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Abstract

The effect of signals on stability, stable throughput region, and delay in a two-user
slotted ALOHA based random-access system with collisions is considered. This work
gives rise to the development of random access G-networks, which can model security at-
tacks, expiration of deadlines, or other malfunctions, and introduce load balancing among
highly interacting queues. The users are equipped with infinite capacity buffers accepting
external bursty arrivals. We consider both negative and triggering signals. Negative sig-
nals delete a packet from a user queue, while triggering signals cause the instantaneous
transfer of packets among user queues. We obtain the exact stability region, and show
that the stable throughput region is a subset of it. Moreover, we perform a compact
mathematical analysis to obtain exact expressions for the queueing delay by solving a
non-homogeneous Riemann boundary value problem. A computationally efficient way to
obtain explicit bounds for the expected number of buffered packets at user queues is also
presented. The theoretical findings are numerically evaluated and insights regarding the
system performance are derived.

Keywords— G-networks, stability analysis, stable throughput, delay, boundary value prob-
lems, random access.

1 Introduction

This work focus on the modeling and analysis of a two-user buffered ALOHA type multiple
access system by taking into account the presence of signals, which either delete a packet or
trigger the instantaneous movement of a packet between the user buffers. More precisely, this
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work introduces the so-called called Random Access G-network (RAG-Network), with which
we are able to model security attacks, packet transmission deadlines, as well as to introduce
probabilistic load balancing in highly interacting multiple access communication.

The exact modelling of the system we consider, is in terms of a two dimensional random
walk in the quarter plane, which posses a partial spatial homogeneity, due to the high level of
interaction among the queues. The investigation of interacting queueing system is a challenging
task with severe mathematical difficulties, which have been initially reported in the seminal
work in [1], and further in [2, 3]. They have also received considerable attention due to their
applicability in random access networks [4, 5, 6, 7, 8, 9] and in shared processor systems
[10, 11, 12, 13]. On the other hand, G-networks (or queueing networks with negative customers,
signals, triggers, etc.) introduced in [14], are characterized by the following feature: in addition
to the conventional customers, negative customers or signals arriving to a non-empty queue
remove an amount of work from the queue or transfer it to another queue [15, 16, 17]. The
analysis of this versatile class of networks has significantly enriched queueing theory as well as
contributed to the development of applications in fields such as computers, communications,
manufacturing, energy as well as self-aware networks.

The goal of this work is to provide a general framework in introducing and analyzing multiple
access systems with the feature of negative and triggering signals. Our ultimate goal is to
provide a general model to describe security attacks (e.g., short jamming attacks [18]), packet
transmission deadlines, or other malfunctions, and load balancing in multiple access networks,
as well as to study their impact on the overall system performance.

1.1 Related Work

G-Networks: Motivated by neural network modelling [19], a novel stochastic network, called
G-network or queueing network with signals was introduced as a unifying model for neural and
queueing networks. In contrast to traditional queueing networks where (positive) customers
obey the specified service and routing disciplines determined by the network dynamics, there
is another type of customers with the effect of signal that interact upon arrival at a queue with
the queue or with the backlogged customers.

G-Networks [14] established a versatile class of queueing networks with a computationally
efficient product form solution, which had been proved to exist by using new techniques from
the theory of fixed point equation [20]. In its simplest version, a signal arriving at a non
empty queue forces a positive customer to leave the network immediately [14]. Since their
introduction, G-networks have been extensively studied covering several extensions such as
triggered movement, which redirect customers among the queues [15]; catastrophes or batch
service [21], adders [22]; multiple classes of positive customers and signals [23], state-dependent
service disciplines [24, 25, 26], tandem networks [27, 28], deletion of a random amount of work
[29, 30], retrials [31, 32]. For a complete bibliography refer to [33, 34, 35].

G-networks have been shown to be a diverse application tool to analyse and optimise the
effects of dynamic load balancing in large scale networks [36] as well as in Gene Regulatory
Networks [37, 38]. A recent application of G-Networks is to the modelling of systems which
operate with intermittent sources of energy, known as Energy Packet Networks [39, 40, 41, 42,
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43, 44, 45, 46, 47, 48, 49]. G-networks were also used as a tool to approximate continuous and
bounded real-valued functions [50], and serve as the foundation for learning algorithms [51]
as well as for Deep Learning [52]. They have been also used for modelling natural neuronal
networks [53], in image processing applications [54, 55], and as a tool for predicting the toxicity
of chemical compounds [56].

In the field of computer network performance, the Random Neural Network (RNN) has been
used to build distributed controllers for quality of service routing in packet networks [57, 58] and
in the design of Software Defined Network controllers [59]. Real-time optimized task allocation
algorithms in Cloud systems [60] have also been built and tested. Recent applications has
addressed the use of the RNN to detect attacks on Internet of Things (IoT) gateways [61].

Stability and Delay analysis in Random Access Networks: The simple and decentral-
ized nature of ALOHA protocol [62] made it very popular in multiple access communication
systems. The ever increasing need for massive uncoordinated access has increased the interest
on random access protocols [63, 64], which remain an active research area with challenging open
problems even for very simple networks [65, 66].

In spite of its simple operation, stable throughput and delay analysis are quite challenging
due to the high level of interaction among queues. This is due to the fact that each transmit-
ted source interferes with other users with non-empty queues, i.e., the successful transmission
probability is a function of the status of the other users. As a consequence, the departure rate
of a queue can be computed only when we know the stationary distribution of the joint queue
length process [67]. This is the reason why the vast majority of previous works has focused
on small-sized networks and only bounds or approximations are known for the networks with
larger number of sources [68, 67, 5, 69, 70]. Significant results regarding stability conditions
under Markovian assumptions were also given in [71, 72]. Delay analysis of random access
networks is even more challenging both by mathematical and the application point of view.
The high level of interaction among queues is the reason for the limited number of analytical
results. For the sake of clarity we mention the works in [70, 73, 4, 74, 75].

Recently, the authors have performed considerable contribution both in the investigation of
stable throughput region and in the delay analysis by considering sophisticated queue-aware
transmission protocols in modern random access schemes [76, 7, 8, 77], in IoT networks [78, 79,
80, 81] and in network-level cooperative wireless networks [82, 9].

1.2 Contributions

In this work, we consider a two-user slotted ALOHA multiple access channel with collisions,
i.e., a transmission is successful if and only if a single user transmits. Each user has external
bursty arrivals that are stored in its infinite-sized capacity queue and accesses the medium in a
random access manner. The major contribution of this work relies on the fact that we consider
for the first time in the related literature the concept of signals in random access networks,
which introduces the so-called Random Access G-Network.

In particular, we consider both negative signals, which delete a packet from a user’s queue,
and signals that trigger the instantaneous movement of packets among user queues. The concept

3



of negative signals can model security attacks (i.e., a short jamming attack that destroys a data
packet) in such networks, packet transmission deadlines or other possible malfunctions, whereas,
triggering signals can be used to model load balancing schemes. To the best of our knowledge,
this variation of random access has not been reported so far. For such a network, we investigate
stability conditions, the stable throughput region, and the queueing delay.

1.2.1 Stability and Stable Throughput Analysis

The presence of negative signals affects the stable throughput region, which now becomes a
subset of the stability region, since packets can be dropped before being transmitted to the
destination thus, these packets they do not contribute to the achievable throughput. Note that
such property has not reported in the literature of random access networks so far.

