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Abstract: The nosocomial opportunistic Gram-negative bacterial pathogen Acinetobacter baumannii is
resistant to multiple antimicrobial agents and an emerging global health problem. The polymyxin
antibiotic colistin, targeting the negatively charged lipid A component of the lipopolysaccharide on
the bacterial cell surface, is often considered as the last-resort treatment, but resistance to colistin
is unfortunately increasing worldwide. Notably, colistin-susceptible A. baumannii can also develop
a colistin dependence after exposure to this drug in vitro. Colistin dependence might represent a
stepping stone to resistance also in vivo. However, the mechanisms are far from clear. To address this
issue, we combined proteogenomics, high-resolution microscopy, and lipid profiling to characterize
and compare A. baumannii colistin-susceptible clinical isolate (Ab-S) of to its colistin-dependent
subpopulation (Ab-D) obtained after subsequent passages in moderate colistin concentrations. Inci-
dentally, in the colistin-dependent subpopulation the lpxA gene was disrupted by insertion of ISAjo2,
the lipid A biosynthesis terminated, and Ab-D cells displayed a lipooligosaccharide (LOS)-deficient
phenotype. Moreover, both mlaD and pldA genes were perturbed by insertions of ISAjo2 and ISAba13,
and LOS-deficient bacteria displayed a capsule with decreased thickness as well as other surface
imperfections. The major changes in relative protein abundance levels were detected in type 6
secretion system (T6SS) components, the resistance-nodulation-division (RND)-type efflux pumps,
and in proteins involved in maintenance of outer membrane asymmetry. These findings suggest that
colistin dependence in A. baumannii involves an ensemble of mechanisms seen in resistance develop-
ment and accompanied by complex cellular events related to insertional sequences (ISs)-triggered
LOS-deficiency. To our knowledge, this is the first study demonstrating the involvement of ISAjo2
and ISAba13 IS elements in the modulation of the lipid A biosynthesis and associated development
of dependence on colistin.

Keywords: Acinetobacter baumannii; colistin dependence; multidrug resistance; polymyxin; insertion
sequence elements; proteomics; WGS; T6SS

1. Introduction

Acinetobacter baumannii is a nosocomial opportunistic Gram-negative pathogen dis-
playing extensive resistance to many classes of antimicrobial agents. An arsenal of virulence
factors, such as biofilm production, capsular polysaccharides, drug efflux pumps, release
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of outer membrane vesicles, and altered outer membrane protein composition, help A.
baumannii to adapt to environmental stresses and promote an infection [1]. To cope with
antibiotic exposure, it employs both intrinsic and acquired resistance mechanisms, includ-
ing membrane impermeability, enzymatic modification of the drug, target alteration, and
active drug efflux via several efflux systems. Carbapenem-resistant A. baumannii (CRAB) is
the top-ranked pathogen in the priority list of the World Health Organization for research
and development of new antibiotic treatments [2]. Carbapenem resistance in A. baumannii
often involves co-resistance to other antibiotic classes [2,3], thereby causing life-threatening
nosocomial infections. Colistin, or polymyxin E, is employed to treat CRAB infections,
and it is considered as the last-resort drug against infections caused by multi-resistant
bacteria. Colistin interacts with the lipid A component of the lipopolysaccharide (LPS) or
lipooligosaccharide (LOS) in the outer membrane (OM) of the cell envelope, destabilizing
and disrupting both their OM and inner membrane (IM) and killing bacteria [4].

The OM of Gram-negative bacteria is asymmetric with the inner leaflet comprised of
phospholipids and the outer leaflet of LPS or LOS. LPS is composed of a lipid A anchor, a
core oligosaccharide, and an O-polysaccharide, while A. baumannii LOS does not contain
O-polysaccharide and instead have a short series of sugars attached to the core. LPS/LOS
are synthetized on the cytoplasmic side of inner membrane and transported across the IM
and periplasm before they reach the OM. The negatively charged hydrophobic glycolipid
lipid A anchors the LPS/LOS to the OM. The LPS/LOS are essential for Gram-negative
bacteria, providing a barrier structure and stringent permeability to benefit the survival of
the pathogen under stress conditions [5]. Nevertheless, some strains of A. baumannii can
survive without lipid A and hence without LOS [6,7].

Intrinsic colistin resistance emerges primarily through remodeling the drug target,
the lipid A moiety, as a result of mutations, deletions, or insertions of mobile genetic
elements in various genes involved in lipid A biosynthesis. Two major mechanisms of
chromosomally encoded colistin resistance have been identified. The first includes covalent
modifications of the lipid A phosphoester groups that reduce the net negative charge
of lipid A and alters the affinity for polymyxins. It’s affects the PmrAB two-component
signaling system and includes the addition of phosphoethanolamine (pETN) [8,9] or 4-
amino-4-deoxy-l-arabinose in Enterobacteriaceae [4] to the lipid A. The second is a complete
loss of LOS due to mutations in one of three first genes involved in the lipid A biosynthesis
(lpxA, lpxC, and lpxD) [10,11], yielding a termination of lipid A production.

Colistin-susceptible A. baumannii strains may develop dependence after exposure
to colistin in vitro [12–14]. Colistin dependence is not rare, as many as 32.9% of colistin-
susceptible isolates were able to do so [14], most of them were otherwise multidrug-resistant
and able to cause infection in mice [15]. Colistin dependence may represent a transition step
to resistance and LOS-deficiency, with direct binding of colistin to phosphatidylglycerol-
rich areas of the OM in LOS-deficient strains, has been proposed as a key step [15]. Still,
the mechanisms underlying colistin dependence are far from clear.

To address this issue, we employed a strain-specific proteogenomic approach inte-
grating high-throughput discovery-based genomics and proteomics. The interpretation
of mass spectrometry (MS)-based proteomics data typically include peptides identifica-
tion by matching the acquired MS data against a standard reference protein sequence
database, such as NCBI or UniProt, assuming that all peptides are present therein [16]. This
is, however, not always the case, particularly for bacteria due to significant intraspecies
genomic variability and presence of mobile elements [17]. We, therefore, utilized whole
genome sequencing (WGS) of susceptible A. baumannii (Ab-S) and a colistin-dependent
subpopulation (Ab-D), not only to characterize possible differences in genomic features,
but also to create in silico a comprehensive set of possible protein-coding sequences for
each bacterial subpopulation. The tailored databases were then used for proteomic analyses
and downstream bioinformatics. Moreover, we combined the proteogenomic data with
high-resolution imaging and lipid profiling to provide a careful characterization of colistin
dependence.
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2. Results
2.1. Phenotypically Colistin-Dependent Subpopulation

