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Report on computational assessment of Tumor Infiltrating
Lymphocytes from the International Immuno-Oncology
Biomarker Working Group
Mohamed Amgad et al.#

Assessment of tumor-infiltrating lymphocytes (TILs) is increasingly recognized as an integral part of the prognostic workflow in
triple-negative (TNBC) and HER2-positive breast cancer, as well as many other solid tumors. This recognition has come about thanks
to standardized visual reporting guidelines, which helped to reduce inter-reader variability. Now, there are ripe opportunities to
employ computational methods that extract spatio-morphologic predictive features, enabling computer-aided diagnostics. We
detail the benefits of computational TILs assessment, the readiness of TILs scoring for computational assessment, and outline
considerations for overcoming key barriers to clinical translation in this arena. Specifically, we discuss: 1. ensuring computational
workflows closely capture visual guidelines and standards; 2. challenges and thoughts standards for assessment of algorithms
including training, preanalytical, analytical, and clinical validation; 3. perspectives on how to realize the potential of machine
learning models and to overcome the perceptual and practical limits of visual scoring.
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INTRODUCTION
Very large adjuvant trials have illustrated how the current schemes
fail to stratify patients with sufficient granularity to permit optimal
selection for clinical trials, likely owing to application of an overly
limited set of clinico-pathologic features1,2. Histologic evaluation
of tumor-infiltrating lymphocytes (TILs) is emerging as a promising
biomarker in solid tumors and has reached level IB-evidence as a
prognostic marker in triple-negative (TNBC) and HER2-positive
breast cancer3–5. Recently, the St Gallen Breast Cancer Expert
Committee endorsed routine assessment of TILs for TNBC
patients6. In the absence of adequate standardization and
training, visual TILs assessment (VTA) is subject to a marked
degree of ambiguity and interobserver variability7–9. A series of
published guidelines from this working group (also known as TIL
Working group or TIL-WG) aimed to standardize VTA in solid
tumors, to improve reproducibility and clinical adoption10–12. TIL-
WG is an international coalition of pathologists, oncologists,
statisticians, and data scientists that standardize the assessment of
Immuno-Oncology Biomarkers to aid pathologists, clinicians, and
researchers in their research and daily practice. The value of these
guidelines was highlighted in two studies systematically examin-
ing VTA reproducibility7,13. Nevertheless, VTA continues to have
inherent limitations that cannot be fully addressed through
standardization and training, including: 1. visual assessment will
always have some degree of inter-reader variability; 2. the time
constraints of routine practice make comprehensive assessment of
large tissue sections challenging7,13; 3. perceptual limitations may
introduce bias in VTA, for example, the same TILs density is
perceived to be higher if there is limited stroma.
Research in using machine learning (ML) algorithms to analyze

histology has recently produced encouraging results, fueled by
improvements in both hardware and methodology. Algorithms
that learn patterns from labeled data, based on “deep learning”
neural networks, have obtained promising results in many
challenging problems. Their success has translated well to digital

pathology, where they have demonstrated outstanding perfor-
mance in tasks like mitosis detection, identification of metastases
in lymph node sections, tissue segmentation, prognostication, and
computational TILs assessment (CTA)14–17. ‘Traditional' computa-
tional analysis of histology focuses on complex image analysis
routines, that typically require extraction of handcrafted features
and that often do not generalize well across data sets18,19.
Although studies utilizing deep learning-based methods suggest
impressive diagnostic performance, and better generalization
across data sets, these methods remain experimental. Table 1
shows a sample of published CTA algorithms and discusses their
strengths and limitations, in complementarity with a previous
literature review by the TIL-WG16,20–31.
This review and perspective provides a broad outline of key

issues that impact the development and translation of computa-
tional tools for TILs assessment. The ideal intended outcome is
that CTA is successfully integrated into the routine clinical
workflow; there is significant potential for CTA to address inherent
limitations in VTA, and partially to mitigate high clinical demands
in remote and under-resourced settings. This is not too difficult to
conceive, and there are documented success stories in the
commercialization and clinical adoption of computational algo-
rithms including pap smear cytology analyzers32, blood analy-
zers33, and automated immunohistochemistry (IHC) workflows for
ER, PR, Her2, and Ki6734–38.

