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Abstract
The primary goal for collecting and analyzing temporal data differs between
individuals and their domain of expertise e.g., forecasting might be the goal in
meteorology, anomaly detection might be the goal in finance. While the goal differs,
one common denominator is the need for exploratory analysis of the temporal data,
as this can aid the search for useful information. However, as temporal data can be
challenging to understand and visualize, selecting appropriate visual representations
for the domain and data at hand becomes a challenge. Moreover, many visual
representations can show a single variable that changes over time, displaying
multiple variables in a clear and easily accessible way is much harder, and inference-
making and pattern recognition often require visualization of multiple variables.
Additionally, as visualization aims to gain insight, it becomes crucial to investigate
whether the representations used help users gain this insight. Furthermore, to create
effective and efficient visual analysis tools, it is vital to understand the structure
of the data, how this data can be represented, and have a clear understanding of
the user needs. Developing useful visual representations can be challenging, but
through close collaboration and involvement of end-users in the entire process,
useful results can be accomplished.
This thesis aims to investigate the usability of different visual representations for
different types of multivariate temporal data, users, and tasks. Five user studies
have been conducted to investigate different representation spaces, layouts, and
interaction methods for investigating representations’ ability to facilitate users when
analyzing and exploring such temporal datasets. The first study investigated and
evaluated the experience of different radial design ideas for finding and comparison
tasks when presenting hourly data based on an analog clock metaphor. The second
study investigated 2D and 3D parallel coordinates for pattern finding. In the third
study, the usability of three linear visual representations for presenting indoor
climate data was investigated with domain experts. The fourth study continued on
the third study and developed and evaluated a visual analytics tool with different
visual representations and interaction techniques with domain experts. Finally,
in the fifth study, another visual analytics tool presenting visual representations
of temporal data was developed and evaluated with domain experts working and
conducting experiments in Antarctica.
The research conducted within the scope of this thesis concludes that it is vital to
understand the characteristics of the temporal data and user needs for selecting
the optimal representations. Without this knowledge, it becomes much harder to
choose visual representations to help users gain insight from the data. It is also
crucial to evaluate the perception and usability of the chosen visual representations.
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Populärvetenskaplig sammanfattning
Det primära syftet för att samla in och analysera tidsdata skiljer sig mellan individer
och deras kompetensområde, t.ex. prognoser kan vara syftet i meteorologi medan
detektering av avvikelser kan vara syftet i ekonomi. Även om syftet skiljer sig
åt, är behovet av utforskande analys av tidsdata gemensamt då det förenklar
sökandet efter användbar information. Tidsdata kan vara utmanande att förstå och
visualisera, därför blir det en utmaning att välja lämpliga visuella representationer
för datan. Många visuella representationer kan visa en enda variabel som förändras
över tiden, men det är mycket svårare att visualisera flera variabler på ett tydligt och
lättillgängligt sätt, och för att dra slutsatser eller känna igen mönster i data krävs
ofta visualisering av flera variabler. Eftersom syftet med visualisering är att hjälpa
användaren att nå insikt, är det avgörande att undersöka om representationerna
faktiskt hjälper användaren att nå denna insikt. För att utveckla effektiva och
användbara visuella analysverktyg behövs också förståelse av datastrukturen och
hur dessa data kan representeras, samt en god insikt i användarens behov. Att
utveckla användbara visuella representationer är utmanande, men genom nära
samarbete med och involvering av slutanvändare i hela processen kan användbara
resultat uppnås.
Denna avhandling syftar till att undersöka användbarheten av olika visuella repre-
sentationer för olika typer av multivariata tidsdata, användare och uppgifter. Fem
användarstudier har genomförts för att undersöka olika visualiseringsprinciper, lay-
outer och interaktionsmetoder för att undersöka visuella representationers förmåga
att underlätta analys och utforskning av tidsdata. Den första studien undersökte
och utvärderade användbarheten av presentation av timdata i olika radiella desig-
nidéer baserade på en analog klockmetafor, genom olika uppgifter som att hitta och
jämföra värden. Den andra studien undersökte 2D- och 3D-parallella koordinater
för mönsterigenkänning. I den tredje studien undersöktes lämpligheten hos tre
visuella representationer för att presentera inomhusklimatdata med domänexperter.
Den fjärde studien var en fortsättning på den tredje studien, och utvecklade samt
utvärderade ett visuellt analysverktyg med olika visuella representationer och inter-
aktionstekniker med domänexperter. Slutligen, i den femte studien, utvecklades och
utvärderades ett annat visuellt analysverktyg med olika visuella representationer
av tidsdata för domänexperter som arbetar och utför experiment i Antarktis.
Forskningen inom ramen för denna avhandling har visat att det är viktigt att förstå
egenskaperna hos tidsdata och användarens behov för att välja de optimala visuella
representationerna. Utan denna kunskap blir det svårt att välja representationer
som hjälper användare att få insikt från data. Det är lika viktigt att utvärdera
användbarheten av de valda visuella representationerna.
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1
Introduction

I love humans, always seeing patterns in things that are not there.