When characterizing the stability and/or stable throughput in such a network, we have to
cope with the problem of highly interaction among queues. In RAG network, the level of
interaction is even higher due to the presence of signals that interact upon arrivals both with
the queue and with the backlogged packets. We show that the stochastic dominant technique
[67] is an efficient tool to bypass the problem of interaction among queues. Although stability
conditions can be also derived by well known methods from two dimensional Markov chains
[83, 84], the importance of stochastic dominant technique is more apparent when we characterize
the stable throughput region, where we show that it is a subset of the stability region.

1.2.2 Queueing Analysis

Queueing theoretic analysis of interacting queues is a challenging task. The increased level of
interaction due to the presence of signals will further complicate the analysis. In this work, we
present a compact mathematical analysis, and we provide exact expressions for the probability
generating function (pgf) of the joint stationary queue length distribution of user queues by
solving a non-homogeneous Riemann boundary value problem [85]. Furthermore, we also provide
a computationally efficient alternative way to obtain explicit bounds for basic performance
metrics without calling for advanced mathematical concepts of boundary value problems.

The rest of the paper is summarized as follows. In Section 2 we describe in detail the math-
ematical model, while in Section 3 we provide the stability and the stable throughput region.
The fundamental functional equation along with some basic preliminary results regarding its
investigation are presented in Section 4. In Section 5 we provide expressions for the pgf of the
joint stationary queue length distribution at user queues in terms of a solution of a Riemann
boundary value problem, while in Section 6 we provide exact bounds for the expected number
of backlogged packets at each user queue, without using the theory of boundary value problems.
Numerical results are given in Section 7 and show insights in the performance of the system.
Conclusions and future directions are presented in Section 8.
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2 The Mathematical Model

We consider an ALOHA-type random access network (RAN) consisting of two users, say U1,
U2, that communicate with a common destination node. Each user is equipped with infinite
capacity buffers, in which it stores the arriving and backlogged packets. The time is slotted
and packets have equal length. The transmission time of a packet corresponds to a single slot.

At the beginning of a slot, user Uk, k = 1, 2, if it is not-empty, transmits a packet with
probability αk, or remains silent with probability ᾱk = 1 − αk. We consider a collision based
channel model, and thus, if both users attempt to transmit simultaneously, a collision occurs
and both transmissions fail. In such case, the packets have to be re-transmitted in a latter slot.

Contrary to the traditional RAN, in this work we introduce a generalized RAN, called
the Random Access G-Network (RAGN) by including the concept of signals. In particular,
at the beginning of a slot, signals are generated in user Uk with probability sk. If a signal
is generated, then with probability l−k it deletes a packet from the buffer of Uk, while with
probability l+k = 1− l−k it triggers the instantaneously movement of a packet from the buffer of
Uk to the buffer of the other user. A signal arriving in an empty buffer has no effect. In this
work, we assume that if a signal and a packet transmission occur simultaneously, the signal
occurs first. In case of a signal generation, a temporarily network malfunction occurs, and both
users remain silent during the slot. Moreover, packet arrivals are scheduled at the end of the
slot, early departure late arrival model. Denote by Ak,n the number of packets arriving in Uk,
in the time interval (n, n+ 1], with E(Ak,n) = λk <∞, k = 1, 2.

Let Qk,n be the queue length at the buffer of Uk at the beginning of time slot n. Under the
above system model, the two-dimensional process Qn = {(Q1,n, Q2,n);n = 0, 1, . . .} is a Markov
chain. Clearly, under usual assumptions Qn is irreducible and aperiodic. Then,

• If Q1,n = Q2,n = 0, then Qk,n+1 = Ak,n, k = 1, 2.

• If Q1,n = 0, Q2,n > 0,

Q1,n+1 =

{
A1,n, w.p. s̄2 + s2l

−
2 ,

A1,n + 1, w.p. s2l
+
2 ,

Q2,n+1 =

{
Q2,n + A2,n, w.p. s̄2ᾱ2,
Q2,n − 1 + A2,n, w.p. s̄2α2 + s2,

• If Q1,n > 0, Q2,n = 0,

Q1,n+1 =

{
Q1,n + A1,n, w.p. s̄1ᾱ1,
Q1,n − 1 + A1,n, w.p. s̄1α1 + s1,

Q2,n+1 =

{
A2,n, w.p. s̄1 + s1l

−
1 ,

A2,n + 1, w.p. s1l
+
1 ,
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• If Q1,n > 0, Q2,n > 0,

(Q1,n+1Q2,n+1) =



(Q1,n + A1,n, Q2,n + A2,n), w.p. s̄1s̄2(ᾱ1ᾱ2 + α1α2) + s1s2l
+
1 l

+
2 ,

(Q1,n − 1 + A1,n, Q2,n + A2,n), w.p. s̄1s̄2α1ᾱ2 + s1s̄2l
−
1 + s1s2l

+
1 l
−
2 ,

(Q1,n − 1 + A1,n, Q2,n + 1 + A2,n), w.p. s1s̄2l
+
1 ,

(Q1,n + A1,n, Q2,n − 1 + A2,n), w.p. s̄1s̄2α2ᾱ1 + s2s̄1l
−
2 + s1s2l

+
2 l
−
1 ,

(Q1,n + 1 + A1,n, Q2,n − 1 + A2,n), w.p. s2s̄1l
+
2 ,

(Q1,n − 1 + A1,n, Q2,n − 1 + A2,n), w.p. s1s2l
1
1l
−
2 .

3 Stability Conditions and Stable Throughput Region

As mentioned in the previous section, it is clear that for a packet located at the head of the
queue, there are three options depending if a signal will be generated or not. When a signal
is not generated, the packet it will be transmitted successfully to the destination if the node
will attempt to transmit and collision will not happen. If a signal is generated, there are two
options, either the packet will be dropped from the system or it will be transferred to the other
queue. Thus, it is important to emphasize that the stability region is different than the stable
throughput region. In fact, the stable throughput region is a subset of the stability region as
we will see in this section.

The service probability for Ui is denoted by µi, i = 1, 2, which denotes the probability that
a packet will be either transmitted successfully to the destination or it will be relocated to the
other queue. The expression for µ1 is given by

µ1 = α1Pr(Q2 = 0)s̄1 + α1Pr(Q2 > 0)s̄1ᾱ2s̄2 + s1l
+
1 . (3.1)

Then we define the probability that a packet will be removed from a queue, either it will
dropped, or transmitted successfully, or transferred to the other queue. For the users Uk,
k = 1, 2, we denote this probability mk. The expression for m1 is given by

m1 = µ1 + s1l
−
1 . (3.2)

which is equal to

m1 = α1s̄1 [Pr(Q2 = 0) + Pr(Q2 > 0)ᾱ2s̄2] + s1. (3.3)

Similarly, we can write the expression for m2. Clearly, m1 and µ1 depend on the state of the
second queue and m2 and µ2 on the state of the first queue. Thus, the queues are coupled. We
will bypass this difficulty by applying the stochastic dominance technique to obtain the exact
stability region and the stable throughput region.

We use the following definition of queue stability [86, 5]:

Definition 1. Denote by Qt
i the length of queue i at the beginning of time slot t. The queue is

said to be stable if limt→∞ Pr[Q
t
i < x] = F (x) and limx→∞ F (x) = 1.

Although we will not make explicit use of this definition we use its corollary consequence
which is Loynes’ theorem [87] that states that if the arrival and service processes of a queue
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are strictly jointly stationary and the average arrival rate is less than the average service rate,
then the queue is stable. If the average arrival rate is greater than the average service rate,
then the queue is unstable and the value of Qt

i approaches infinity almost surely.
The stability region of the system is defined as the set of arrival rate vectors λ = (λ1, λ2) for

which the queues in the system are stable. On the other hand, the stable throughput region
provides the set of arrival rate vectors λ = (λ1, λ2), for which packets are able to reach the
destination. In the previous definitions, λi denotes the total arrival rate at the queue i. Note
that due to the presence of deleting signals, a portion of packets will be dropped and never
reach the destination, and thus, the stable throughput region will be a subset of the stability
region.