A colistin-dependent phenotypic subpopulation (Ab-D) evolved in vitro from the
colistin-susceptible A. baumannii clinical isolate after only 8–10 subsequent passages in
the presence of a moderate colistin concentration. The Ab-D subpopulation appeared as
numerous colonies growing generally along the colistin Etest strip with a pear-like shape
area between 0.125 and 256 µg/mL, whereas the original isolate Ab-S was susceptible to
colistin with minimum inhibitory concentration (MIC) ≤ 2 µg/mL (Figure 1).
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Figure 1. Diversity of the growth pattern of A. baumannii clinical isolate. Initially, this isolate was
characterized as susceptible to colistin by Etest on MHA, S ≤ 2 µg/mL (Ab-S), on the left. A
bacterial subpopulation displaying colistin-dependent growth was selected after 8-10 passages on
agar containing 16 µg/mL colistin sulphate. This colistin-dependent population (Ab-D) grows only
along the colistin Etest strip on a pear-like shape area between 0.125 and 256 µg/mL, (middle panel).
When the Ab-D subpopulation was passed 6 times on agar base medium and further applied for
colistin Etest, a phenotypic heterogeneity within this bacterial population was observed (Ab-D after
6 passages on colistin-free medium). Most cells were growing in a colistin-susceptible manner and a
certain amount retained a colistin-dependent growth pattern appearing along the colistin Etest strip
(right panel).

When the MICs of 17 antimicrobial agents, including colistin, were evaluated using
the broth microdilution method, the colistin MIC for the dependent Ab-D phenotype
exceeded 8 µg/mL in comparison to MIC ≤ 2 µg/mL for Ab-S (Table S1). The latter
did, however, displayed a high degree of drug resistance, for instance, to carbapenems,
and was accordingly classified as extensively drug-resistant (XDR) [18]. Interestingly, the
Ab-D subpopulation displayed lower MIC-values for meropenem, imipenem, amikacin,
tigecycline, piperacillin-tazobactam, and amoxicillin-clavulanic acid compared to Ab-S
(Table S1). The stability of the dependent phenotype was limited, but the characteristics
were maintained during a few passages in colistin-free medium. They were, however, only
partially reversible, as subsequent growth on antibiotic-free medium after six subculture
passages yielded phenotypic heterogeneity within this bacterial population. Most cells
displayed a colistin-susceptible manner but some retained a colistin-dependent growth
pattern appearing along the colistin Etest strip (Figure 1).

2.2. Ultrastructural Traits of Colistin-Dependent A. baumannii

Development of resistance or dependence to colistin may occur via alterations in
bacterial structures that are located outside or within the cell envelope, thereby affecting
the bacterial fitness. To address this issue, we employed super resolution imaging by
transmission electron microscopy (TEM) of the two A. baumannii subpopulations, Ab-S and
Ab-D (Figure 2A,B). We observed that, under both conditions, Ab-S cells displayed a regular
shape of the cell envelope with appendage-like structures, such as pili or fimbriae and a
thick exopolysaccharide capsule layer. By contrast, Ab-D bacteria showed a cell envelope
with increased membrane curvature, few appendages, and a thin capsule, especially when
grown on MHA plates in close proximity of the colistin Etest strip. The Ab-D cells were
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furthermore surrounded by additional electron-dense material, like cell debris and/or outer
membrane vesicles (Figure 2B). Ab-S bacteria showed a regular and thick capsule, reaching
approximately 100 nm, while Ab-D cells displayed a disrupted capsule, as evidenced by
an at least 2-fold decrease in thickness (Figure 2C). Thus, these high-resolution imaging
demonstrates that Ab-D cells carry multiple surface imperfections.
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2.3. Variations in the Lipid A Content

A possible mechanism for colistin dependence is attributed to defects in or modifica-
tions of the lipid A moiety of the LPS, which may result in an impaired cell membrane [13].
We utilized Matrix-Assisted Laser Desorption Ionization-Time of Flight (MALDI-TOF) MS
to investigate the lipid A structure in Ab-S and Ab-D. This method allows a rapid and
accurate detection of lipid A possible modifications, including a potential pETN addi-
tion [19,20]. In Ab-S, the mass spectrum of lipid A was attributed by peaks at m/z values
of 1910.5, 1728.3, and 1529.9 (Figure 3). The two most intensive signals at m/z 1910.5 and
m/z 1728.3 were produced by singly deprotonated bis-phosphorylated hepta-acyl and
bis-phosphorylated hexa-acyl lipid A, which is consistent with previous studies [21,22].
The major peaks 1910.5, 1728.3, 1529.9, were missing in the mass spectrum for lipid A
from the Ab-D cells (Figure 3). This likely reflects a lipid A deficiency in the Ab-D sub-
population. It is worth noting that no peaks were detected corresponding to previously
described pETN-modified mono- and bis-phosphorylated hepta-acyl lipid A [19–21,23,24],
indicating that colistin dependence in Ab-D is not associated with the addition of pETN.
Taken together, MALDI-TOF MS analyses demonstrated structural deficiencies in lipid A,
that most likely lead to structural defects also in the LOS and outer membrane.
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Figure 3. The mass spectra for lipid A in A. baumannii populations. Two A. baumannii populations, susceptible to colistin
(Ab-S) and colistin-dependent (Ab-D) were grown on MHA plates with colistin Etest strip. Cells were collected, lipid A was
extracted, and samples were subjected to MALDI-TOF MS analysis. In Ab-S, the mass spectrum of lipid A was dominated
by peaks at m/z values of 1910.5, 1728.3 and 1529.9 (upper panel). The major peaks 1910.5 and 1728.3 were missing in the
Ab-D mass spectrum (lower panel).

2.4. Whole Genome Sequencing Reveals Genes Associated with Antibiotic Resistance

To investigate potential genetic differences, we performed whole genome sequencing
(WGS) of Ab-S and Ab-D with downstream bioinformatics analyses. The whole genome
size of A. baumannii was 4,111,821 and 4,125,623 base pairs (bp) for the Ab-S and Ab-
D populations (Table 1, Supplementary files S1 and S2), whose genome data could be
assembled into 121 and 186 contigs for Ab-S and Ab-D, respectively. As many as 109 contigs
(59%) in Ab-D included less than 1000 bp, which is significantly more than the 35% in Ab-S.
On the other hand, the number of sequences longer than 1000 bp was nearly the same
for Ab-S and Ab-D (79 and 77 respectively). When the complete genome sequences were
searched against the NCBI bacteria database, the reference genome with NCBI accession
NC_011586 corresponding to A. baumannii MDR strain AB0057 was identified as closest
in sequence with 95.1% and 90.9% sequence match for Ab-S and Ab-D, respectively. This
indicates that the strain used here might have evolved from the AB0057, first isolated
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from a blood-stream infection patient at Walter Reed Army Medical Center [25–27]. Upon
multi-locus sequence typing (MLST), Ab-S and Ab-D had sequence type 1 (ST1).