—The Eighth Doctor, Doctor Who (Paul McGann)

The rapid advances in computer technology during the past decades have opened
up possibilities for many domains to collect and store information regularly. This
information is often referred to as Data and can be collected in many types. Ben
Shneiderman [86] distinguished between seven data types: one-, two-, three, and
multi-dimensional, tree, network, and temporal data. The work presented in this
thesis has focused on temporal data. This type of data is centered around time, a
unique quantitative dimension containing a hierarchical structure of granularities,
such as seconds, minutes, hours, etc. [1]. Apart from such data often being large,
it also is complex due to the time dimension. Like any other data type, temporal
data is difficult to understand without visual analysis. Visually displaying data is
not a new phenomenon, it has been used throughout the years to analyze, explore,
communicate, and present information [1, 85]. However, it is still not entirely clear
how to best visualize temporal data.
The overall aim for displaying the data is to gain insight into the data and extract
knowledge for better decision-making [72]. Different visual representations (i.e.,
visualization techniques) can be used to support the user in gaining insight. While
most visual representations can handle a single variable changing over time, pattern
finding and inference-making often requires a visual representation that can display
and support the analysis of multiple variables simultaneously. This requirement
introduces the challenge of selecting adequate visual representations to display
all aspects of the complex temporal data. Moreover, different representations
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are useful for different situations and tasks, such as understanding how different
aspects of the data effect each other over time. Therefore, knowledge about the
data, the domain and domain specific problems, and user needs is required to have
for selecting or creating suitable visual representations. Such knowledge can be
acquired via close collaboration and evaluation studies with end-users.
The overall goal of the work presented in this thesis was to investigate how visual
representations can facilitate analysis and exploration of temporal data. This goal
has been explored from different approaches:

• investigation of the usability of different visual representations for different types
of temporal data sources,

• exploration of representation structures for different users and different tasks,

• studying interaction as support for users performing visual analysis.

This was done by conducting five studies. Paper A presents an online study
conducted to investigate radial representations displaying real-world hourly data
for novice users solving different finding and comparison tasks. Paper B presents
a study conducted to investigate representations using multiple axes to display
synthesized multivariate temporal data for novice users performing pattern finding
tasks. Paper C presents the findings from a qualitative study conducted with
domain experts exploring the adequacy of different visual representations for
identifying temporal relationships in indoor climate data. Paper D uses the
findings from Paper C to develop and evaluate a visual analytics tool using
different visual representations and different interaction support for domain users
to analyze the displayed temporal indoor climate data. Lastly, Paper E presents
another visual analytics tool consisting of different visual representations, developed
and evaluated with different domain experts for analysis of temporal data collected
on Antarctica.
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2
Working with Temporal Data

People assume that time is a strict progression of cause to effect but actually,
from a non-linear, non-subjective point of view it is more like a big ball of
wibbly-wobbly, timey-wimey ... stuff.

—The Tenth Doctor, Doctor Who (David Tennant)

To create effective and efficient visual representations, a person should analyze
three aspects. They should understand the characteristics of the data represented;
they should know what the visual representation will be used for; finally, they
should understand how to best support the task and data with appropriate visual
encoding and interaction techniques. The purpose of this chapter is to equip the
reader with a general understanding of temporal data. While this chapter provides
a general overview of these areas, it is not complete. The reader searching for
an in-depth analysis of the field is referred to several books on the topic, such
as “Visualization of Time-Oriented Data” by Aigner et al. [1] and “Visualization
Analysis and Design” by Tamara Munzner [70] or this survey on available books
about the topic [79].

2.1 Visualization as a Discipline
The visualization discipline is a result of other scientific disciplines’ curiosity to
make sense of the vast quantities of data available today [63]. Although, a consensus
regarding a universally accepted definition of what Visualization is, is still discussed.
Phillips et al. [76] searched the literature dated back to 1974 and found 28 explicit
definitions of the term. Many use external factors such as images, tables, diagrams,



4 Chapter 2 • Working with Temporal Data

Frame of 
reference

Kind of data

Number of 
variables

Scale

19.90
19.96
20.00

Coffee
Pizza
Beer

Quantitative

Abstract

Events

Univariate

Qualitative

Spatial

States

Multivariate

(a) Data characteristics

Arrangement

Scope

Viewpoint

Scale
1 2 3 4 5

Linear

Point-based

Ordinal

Ordered

A
B

C

Cyclic

Interval-based

Continuous

Multiple Perspectives

Discrete

Branching

(b) Time characteristics

Figure 2.1: The different data and time characteristics. (a) Important data aspects
about the data that can help in knowing how to visualize the data, and (b) the aspects
of the time dimension that can help in knowing how to map time. (Image adopted from [1])

etc. to define the term, while other focus on internal factors such as the visual
perception in each human observer. Nevertheless, the aim of the discipline is
to combine human visual perception with the power of technology to display
information expressively, effectively, and appropriately [1]. The discipline has,
over time, been split into two major communities: Information Visualization and
Scientific Visualization. The former focuses primarily on abstract data such as stock
market observations, while the latter focuses on data with an inherent physical
and spatial component, but both try to amplify cognition [22]. One challenge both
these communities are facing is the investigation of which methods are optimal to
use or create for different domains, data, and users. To deal with such challenges,
Aigner et al. [1] suggest to ask and answer three practical and straightforward
questions: What is presented? Why is it presented? and How is it presented. These
questions are covered in the subsequent sections as knowing the data, knowing the
goals, and creating visual representations for information visualization of abstract
data.