THE IMPACT OF STAINING APPROACH ON ALGORITHM
DESIGN AND DEPLOYMENT
The type of stain and imaging modality will have a significant
impact on algorithm design, validation, and capabilities. VTA
guideline from the TIL-WG focus on assessment of stromal TILs
(sTIL) using hematoxylin and eosin (H&E)-stained formalin-fixed
paraffin-embedded sections, given their practicality and wide-
spread availability, and the clear presentation of tissue
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architecture this stain provides10–12,39. Multiple studies have relied
on in situ approaches like IHC, in situ hybridization (ISH), or
genomic deconvolution in assessing TILs11,40,41. These modalities,
however, are not typically used in daily clinical TILs assessment, as
they are either still experimental, rely on assays of variable

reliability, or involve stains not widely used in clinical practice,
especially in low-income settings4,10,11. It is also difficult to
quantitate and establish consistent thresholds for IHC measure-
ment of even well-defined epitopes, such as Ki67 and ER, between
different labs42,43. Moreover, there is no single IHC stain that

M. Amgad et al.
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highlights all mononuclear cells with high sensitivity and
specificity, so H&E remains the stain typically used in the routine
clinical setting44.
Despite these issues, there are significant potential advantages

for using IHC with CTAs. By specifically staining TILs, IHC can make
image analysis more reliable, and can also present new
opportunities for granular TILs subclassification; different TIL
subpopulations, including CD4+ T cells, CD8+ T cells, Tregs, NK
cells, B cells, etc, convey pertinent information on immune
activation and repression4,12. IHC is already utilized in standardiza-
tion efforts for TILs assessment in colorectal carcinomas45,46. The
specific highlighting of TILs by IHC can improve algorithm
specificity47,48, and enable characterization of TIL subpopulations
that have potentially distinct prognostic or predictive roles49,50.
IHC can reduce misclassification of intratumoral TILs, which are
difficult to reliably assess given their resemblance to tumor or
supporting cells in many contexts like lobular breast carcinomas,
small-blue-cell tumors like small cell lung cancer, and primary
brain tumors4,12.

CHARACTERISTICS OF CTA ALGORITHMS THAT CAPTURE
CLINICAL GUIDELINES
TIL-WG guidelines for VTA are somewhat complex4,10–12. There are
VTA guidelines for many primary solid tumors and metastatic
tumor deposits10,12, for untreated infiltrating breast carcinomas11,
post-neoadjuvant residual carcinomas of the breast39, and for
carcinoma in situ of the breast39. TILs score is defined as the
fraction of a tissue compartment that is occupied by TILs
(lymphoplasmacytic infiltrates). Different compartments have
different prognostic relevance; tumor-associated sTILs is the most
relevant in most solid tumors, whereas intratumoral TIL score
(iTILs) has been reported to be prognostic, most notably in
melanoma10. The spatial and visual context of TILs is strongly
confounded by organ site, histologic subtype, and histomorpho-
logic variables; therefore, it is important to provide situational
context and instructions for clinical use of the CTA algo-
rithms24,51,52. For example, a CTA algorithm designed for
general-purpose breast cancer TILs scoring should be validated
on different subtypes (infiltrating ductal, infiltrating lobular,
mucinous, etc) and on a wide array of slides that capture
variabilities in tumor phenotype (e.g., vacuolated tumor,
necrotic tumor, etc), stromal phenotype (e.g., desmoplastic
stroma), TIL densities, and sources of variability like staining and
artifacts. That being said, it is plausible to assume that the
biology and significance of TILs may vary in different clinical
and genomic subtypes of the same primary cancer site, and that
a general-purpose TILs-scoring algorithm may not be applic-
able. Further research into the commonalities and differences in