Before proceeding with the derivation of the stability region and the stable throughput
region, we need to calculate the internal arrival probability, λj,i for each queue j = 1, 2, i
stands for internal. We have that

λ1,i = Pr(Q2 > 0)s2l
+
2 . (3.4)

and
λ2,i = Pr(Q1 > 0)s1l

+
1 . (3.5)

The following theorem provides the stability region for the considered system.

Theorem 3.1 (Stability Region). The stability region R for a fixed transmission probability
vector α := [α1, α2] is given by R = R1 ∪R2 where

R1 =

{
(λ1, λ2) : λ1 +

(λ2 + s1l
+
1 )(s2l

+
2 + α1s̄1(1− ᾱ2s̄2))

α2s̄2ᾱ1s̄1 + s2

< α1s̄1 + s1,

λ2 + s1l
+
1 < α2s̄2ᾱ1s̄1 + s2

}
,

(3.6)

R2 =

{
(λ1, λ2) : λ2 +

(λ1 + s2l
+
2 )(s1l

+
1 + α2s̄2(1− ᾱ1s̄1))

α1s̄1ᾱ2s̄2 + s1

< α2s̄2 + s2,

λ1 + s2l
+
2 < α1s̄1ᾱ2s̄2 + s1

}
,

(3.7)

Proof. To determine the stability region of our system we apply the stochastic dominance
technique [67], i.e. we construct hypothetical dominant systems, in which a node transmits
dummy packets for the packet queue that is empty, while for the non-empty queue transmits
according to its traffic. Under this approach, we consider the R1, and R2-dominant systems.
In the Rk dominant system, whenever the queue k, k = 1, 2 empties, it continues transmitting
a dummy packet. Thus, in R1, node 1 never empties, and hence, node 2 sees a constant
probability that a packet will be removed from its queue, while that probability for node 1
depends on the state of node 2, i.e., empty or not. We proceed with dominant system R1. The
probability m1 of the first node is given by (3.3). The m2 is given by

m2 = α2s̄2 [Pr(Q1 = 0) + Pr(Q1 > 0)ᾱ1s̄1] + s2. (3.8)

Since in R1 queue 1 never empties, Pr(Q1 > 0) = 1, we have m2 = α2s̄2ᾱ1s̄1 + s2. We can
obtain that the total arrival rate at U2 is λ2 + s1l

+
1 . By applying Loyne’s criterion [87], the
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second node is stable if and only if λ2 + s1l
+
1 < m2. The probability that the second node is

empty is given by

Pr(Q2 = 0) = 1− λ2 + s1l
+
1

m2

= 1− λ2 + s1l
+
1

α2s̄2ᾱ1s̄1 + s2

. (3.9)

Then, the internal arrival probability at U1 is given by

λ1,i =
s2l

+
2 (λ2 + s1l

+
1 )

α2s̄2ᾱ1s̄1 + s2

. (3.10)

After replacing Pr(Q2 = 0) into (3.3), and applying Loynes criterion [87] we can obtain the
stability condition for the first node. Then, the stability region for the first dominant system,
say R1, is given by (3.6). By applying similar arguments, we can obtain the stability region for
the second dominant system, say R2 (further details are omitted). For a detailed treatment of
dominant systems please refer to [67].

An important observation made in [67] is that the stability conditions obtained by the
stochastic dominance technique are not only sufficient but also necessary for the stability of
the original system. The indistinguishability argument [67] applies here as well following the
standard procedure developed in [67] (see also [88]), and thus, extensive details are omitted.
Just for the sake of clarity, we briefly discuss in the following the general aspect of the applied
approach.

Based on the construction of the dominant system, we can see that the queue sizes in the
dominant system are always greater than those in the original system, provided they are both
initialized to the same value and the arrivals are identical in both systems. Therefore, given
λ2 < m2, if for some λ1, the queue at the first user is stable in the dominant system, then the
corresponding queue in the original system must be stable. Conversely, if for some λ1 in the
dominant system, the queue at the first node saturates, then it will not transmit dummy packets,
and as long as the first user has a packet to transmit, the behavior of the dominant system
is identical to that of the original system since dummy packet transmissions are eliminated
as we approach the stability boundary. Therefore, the original and the dominant system are
indistinguishable at the boundary points.

The next theorem provides the stable throughput region for the considered setup.

Theorem 3.2 (Stable Throughput Region). The stable throughput region T for a fixed trans-
mission probability vector α := [α1, α2] is given by T = T1 ∪ T2 where

T1 =

{
(λ1, λ2) : λ1 +

(λ2 + s1l
+
1 )(s2l

+
2 + α1s̄1(1− ᾱ2s̄2))

α2s̄2ᾱ1s̄1 + s2

< α1s̄1 + s1l
+
1 ,

λ2 + s1l
+
1 < α2s̄2ᾱ1s̄1 + s2l

+
2

}
,

(3.11)

T2 =

{
(λ1, λ2) : λ2 +

(λ1 + s2l
+
2 )(s1l

+
1 + α2s̄2(1− ᾱ1s̄1))

α1s̄1ᾱ2s̄2 + s1

< α2s̄2 + s2l
+
2 ,

λ1 + s2l
+
2 < α1s̄1ᾱ2s̄2 + s1l

+
1

}
,

(3.12)

8



Proof. Following the same methodology of dominant systems in the previous theorem, we con-
struct two hypothetical systems, R1 and R2. In R1, U1 transmits dummy packets when its
queue is empty, thus Pr(Q1 > 0) = 1, we have µ2 = α2s̄2ᾱ1s̄1 + s2l

+
2 . In the proof of Theorem

3.1, we obtain Pr(Q2 > 0) and is given by (3.9), and the internal arrival probability for U1 is
given by (3.10). After replacing (3.9) into (3.1) and applying Loyne’s theorem [87] we have
that the stable throughput region obtained from R1 is given by (3.11). Similarly we obtain T2

which is given by (3.12).

Remark 1. Clearly, T ⊂ R this can be easily observed by the expressions in Theorems 3.1 and
3.2. If si > 0 and l+i = 1, then T = R. If si = 0 for all i then T = R and the stability region
is the same with the two-user multiple access channel with collision reported in the literature in
[67].

Remark 2. In Appendix A, we provide an alternative way to derive the stability condition
based on general results regarding two-dimensional random walks [84].

Remark 3. Note that, when the arrival rates are in the stability region (i.e., the network is
stable), but not in the stable throughput region, then a portion of packets will be dropped due to
the presence of deleting signals. There will be a loss of packets since user queues are not able
to transmit “faster” the packets to the destination, and fail to meet a transmission deadline.
The deleting signal generation can model in an abstract way the expiration of deadline. Since
deadline-constrained traffic requires a more detailed treatment is outside of the scope of this
study.