2.2 Knowing the Data
The data to be visualized has many characteristics which are essential and dictate
the choice of visual representation (see Figure 2.1). Knowing the frame of reference
(abstract or spatial) can tell whether to use a representation that emphasizes
precision or provides a general overview of the data. The work in this thesis has
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(a) Linear (b) Radial (c) Spiral (d) Arbitrary (e) Grid

Figure 2.2: The figure shows five different layouts for mapping the time dimension.
(a) standard linear (vertical and horizontal), (b-c) radial and spiral, frequently used to
analyze seasonal data, (c) arbitrary, often used for storylines, and (e) grid (calendars).

mainly focused on abstract data and how it can be adequately presented for different
domains and users. The kind of data is either event or states. Moreover, knowing the
number of variables also simplifies the choice as different representations can handle
different number of variables. However, as mentioned previously, multivariate data
can be more interesting to analyze as trends and patterns often occur between
the variables. Although, when visualizing many variables the representations can
become visually cluttered. The collected data is either quantitative or qualitative,
an important aspect to know as it tells on which type of scale the data should be
displayed. A metric scale (discrete, continuous) is usually used for quantitative
data, while qualitative data is either not ordered (nominal) or ordered (ordinal)
(see Figure 2.1(a) for an illustration of the characteristics). For a more in-depth
analysis of data characterization and modeling approaches, see [1, 68, 70, 98].
The characteristics of the time dimension are also important to know. Time can be
understood as the change seen around us, such as the circular motion of the earth
around the sun creating the notion of a year. While time is commonly understood
as unidirectional that gives order to events, it can be displayed in any direction.
In the visualization domain, the goal is not just to imitate the physical notion of
time, but also to provide solutions that underline the importance of the dimension
and simplify the analysis. Therefore, how to visualize this dimension depends on
the data and situation. While the time dimension is often arranged on linear or
radial layouts, there are other layouts such as spiral, arbitrary, or grid [1, 15, 31]
(see Figure 2.2). The work in this thesis has mainly focused on linear and radial
arrangements. Other essential time aspects include scope, where it tells if the time
dimension is point- or interval based, viewpoint, is the view of the time dimension
ordered, branching, or have multiple perspectives and scale, whether the time
domain is ordered, discrete, or continuous (see Figure 2.1(b) for an illustration of
the characteristics). Understanding these characteristics will simplify the design of
the representations as temporal data can be complex. Once a clear understanding
is acquired, the reasons and goals for visualizing the data can be defined.
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2.3 Knowing the Goals and Tasks
The visualization discipline is inherently user-driven. Therefore, understanding why
the data needs to be presented and what tasks could be performed when analyzing
the data is vital for creating optimal representations [68]. The goal for visualizing
the data usually falls under three categories: explorative analysis, confirmative
analysis, and presentation of the results [1, 85]. The explorative analysis involves
undirected search where the goal usually is to get insight into the data without
any prior hypothesis. On the contrary, confirmative analysis is a directed search
trying to prove or disprove a known hypothesis. The presentation category is
about communicating the findings. Regardless of the goal, users are involved in
the process. A user can be anyone who uses visual analysis to perform an action
and normally fall under two groups: novice, or expert [108]. Novice users (also
known as casual users) are people who are not trained in data analysis but use
visualization for casual purposes and entertainment. Experts users (also known as
domain experts) can create and consume interactive visualization to support their
work but are usually not trained in data analysis either.
Moreover, seeking answers to relevant questions by interacting with the visual
representation is at a basic level known as a task [1, 85]. According to Schulz et
al. [85], a task can be constructed by five dimensions (goal, means, characteristics,
target, and cardinality).
Goals define the intention with performing the task and usually falls under explore,
confirm, or present results.

Means determines the method, navigation (i.e., searching), (re)-organization (i.e.,
filtering), or relation (i.e., comparing). This dimension is also known as the action
of a task.

Characteristics of a task tells whether a task is a low-level (i.e., value look-up
or identify) or a high-level (i.e., trend and pattern analysis) task.

Target tells which part of the data is being focused on.

Cardinality specifies how many instances (i.e., single, multiple, and all instances)
of the target are considered by the task.
The goal and type of task performed when analyzing the data can help knowing
which visual representation to use. The design spaces and taxonomies available in
the literature can further guide the use of visual representations that effectively
support users in conducting visual data exploration and analysis. Above all, when
analyzing data, it is helpful to follow the Visual Information Seeking Mantra
introduced by Ben Shneiderman [86]—to provide overview first, then zoom and
filter, and finally details-on-demand. Over the years, the visualization community
has produced a wealth of design spaces and taxonomies to define and categorize
visualization tasks, see [14, 81, 85, 100]. Apart from knowing the data and the
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Data 
Analysis Filtering Visual 

Mapping Rendering Image 
Data Raw Data Prepared Data Focus Data Geometric Data

Figure 2.3: A version of the visualization pipeline with the four transformations.
The raw data is moved and transformed between each step until an image is rendered.
The user is then able to control each part of the pipeline, a crucial feedback loop in
interactive visualization.

goals, knowledge about how to map the data to visual encoding is required to
create effective and efficient representations.