the prognostic and biological value of TILs in different tissue
sites and within different subtypes of the same cancer is
warranted.
Clear inclusion criteria are helpful in deciding whether a slide is

suitable for a particular CTA algorithm. For robust implementation,
it is useful to: 1. detect when slides fail to meet its minimum
quality; 2. provide some measure of confidence in its predictions;
3. be free of single points of failure (i.e., modular enough to
tolerate failure of some sub-components); 4. be somewhat
explainable, such that an expert pathologist can understand its
limitations, common failure modes, and what the model seems to
rely on in making decisions. Algorithms for measuring image
quality and detecting artifacts will play an important role in the
clinical implementation of CTA53.
From a computer vision perspective, we can subdivide CTA in

two separate tasks: 1. segmentation of the region of interest (e.g.,
intratumoral stroma in case of sTIL assessment) and 2. detection of
individual TILs within that region. In practice, a set of comple-
mentary computer vision problems often need to be addressed to
score TILs (Fig. 1). To segment the region in which TILs will be
assessed, it is also often needed to explicitly segment regions for
exclusion from the analysis. Although these can be manually
annotated by pathologists, these judgements are a significant
source of variability in VTA, and developing algorithms capable of
performing these tasks could improve reproducibility and
standardization7–9.
Specifically, segmentation of the “central tumor” and the

“invasive margin/edge” enable TILs quantitation to be focused in
relevant areas, excluding “distant” stroma along with normal
tissue and surrounding structures. A semi-precise segmentation of
invasive margin also allows sTILs score to be broken down for the
margin and central tumor regions (especially, in colorectal
carcinomas) and to characterize peri-tumoral TILs indepen-
dently10. Within the central tumor, segmenting carcinoma cell
nests and intratumoral stroma enables separate measurements for
sTIL and iTIL densities. Furthermore, segmentation helps exclude
key confounder regions that need to be excluded from the
analysis. This includes necrosis, tertiary lymphoid structures,
intermixed normal tissue or DCIS/LCIS (in breast carcinoma), pre-
existing lymphoid stroma (in lymph nodes and oropharyngeal
tumors), perivascular regions, intra-alveolar regions (in lung),
artifacts, etc. This step requires high-quality segmentation
annotations, and may prove to be challenging. Indeed, for routine
clinical practice, it may be necessary to have a pathologist perform
a quick visual confirmation of algorithmic region segmentations,
and/or create high-level region annotations that may be difficult
to produce algorithmically.
When designing a TIL classifier, consideration of key confound-