Table 1. Whole genome sequencing (WGS) of Ab-S and Ab-D subpopulations of A. baumannii.

Subpopulation Ab-S Ab-D

Genome length 4,111,821 bp 4,125,623 bp
Reference * NC_011586 NC_011586

Mapped reads * 95.1% 90.9%
Unmapped ** 4.9% 9.1%

Contigs 121 186
* Complete genome sequences were searched against the NCBI bacteria database in order to determine the species.
The reference genome with the best match is gathered and mapped reads refers to the percentage of the genome
that have been matched against the reference genome. ** Unmapped percentage are reads that did not map
against any previous reference genomes in NCBI.

The assembled data were also searched for antimicrobial resistance genes using the
ResFinder database [28]. This analysis of the resistome revealed presence of five groups of
genes associated with antibiotic resistance identical in both Ab-S and Ab-D subpopulations:
aminoglycoside-modifying enzymes (aac(3)-IId, aph(3′)-VIa, aph(3′)-Ic, aac(3)-Ia, aadA1);
beta-lactamases (blaOXA-69, blaTEM-1D, blaOXA-23, blaADC-25, blaNDM-1); phenicols (floR, catA1);
sulphonamide (sul1) and tetracycline (tetA) (Table 2). This list of the identified resistance
genes was rather similar to that for AB0057 [25,29]. No mobile plasmid-mediated resistance
mcr genes were found even after manual verification and no differences between Ab-S and
Ab-D in polymyxin resistance-associated genes pmrA, pmrB and pmrC were identified.

Table 2. Antimicrobial resistance genes revealed by ResFinder analysis in A. baumannii.

Resistance Genes * Predicted Resistance
Phenotype Enzyme Class/Family Resistance Mechanism

aac(3)-IId

Aminoglycosides Aminoglycoside-modifying
enzymes

Enzymatic inactivation of
antibiotic

aph(3′)-VIa
aph(3′)-Ic
aac(3)-Ia
aadA1

blaOXA-69

Beta-lactams Beta-lactamases Enzymatic inactivation of
antibiotic

blaTEM-1D
blaOXA-23
blaADC-25
blaNDM-1

floR
Phenicols

Major facilitator superfamily
antibiotic efflux pump Antibiotic efflux

catA1 chloramphenicol acetyltransferase Enzymatic inactivation of
antibiotic

sul1 Sulphonamides Dihydropteroate synthase Antibiotic target replacement
tetA Tetracycline Antibiotic efflux pump Antibiotic efflux

* The found resistance genes are all the matches against Resfinder, meaning all the known resistance genes in the database of the Centre of
Epidemilogy. The threshold for a hit of the resistance genes are 98% similarity and 60% length.

We further analyzed the plasmid content of susceptible and dependent A. baumannii us-
ing PLSDB, a resource of complete bacterial plasmids retrieved from the NCBI database [30].
PLSDB analysis identified 4 plasmids and no difference between Ab-S and Ab-D was ob-
served (Table S2). SNPs analysis was performed, but did not find any differences between
the genomes. However, as the variant call is based on read mapping, the SNP analysis
cannot reveal differences in insertion sequences (ISs) elements, as these can be present in
multiple copies and map to multiple different positions.
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2.5. In Silico Genome Analysis Displays Multiple ISs

ISs mediate genome rearrangement, disturb coding sequences by insertional inac-
tivation, and modulate gene expression enabling bacterial adaptability and resistance
to antibacterial agents [31]. Some ISs are known to be involved in both colistin resis-
tance [32,33] and dependence development [34]. Therefore, we further investigated the ISs
content in genome sequences of Ab-S and Ab-D. Multiple ISs elements, both truncated and
full-length, were identified using ISfinder [35]. ISfinder recognized 411 copies of IS-related
events present in 73 contigs of the Ab-S dataset among all sequences and 652 IS-related
events in 140 contigs of the Ab-D dataset (Table S2). Both subpopulations shared similar
ISs composition from 13 families (IS5, IS6, IS4, IS3, ISNCY (IS Not Classified Yet), Tn3,
IS30, ISL3, IS1, IS66, IS256, IS1182 and IS481) with ISs elements located predominantly
in the beginning and at the very end of contigs (Table 3). ISAba1, ISAjo2, and ISAba13
had more than 10 ISs copies per genome detected in both Ab-S and Ab-D (Table 4), but
the number of full-length ISs was low. WGS identified two copies of ISAjo2 full-length
gene and three copies of ISAba13 full-length gene. ISAba1 and ISAba123 were encoded
by single full-length gene copy in either of them. WGS identified two copies of ISAjo2
full-length gene and three copies of ISAba13 full-length gene in both Ab-S and Ab-D. ISAba1
and ISAba123 were encoded by single full-length gene copy each in both Ab-S and Ab-D.
No additional novel ISs were detected in Ab-D in comparison to Ab-S. In Ab-S, the IS5
family showed the largest number of ISs and the most frequently detected IS element was
ISAba1 (n = 26) belonging to the IS4 family, and with a similar number for ISAba33 (Table
S3). It should be noted, however, that ISAba33 shares 87% identity with ISAba1, which
is typical for ISs belonging to the same family; thus, many identified ISs are difficult to
distinguish due to sequences overlap. The most substantial difference between Ab-S and
Ab-D was a dramatic increase in the number of ISAjo2 from 18 in Ab-S to 84 in Ab-D
(Table 4). ISAjo2 was initially described for the Acinetobacter johnsonii genome and belongs
to the ISNCY family [36]. Interestingly, less than 1000 bp short ISAjo2-borne contigs were
overrepresented (77%) in Ab-D compared to Ab-S (22%). This difference can likely be
attributed to the high levels of DNA repetitiveness, i.e., the presence of multiple identical
or highly homologous ISs flanked by short terminal inverted repeats creating ambiguities
in alignment and assembly, resulting in the presence of multiple short contigs [37].

Table 3. Number of IS families found by ISFinder in Ab-S and Ab-D.

ISs Family
ISs Number

Ab-S Ab-D

IS5 108 129

IS6 97 97

IS4 52 61

IS3 36 36

ISNCY 33 219

Tn3 33 31

IS30 24 25

ISL3 22 19

IS1 14 14

IS66 12 11

IS256 4 4

IS1182 3 3

IS481 3 3
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Table 4. Most abundant IS elements found by ISFinder in Ab-S and Ab-D.