2.4 Creating Visual Representations
The process of transforming data into images is referred to as the visualization
pipeline, first introduced by Haber and McNaab in 1990 [42] and later refined by
Dos Santos and Brodlie in 2004 [35] (see Figure 2.3).
The raw input data goes through four transformations before it is turned into an
image. First, through Data analysis, where re-sampling, interpolation, removal
of outliers, or other actions can be applied. The prepared data is then sent to
the Filtering, where the data is reduced concerning the specific visualization task.
Often in interactive visualization, the user can filter the data on-demand. The
focused data goes through the Visual mapping step where the variables are mapped
to appropriate visual encoding, such as color, geometry, shape, texture, size, etc.
Finally, the abstract visualization objects are rendered as an image for the user
to view and analyze. For a complete description, please check the two original
works [35, 42] or the survey introduced by Moreland [69].

Visual Mapping
This step is the most crucial one as it largely influences the expressiveness and
effectiveness of the visual representation created. A vast amount of prior research
has been conducted investigating the degree to which visually encoded variables
facilitate comprehension of data sets. Often the term graphical perception is
used to denote the ability of users to interpret such visually encoded variables
and thereby decode information in graphs [28]. Card et al. [22] introduced three
critical structures that must be defined for creating effective representations: spatial
substrate, graphical elements, and graphical properties.
The spatial substrate defines the representation space and/or axes placement.
Depending on the data and if axes are necessary, they either use a quantitative
or qualitative scale and the representation space either two-dimensional (2D) or
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Texture

Color

Orientation

Size

Shape

Properties

Volumes

Surfaces

Lines

Points

Elements

(a) Graphical elements and properties

Area

Orientation

Length

Position

Volume

Color and texture

More Accurate

Less Accurate

(b) Accuracy in perception

Figure 2.4: The figure presented in (a) shows examples of the most common graphical
elements and properties used to display data, and (b) the accuracy in perception of the
data displayed going from less to more. (Image adopted from [67])

three-dimensional (3D). Often the 2D representation space is following the spatial
dimensions of the computer monitor and uses x and y coordinates to span the space,
or the size of the object the representations is printed on. The 3D representation
space uses a third axis (z-axis) to display more complex three-dimensional data.
After selecting the space for the data to be displayed, graphical elements (i.e., points,
lines, surfaces, volumes) are chosen to map the variables and the corresponding
values (see Figure 2.4(a)). The last step is to select the element properties. The
most common attributes are: size, orientation, color, texture, and shape [67]
(see Figure 2.4(a)). As visual mapping is a crucial step in the visualization pipeline,
mapping the proper attributes to the graphical element plays a major role in
creating effective visual representations. Using the proper attributes also help
in making the most important parts of the data being “popped-out” creating
a clear distinguish from their surroundings. Moreover, if accuracy is important
when presenting the data, then using spatial position is the alternative that best
facilitates graphical perception across all data types [46, 67] (see Figure 2.4(b)).
Conversely, color and texture can be used when being accurate is less important.
The color property is often used for distinguishing between the variables or encode
order into the data. However, it is a unique property and needs to be used with
special attention, as it can easily clutter the representation. This property also
has different effects as perceiving color differences varies across element types such
as points, bars, and lines [92]. For a complete description of color coding in data
visualization, please check [10, 88, 112].

Gestalt Principles of Visual Perception
Mapping the data to proper graphical elements and properties is crucial for creating
adequate visual representations. However, as data visualization is about exploring
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(a) Enclosure (b) Closure (c) Proximity (d) Similarity (e) Connection

Figure 2.5: The figure shows five commonly used gestalt principles for influencing
the perception. These principles help explain how people organize sensory information
and are useful for focusing users attention.

the data visually, it is important to simplify the search and intentionally “pop-out”
the essential information for the user to analyze. Such effects can also be achieved
by applying the Gestalt Principles of Visual Perception [57]. The principles can be
used to understand how people perceive order in their surroundings. They aim to
define rules on how our visual perception tends to organize visual elements into a
“unified whole” [67]. They are still accepted today and used in the development
phase to identify unnecessary clutter and to simplify the visual analysis. While there
exist many principles, only five relevant (enclosure, closure, proximity, similarity,
and connection) are mentioned in this thesis as examples.
Enclosing elements in a box or similar object creates the notion of groups (see Fig-
ure 2.5(a)), this is often seen in brushing interaction. If the element is incomplete,
our visual perception fills in the gap and creates the notion of a complete element
(see Figure 2.5(b)). This principle is useful as it can help us understand what
parts of the graph are unnecessary and need to be removed (i.e., to reduce clutter).
The proximity principle states that elements close to each other are perceived as
one group (see Figure 2.5(c)), this can simplify comparison tasks. The similarity
principle uses similar shape, orientation, color, size, etc. (the properties of the
elements) to create the notion of groups (see Figure 2.5(d)). Finally, the connection
principle tells us which elements belong to a group by connecting them with a line
(see Figure 2.5(e)).