4 The Functional Equation and Preliminary Analysis

In the following, we apply the generating function approach and obtain a fundamental functional
equation, which is the key element of our analysis. In order to proceed with the investigation of
the functional equation we also need some crucial preliminary results that are also given below.
Denote the joint pgf of A1,n and A2,n by H(x, y) = E(xA1,nyA2,n), |x| ≤ 1, |y| ≤ 1, n ∈ N. Then,
the evolution among queues implies

E(xQ1,n+1yQ2,n+1) = H(x, y)
[
E(1{Q1,n=Q2,n=0})

+[s1(
l−1
x

+
l+1 y

x
) + s̄1(ᾱ1 + α1

x
)]E(xQ1,n1{Q1,n>0,Q2,n=0})

+[s2(
l−2
y

+
l+2 x

y
) + s̄2(ᾱ2 + α2

y
)]E(yQ2,n1{Q1,n=0,Q2,n>0})

+
(
s1s̄2(

l−1
x

+
l+1 y

x
) + s̄1s2(

l−2
y

+
l+2 x

y
) + s1s2(

l−1 l
−
2

xy
+

l−1 l
+
2

y
+

l+1 l
−
2

x
+ l+1 l

+
2 )

+s̄1s̄2(ᾱ1ᾱ2 + α1α2 + α1ᾱ2

x
+ α2ᾱ1

y
)
)
E(xQ1,nyQ2,n1{Q1,n>0,Q2,n>0})

]
.

(4.1)
Assuming that the system is stable (see Section 3), letting

Π(x, y) = lim
n→∞

E(xQ1,nyQ2,n), |x| ≤ 1, |y| ≤ 1,
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and having in mind that

limn→∞ E(1{Q1,n=Q2,n=0}) = Π(0, 0),
limn→∞ E(xQ1,n1{Q1,n>0,Q2,n=0}) = Π(x, 0)− Π(0, 0),
limn→∞ E(yQ2,n1{Q1,n=0,Q2,n>0}) = Π(0, y)− Π(0, 0),

limn→∞ E(xQ1,nyQ2,n1{Q1,n>0,Q2,n>0}) = Π(x, y)− Π(x, 0)− Π(0, y) + Π(0, 0),

we obtain the following functional equation:

Π(x, y)[xy − φ3(x, y)] = [yφ1(x, y)− φ3(x, y)][Π(x, 0)− Π(0, 0)]

+[xφ2(x, y)− φ3(x, y)][Π(0, y)− Π(0, 0)] + [xyH(x, y)− φ3(x, y)]Π(0, 0),
(4.2)

where

φ3(x, y) = H(x, y)[s̄1s̄2(xy(ᾱ1ᾱ2 + α1α2) + α1ᾱ2y + ᾱ1α2x) + s1s̄2y(l−1 + l+1 y)
+s2s̄1x(l−2 + l+2 x) + s1s2(l−1 l

−
2 + l+1 l

−
2 y + l−1 l

+
2 x+ l+1 l

+
2 xy)],

φ1(x, y) = H(x, y)[s̄1(ᾱ1x+ α1) + s1(l−1 + l+1 y)],
φ2(x, y) = H(x, y)[s̄2(ᾱ2y + α2) + s2(l−2 + l+2 x)].

The function Z(x, y) := xy − φ3(x, y), |x| ≤ 1, |y| ≤ 1 is called the kernel of the functional
equation (4.2), and plays a crucial role in its solution procedure.

The definition of Π(x, y), implies that for fixed y, with |y| ≤ 1, Π(x, y) is regular in x, with
|x| < 1, continuous in x, with |x| ≤ 1, and similarly with x, y interchanged, and the coefficients
of xiyj, (i, j) ∈ N0 × N0 = {0, 1, . . .} × {0, 1, . . .}, in the series expansion of Π(x, y) are non-
negative, with Π(1, 1) = 1. Then, it also follows that Π(p, 0), Π(0, p) are both regular in p, with
|p| < 1, continuous in p, with |p| ≤ 1, and the coefficients in the series expansion of Π(p, 0) are
all non-negative. Similar result holds for Π(0, p).

Note that some interesting relations can be directly derived by the functional equation (4.2).
More precisely, setting y = 1, rearrange its terms and then taking the limit x → 1, and vice
versa we come up with the following “conservation of flow relations”:

λ1 + s2l
+
2 (1− Π(1, 0)) = (s1 + s̄1s̄2α1ᾱ2)[1− Π(1, 0)− Π(0, 1) + Π(0, 0)]

+(s1 + s̄1α1)[Π(1, 0)− Π(0, 0)],
λ2 + s1l

+
1 (1− Π(0, 1)) = (s2 + s̄1s̄2α2ᾱ1)[1− Π(1, 0)− Π(0, 1) + Π(0, 0)]

+(s2 + s̄2α2)[Π(0, 1)− Π(0, 0)].

(4.3)

Note that (4.3) has a clear probabilistic interpretation. In particular, they equate the flow of
packets into the buffer of Uk, with the flow of jobs out of the buffer of Uk, k = 1, 2, respectively.
Just for the sake of clarity, note that the left hand side in the first of (4.3) is composed of
the mean number of external arrivals per slot in the buffer of U1 (i.e. λ1), while the second
term corresponds to the arrivals per slot due to the presence of signals in U2 that trigger the
instantaneous transfer of a packet in U1. Note that such an arrival may occur only in case U2 is
not empty, i.e., with probability 1−Π(1, 0), which is the fraction of time user U2 is not empty.
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4.1 On the kernel Z(x, y)

To proceed with the analysis of functional equation (4.2), it is required to focus on the in-
vestigation of suitable representations of the zero-tuples of its kernel Z(x, y). For a complete
discussion, the interested reader is referred to [3, 89, 2]1

Clearly, the definition of Z(x, y), implies that for fixed y, with |y| ≤ 1, Z(x, y) is regular in
x, with |x| < 1, continuous in x, with |x| ≤ 1, and similarly with x, y interchanged. In the
following, we assume symmetrical characterization of the zero tuples (x̂, ŷ) of the kernel [84, 3],
by letting

x̂ = gr, ŷ = gr−1, |r| = 1, |g| ≤ 1,

and thus,
Z(x̂, ŷ) = g2 − φ3(gr, gr−1) = 0.

Then, for |r| = 1, r 6= 1, |g| = 1,

|φ3(gr, gr−1)| ≤ |s̄2(g2(ᾱ2 + α2) + αᾱg(r + r−1)) + ss̄gr−1(l− + l+gr−1)
+ss̄gr(l− + l+gr) + s2((l−)2 + l+l−g(r + r−1) + (l+)2g2)| < 1 = |g|2.

Since φ3(gr, gr−1) is regular in g for |g| < 1, with fixed r, |r| = 1, and continuous for |g| ≤ 1,
Rouché’s theorem implies that g2−φ3(gr, gr−1) = 0 has exactly two roots in |g| ≤ 1. According
to Theorem 2.1, pp. 65-66, [84], g(r) is such that g(r)→ 1, as r → 1, |r| = 1. Put,

S1 = {x : x = g(r)r, |r| = 1}, S2 = {y : y = g(r)r−1, |r| = 1}.

In order to proceed, we must show that the contours S1, S2 are both simple and smooth. To
show this in the general case, we need some extra assumptions (see [3], Sections II.3.1-II.3.3,
pp. 151-163) that will further complicate the analysis and worse the readability of the paper.

With that in mind, we will focus on the symmetrical case (see Section 5). For such a case,
Theorem 2.1, pp. 65-66 in [84] implies that:

1. S1, S2 are both simple and smooth.

2. x = 0 ∈ S+
1 , x = ∞ ∈ S−1 , y = 0 ∈ S+

2 , y = ∞ ∈ S−2 , where S+
k (resp. S−k ) denotes the

interior (resp. the exterior) of Sk, k = 1, 2, and 0 < g(r) ≤ 1, |r| = 1.

3. x ∈ S1 (resp. y ∈ S2), then x̄ ∈ S1 (resp. ȳ ∈ S2), where h̄ denotes the complex conjugate
of h.