IS IS Family Group Origin
ISs Number

Ab-S Ab-D

ISAjo2 ISNCY IS1202 Acinetobacter johnsonii 18 84

ISAba1 IS4 IS10 Acinetobacter baumannii 26 31

ISAba13 IS5 IS903 Acinetobacter baumannii 16 19

ISAba125 IS30 Acinetobacter baumannii 9 10

TnAs3 Tn3 Aeromonas salmonicida 7 7

IS1008 IS6 Acinetobacter calcoaceticus 6 7

ISAlw4 IS3 IS51 Acinetobacter lwoffii 2 2

2.6. Proteome Alterations

Genomics alone is not enough for understanding the biology and phenotypic capabili-
ties of the organisms, such as responses to environmental perturbations. Thus, to provide a
more complete characterization we utilized a comprehensive strain-specific combination
of genomics and proteomics. First, to generate a complete set of possible protein-coding
sequences, the acquired WGSs of Ab-D and Ab-S were translated in silico in six reading
frames. Based on detected open reading frames (ORFs), phenotype-specific Ab-D and Ab-S
databases, containing 60,560 and 60,210 potential protein sequences, respectively, were
built. (Supplementary files S3 and S4). Second, we used the resulting protein databases
in FASTA-format for analyses of high-resolution mass spectrometry data. This approach
allowed the identification and relative quantification of around 2000 proteins and protein
clusters; 196 proteins were expressed differentially, out of which 67 proteins were upreg-
ulated (Table S4) and 129 proteins were downregulated (Table S5). The major groups of
differentially expressed proteins were secretion systems proteins, i.e., efflux pumps and
proteins, ABC transporters and porins, but also other outer membrane components and
proteins associated with antibiotic resistance (Table 5). We also identified 30 hypothetical
differentially expressed proteins.

2.7. Upregulation of the Type VI Secretion System and RND-Type Efflux Proteins

The structural components of the type VI secretion system (T6SS), i.e., valine-glycine
repeat protein G (VgrG or TssI), hemolysin-coregulated proteins (Hcp or TssD) and type
VI secretion system ATPase TssH (ClpV) were dramatically upregulated in the Ab-D sub-
population (Tables S4 and S5). Interestingly, all the three out of a possible three (according
to our WGS results) isoforms of the tip protein VgrG were upregulated. Likewise, the
relative abundance of proteins belonging to type IV secretion system (T4SS) and Sec pro-
tein translocase complex were increased significantly in Ab-D. Additionally, the levels
of proteins belonging to AdeABC and AdeIJK bacterial efflux pumps of the Resistance-
nodulation-cell division (RND) superfamily transporters increased two-fold in Ab-D, while
the nucleotide sequences of the corresponding contigs encoding AdeABC, AdeIJK, and
MacA were identical in Ab-S and Ab-D.

2.8. Downregulation of Proteins Involved in Maintenance of Outer Membrane Asymmetry

All proteins identified as involved in the maintenance of the asymmetric lipid distri-
bution, with lipopolysaccharides at the outer leaflet and phospholipids at the inner leaflet
of the outer membrane, were downregulated or missing in Ab-D. These included MlaA,
MlaD, and PldA involved in retrograde glycerophospholipid transport and lipid degrada-
tion [38,39], acyl-ACP-UDP-N-acetylglucosamine O-acyltransferase LpxA catalyzing the first
step of lipid A biosynthesis [6], LptA and LptD lipopolysaccharide transport (Lpt) [40,41]
and periplasmic carrier protein LolA [42,43]. Almost all differentially expressed proteins
identified as transporters (see “Other transporters” in Table 5, Tables S4 and S5) were down-
regulated as well as many other outer membrane proteins (Table S5). The only exception
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was the C4-dicarboxylate transporter (DctA) involved in carbon metabolism, which was
upregulated more than seven times in the Ab-D population. Interestingly, the ATP-dependent
tetradecameric serine protease ATP-binding subunit ClpX and Lon protease (ATP-dependent
protease La) were upregulated in the Ab-D subpopulation (Table 5).

Table 5. Selected groups of proteins differentially expressed in Ab-S and Ab-D. Fold changes were calculated with Ab-S as
the reference category. Fold change value 0 means that protein was detected in Ab-S, but not in Ab-D.

Proteins Accession Number (NCBI) Fold Change p-Value
Secretion systems proteins

type VI secretion system tip protein VgrG WP_161283681.1 12 0.0055

type VI secretion system tip protein VgrG WP_000935013.1 8.3 0.00025

type VI secretion system tip protein VgrG WP_057691008.1 6.3 0.0008

type VI secretion system tube protein Hcp WP_000653195.1 5.9 0.0035

type VI secretion system ATPase TssH (ClpV) WP_000987834.1 2.8 <0.00010

type IV secretion protein Rhs WP_000081475.1 4.9 <0.00010

type IV secretion protein Rhs ACJ40183.1 3 0.00018

type III secretion system protein EcsC EXE73502.1 0.5 0.00019

protein translocase subunit SecF WP_001985897.1 2.3 0.0036

rhombotarget A WP_000920020.1 0.1 0.0012

Adhesin/BapA prefix-like domain-containing protein KRJ95188.1/WP_000196831.1 0.5 0.00023
Efflux proteins

AdeC/AdeK/OprM family multidrug efflux complex outer membrane factor WP_000010517.1 4.3 0.0035

AdeB family multidrug efflux RND transporter permease subunit WP_000046678.1 2.7 <0.00010

multidrug efflux RND transporter periplasmic adaptor subunit AdeI (AcrA) WP_000986589.1 2.1 <0.00010

multidrug efflux RND transporter permease subunit AdeB WP_000987602.1 2 0.0011

multidrug efflux RND transporter AdeIJK outer membrane channel subunit AdeK WP_001174793.1 2 0.0021

multidrug efflux RND transporter periplasmic adaptor subunit AdeA WP_001169096.1 1.9 0.0026

AdeT RND type efflux pump ADX01640.1 0.4 0.00021

MacA family efflux pump subunit WP_001124213.1 INF <0.00010

putative RND family drug transporter CAJ77853.1 0.3 0.00013

putative RND family drug transporter (outer membrane efflux protein) CAJ77861.1 0 0.006
Outer membrane asymmetry maintenance

phospholipase A1 (PldA) EGJ62971.1 0.04 <0.00010

outer membrane lipid asymmetry maintenance protein MlaD WP_098732046.1 0 <0.00010

acyl-ACP-UDP-N-acetylglucosamine O-acyltransferase (LpxA) WP_031976200.1 0 <0.00010

putative lipopolysaccharide transport protein A (ABC superfamily peri_bind) (LptA) CAM87332.1 0.4 0.0049