Interaction Support
Without interaction, the user is limited in exploring the data from different perspec-
tives. The feedback loop in the visualization pipeline (see Figure 2.3) is important
as it allows users to change parameters that best fit the needs and could help
them gain insight into the data. The term interaction is often defined as “the
communication between a user and the system” [109]. In general, the user is either
interacting with the tool window or the representation space and the graphical ele-
ments [103]. The reasons for interacting are many. Yi et al. [109] identified several
high-level reasons why users use interaction when analyzing the data. The user
is either interested in selecting something, reconfigure parts of the representation
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or the data, exploring the unknown, encoding the data differently, showing more
or less information (abstract/elaborate), filtering data, or connecting items. Such
interaction can be performed via different methods such as Direct manipulation,
Brushing & Linking, Focus+Context, Dynamic Querying. With direct manipula-
tion, the user can select or perform any other operation directly with the graphical
elements and the representation space (i.e., zoom, dragging) [1, 56]. Brushing &
linking is about interconnecting multiple views for analyzing the data from multiple
perspectives [60, 65]. The focus+context method is about focusing on interesting
areas while maintaining the general overview [51, 56, 60]. There is also dynamic
querying, where the user can apply filtering conditions via the tool interface to
focus on certain parts of the data [1]. There are many taxonomies that investigate
the interaction space and categorize the techniques into levels of granularities from
low-level [86] to high-level view of interaction [33, 103].

2.5 Summary
The short overview presented above shows how complex and challenging it can
be to work with temporal data, as many aspects are needed to keep in mind.
However, having a clear understanding of the data and time characteristics can
help in knowing how to visualize the data for optimal use. Moreover, knowing
why the data is being visualized is equally important. Throughout the years,
the visualization community has suggested and studied many different visual
representations with their inherent benefits and limitations concerning the data
and time aspects of temporal data. Some of these representations and concepts are
introduced in the next chapter.
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3
Visualizing Temporal Data

As we learn about each other, so we learn about ourselves

—The First Doctor, Doctor Who (William Hartnell)

Many of the common approaches used to visualize temporal data and quantitative
information are based on the work of early visualization pioneers such as William
Playfair [87], Johann Heinrich Lambert [1], Florence Nightingale [13, 71]. The vast
number of different representations makes it challenging to know which is optimal
to select for displaying temporal data. Another, equally important challenge, is
to know what shape of the timeline to use, as it can affect the human ability
and performance to read the displayed data accurately [31]. Often the timeline
is drawn linearly with the events organized along a straight line to emphasize
the chronological progression of time [15, 31]. Such linear timelines can support
chronology and sequence in the temporal data, while non-linear shapes like radial,
spirals, arbitrary, grids and other arrangements [15] can be effective in revealing
periodic repetitions in the temporal data [15].

3.1 Linear Layouts
Visual representations based on a horizontal linear timeline [15, 31] used to display
temporal data can be classified into two categories: shared-space and split-space [52].
In the former, variables are displayed in the same representation space, while in
the latter the variables are split into equal-sized small representations with their
own reduced space (see Figure 3.1).
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(a) Shared-space (b) Split-space

Figure 3.1: Two different visual representation spaces, (a) shared-space where the
data variables are visualized on the same representation space, and (b) split-space,
where each data variables is rendered with its own small space and superimposed.

Shared-space
Shared-space representations (see Figure 3.1(a)) uses the same space to display
all variables and an early example of such representation is the tenth-century
illustration of the inclinations of planetary orbits as a function of time [1, 99]
(See Figure 3.2(a)). It took a long time for similar representation to appear again in
the scientific literature [99]. Joseph Priestley (1733– 1804) created a shared-space
representation with linear timeline showing the life span of famous historical people
(see Figure 3.2(b)). Using such linear layout to present quantitative information only
become popular when William Playfair (1759–1823) frequently used them to display
statistical data. Today, he is known as the greatest inventor of modern graphical
designs [99]. He invented the modern line graph we all know and frequently use to
display temporal data, and also the bar graphs, the area graphs, and the silhouette
graphs. The line graph uses position encoding for both the time dimension and the
variable values. The variables are overlaid on the shared-space which facilitates
comparison between the variables. However, such shared-space representation
can only support a limited number of variables (more than four introduces visual
clutter [52]).
While the possible number of variables that could be displayed in a shared-space is
limited by screen size and resolution, displaying multiple variables is often necessary
for finding patterns and drawing useful conclusions. William Playfair filled the
area under the line in a line graph for emphasizing the values (see Figure 3.3(a)).
Using this approach to visualize multiple variables creates a so-called stacked
area graph (see Figure 3.3(b)). Variables are stacked on top of each other on a
straight bottom baseline creating a visual summation of variable values providing
an aggregate view formed by the individual variables [93]. However, stacking areas
cause maximal distortion for the variables positioned at the top causing illusions
and difficulties for the viewer [93]. Moreover, changing the variable order also
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(a) (b)

