache/.

5. GTmetrix, “Yslow: Add expires Header”, gtmetrix.com/add-expires-headers.html.

6. Iliev, et al. "Front end optimization methods and their effect." 2014 37th International

Convention on Information and Communication Technology, Electronics and

Microelectronics (MIPRO). IEEE, 2014. doi: 10.1109/MIPRO.2014.6859613

7. Rolf Staflin. HTML och CSS boken. Pagina Förlags AB, 2008. ISBN: 978-91-636- 0939-82

8. J. Skansholm, Java Direkt. Lund, Sweden: Studentlitteratur, 2003.

9. B. Cao, et al."The solution of web font-end performance optimization," 2017 10th
International Congress on Image and Signal Processing, BioMedical Engineering and

Informatics (CISP-BMEI), Shanghai, 2017, pp. 1-5, doi: 10.1109/CISP-BMEI.2017.8302083.

10. Houssein Djirdeh, “Reduce JavaScript Payloads with Code Splitting”, Sep. 19, 2018,

web.dev/reduce-javascript-payloads-with-code-splitting/

11. Ports, Dan R. K. et al. “Transactional Consistency and Automatic Management in an

Application Data Cache.” OSDI (2010)

12. Rolf Staflin. HTML och CSS boken. Pagina Förlags AB, 2008. ISBN: 978-91-636- 0939-82.

13. Iliev, et al. "Front end optimization methods and their effect." 2014 37th International

Convention on Information and Communication Technology, Electronics and

Microelectronics (MIPRO). IEEE, 2014. doi: 10.1109/MIPRO.2014.6859613

14. Remakanth, et al.” A Survey on Performance Testing Approaches of Web Application and

Importance of WAN Simulation in Performance Testing”. International Journal on Computer
Science and Engineering. 4. 2012,

15. P. Ling, "Based on web application front-end performance optimization, Proceedings of 2011

International Conference on Electronic & Mechanical Engineering and Information
Technology, Harbin, 2011, pp. 234-237, doi: 10.1109/EMEIT.2011.6022862.

31

16. Jovanovski, et al. "Critical CSS Rules—Decreasing time to first render by inlining CSS rules for
over-the-fold elements." Post proceedings of 2016 Seminar on Advanced Techniques and

Tools for Software Evolution (SATToSE)”. 2016

17. Garrett, Jesse James. "Ajax: A new approach to web applications, 2005." Adaptive Path Inc
(2010).

30