LPS-assembly protein LptD WP_045544211.1 0,6 0.0046

outer membrane lipoprotein chaperone LolA WP_001056757.1 0.5 0.00024

VacJ family lipoprotein (MlaA) WP_001109851.1 0.4 0.0026
Other transporters

TonB-dependent receptor WP_000413997.1 0.5 <0.00010

putative TonB-dependent Outer membrane receptor for vitamin B12/cobalamin transport (Btub) CAM85573.1 0.5 <0.00010

dicarboxylate/amino acid:cation symporter (C4-dicarboxylate transporter DctA) WP_000347180.1 7.4 0.00023

autotransporter domain-containing protein WP_001260880.1 0.1 0.00025

amino acid ABC transporter substrate-binding protein WP_052137106.1 0.3 <0.00010

phosphate ABC transporter EGJ58385.1 0.1 <0.00010

molybdate ABC transporter substrate-binding protein WP_000253153.1 0 0.0018

toluene tolerance protein Ttg2A/ABC transporter ATP-binding protein EEX02911.1/WP_002135589.1 0.3 0.0059
Proteases

ATP-dependent Clp protease ATP-binding subunit ClpX WP_001289250.1 2.9 <0.00010

Lon protease AEP05596.2 1.6 0.00027
Proteins associated with drug resistance

carbapenem susceptibility porin CarO WP_000733010.1 3.9 0.002

dihydropteroate synthase DHPS AFB76381.1 2.5 0.0042

beta-lactamase (blaADC-25) AEP07218.1 0.4 <0.00010

MBL fold metallo-hydrolase (blaNDM-1) WP_000732912.1 0.3 <0.00010

OXA-23 carbapenemase (blaOXA-23) VCZ51052.1 0.7 0.00053
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2.9. Alterations of Other Proteins Associated with Antibiotic Resistance

We identified changes in the levels of several other proteins, earlier known to be
involved in antibiotic resistance mechanisms (Table 5). We observed a significant increase
in CarO (the carbapenem resistance-associated outer membrane protein) and di-hydro-
pteroate synthase DHPS (the sulfonamides target [44]) expression levels in Ab-D. Three
beta-lactamases, encoded by blaNDM-1, blaADC-25, and blaOXA-23 genes (and detected by Res-
Finder in both Ab-S and Ab-D (Table 2)), were downregulated in the Ab-D subpopulation
(Table 5). In summary, we found significant proteome alterations in Ab-D, indicating that
colistin dependence is a result of a complex cellular response.

2.10. ISAjo2 and ISAba13 Disruption of lpxA, mlaD and pldA Genes in Colistin-Dependent A.
baumannii

Next, we evaluated if the observed protein expression alterations were consistent with
the genetic differences between Ab-S and Ab-D. Out of all significantly downregulated
proteins, sequence analyses of the lpxA, mlaD and pldA genes in Ab-D revealed ISs elements.
Thus, the ISAjo2, belonging to the IS1202 group of the ISNCY family, was inserted into
both lpxA and mlaD genes, and ISAba13 from IS5 family group IS903 into the pldA gene,
acting as gene knockouts. Figure 4 illustrates the organization of the three gene clusters
containing lpxA, mlaD and pldA in Ab-S and Ab-D. Interestingly, that two phenotypically
distinct populations, obtained from Ab-D after six subculture passages on antibiotic-free
medium, contained the same ISs inserted in mlaD and pldA, but cells that returned to
colistin-sensitive growth pattern (Figure 1, right) have lost the ISAjo2 interrupting lpxA.
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A. baumannii. ISAjo2 disrupting the lpxA gene (A) and mlaD gene (B); ISAba13 disrupting pldA (C). Gene clusters in Ab-S
(top) are compared with corresponding disrupted Ab-D clusters (bottom). The identified insertion sequences ISAjo2 and
ISAba13 are shown with gray arrows. Arrows designate transcription directions of genes.
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Is elements may appear both within coding and intergenic regions of genes, where
they can control neighboring genes and affecting their expression. Still, no ISs were de-
tected in close proximity of genes encoding the three most upregulated proteins, i.e.,
the isoforms of the type VI secretion system tip proteins VgrG and Hcp. Pairwise se-
quence alignment with Stretcher (EMBL-EBI) [45] disclosed 100% identity of the VgrG- and
Hcp-encoding contigs from Ab-S and Ab-D. According to Zhu et al., mutations in katG,
encoding a catalase involved in reactive oxygen species scavenging, affected polymyxin
dependence in MRD A. baumannii AB5075 [15] and inactivation of mrcA, encoding the
penicillin-binding protein A1, has been suggested to promote LOS loss [7]. Nevertheless,
no mutations/substitutions/insertions in katG or mrcA were present in Ab-S and Ab-D.

3. Discussion
3.1. Lipid A Modifications and LOS Deficiency in Colistin-Dependent A. baumannii

The present study showed insertion of ISAjo2, which belongs to the IS1202 group of the
ISNCY family, into lpxA gene in the colistin-dependent subpopulation Ab-D (Figure 4A).
Insertional disruption of the lpxA gene knocked it out and abolished acyl-ACP-UDP-N-
acetylglucosamine O-acyltransferase expression in Ab-D (Table 5 and Table S5), which
catalyzes the first step of lipid A biosynthesis. This event entirely terminates lipid A biosyn-
thesis and results in a LOS-deficient A. baumannii phenotype [6] (Figure 5), which we con-
firmed here (Figures 2 and 3). Indeed, ISs and other defects in the lpxACD gene system are
known to be associated with both colistin resistance [32,33] and dependence [34]. In the lat-
ter case, ISAba1 was disrupting the lpxC gene encoding UDP-3-O-acyl-N-acetylglucosamine
deacetylase [34]. ISAjo2 was earlier identified in MDR A. johnsonii, where two copies of
ISAjo2 flanked the region containing the carbapenemase gene blaOXA-58 [36]. We also noted
that ISAjo2 was much more abundant in the Ab-D than in Ab-S (Table 4). This difference
might be explained either by a redundancy of the genome assembly, or by ISAjo2 transposi-
tion triggered by subinhibitory concentrations of colistin [31]. In addition, both Ab-S and
Ab-D displayed a high number of ISs elements accumulated in their genomes (Table 3),
which likely reflects the evolutionary history of the parent strain.