ing cells is important. Although lymphocytes are, compared with

Fig. 1 Outline of the visual (VTA) and computational (CTA) procedure for scoring TILs in breast carcinomas. TIL scoring is a complex
procedure, and breast carcinomas are used as an example. Specific guidelines for scoring different tumors are provided in the references.
Steps involved in VTA and/or CTA are tagged with these abbreviations. CTA according to TIL-WG guidelines involves TIL scoring in different
tissue compartments. a Invasive edge is determined (red) and key confounding regions like necrosis (yellow) are delineated. b Within the
central tumor, tumor-associated stroma is determined (green). Other considerations and steps are involved depending on histologic subtype,
slide quality, and clinical context. c Determination of regions for inclusion or exclusion in the analysis in accordance with published guidelines.
d Final score is estimated (visually) or calculated (computationally). In breast carcinomas, stromal TIL score (sTIL) is used clinically. Intratumoral
TIL score (iTIL) is subject to more VTA variability, which has hampered the generation of evidence demonstrating prognostic value; perhaps
CTA of iTILs will prove less variable and, consequently, prognostic. e The necessity of diverse pathologist annotations for robust analytical
validation of computational models. Desmoplastic stroma may be misclassified as tumor regions; Vacuolated tumor may be misclassified as
stroma; intermixed normal acini or ducts, DCIS/LCIS, and blood vessels may be misclassified as tumor; plasma cells are sometimes misclassified
as carcinoma cells. Note that while the term “TILs” includes lymphocytes, plasma cells and other small mononuclear infiltrates, lumping these
categories may not be optimal from an algorithm design perspective; plasma cells tend to be morphologically different from lymphocytes in
nuclear texture, size, and visible cytoplasm. f Various computational approaches may be used for computational scoring. The more granular
the algorithm is, the more accurate/useful it is likely to be, but—as a trade-off—the more it relies on exhaustive manual annotations from
pathologists. The least granular approach is patch classification, followed by region delineation (segmentation), then object detection
(individual TILs). A robust computational scoring algorithm likely utilizes a combination of these (and related) approaches.
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tumor cells, relatively monomorphic, their small sizes offer little
lymphocyte-specific texture information; small or perpendicularly
cut stromal cells and even prominent nucleoli may result in
misclassifications. Apoptotic bodies, necrotic debris, neutrophils,
and some tumor cells (especially in lobular breast carcinomas and
small-blue-round cell tumors) are other common confounders.
Quantitation of systematic misclassification errors is warranted;
some misclassifications will have contradictory consequences for
clinical decision making. For example, neutrophils are evidently
associated with adverse clinical outcomes, whereas TILs are
typically associated with favorable outcomes51. Note that some
of the TIL-WG clinical guidelines have been optimized for human
scoring and are not very applicable in CTA algorithm design. For
example, in breast carcinomas it is advised to “include but not
focus on” tumor invasive edge TILs and TILs “hotspots”; CTA
circumvents the need to address these cognitive biases11. To fully
adhere to clinical guidelines, segmentation of TILs is warranted, so
that the fraction of intratumoral stroma occupied by TILs is
calculated.

COMPUTER-AIDED VERSUS FULLY AUTOMATED TILS
ASSESSMENT
The extent to which computational tools can be used to
complement clinical decision making is highly context-dependent,
and is strongly impacted by cancer type and clinical setting54–57.
In a computer-aided diagnosis paradigm, CTA is only used to
provide guidance and increase efficiency in the workflow by any
combination of the following: 1. calculating overall TILs score
estimates to provide a frame-of-reference for the visual estimate;
2. directing the pathologist attention to regions of interest for TIL
scoring, helping mitigate inconsistencies caused by heterogeneity
in TILs density in different regions within the same slide; 3.
providing a quantitative estimate for TILs density within regions of
interest that the pathologist identifies, hence reducing ambiguity
in visual estimation. Two models exist to assess this type of
workflow during model development. In the traditional open
assessment framework, the algorithm is trained on a set of
manually annotated data points and evaluated on an independent
held-out testing set. Alternatively, a closed-loop framework may
be adopted, whereby pathologists can use the algorithmic output
to re-evaluate their original decisions on the held-out set after
exposure to the algorithmic results55,56. Both frameworks have
pros and cons, although the closed-loop framework enables
assessment of the potential impact that CTA has on altering the
clinical decision-making process56.
The alternative paradigm is an entirely computational pipeline

for CTA. This approach clearly provides efficiency gains, which
could markedly reduce costs and accelerate development in a
research setting. When the sample sizes are large enough, a few
failures (i.e., “noise”) could be tolerated without altering the overall
conclusions. This is contrary to clinical medicine, where CTA is
expected to be highly dependable for each patient, especially
when it is used to guide treatment decisions. Owing to the highly
consequential nature of medical decision-making, a stand-alone
CTA algorithm requires a higher bar for validation. It is also likely
that even validated stand-alone CTA tools will need “sanity
checks” by pathologists, guarding against unexpected failures. For
example, a CTA report may be linked to a WSI display system to
visualize the intermediate results (i.e., detected tissue boundaries
and TILs locations) that were used by the algorithm to reach its
decision (Fig. 2).
We do not envision computational models at their current level