Figure 3.2: (a) A line graph from the 10th century depicting planetary orbits, (b)
Joseph Priestley’s 1765 timeline chart of famous historical peoples life spans.
Source a: commons.wikimedia.org: Retrieved Feb. 2021 Source b: commons.wikimedia.org: Retrieved Feb. 2021

changes the shape of the representation, which also creates challenges and can
mislead the viewer [3].
To minimize this distortion and make the representation more aesthetically pleasing
new versions have been introduced. The ThemeRiver [44] organizes the variables
in a symmetrical fashion around a horizontal axis, and StreamGraphs [21] further
reduces the distortion and creates asymmetrical outer shapes. Minimizing illusion
effects between the different variables (layers) has been investigated and shown
to improve readability of StreamGraphs [18]. Thudt et al. [93] investigated the
readability of these three representations and found that each representation is
useful for different types of tasks. Distinguishing between the layers in such area-
based representations is important for finding patterns and trends. This can be
achieved with the color property (see Figure 3.3(b)), however, interpreting the
representation becomes a challenge when multiple variables are displayed in such
representations. While strong distinctive colors might necessary for noticing local
contrasts, they could be visually distracting and make the representation hard to
read [21]. Therefore, the color scheme chosen highly depends on the underlying

(a) Area graph (b) Stacked area graph

Figure 3.3: The figure shows two examples of shared-space representation, (a) simple
area graph, and (b) more complex stacked area graph.
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Figure 3.4: An example of the silhouette graph using the split-space concept with a
common x-axis and each variable visualized with its own space and superimposed.

data displayed [21]. Apart from this issue, color itself might be a challenging visual
property. It can easily affected by environmental factors, display settings, and
graphical element properties, which inhibits the viewer’s ability to distinguish the
colors in the representation [92].

Split-space
The split-space concept, sometimes known as small multiples [99], is a popu-
lar alternative to overcome the above-mentioned challenges with shared-space
representations, such as visual clutter. Each variable is displayed with its own
representation, reduced space, and is superimposed for saving vertical screen space
(see Figure 3.1(b)). This approach minimizes visual clutter and aids the comparison
of variables for pattern and trend finding. A popular representation using this
concept is the silhouette graph [1, 43] (see Figure 3.4). The time dimension is
displayed on a shared x-axis, while each small representation has its own y-axis
to present the value of the variables. Superimposing these small graphs makes
the representation space-efficient and reduces visual clutter. The representation
provides an overview and can emphasize the visual impression of long temporal
data, making it easier to compare multiple variables [1, 43]. While a monochrome
color channel is commonly used, different color hues can be used for each small
graph to facilitate variable separation [52].
To reduce the vertical space even more, a horizon graph can be used (see Figure 3.5).
This representation also takes advantage of the split-space concept and can display
many variables. The representation was first introduced by Saito et al. [83] as two-
tone pseudo-coloring, and further developed by Reijner [80]. A standard line graph
with its mean as a baseline is split into N uniformly-sized bands (see Figure 3.5(a)).
Values above and below the baseline are colored differently and saturated based on
the distance from the baseline. Then the values below the baseline are horizontally
mirrored which wraps the variable into a single space-efficient graph (see [1, 3, 52] for
more details). By cutting the y-axis into band as described above, the representation
becomes even more space-efficient than the standard line graph and the silhouette
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(a) Construction of horizon graph. (b) An example of the horizon graph.

Figure 3.5: The figure shows (a) how horizon graphs are constructed and (b) an
example of the horizon graph representation. (Image (a) adopted from [52])

graph. However, the abstraction level of the horizon graph limits the representation
to only show an overview of the data, show trends and patterns with the help of
the color property. Interactively moving the baseline vertically could support in
better visual analysis of the displayed temporal data [74].

3.2 Radial Layouts
The linear layouts pose the issue of continuity, starting and ending at arbitrary
points. This issue could be addressed by using a radial layouts, where a true zero of
a starting point is non-existing [64]. Using the radial layout is said to simplify the
readability of cyclic data (i.e., seasonal variations) as the strictly linear progression
from past to future is neglected [1, 19]. They are also said to simplify comparisons
of the periodic behavior as they are good for displaying data distribution and
can increase users chronological orientation, and are useful for detecting temporal
locations [19, 39].
This layout has been thoroughly investigated in the visualization community [19,
32, 36, 40]. William Playfair used such radial layouts to invent his last major
graphical invention—the Pie Chart [87, 90, 99] (see Figure 3.6(a)). The pie chart
displays percentages as “part-to-whole” by using the angle, area, and arc length [58].
It has been shown that the area is the best visual cue to use when displaying
data with such representations [58, 59]. Moreover, the center of the pie chart can
be removed (turning it into a Donut chart) without affecting the readability of
the values [89]. While such representations could be useful for displaying variable
amount in the data, they are limited in displaying temporal data, and minimal
research has been conducted investigating this challenge [66, 110]. Although,
Florence Nightingale (1820-1910) invented an extension of the pie chart, the Polar
Area Chart (also known as a “Rose Diagram” or “Coxcombs”) (see Figure 3.6(b)).
With this representation, Nightingale displayed the number of deaths caused by
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(a) (b)