We identified two other genes inactivated by insertions, i.e., mlaD and pldA, encod-
ing proteins involved in maintenance of OM asymmetry [38] (Figure 5). In Ab-D, the
ISAjo2 insertion interrupted the mlaD gene (Figure 4B), encoding a membrane-anchored
periplasmic protein MlaD of the Mla pathway, mediating retrograde transport of glyc-
erophospholipids [46]. ISAba13 from the IS5 family group IS903 was located in the pldA
gene (Figure 4C). ISAba13 has previously been found in carbapenem-resistant A. bau-
mannii [47,48] upstream from blaOXA-94 [48]. PldA is an outer membrane phospholipase
catalyzing the hydrolysis of acyl ester bonds in phospholipids and degradation of mislocal-
ized phospholipids from the surface-exposed outer leaflet. It was hypothesized that Mla
and PldA systems function independently to prevent accumulation of phospholipids at the
cell surface through distinct, yet related mechanisms [49] (Figure 5). We also verified mlaD
and pldA inactivation and downregulation of MlaA in Ab-D by comparative proteomic
analysis (Table 5 and Table S5). Our results are in agreement with the findings by Powers
and Trent [38] on how LOS-deficient and highly polymyxin B-resistant A. baumannii can im-
prove their fitness by elimination of the two OM asymmetry-maintenance systems, Mla and
PldA. This was discovered, however, in colistin-resistant A. baumannii obtained after 120
generations of passaging on 10 µg/mL polymyxin B, while we observed the emergence of
phenotypically colistin-dependent subpopulation already after 8 passages on colistin [38].
Recently, a transcriptomic analysis of a colistin-dependent isolate in relation to its parent
colistin-susceptible MRD A. baumannii AB5075 revealed 1.7-fold increased expression of
mlaD and 2.0-fold decreased expression of pldA in colistin-dependent bacteria [15]. We
believe that this discrepancy can be attributed to the difference between strains.
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Figure 5. Schematic comparison of Ab-S and Ab-D illustrating a major changes occurring during the dependence process.
The A. baumannii envelope consists of the inner membrane (IM), an aqueous periplasm containing a thin layer of peptido-
glycan (PG), the outer membrane (OM) and a polysaccharide capsule. In Ab-S (A) LpxA catalyzes the first step of lipid
A biosynthesis in the cytoplasm, and the completed lipooligosaccharide (LOS) is transported to the cell surface by the
Lpt molecular machinery. The Lol system translocate lipoproteins (LP) from IM to innermost leaflet of the OM, and Mla
and PldA help establish OM asymmetry, removing wrongly localized phospholipids (PLs) from the outer leaflet of OM.
The capsule in Ab-D (B) cells is thin with surface imperfections. Ab-D cells exhibit a LOS-deficient phenotype (B), where
PLs occupy both leaflets of the OM, and lipid A is missing due to the IS disruption of lpxA gene. The lipopolysaccharide
transporters LptA and LptD, OM asymmetry-maintaining proteins MlaA, MlaD, and PldA and periplasmic chaperone LolA
downregulated in comparison to Ab-S or missing. The VgrG, Hcp and ClpV, components of the type 6 secretion system
(T6SS) and several Ade components of the RND-type efflux pumps, as well as the carbapenem susceptibility porin or CarO,
were significantly upregulated in Ab-D. Red squares, red arrows pointing down, green arrows pointing up indicate lost,
downregulated and upregulated proteins, respectively.

Various studies have indicated that, beside downregulation of glycerophospholipid
transport and lipid degradation, lack of LOS can also lead to altered expression of critical
transport and biosynthesis systems, modulating the composition and structure of the
bacterial envelope [50], which is in agreement with our observations (Figure 2), and
reducing the capacity for adhesion and formation of biofilms [51,52]. We found that in
LOS-deficient Ab-D, many other proteins involved in maintenance of the asymmetric
lipid distribution were downregulated or missing. This included proteins LolA from the
Lol lipoprotein transport system, LptA and LptD lipopolysaccharide transport proteins
responsible for the transport and assembly of LPS [40,41] and many other transporters and
outer membrane proteins (Table 5 and Table S5).

3.2. Upregulation of the Type VI Secretion System, Efflux Proteins and Proteases in
Colistin-Dependent A. baumannii

The most dramatic protein upregulation in LOS-deficient Ab-D population of A. bau-
mannii was attributed to secretion system and efflux proteins (Figure 5). These proteins
help bacteria to export specific bacterial products to the cell surface, the extracellular
environment and to other bacteria or eukaryotic cells, thereby promoting bacterial viru-
lence [53]. Gram-negative bacteria harbor multiple types of secretion systems and T6SS is
the most prevalent. T6SS is a macromolecular envelope-spanning apparatus that injects
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toxic bacterial effector proteins directly into eukaryotic target host or other prokaryotic
cells, which is important for virulence and inter-bacterial competition. It mimics inverted
phage tail and tube [54].

The inner tube of this structure is comprised of hemolysin-coregulated protein (Hcp
or TssD) assembled into stacked hexameric rings, permitting effectors to pass through the
tube center. This inner tube is capped by the valine-glycine repeat protein G (VgrG or TssI)
trimer, forming the needle-like structure on the top of the inner tube allowing it to penetrate
the host membrane. It is surrounded by a contractile sheath, which is disassembled and
recycled by an AAA+-type ATPase TssH (ClpV) after the delivery of toxic effectors into
a recipient cell. The perturbation of the cell envelope caused by membrane-targeting
antibiotics, such as polymyxin B, was earlier reported to serve as the signal triggering
the T6SS activation in Gram-negative bacteria [55]. Nevertheless, a repressed expression
of T6SS genes observed for LOS-deficient colistin-resistant A. baumannii [50], which is
opposite to our findings. We suggest that the upregulation of T6SS in the LOS-deficient
colistin-dependent population of A. baumannii may be a part of a cellular response to the
LOS-deficiency caused by exposure to colistin.

In addition, we observed an upregulation of RND superfamily transporters: AdeABC
and AdeIJK bacterial efflux pumps (Figure 5). Overproduction of these in clinical isolates
is associated to MDR due to their very broad substrate profiles [56–61]. In particular, they
play a major role in tigecycline resistance in A. baumannii, where AdeIJK is able to efflux
β-lactams. Nevertheless, we observed that the Ab-D subpopulation displayed increased
sensitivity to carbapenems, tigecycline, piperacillin-tazobactam, and amoxicillin-clavulanic
acid compared to the Ab-S, which could be due to increased OM permeability.

Overexpression of AdeABC or AdeIJK may also affect the expression of various pro-
teins involved in adhesion and biofilm formation (72). In LOS-deficient A. baumannii
increased expression of adeIJK and macAB-tolC has been attributed to an intracellular ac-
cumulation of toxic substances [50]. Moreover, in E. coli and Salmonella enterica cells with
higher acrAB expression (AcrA corresponds to AdeI, in A. baumannii), higher spontaneous
mutation frequencies were observed in response to ciprofloxacin, tetracycline, and chlo-
ramphenicol, indicating involvement of AcrAB efflux pump in initial stages of permanent
antibiotic resistance [62].

Interestingly, the ATP-dependent tetradecameric serine protease ATP-binding subunit
ClpX and the Lon protease (ATP-dependent protease La) were found among proteins up-
regulated in the colistin-dependent subpopulation (Table S1). These energy-dependent pro-
teases, also functioning as chaperones, are involved in degradation of misfolded, damaged
and short-lived regulatory proteins playing a significant role in bacterial stress response [63]
and virulence regulation [64,65].