4. For the set (x̂, ŷ) ∈ S1 × S2 of the zero tuples of the kernel Z(x, y) = 0, if x̂ traverses S1

counterclockwise, then ŷ, traverses S2 clockwise.

Therefore, the solution of (4.2) is now reduced to the construction of functions Π(p, 0), Π(0, p),
both regular in |p| < 1, which satisfy

ŷ[x̂− φ1(x̂, ŷ)][Π(x̂, 0)− Π(0, 0)] + x̂[ŷ − φ2(x̂, ŷ)][Π(0, ŷ)− Π(0, 0)] = Π(0, 0)[H(x̂, ŷ)− 1],
(4.4)

for all (x̂, ŷ) ∈ S1 × S2. This problem will be transformed in the next section into a Riemann
boundary value problem.

1Note that in case of Bernoulli arrivals, Z(x, y) is a quadratic polynomial with respect to x, y.
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5 The Symmetrical System: Exact Analysis

As for the symmetrical system we assume sk = s, λk = λ, αk = α, l+k = l+, l−k = l, k = 1, 2.
Note that in such a case, φ3(x, y) = φ3(y, x), and φ1(x, y) = φ2(y, x). Moreover, for the stability
conditions (see Theorem 3.1 or Theorem A.1) the following conditions should hold:

λ+ sl+ < s+ s̄2αᾱ,

λ+ sl+ λ+sl+

s+s̄2αᾱ
< (s+ s̄α)(1− λ+sl+

s+s̄2αᾱ
) + λ+sl+

s+s̄2αᾱ
(s+ s̄2αᾱ).

(5.1)

Set,
C := {z : |z| = 1}, C+ := {z : |z| < 1}, C− := {z : |z| > 1}.

We proceed as in [3], sections II.2.4, II.2.13, II.2.16; see also Theorem 3.2.1 in [84] or Theorem
1.1 in [89]. In particular, for the contours S1, S2, and due to the symmetry of our system the
following hold:

1. z = 0 ∈ C+, z = 1 ∈ C, z =∞ ∈ C−,

2. and there exist functions

x = x(z) : C+ ∪ C → S+
1 ∪ S1, y = y(z) : C− ∪ C → S+

2 ∪ S2,

such that,

(a) x(0) = 0, x(1) = 1 = y(1), y(∞) = 0,

(b) x(z) : C+ → S+
1 is regular and univalent for z ∈ C+.

(c) y(z) : C− → S+
2 is regular and univalent for z ∈ C−.

Then, theorem 3.2.3, p. 123 in [84] states that x(z), z ∈ C ∪ C+, and y(z), z ∈ C ∪ C−, are
such that

x(z) =

{
ze

1
2πi

∫
|ζ|=1 log{g(e

iλ(ζ))}{ ζ+z
ζ−z−

ζ+1
ζ−1
} dζ
ζ , z ∈ C+,

g(eiλ(z))eiλ(z), z ∈ C,

y(z) =

{
z−1e−

1
2πi

∫
|ζ|=1 log{g(e

iλ(ζ))}{ ζ+z
ζ−z−

ζ+1
ζ−1
} dζ
ζ , z ∈ C−,

g(eiλ(z))e−iλ(z), z ∈ C,

(5.2)

where λ(z) ∈ [0, 2π), z ∈ C, λ(1) = 0, be the unique solution of the integral equation

eiλ(z) = ze
1

2πi

∫
|ζ|=1 log{g(e

iλ(ζ))}{ ζ+z
ζ−z−

ζ+1
ζ−1
} dζ
ζ , z ∈ C. (5.3)

For such a case, x(z) (resp. y(z)) represents a conformal mapping from C+ (resp. C−) onto
S+

1 (resp. S+
2 ), while for every z, with z ∈ C, (x̂, ŷ) = (x(z), y(z)) is a zero tuple of the kernel

Z(x, y).
Since for z ∈ C, (x̂, ŷ) = (x(z), y(z)) is such that x(z)y(z) = φ3(x(z), y(z)), (4.4) implies

after some algebra that
Φ1(z) = Φ2(z)G(z) + S(z), (5.4)
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where,

Φ1(z) = Π(x(z),0)−Π(0,0)
Π(0,0)

,

Φ2(z) = Π(0,y(z))−Π(0,0)
Π(0,0)

,

G(z) = x(z)[y(z)−φ2(x(z),y(z))]
y(z)[φ1(x(z),y(z))−x(z)]

,

S(z) = x(z)[1−H(x(z),y(z))]
φ1(x(z),y(z))−x(z)

.

Note that due to the regularity of x(z), z ∈ C+, and of y(z), z ∈ C−,

1. Φ1(z), z ∈ C+ ∪ C, is regular for z ∈ C+, and continuous for z ∈ C+ ∪ C.

2. Φ2(z), z ∈ C− ∪ C, is regular for z ∈ C−, and continuous for z ∈ C− ∪ C.

Note also that Φ1(z) is well defined due to the fact that |x(z)| ≤ 1, z ∈ C, so that |x(z)| < 1,
z ∈ C+ due to the regularity of x(z), z ∈ C+ and the maximum modulus theorem [90] (similar
result holds for Φ2(z)), and Φ1(0) = lim|z|→∞Φ2(z) = 0.

From the above discussion, Φ1(z), Φ2(z), can be obtained as a solution of a non-homogeneous
Riemann boundary value problem, with boundary condition given by (5.4). Its solution is solely
based on the index χ of G(z) defined as

χ ≡ ind|z|=1G(z) := 1
2πi

∫
|z|=1

d log{G(z)}
= ind|z|=1x(z)− ind|z|=1y(z)

+ind|z|=1[y(z)− φ2(x(z), y(z))]− ind|z|=1[x(z)− φ1(x(z), y(z))].

Note that 0 < φk(x(z), y(z)) ≤ 1, k = 1, 2, while G(z), S(z) posses a continuous derivative
along C and consequently, they satisfy the Ho1der condition on C. Since Sk, k = 1, 2, are
simple contours and x(z) (resp. y(z)) traverses S1 counterclockwise (resp S2 clockwise), we
have ind|z|=1x(z) = 1, ind|z|=1y(z) = −1. Moreover,

ind|z|=1[y(z)− φ2(x(z), y(z))] = −1
2
,

ind|z|=1[x(z)− φ1(x(z), y(z))] = 1
2
.

Therefore, χ = 1, and the solution of the Riemann boundary value problem is given by,

Φ1(z) =

{
eΓ(z)[Ψ(z) + c1z + c0], z ∈ C+,

eΓ+(z)[Ψ+(z) + c1z + c0], z ∈ C,

Φ2(z) =

{
z−1eΓ(z)[Ψ(z) + c1z + c0], z ∈ C−,
z−1eΓ−(z)[Ψ−(z) + c1z + c0], z ∈ C,

(5.5)

where c0, c1, are constants to be determined by using the fact that Φ1(0) = lim|z|→∞Φ2(z) = 0,
which in turn yields

eΓ(0)[Ψ(0) + c0] = 0, c1 = 0,

and
Γ(z) = 1

2πi

∫
ζ∈C log{ζ−1G(z)} dζ

ζ−z , z ∈ C ∪ C
+ ∪ C−,

Ψ(z) = 1
2πi

∫
ζ∈C S(ζ)e−Γ+(ζ) dζ

ζ−z , z ∈ C ∪ C
+ ∪ C−,
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with
Γ+(z0) = limz∈C+,z→z0 Γ(z), Ψ+(z0) = limz∈C+,z→z0 Ψ(z),
Γ−(z0) = limz∈C−,z→z0 Γ(z), Ψ−(z0) = limz∈C−,z→z0 Ψ(z).