Figure 3.6: (a) The pie chart figures display statistical data for European countries
in 1801 (The Statistical Breviary), (b) Rose diagram consists of circularly arranged
wedges that convey quantitative data. Florence Nightingale (1858) tediously recorded
mortality data for two years and created a novel diagram to communicate her findings.
Source a: commons.wikimedia.org: Retrieved Feb. 2021. Source b: commons.wikimedia.org: Retrieved Feb. 2021

preventable diseases, results of wounds from the Crimean war, and other causes
during the same time period. Radial layouts are often used among practitioners to
display temporal data in creative ways (e.g., climate change over a long period of
time [45], interactive storytelling and movie analysis [104], and personal data [12]).
In radial layouts, the time dimension is often mapped to the representation space.
Waldner et al. [102] investigated such radial layouts resembling the metaphor of
an analog clock with daily pattern data for standard viewing displays. Their
study showed that using two separate radial representations for displaying values
for AM and PM is not recommended. Moreover, visualizing ranges over time-
series on small displays (e.g., smartphone) has also been investigated with radial
representations [16]. The study focused on identifying limitations in terms of how
many ranges could feasibly be displayed on such small screens. Furthermore, using
radial layout to visualize time-series has also been investigated in small multiples [39].
Also, other approaches have been taken to facilitate pattern exploration (i.e.,
splitting a circle into colored segments to present temporal data [7, 55]).
Carlis et al. [23] introduced multiple examples on how to present serial periodic
data on spiral timelines, presenting time growing outwards from the center. They
presented the data on the spiral time dimension arrangement by using points,
lines, bars, and color. They also looked into such representation in 3D. However,
temporal univariate data might be more suitable with such spiral timelines due to
space restrictions and visual cluttering. Additionally, values rendered in the center
representing past time are displayed smaller creating the illusion of smaller values.
Others have also investigated how to map temporal data on spiral layouts using
different graphical elements and properties can be used to visualize the variables
(e.g., lines, area, color) [25, 95, 105].
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Figure 3.7: Illustrations of how (a) Cartesian coordinate systems with two variables
(v1,v2) can be transformed into 2D Parallel coordinates with two axes and (b) 2D
Parallel coordinates with three axes into 3D parallel coordinates.

3.3 Multiple Axes

Adjusting the graphical elements and properties can help visualize many variables,
however, the representation might become visually cluttered. Another approach
is to increase the number of axes in the representation [27, 96], and a common
representation that can display many axes is the parallel coordinates (see Figure 3.7).
This representation was originally invented by d’Ocagne [34] but introduced to the
visualization community by Inselberg [48] and Wegman [107].
The representation is commonly used to analyze multivariate data, however, few
have investigated their usability for displaying temporal multivariate data. Often
a temporal-slider is augmented onto the representation to filter and explore the
data as well as the temporal dimension [11, 30]. Some have investigated different
graphical elements, such as polygons with blending methods instead of standard
polylines to capture time-varying dynamics in datasets [54], while others investigated
temporal multivariate data with three dimensional parallel coordinates, originally
proposed by Wegenkittl et. al [106] to investigate higher dimensional data. The
time dimension in such representation is either displayed on one of the axes or
as the fourth dimension where users can investigate the three-dimensional data
changing over time. Investigating temporal datasets with parallel coordinates in
the three-dimensional space, where the time dimension is mapped to one of the
axes, is common [2, 41, 94, 111]. Although, the visualization community has long
discussed whether the use of a three-dimensional space makes sense to present
and explore two-dimensional abstract data [22]. Studies have shown that 3D
representation could help shift the viewing process from being a cognitive task
to being a perception task [91]. However, if two axes are sufficient to present the
two-dimensional abstract data, using a third axis will often mislead the viewer in
their analysis [91, 99].
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3.4 Summary
Using representations based on linear timelines have been used for a long time.
However, little can be found how such representation using shared- or split-space
help domain experts in understanding the temporal data and solve their tasks.
Moreover, radial representations have been investigated to a great deal, yet there
is still a lot to explore. The effectiveness of presenting hourly data with one radial
representation needs to be explored further. As for representations using multiple
axes, little research has been conducted investigating the well-known parallel
coordinates technique for their usability to display temporal data. To investigate
such challenges and ensure usability of different types of visual representations,
user evaluations should be conducted.
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4
Evaluating Visualization

There’s always something to look at if you open your eyes!

—The Fifth Doctor, Doctor Who (Peter Davison)

It is important to know the type of data visualized, the reasons for visualizing
it, and using what type of representations. It is equally important to understand
the usability of the representations and tools. The term Usability can be defined
as—“the extent to which a product can be used by specified users to achieve speci-
fied goals with effectiveness, efficiency, and satisfaction in a specified context of
use.”(ISO9241-11 (1998)) [9]. Effectiveness is measured as to what extent users
achieve their objective (i.e., solving the task or not), while efficiency can be mea-
sured as the amount of effort users put into the task (i.e., the time spent solving
the task or the cognitive load). Satisfaction is often measuring subjective opinions,
attitudes, and preferences through standardized questionnaires [8, 17, 37]. Often
these measurements are done via evaluation studies. The findings from the studies
could potentially provide a basis for future developers to know what to build with
confidence and what to do better [38]. Evaluation is today a research field of its
own with many methods available [50, 61]; therefore, it becomes a challenging task
to know which method to select for investigating the tools and representations [77].