4. Materials and Methods
4.1. Bacterial Cultivation and Antibiotic Susceptibility Testing

The A. baumannii clinical isolate was obtained from the abdominal cavity of a patient
during 2013 at the Department of Clinical Microbiology, Linköping University Hospital,
Sweden and the susceptibility profile of this parental strain named AB1 was earlier charac-
terized by Nordqvist et al. [66]. To test for colistin resistance, bacterial suspensions with
5 × 105 CFU/mL (colony forming units/mL), or 0.5 McFarland units in 0.9% NaCl were
grown for 24 h at 37 ◦C on Mueller-Hinton agar (MHA) (Becton Dickinsson, Franklin
Lakes, NJ, USA) with Etest strips (BioMérieux, Marcy l’Etoile, France) covering colistin
concentrations between 0.016 and 256 µg/mL. The A. baumannii CCUG 19,096 strain (Cul-
ture Collection, Göteborg University, Sweden) was used as a control for the susceptibility
test [67]. For selection of a colistin-dependent subpopulation, the isolate was cultured for 8-
10 passages on agar containing 16 µg/mL colistin sulphate according to [66]. (Merk Sigma
Aldrich, St. Louis, MO, USA) and parallel colistin-Etests to follow the growth pattern.
Two A. baumannii subpopulations, susceptible to colistin (Ab-S) and colistin-dependent
(Ab-D), were grown on MHA plates or MHA plates with a colistin Etest strip, collected
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and further processed for analyses on transmission electron microscopy (TEM). For lipid
analyses with matrix-assisted matrix desorption-ionization (MALDI-TOF) MS, WGS and
proteomics, Ab-S and Ab-D subpopulation were grown on MHA plates with colistin Etest
strips. In addition, Ab-D subpopulation was cultured for 6 passages on Columbia agar
base medium and further applied for colistin Etest to monitor the growth pattern.

The minimum inhibitory concentrations (MICs) were measured for 17 antimicrobial
agents, including colistin, meropenem, ertapenem, amikacin, gentamicin, tobramycin,
ciprofloxacin, trimethoprim-sulfamethoxazole, ertapenem, cefotaxime, ceftazidime, ceftaz
idime-avibactam, ceftolozane-tazobactam, piperacillin-tazobactam, amoxicillin-clavulanic
acid, aztreonam, and tigecycline were evaluated using the broth microdilution method
with Sensititre Gram-negative MIC DKMGN plates (Thermo Fisher Scientific, Waltham,
MA, USA). The MIC values were interpreted according to the current European Committee
on Antimicrobial Susceptibility Testing (EUCAST) clinical breakpoints.

4.2. Transmission Electron Microscopy

Bacteria were collected, washed, fixed in 3% glutaraldehyde (Polysciences, Warrington,
PA, USA) in 0.1 M Na cacodylate buffer, pH 7.4 for 30 min at room temperature (RT),
centrifuged and embedded in 4% gelatin. Then followed 3% glutaraldehyde fixation in
sodium cacodylate buffer pH 7.4 for 2 h at RT, washing with the same buffer and post-
fixation in 1% osmium tetroxide (Polysciences) for 1 h at 4 ◦C, rinsing and staining with
2% uranyl acetate (Polysciences in 50% ethanol and dehydration in a series of ascending
concentrations of ethanol and acetone. Prior to embedding in Durcupan ACM epoxy
embedding medium kit (Merk Sigma Aldrich) two-step infiltration was done. Ultrathin
sections of 70-nm thickness were prepared using a Leica EM UC7 ultramicrotome (Leica
Microsystems GmbH, Wetzlar, Germany), collected onto formvar-coated slot grids, and
counter-stained with uranyl acetate and lead citrate. The specimens were examined in a
JEM 1230 transmission electron microscope operated at 100 kV (JEOL Ltd., Tokyo, Japan),
and the images were taken with a Orius SC1000 CCD camera using Digital Micrograph
software (Gatan, Pleasanton, CA, USA).

For measuring the bacterial capsule thickness, images of the cells were analyzed with
the ImageJ software (NIH, Bethesda, MD, USA), yielding graphs with means (±SE) and
statistical analyses based on paired two-tailed Student’s t-tests. p-values < 0.05 (*), < 0.01
(**), and < 0.001 (***) were considered significant. At least 3 independent experiments were
performed on separate days on different cell passages.

4.3. Lipid A Extraction

Bacteria were collected and lipid A was extracted by an improved rapid microextrac-
tion method previously described [34,68], with some modifications. Briefly, 10 mg of cells
suspended in 100 µL of isobutyric acid −1 M ammonium hydroxide mixture (5:3, v/v)
were incubated in a microwave oven for 60 s (400 W, 2450 MHz) and then centrifuged
at 8000 g for 15 min. Supernatants were transferred to new tubes, mixed with an equal
volume of water and vacuum dried. The obtained pellets were washed twice in 400 µL
of methanol, and centrifuged at 5000 rpm for 15 min. Finally, the insoluble lipid A was
solubilized in 100 µL chloroform-methanol-water mixture (3:1.5:0.25, v/v/v) and subjected
to a mass spectrometry analysis.

4.4. Matrix-Assisted Laser Desorption and Ionization Mass Spectrometry

1 µL of lipid A sample was diluted with an equal volume of 5-chloro-2-mercaptobenzo
thiazole (CMBT)-EDTA matrix (20 mg/mL of CMBT in chloroform-methanol-water [4:4:1,
v/v/v], 20 mM EDTA ammonium salt) as described in [69]. 0.5 µL of this mixture was
loaded onto a MALDI target plate. Data were acquired with an ultrafleXtreme MALDI TOF
mass spectrometer (Bruker Daltonics, Billerica, MA, USA) operated with the FlexControl
software (version 3.4, Bruker Daltonics) in negative reflector mode.
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4.5. Whole-Genome Sequencing and Data Analysis