In view of (5.5), we are able to obtain Π(x(z), 0), Π(0, y(z)), as a function of Π(0, 0). Π(0, 0)
will be obtained by using: i) the normalizing condition Π(1, 1) = 1, ii) the solution (5.5), and
iii) the symmetry of the system, which implies that Π(1, 0) = Π(0, 1). In particular, setting in
(4.2) y = 1 and then letting x→ 1, yields

Π(1, 0)[s̄α− 2s̄2aᾱ− sl−] + Π(0, 0)[s̄2αᾱ− s̄α] = λ+ sl+ − (s+ s̄2αᾱ). (5.6)

Using (5.5), and (5.6) we obtain Π(0, 0). Thus, it follows that Π(x(z), 0), z ∈ C ∪ C+ and
Π(0, y(z)), z ∈ C ∪ C− are known by (5.5). Moreover, since both conformal mappings x(z),
z ∈ C ∪C+ and y(z), z ∈ C ∪C− unique inverse, Π(x, 0), x ∈ S1×S+

1 , and Π(0, y), y ∈ S2×S+
2

are also known. As a consequence, Π(x, y), is now derived by (4.2).

Remark 4. Note that Π(x, y) is given in terms of contour integrals, i.e., (5.5). The derivation
of these integrals require also the derivation of the conformal mappings x(z), y(z), through
(5.2). Note that the conformal mappings are also given in an integral form that contains the
function λ(z), z ∈ C. This function is the unique solution of the integral equation (5.3), which in
general, cannot be solved explicitly. Thus, we have to solve it numerically. The derivation of the
conformal mappings as well as the determination of their inverse can also be done numerically.
Several techniques, such as trapezoidal rule, and standard iteration procedures has shown rapid
convergence based on the values of the parameters. For more details on how we can numerically
treat (5.2), (5.3), (5.8) see [3], Ch. IV.2.

In the following, we provide expressions for the expected number of packets at user queues.
We focus only on user U1. Similar expressions can be derived for user U2. Denote by Π1(x, y),
Π2(x, y) the derivatives of Π(x, y) with respect to x and y respectively. Note also that symmetry
implies that Π(1, 0) = Π2(0, 1), Π1(1, 0) = Π2(0, 1), Π1(1, 1) = Π2(1, 1). Substituting y = 1 in
(4.2) and taking the derivative with respect to x at point x = 1 yields,

L1 := Π1(1, 1) =
(
s̄2αᾱ−s̄α−sl+
sl−+s̄2αᾱ

)
Π1(1, 0) +W1Π(1, 0) +W0Π(0, 0), (5.7)

where
W1 = λ(2s̄2αᾱ−s̄α−sl−)+sl+(s̄2αᾱ+sl−−s̄(s+s̄α))

(sl−+s̄2αᾱ)2 ,

W0 = λ(s̄α−s̄2αᾱ)−sl+(sl−+s̄2αᾱ)−s̄(s+s̄α)
(sl−+s̄2αᾱ)2 .

In view of (5.7) we realize that we only need to obtain Π1(1, 0). Note that the derivation
of Π(x, 0) in terms of a solution of the non-homogeneous Riemann boundary value problem is
based on the properties of the conformal mappings x : C+ → S+

1 and y : C− → S+
2 derived

in (5.2). Indeed, the properties of the conformal mappings imply that the inverse of these
mappings do exist. Let z = w1(x), z = w2(y) the inverse mappings of x(.) and y(.) respectively.
Then, the first in (5.5) yields

Π(x, 0) = Π(0, 0)×
[
1 +

{
eΓ(w1(x))[Ψ(w1(x)) + c1w1(x) + c0], x ∈ S+

1 ,

eΓ+(w1(x))[Ψ+(w1(x)) + c1w1(x) + c0], x ∈ S1,

]
,
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When x = 1 ∈ S1
2,

Π1(1, 0) = Π(0, 0) limx∈S+
1 ,x→1

d
dx
{eΓ(w1(x))[Ψ(w1(x)) + c1w1(x) + c0]}

= Π(0, 0) limx∈S+
1 ,x→1

{
w

(1)
1 (x)eΓ(w1(x)) ([Ψ(w1(x)) + w1(x)c1 + c0]

× 1
2πi

∫
τ∈S1

logG(τ)dτ
(τ−w1(x))2 + 1

2πi

∫
τ∈S1

e−Γ
(+)
1 (τ) logS(τ)dτ

(τ−w1(x))2

)
+ 1
}
,

(5.8)

where w
(1)
1 (x) is the first derivative of w1(x) with respect to x.

Remark 5. Therefore, although the theory of boundary value problems provides a robust math-
ematical background to obtain expressions for the pgf of the stationary joint queue length dis-
tribution at user buffers, it is not an easy task to obtain numerical results; see [3], part IV. In
the next section, we provide an efficient approach to derive bounds for the basic performance
metrics without calling for the advanced concepts of the theory of boundary value problems.

6 The Symmetrical System: Mean-value Analysis

In the following, we show how we can obtain explicit bounds for the expected number of buffered
packets, without calling for the advanced concepts of the theory of boundary value problems.
Recall that symmetry implies that Π(1, 0) = Π(0, 1), Π1(1, 0) = Π2(0, 1), Π1(1, 1) = Π2(1, 1).
Without loss of generality, we assume that H(x, y) = (λ̄ + λx)(λ̄ + λy), i.e., the number of
packets arriving at a users’ queue is Bernoulli(λ) distributed, where λ̄ = 1−λ3. The following
Theorem summarizes the main result of this Section.

Theorem 6.1. Under the stability condition λ < sl− + s̄2αᾱ (see Theorem 3.1), the following
expressions are explicit bounds for the expected queue length at the users’ buffers:

Llow =
(sl++s̄α−s̄2αᾱ)λ(2−3λ)−2[2s̄2αā−s̄α+sl−](λλ̄+sl+ λ+sl+

s+s̄2αᾱ
)

2(s+s̄α+sl+)(sl−+s̄2αᾱ−λ)
,

Lup = Llow + (sl−)2[sl++s̄α−s̄2αᾱ]
2(s+s̄α+sl+)(sl−+s̄2αᾱ−λ)

.

(6.1)

Proof. Our approach is summarized in the following steps:

Step 1. Setting in (4.2) y = 1, differentiating with respect to x, and letting x → 1, we obtain
after some algebra

Π1(1, 1) =
λλ̄+ sl+ λ+sl+

s+s̄2αᾱ
+ Π1(1, 0)[s̄2αᾱ− s̄α− sl+]

sl− + s̄2αᾱ− λ
. (6.2)

To derive (6.2) we used (5.6), and the balance condition

sl+
λ+ sl+

s+ s̄2αᾱ
= ss̄l+[1− Π(1, 0)− Π(0, 1) + Π(0, 0)] + sl+[Π(1, 0)− Π(0, 0)]. (6.3)

2If x = 1 ∈ S−1 , then we need to obtain analytic continuation of the function in the right hand side of (5.5)
following the lines in [91]. Note that such a case would result in further numerical difficulties.

3Note that similar results can be obtained if we assume an arbitrary other arrival process. In this section,
we decided to consider Bernoulli arrivals for the ease of computations.
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Note that (6.3) is a conservation of flow relation and equates in steady state the flow of
packets into and out of a queue due to the arrival of a triggering signal. More precisely,
the left-hand side denotes the rate at which jobs flows in a user queue when a signal arises
in the other (non empty) user queue, while the right hand side the flow of jobs out of a
user queue due to a signal arrival.