of performance replacing pathologist expertize. In fact, we would
argue that quite the opposite is true; CTA enables objective
quantitative assessment of an otherwise ambiguous metric,
enabling the pathologist to focus more of his/her time on
higher-order decision-making tasks54. With that in mind, we argue

that the efficiency gains from CTA in under-resourced settings are
likely to be derived from workflow efficiency, as opposed to
reducing the domain expertize required to make diagnostic and
therapeutic assessments. When used in a telepathology setting,
i.e., off-site review of WSIs, CTA is still likely to require supervision
by an experienced attending pathologist. Naturally, this depends
on infrastructure, and one may argue that the cost-effectiveness of
CTA is determined by the balance between infrastructure costs
(WSI scanners, computing facilities, software, cloud support, etc)
and expected long-term efficiency gains.

VALIDATION AND TRAINING ISSUES SURROUNDING
COMPUTATIONAL TIL SCORING
CTA algorithms will need to be validated just like any prognostic
or predictive biomarker to demonstrate preanalytical validation
(Pre-AV), analytical validation (AV), clinical validation (CV), and
clinical utility8,58,59. In brief, Pre-AV is concerned with procedures
that occur before CTA algorithms are applied, and include items
like specimen preparation, slide quality, WSI scanner magnification
and specifications, image format, etc; AV refers to accuracy and
reproducibility; CV refers to stratification of patients into clinically
meaningful subgroups; clinical utility refers to overall benefit in
the clinical setting, considering existing methods and practices.
Other considerations include cost-effectiveness, implementation
feasibility, and ethical implications59. VTA has been subject to
extensive AV, CV, and clinical utility assessment, and it is critical
that CTA algorithms are validated using the same high
standards7,8. The use-case of a CTA algorithm, specifically whether
it is used for computer-aided assessment or for largely unsuper-
vised assessment, is a key determinant of the extent of required
validation. Key resources to consult include: 1. Recommendations
by the Society for Immunotherapy of Cancer, for validation of
diagnostic biomarkers; 2. Guidance documents by the US Food
and Drug Administration (FDA); 3. Guidelines from the College of
American Pathologists, for validation of diagnostic WSI systems60–
64. Granted, some of these require modifications in the CTA
context, and we will highlight some of these differences here.
Pre-AV is of paramount importance, as CTA algorithm perfor-

mance may vary in the presence of artifacts, variability in staining,
tissue thickness, cutting angle, imaging, and storage65–68. Trained
pathologists, on the other hand, are more agile in adapting to
variations in tissue processing, although these factors can still
impact their visual assessment. Some studies have shown that the
implementation of a DICOM standard for pathology images can
improve standardization and improve interoperability if adopted
by manufacturers67,69. Techniques for making algorithms robust to
variations, rather than eliminating the variations, have also been
widely studied and are commonly employed69–72. According to
CAP guidelines, it is necessary to perform in-house validation of
CTAs in all pathology laboratories, to validate the entire workflow
(i.e., for each combination of tissue, stain, scanner, and CTA) using
adequate sample size representing the entire diagnostic spec-
trum, and to re-validate whenever a significant component of the
pre-analytic workflow changes62. Pre-AV and AV are most suitable
in the in-house validation setting, as they can be performed with
relatively fewer slides. It may be argued that proper in-house Pre-
AV and AV suffice, provided large-scale prospective (or retro-
spective-prospective) AV, CV, and Clinical Utility studies were
performed in a multi-center setting. Demonstrating local equiv-
alency of Pre-AV and AV results can thus allow “linkage” to existing
CV and Clinical Utility results assuming comparable patient
populations.
AV typically involves quantitative assessment of CTA algorithm