DNA was extracted from the isolates using EZ1 DNA Tissue Kit (Qiagen, Hilden,
Germany). After quantification with Qubit dsDNA High Sensitivity kit (Thermo Fisher
Scientific), 20 ng of DNA was used for library preparation using QIAseq FX DNA Li-
brary Kit (Qiagen). DNA libraries were sequenced on the MiSeq platform (Illumina, San
Diego, CA, USA) with 2 × 300 bp paired-end reads, and the samples obtained an average
sequencing depth of 103×. Data analysis was performed in CLC Genomics Workbench
v. 9.5.4 with the Microbial Genomics Module v. 1.6.2 (Qiagen). The analysis included
determination of and mapping to the closest NCBI reference genome (NC_011586), multi
locus sequence typing (MLST) with the Pasteur scheme [70] and de novo assembly. As-
sembled data were searched for antimicrobial resistance genes against the ResFinder
database (Centre for Genomic Epidemiology, Technical University of Denmark) with a
threshold of 98% for identity and 60% for length [28]. A bacterial plasmid database PLSDB
(https://ccb-microbe.cs.uni-saarland.de/plsdb/, accessed on 23 June 2020) version v0.4.1-
2-g1b893f22b9 [30] with maximal p-value set to 0.1 and minimal identity set to 0.99 was used
for identification of plasmids. Winner-takes-all strategy that removes redundancy from the
output was employed (hashes found in multiple queries were removed except for the query
with highest identity). ISs were annotated using ISFinder (https://isfinder.biotoul.fr/, ac-
cessed on 4 May 2020) [35] with E-value threshold below 1 × 10−4 for Blast hits. The global
alignment tools Needle and Stretcher (EMBL-EBI, https://www.ebi.ac.uk/Tools/psa/,
accessed on 8 March 2018) [45] were used for pairwise sequence alignment. Variant calling
was first performed against the closest reference genome, and single nucleotide polymor-
phisms (SNPs) with a depth of coverage ≥ 20× and a frequency ≥90% were compared
between the two subpopulations.

4.6. Database

The WGS nucleotide sequences of A. baumannii were translated in silico. The open
reading frames (ORFs) prediction for potential protein encoding segments has been carried
out using ORF Finder [71] from the National Center for Biotechnology Information (NCBI)
with the following settings: bacterial, archaeal & plant plastid code; ATG and alternative
start codons, minimal length 75 nucleotides. The generated FASTA-style databases had
genomic position and frame information embedded into each header tag for a given
sequence.

4.7. Protein Extraction

Bacterial cells collected from the agar plates were suspended in 50 mL phosphate
buffered saline (PBS) pH 7.4, and washed twice by centrifugation at 3500× g for 20 minat
4 ◦C. The obtained pellets were resuspended with 0.5 mL lysis buffer (1 mM EDTA, pH
7.4, 2% SDS, 40 mM DTT in PBS) with 0.5 µL Pierce Universal Nuclease (Thermo Fisher
Scientific, Waltham, MA, USA) and 5 µL Halt Protease Inhibitor Cocktail (Thermo Fisher
Scientific) added. The homogenates were sonicated in an Ultrasonic disintegrator, Soniprep
150 (MSE, London, UK), operating at 20% duty cycle and 3−4 output for 2 min. Lysates
were clarified by centrifugation at 15,000× g for 30 min at 4 ◦C. Protein samples were
processed by a filter-aided sample preparation (FASP) method according to Wisniewski [72].
The digested peptide samples were vacuum dried, dissolved in 0.1% formic acid and the
peptide concentration was estimated by absorbance measurements at 280 nm by NanoDrop
(Thermo Fisher Scientific) prior to liquid chromatography-tandem mass spectrometry
(LC–MS/MS) analyses. The proteome assessments were repeated at least 10 times.

4.8. Proteomic Analysis by LC-MS/MS

Peptides were separated by reverse phase chromatography on a 20 mm × 100 µm
C18 pre-column followed by a 100 mm × 75 µm C18 column with particle size 5 µm
(NanoSeparations, Nieuwkoop, Netherlands) at a flow rate of 300 nL/min on EASY-nLC
II (Thermo Fisher Scientific) by a gradient of 0.1% formic acid in water (A) and 0.1%
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formic acid in acetonitrile (B) as follows: from 2% B to 30% B in 60 min; from 30% B to
100% B in 60 min. Automated online analyses were performed in positive mode by LTQ
Orbitrap Velos Pro hybrid mass spectrometer (Thermo Fisher Scientific) equipped with a
nano-electrospray source with Xcalibur software (v.2.6, Thermo Fisher Scientific). Full MS
scans were collected with a range of 350–1800 m/z, a resolution of 30,000 (m/z 200), the
top 20 most intense multiple charged ions were selected with an isolation window of 2.0
and fragmented in the linear ion trap by collision-induced dissociation with normalized
collision energy of 30%. Dynamic exclusion was enabled ensuring peaks selected for
fragmentation were excluded for 60 s.

4.9. Database Searching

The generated raw files were analyzed using Sequest HT in Proteome Discoverer
(Thermo Fisher Scientific, San Jose, CA, USA, CS version 1.4.0.288) and the translated
genome sequences based on WGS. The following search parameters were used: trypsin as
a digestion enzyme; maximum number of missed cleavages 2; fragment ion mass tolerance
0.50 Da; parent ion mass tolerance 10.0 ppm; carbamidomethylation of cysteine as fixed
modification and methionine oxidation as variable modifications.

4.10. Data Evaluation and Label-Free Quantification

Identified proteins were validated using SCAFFOLD software (Version 4.4.8; Pro-
teome Software Inc., Portland, OR, USA). Identifications were based on a minimum of
2 peptides, minimum 95% peptide identification probability (using the Scaffold Local
FDR algorithm), and minimum 99% protein identification probability using the Protein
Prophet algorithm [73]. Proteins, which contained similar peptides, and which could
not be differentiated based on LC-MS/MS analysis alone were grouped to satisfy the
principles of parsimony. The label-free quantitative analysis was performed using total
number of spectral counts; normalization was performed to account for variations be-
tween samples. Quantitative differences were statistically analyzed by Student’s t-test
with the Benjamini-Hochberg correction. Differences with p-values ≤ 0.05 were considered
statistically significant.

4.11. Protein Homology Search

Protein sequences were annotated with search in the NCBI database using the Basic
Local Alignment Search Tool (BLAST, National Center for Biotechnology Information,
Bethesda, MD, USA) blastp algorithm and Uniprot BLAST (EMBI-EBI, Cambridgeshire,
UK) software (https://www.uniprot.org/, accessed on 20 May 2020).

4.12. Availability of Data and Materials

The raw WGS data has been deposited in the NCBI Sequence Read Archive (SRA) (http:
//www.ncbi.nlm.nih.gov/sra) and can be accessed through the accession PRJNA657148.

The mass spectrometry data has been deposited to the ProteomeXchange Consor-
tium (www.proteomexchange.org) via the PRIDE [74] partner repository with the dataset
identifier PXD020218.

5. Conclusions

We here performed molecular and cellular profiling of colistin-susceptible A. baumannii
isolate, harboring a variety of resistance genes, and its colistin-dependent subpopulation,
providing new insights into colistin dependence. We also demonstrated, for the first time,
the potential involvement of ISAjo2 and ISAba13 insertion sequences in colistin dependence,
confirming a role for ISs in colistin treatment. Our results suggest that colistin dependence
in A. baumannii is likely the result of complex cellular events that occur concurrently with
ISs-triggered LOS-deficiency.
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LC liquid chromatography
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TEM transmission electron microscope
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