Step 2. Denote L = Π1(1, 1) = Π2(1, 1). Setting x = y in (4.2) and differentiating it with respect
to x at x = 1 we obtain after lengthy calculations:

L = λ(2−3λ)+2Π1(1,0)[2s̄2αā−s̄α+sl−]+(sl−)2P (Q1>0,Q2>0)
4[sl−+s̄2αā−λ]

. (6.4)

Step 3. Using (6.2), (6.4), and that fact that 0 ≤ P (Q1 > 0, Q2 > 0) ≤ 1 we obtain the desired
expression (6.1).

Remark 6. Note that when s = 0 (i.e., classical slotted ALOHA network) and/or l− = 0 (i.e.,
only triggering signals are allowed), Lup = Llow.

7 Numerical Results

In this section we evaluate numerically the theoretical results obtained in the previous sections.
We consider the case where the users have the same link characteristics and transmission
probabilities to facilitate exposition clarity.

7.1 Stable throughput region and stability region

Here we present the numerical results regarding the stability conditions and the stable through-
put region as presented in Section 3. As we mentioned in that section, the stable throughput
region is a subset of the stability region. In Figure 1, we present the closure of the stability
region and the stable throughput region for the external arrival probabilities for the follow-
ing three cases for s1 = s2 = 0.1, 0.2, 0.4. We consider two cases regarding the probabilities
l+i = 0.2, 0.4. By closure, we mean over all the possible transmission probabilities αi, i = 1, 2.

As si increases, the stability region is becoming slightly broader, this is expected since less
packets are transmitted thus we have fewer collisions. In addition, the stable throughput region
is becoming smaller, since the achievable throughput is less, we observe a steep drop in the
medium values of the external arrivals, this is because in the expression of an empty queue
that we utilized in the dominant systems, the denominator is based on the probability of a
packet departure from the queue mi (including the packet drops that are excluded from the
throughput), instead of the probability of service, µi.

We observe that for the same value of si, with the increase of l+i , both regions become
smaller, due to internal packet movement which allow for less external traffic arrivals in order
to sustain the stability of the system. However, for the stable throughput region, we observe
that for the low arrival rate for the one user and the high arrival rate for the other user we got
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Figure 1: The closure of the stability region and the stable throughput region. The blue lines
are for the stability region and the red ones for the stable throughput region.

less achievable stable throughout, however, in the medium ones we can achieve a larger region.
This is expected due to the smaller value of l−i which causes the drops of the packets from the
system.
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7.2 Performance analysis

In the following, we focus on how the system parameters affect the expected number of packets.
Figure 2 shows the way α ∈ [0.3, 0.6] affects the bounds Llow, Lup, by letting l+ taking values

0.5 and 0.8 and assuming s = 0.2, λ = 0.1. Clearly, letting s to be small the bounds become
tighter, especially when l+ = 0.8. Thus, by enhancing load balancing we can achieve tighter
bounds (In particular, when l+ = 1, then, Llow = Lup; see equation (6.1). Moreover, we observe
that the increase in transmission probability α will decrease the expected number of buffering
packets.

0.3 0.35 0.4 0.45 0.5 0.55 0.6
0

0.1

0.2

0.3

0.4

0.5

0.6

Figure 2: Effect of α on the bounds of the expected number of packets for s = 0.2, λ = 0.1.

In Figure 3 we observe the way Llow, Lup are affected for increased values of l+. By increasing
l+ we enhance load balancing. In particular, we can see that as s takes small values, the more
we increase l+, the better the system behaves, since we can see the decrease on the expected
number of buffering packets.

Figure 4 shows that the increase in λ will definitely increase the expected number of buffering
packets, but our results shows that in such a case, if s takes large values, the bounds become
tighter. This means that the increase in packet arrivals can be balanced by the increase in
signal generation, and especially when the probability of a deleting signal (i.e., l− = 0.9) is
large.

In the following, we focus on the impact of signals on the system performance by providing
a comparative study between the RAGN and the standard RAN without signals (i.e., s = 0).
For this reason we consider only triggering signals, i.e., l+ = 1. Our aim is to see the effect of
load balancing on the network performance.

Figure 5 shows that RAG network with only triggering signals is superior with respect to the
standard ALOHA. In particular, by assuming the RAG network with only triggering signals
(i.e., considering load balancing) with s = 0.1 (and l+ = 1), we succeeded better performance
than the standard ALOHA network (i.e., s = 0). Clearly, the network performance can be
improved further when assuming deleting signals (but at a cost of losing data). Thus, the effect
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Figure 3: Effect of l+ on the bounds of the expected number of packets for α = 0.6, s = 0.1.

0.1 0.15 0.2 0.25 0.3
0

0.5

1

1.5

2

Figure 4: Effect of λ on the bounds of the expected number of packets for α = 0.6, l+ = 0.1.

of triggering signals will result in better performance and will improve the quality of service in
a multiple access network.

Figure 6 shows how the expected number of packets are affected when we increase the
probability s of signal generation, and further illustrates the importance of load balancing in
such networks. In particular, we compare again the RAG network with only triggering signals
(l+ = 1) with the standard ALOHA network. It is easily observed that in case of RAG network
with only triggering signals, the expected number of packets in a user node decreases as we
increase the values of s (in a region of s that ensures stability). This fact reveals how crucial is
for the overall network performance the inclusion of load balancing through triggering signals.
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8 Conclusions and Future Directions

In this paper we introduced for the first time in the related literature the concept of signals in
random access networks, by introducing the so-called Random Access G-Network. We consid-
ered both negative signals that delete a packet from a user’s queue, and triggering signals that
cause the instantaneous transfer of packets among user queues. For this interacting network
of queues, we obtained both the stability (SR) and the stable throughput (STR) regions using
the stochastic dominance approach. We shown that STR is a subset of SR, a result that has
not been reported in the related literature.

Moreover, we provided a compact mathematical analysis and obtain expressions for the pgf
of the stationary joint queue length distribution at user queues with the aid of the theory of
Riemann boundary value problems. A computationally efficient way to obtain exact bounds for
the expected queue length was also given without calling for the advanced concepts of boundary
value problems. Numerical results were also obtained and shown useful insights.
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Future extensions of this work include the consideration of more realistic models for the
wireless channels such as the erasure and the multi packet reception channel. In addition,
security in Internet-of-Things networks can be studied with the consideration of G-networks.
Network-level cooperative networks is another interesting direction to be considered.
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Appendices

A An alternative way to derive stability condition

In the following we derive the stability condition based on Theorem 6.1 in [84], pp. 95-96. We
start with some necessary notation. Define µk = d

dx
φk(x, 1)|x=1, νk = d

dy
φk(1, y)|y=1, k = 1, 2, 3.

Then, it is readily seen that

µ3 = λ1 + s2l
+
2 + 1− (s1 + s̄1s̄2α1ᾱ2),

ν3 = λ2 + s1l
+
1 + 1− (s2 + s̄1s̄2α2ᾱ1),

µ1 = λ1 + s̄1ᾱ1,
ν1 = λ2 + s1l

+
1 ,

µ2 = λ1 + s2l
+
2 ,

ν2 = λ2 + s̄2ᾱ2.

Denote also r1 = µ1− 1 + ν1
1−µ3

1−ν3
, r2 = ν2− 1 +µ2

1−ν3

1−µ3
. We will state only the most interesting

part of the ergodicity theorem. For a complete discussion see [84]. Since under condition
µ3 > 1, ν3 > 1, the system is unstable (see lemma 6.1, p. 94 in [84]), we assume hereon that

µ3 < 1⇔ λ1 + s2l
+
2 < (s1 + s̄1s̄2α1ᾱ2).