performance using ML metrics like segmentation or classification
accuracy, prediction vs truth error, and area under receiver–operator
characteristic curve or precision-recall curves. AV also includes
validation against “non-classical” forms of ground truth like
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co-registered IHC, in which case the registration process itself may
also require validation. AV is a necessary prerequisite to CV as it
answers the more fundamental question: “Do CTA algorithms detect
TILs correctly?”. AV should measure performance over the spectrum
of variability induced by pre-analytic factors, and in cohorts that
reflect the full range of intrinsic/biological variability. Naturally, this
means that uncommon or rare subtypes of patterns are harder to
validate owing to sample size limitations. AV of nucleus detection
and classification algorithms has often neglected these issues,
focusing on a large number of cells from a small number of cases.
Demonstrating the validity and generalization of prediction

models is a complex process. Typically, the initial focus is on
“internal” validation, using techniques like split-sample cross
validation and bootstrapping. Later, the focus shifts to “external”
validation, i.e., on an independent cohort from another institution.
A hybrid technique called “internal–external” (cross-) validation
may be appropriate when multi-institutional data sets (like the
TCGA and METABRIC) are available, where training is performed
on some hospitals/institutions and validation is performed on

others. This was recommended by Steyerberg and Harrell and
used in some computational pathology studies16,73–75.
Many of the events associated with cancer progression and

subtyping are strongly correlated, so it may not be enough to
show correspondence between global/slide-level CTA and VTA
scores, as this shortcuts the AV process49. AV therefore relies on
the presence of quality “ground truth” annotations. Unfortunately,
there is a lack of open-access, large-scale, multi-institutional
histology segmentation and/or TIL classification data sets, with
few exceptions16,24,76,77. To help address this, a group of scientists,
including the US FDA Center for Devices and Radiological Health
(CDRH) and the TIL-WG, is collaborating to crowdsource pathol-
ogists and collect images and pathologist annotations that can be
qualified by the FDA/CDRH medical device development tool
program (MDDT). The MDDT qualified data would be available to
any algorithm developer to be used for the analytic evaluation of
their algorithm performance in a submission to the FDA/CDRH78.
The concept of “ground truth” in pathology can be vague and is
often subjective, especially when dealing with H&E; it is therefore
important to measure inter-rater variability by having multiple

Fig. 2 Conceptual pathology report for computational TIL assessment (CTA). CTA reports might include global TIL estimates, broken down
by key histologic regions, and estimates of classifier confidence. CTA reports are inseparably linked to WSI viewing systems, where algorithmic
segmentations and localizations supporting the calculated scores are displayed for sanity check verification by the attending pathologist.
Other elements, like local TIL estimates, TIL clustering results, and survival predictions may also be included.
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experts annotate the same regions and objects7,8. A key bottle-
neck in this process is the time commitment of pathologists, so
collaborative, educational and/or crowdsourcing settings can help
circumvent this limitation16,79. It should be stressed, however, that
although annotations from non-pathologists or residents may be
adequate for CTA algorithm training; validation may require
ground truth annotations created or reviewed by experienced
practicing pathologists16,80.
It is important to note that the ambiguity in ground truth (even

if determined by consensus by multiple pathologists) typically
warrants additional validation using objective criteria, most
notably the ability to predict concrete clinical endpoints in
validated data sets. One of the best ways to meet this validation
bar is to use WSIs from large, multi-institutional randomized-
controlled trials. To facilitate this effort, the TIL-WG is establishing
strategic international partnerships to organize a machine
learning challenge to validate CTA algorithms using clinical trials
data. The training sets would be made available for investigators
to train and fine tune their models, whereas separate blinded
validation sets would only be provided once a locked-down
algorithm has been established. Such resources are needed so
that different algorithms and approaches can be directly
compared on the same, high-quality data sets.

CTA FOR CLINICAL VERSUS ACADEMIC USE
Like VTA, CTA may be considered to fall under the umbrella of
“imaging biomarkers,” and likely follows a similar validation
roadmap to enable clinical translation and adoption38,81,82. CTA
may be used in the following academic settings, to name a few: 1.
as a surrogate marker of response to experimental therapy in
animal models; 2. as a diagnostic or predictive biomarker in
retrospective clinical studies using archival WSI data; 3. as a
diagnostic or predictive biomarker in prospective randomized-
controlled trials. Incorporation of imaging biomarkers into
prospective clinical trials requires some form of analytical and
clinical validation (using retrospective data, for example), resulting
in the establishment of Standards of Practice for trial use81.
Establishment of clinical validity and utility in multicentric
prospective trials is typically a prerequisite for use in day-to-day
clinical practice. In a research environment, it is not unusual for
computational algorithms to be frequently tweaked in a closed-
loop fashion. This tweaking can be as simple as altering hyper-
parameters, but can include more drastic changes like modifica-
tions to the algorithm or (inter)active machine learning83,84. From
a standard regulatory perspective, this is problematic as validation
requires a defined “lockdown” and version control; any change
generally requires at least partial re-validation64,85. It is therefore
clear that the most pronounced difference between CTA use in
basic/retrospective research, prospective trials, and routine clinical
setting is the rigor of validation required38,81,82.
In a basic/retrospective research environment, there is naturally

a higher degree of flexibility in adopting CTA algorithms. For
example, all slides may be scanned using the same scanner and
using similar tissue processing protocols. In this setting, there is no
immediate need for worrying about algorithm generalization
performance under external processing or scanning conditions.
Likewise, it may not be necessary to validate the model using
ground truth from multiple pathologists, especially if some degree
of noise can be tolerated. Operational issues and practicality also
play a smaller role in basic/retrospective research settings;
algorithm speed and user friendliness of a particular CTA
algorithm may not be relevant when routine/repetitive TILs
assessment is not needed. Even the nature of CTA algorithms
may be different in a non-clinical setting. For instance, even
though there is conflicting evidence on the prognostic value of
iTILs in breast cancer, there are motivations to quantify them in a
research environment. It should be noted, however, that this

flexibility is only applicable for CTA algorithms that are being used
to support non-clinical research projects, not for those algorithms
that are being validated for future clinical use.

THE FUTURE OF COMPUTATIONAL IMAGE-BASED IMMUNE
BIOMARKERS
CTA algorithms can enable characterization of the tumor
microenvironment beyond the limits of human observers, and
will be an important tool in identifying latent prognostic and
predictive patterns of immune response. For one, CTA enables
calculation of local TIL densities at various scales, which may serve
as a guide to “pockets” of differential immune activation (Fig. 2).
This surpasses what is possible with VTA and such measurements
are easy to calculate provided that CTA algorithms detect TILs with
adequate sensitivity and specificity. Several studies have identified
genomic features that in hindsight are associated with TILs, and
CTA presents opportunities for systematic investigation of these
associations24,26,74,86,87. The emergence of assays and imaging
platforms for multiplexed immunofluorescence and in situ hybri-
dization will present new horizons for identifying predictive
immunologic patterns and for understanding the molecular basis
of tumor-immune interactions88,89; these approaches are increas-
ingly becoming commoditized.
Previous work examined how various spatial metrics from