Then, following Theorem 6.1, pp. 95-96 in [84] we have the following result:

Theorem A.1. 1. If ν3 < 1⇔ λ2 + s1l
+
1 < (s2 + s̄1s̄2α2ᾱ1), then, Qn is

(a) positive recurrent iff r1 < 0, r2 < 0, or equivalently

λ1 + s2l
+
2

λ2+s1l
+
1

s2+s̄1s̄2α2ᾱ1
< (s1 + s̄1α1)(1− λ2+s1l

+
1

s2+s̄1s̄2α2ᾱ1
) +

λ2+s1l
+
1

s2+s̄1s̄2α2ᾱ1
(s1 + s̄1s̄2α1ᾱ2),

λ2 + s1l
+
1

λ1+s2l
+
2

s1+s̄1s̄2α1ᾱ2
< (s2 + s̄2α2)(1− λ1+s2l

+
2

s1+s̄1s̄2α1ᾱ2
) +

λ1+s2l
+
2

s1+s̄1s̄2α1ᾱ2
(s2 + s̄1s̄2α2ᾱ1).

(A.1)
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(b) null-recurrent iff r1 ≤ 0, r1 = 0 = r2, r2 ≤ 0.

(c) transient iff r1 > 0 or r2 > 0.

2. If ν3 ≥ 1⇔ λ2 + s1l
+
1 ≥ (s2 + s̄1s̄2α2ᾱ1), then, Qn is

(a) positive recurrent iff r2 < 0, or equivalently

λ2 + s1l
+
1

λ1+s2l
+
2

s1+s̄1s̄2α1ᾱ2
< (s2 + s̄2α2)(1− λ1+s2l

+
2

s1+s̄1s̄2α1ᾱ2
) +

λ1+s2l
+
2

s1+s̄1s̄2α1ᾱ2
(s2 + s̄1s̄2α2ᾱ1).

(b) null-recurrent iff r2 = 0.

(c) transient iff r2 > 0.

Let us now consider the case of Bernoulli(λi), i = 1, 2, arrivals joining the user buffers. For
such a case, the resulting random walk in the quarter plane has bounded transitions and fall
into the class of random walks (see Conditions A, B, in [83], p. 39), for which Theorem 3.3.1
in [83] provides the ergodicity conditions. Using that result we show that the derived stability
conditions coincide with those obtained in Theorem A.1, and Theorem 3.1. For such a case,
the transition diagram of the resulting two-dimensional random walk is given in Figure 7, and
has one step transition probabilities of the following form (maximal space homogeneity)

P [Qn+1 = (i+ k, j + l)|Qn = (k, l)] =


pi,j, for k, l ≥ 1,
p′i,j, for k ≥ 1, l = 0,
p′′i,j, for k = 0, l ≥ 1,
pOi,j, for k = l = 0.

Just for the sake of clarity, we provide the one step transition probabilities for k, l ≥ 1. The
rest of them can be derived analogously. Then,

p−1,0 = λ̄1λ̄2[s̄2(s1l
−
1 + s̄1α1ᾱ2) + s1s2l

+
1 l
−
2 ] + λ̄1λ2s1l

−
1 s2l

−
2 ,

p0,−1 = λ̄1λ̄2[s̄1(s2l
−
2 + s̄2α2ᾱ1) + s1s2l

−
1 l

+
2 ] + λ̄2λ1s1l

−
1 s2l

−
2 ,

p−1,1 = λ̄1λ̄2s1l
+
1 s̄2 + λ̄1λ2[s̄1s̄2α1ᾱ2 + s1(l−1 s̄2 + l+1 s2l

−
2 )],

p1,−1 = λ̄1λ̄2s2l
+
2 s̄1 + λ̄2λ1[s̄1s̄2α2ᾱ1 + s2(l−2 s̄1 + l+2 s1l

−
1 )],

p1,0 = λ1λ̄2[s̄1s̄2(ᾱ1ᾱ2 + α1α2) + s1l
+
1 s2l

+
2 ] + λ1λ2[s̄1(s2l

−
2 + s̄2ᾱ1α2) + s1l

−
1 s2l

+
2 ] + λ̄1λ2s̄1s2l

+
2 ,

p0,1 = λ2λ̄1[s̄1s̄2(ᾱ1ᾱ2 + α1α2) + s1l
+
1 s2l

+
2 ] + λ1λ2[s̄2(s1l

−
1 + s̄1ᾱ2α1) + s1l

+
1 s2l

−
2 ] + λ̄2λ1s̄2s1l

+
1 ,

p1,1 = λ1λ2[s̄1s̄2(ᾱ1ᾱ2 + α1α2) + s1l
+
1 s2l

+
2 ],

p−1,−1 = s1l
−
1 s2l

−
2 λ̄1λ̄2,

p−1,2 = s1l
+
1 s̄2λ̄1λ2,

p2,−1 = s2l
+
2 s̄1λ̄2λ1,

p2,0 = s2l
+
2 s̄1λ2λ1,

p0,2 = s1l
+
1 s̄2λ̄2λ1,

p0,0 = λ̄1λ̄2[s̄1s̄2(ᾱ1ᾱ2 + α1α2) + s1l
+
1 s2l

+
2 ] + λ1λ̄2[s̄2(s1l

−
1 + s̄1α1ᾱ2) + s1s2l

+
1 l
−
2 ]

+λ̄1λ2[s̄1(s2l
−
2 + s̄2α2ᾱ1) + s1s2l

−
1 l

+
2 ] + λ1λ2s1l

−
1 s2l

−
2 .
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Let the expected one step transitions along the x and y for the interior (i.e., k, l ≥ 1) and
boundary states (i.e., k ≥ 1, l = 0 and k = 0, l ≥ 1) respectively:

Mx =
∑2

i=−1

∑1
j=−1 ipi,j = λ1 + s2l

+
2 − (s1 + s̄1s̄2α1ᾱ2),

My =
∑1

i=−1

∑2
j=−1 jpi,j = λ2 + s1l

+
1 − (s2 + s̄1s̄2α2ᾱ1),

M ′
x =

∑1
i=−1

∑1
j=−1 ip

′
i,j = λ1 − (s1 + s̄1α1),

M ′
y =

∑2
i=−1

∑1
j=−1 jp

′
i,j = λ2 + s1l

+
1 ,

M ′′
x =

∑2
i=−1

∑1
j=−1 ip

′′
i,j = λ1 + s2l

+
2 ,

M ′′
y =

∑1
i=−1

∑1
j=−1 jp

′′
i,j = λ2 − (s2 + s̄2α2).

Then, is easily seen that

MxM
′
y −MyM

′
x

= λ1 + s2l
+
2

λ2+s1l
+
1

s2+s̄1s̄2α2ᾱ1
− [(s1 + s̄1α1)(1− λ2+s1l

+
1

s2+s̄1s̄2α2ᾱ1
) +

λ2+s1l
+
1

s2+s̄1s̄2α2ᾱ1
(s1 + s̄1s̄2α1ᾱ2)],

MyM
′′
x −MxM

′′
y

= λ2 + s1l
+
1

λ1+s2l
+
2

s1+s̄1s̄2α1ᾱ2
< (s2 + s̄2α2)(1− λ1+s2l

+
2

s1+s̄1s̄2α1ᾱ2
) +

λ1+s2l
+
2

s1+s̄1s̄2α1ᾱ2
(s2 + s̄1s̄2α2ᾱ1).

(A.2)

Then, a straightforward application of Theorem 3.3.1 in [83] implies the stability conditions
obtained in Theorem A.1, and Theorem 3.1.
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Figure 7: The two-dimensional random walk for Bernoulli external arrivals at user queues.
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