cancer-associated stroma relate to clinical outcomes, and similar
concepts can be borrowed; for example, metrics capturing the
complex relationships between TILs and other cells/structures in
the tumor microenvironment90. CTA may enable precise defini-
tions of “intratumoral stroma”, for example using a quantitative
threshold (i.e., “stroma within x microns from nearest tumor nest”).
Similar concepts could be applied when differentiating tertiary
lymphocytic aggregates, or other TIL hotspots, from infiltrating
TILs that presumably have a direct role in anticancer response. It is
also important to note that lymphocytic aggregation and other
higher-order quantitative spatial metrics may play important
prognostic roles yet to be discovered. A CTA study identified five
broad categories of spatial organization of TILs infiltration, which
are differentially associated with different cancer sites and
subtypes24. Alternatively, TILs can be placed on a continuum,
such that sTILs that have a closer proximity to carcinoma nests get
a higher weight. iTILs could be characterized using similar
reasoning. Depending on available ground truth, numerous spatial
metrics can be calculated. Nuanced assessment of immune
response can be performed; for example, number of apoptotic
bodies and their relation to nearby immune infiltrates. It is likely
that there would be a considerable degree of redundancy in the
prognostic value of CTA metrics; such redundancy is not
uncommon in genomic biomarkers91. This should not be
problematic as long as statistical models properly account for
correlated predictors. In fact, the ability to calculate numerous
metrics for a very large volume of cases enables large-scale,
systematic discovery of histological biomarkers, bringing us a step
closer to evidence-based pathology practice.
Learning-based algorithms can be utilized to learn prognostic

features directly from images in a minimally biased manner
(without explicit detection of TILs), and to integrate these with
standard clinico-pathologic and genomic predictors. The approach
of using deep learning algorithms to first detect and classify TILs
and structures in histology, and then to calculate quantitative
features of these objects, presents a way of closely modeling the
clinical guidelines set forth by expert pathologists. Here, the
power of learning algorithms is directed at providing highly
accurate and robust detection and classification to enable
reproducible and quantitative measurement. Although this
approach is interpretable and provides a clear path for analytic
validation, the limitation is that quantitative features are
prescribed instead of learned. Recently, there have been
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successful efforts to develop end-to-end prognostic deep learning
models that learn to directly predict clinical outcomes from raw
images without any intermediate classification of histologic objects
like TILs17,92. Although these end-to-end learning approaches have
the potential to learn latent prognostic patterns (including those
impossible to assess visually), they are less interpretable and thus
the factors driving the predictions are currently unknown.
Finally, we would note that one of the key limitations of

machine learning models, and deep learning models in particular,
is their opaqueness. It is often the case that model accuracy comes
at a cost to explainability, giving rise to the term “black box” often
associated with deep learning. The problem with less explainable
models is that key features driving output may not be readily
identifiable to evaluate biologic plausibility, and hence the only
safeguard against major flaws is extensive validation93. Perhaps
the most notorious consequence of this problem is “adversarial
examples”, which are images that look natural to the human eye
but that are specifically crafted (e.g., by malicious actors) to
mislead deep learning models to make targeted misclassifica-
tions94. Nevertheless, recent advances in deep learning research
have substantially increased model interpretability, and have
devised key model training strategies (e.g., generative adversarial
neural networks) to increase performance robustness93,95–97.

CONCLUSIONS
Advances in digital pathology and ML methodology have yielded
expert-level performance in challenging diagnostic tasks. Evalua-
tion of TILs in solid tumors is a highly suitable application for
computational and computer-aided assessment, as it is both
technically feasible and fills an unmet clinical need for objective
and reproducible assessment. CTA algorithms need to account for
the complexity involved in TIL-scoring procedures, and to closely
follow guidelines for visual assessment where appropriate. TIL
scoring needs to capture the concepts of stromal and intratumoral
TILs and to account for confounding morphologies specific to
different tumor sites, subtypes, and histologic patterns. Preanaly-
tical factors related to imaging modality, staining procedure, and
slide inclusion criteria are critical considerations, and robust
analytical and clinical validation is key to adoption. In the clinical
setting, CTA would ideally provide time- and cost-savings for
pathologists, who face increasing demands for reporting biomar-
kers that are time-consuming to evaluate and subject to
considerable inter- and intra- reader variability. In addition, CTA
enables discovery of complex spatial patterns and genomic
associations beyond the limits of visual scoring, and presents
opportunities for precision medicine and scientific discovery.
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