4.1 Choosing an Approach
Many of the evaluation methodologies that could be used to conduct user studies
are borrowed from Human-Computer Interaction [24, 38, 97]. Among these method-
ologies, the visualization community often implement empirical methods, which
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involve studies with users to find verifiable evidence to arrive at a good research
outcome. The empirical methods are often divided into two categories: Quantitative,
Qualitative.
Quantitative approach
These types of studies are better known as experiments conducted under controlled
environments and include hypothesis development, identification and control of
independent variables, and observation and measurement of dependent variables [24,
67, 97]. These studies are often used to compare multiple ideas by measuring
accuracy (effectiveness) and completion time (efficiency), which are analyzed with
appropriate statistical methods for producing evidence that could be used to
demonstrate that the ideas investigated are useful [38, 78].
Despite the long and effective usage across many different scientific fields, these
experimental approaches are still challenging to conduct [24]. There is always the
issue of reliability and validity of the results. The former concerns consistency and
reproducibility (i.e., Are we measuring what we intended to measure?), and the
latter concerns soundness and quality (i.e., How well does the measured phenomenon
correspond to reality?). Additionally, there is also ecological validity discussing
the degree to which the experimental situation reflects the type of environment in
which the results will be applied. On top of all, every study has a trade-off between
building generalizable and domain-specific tools [97].
Qualitative approach
In qualitative methods the goal is often to seek meaning and gather contextual
information that may include subjective experience [49]. There exists a wealth of
methods that could be used for collecting rich information regarding the visuali-
zation tools and user experience. These methods are often grounded in realistic
settings and can be used as part of the design process, but also complement quan-
titative methods or any other type of study [24, 49]. Both objective and subjective
data can be collected during the investigation and is often done via Think-Aloud
protocol [62], semi-structured interviews, video and audio recordings, computer
logs, artifacts (e.g., drawings, sketches, diagrams), and questionnaires.
A well-known challenge is that qualitative research methods are labor intensive [24].
They often take a long time to plan, conduct, and transcribe and analyze the
collected data. Another issue is the sample size, a recurring discussion in the
community regarding what appropriate number is needed to draw useful conclu-
sions. However, as qualitative methods are not concerned with making statistically
significant statements [24], the number of participants used in qualitative studies
can vary greatly depending on the scope of the research and domain. Nevertheless,
recruiting too many participants will result in a large amount of data needed to
be transcribed and analyzed, a time-consuming and tedious task. Besides, the
transcribed data quality depends on the investigators’ experience in performing
such analysis [24]. Above all, the aim is often to produce results that support trans-
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ferability rather than generalizability, as it is more difficult to produce generalizable
results [24].

4.2 Summary
Often the two above-mentioned approaches are combined together, such studies
are referred to as mixed-method studies. These combine two or more evaluation
methods drawing on quantitative and qualitative data collection and analysis [84].
Similar to any other study, mixed-method research requires advanced planning.
These studies could be challenging as the study administrator has to know both
quantitative and qualitative study methodology. Nevertheless, when mixed-method
studies are implemented correctly, rigorous results can be produced. Mixed-methods
can often be used to add further insight, explanation, and new questions to the
investigation [24]. Moreover, it could be beneficial to combine quantitative and
qualitative methods to collect objective and subjective methods as there might not
always be a correlation between these two. Although, participants can perceive
time passing by more quickly when engaged in a task [26, 29, 82]. This phenomenon
could explain the discrepancy between subjective experience and objective measures
concerning response times. Therefore, knowing participants’ subjective preferences
in combination with quantitative measurements could show whether the correct
visual representation has been used. Often quantitative approaches are used to
understand objective results, while qualitative approaches are used to understand
subjective feedback. However, using mix-methods is in most cases a good idea and
can produce robust results.
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5
Included Work

In 900 years of time and space, I’ve never met anyone who wasn’t important.

—The Eleventh Doctor, Doctor Who (Matt Smith)

The included work in this thesis has explored different type of data, evaluating
different type of visual representations and presentation structures as well as
different approaches to interaction support. All work has included a user-evaluation,
both novice users as well as domain experts, to assess the usability of the visual
representations.
The order of the included work is based on target users and divided into two sections:
investigation with novice users (Paper Aand Paper B) and investigation with
domain experts (Paper C, Paper D, and Paper E). Paper A investigated six radial
representations for displaying hourly data. The representations are implemented
with different graphical elements (e.g., area, position) and low-level tasks are
used in a quantitative online study with novice users. Paper B investigated
two versions (2D and 3D) of the well-known parallel coordinates. The nature of
the representations required their own interaction which were used to solve high-
level tasks (i.e., pattern identification) in a quantitative study with novice users.
Paper C, Paper D investigated multiple visual representations based on a linear
timeline for domain experts. The representations were qualitatively evaluated with
ecological tasks and domain experts are involved in all the steps of the development
process. Lastly, Paper E investigated multiple visual representations presented
with a multiple view concept for geologist to analyze weather data collected on
Antarctica via different sources.
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5.1 Paper A
The aim of this work was to investigate how to best present hourly data with one
shared-space radial representation. Previous research has shown that radial repre-
sentations are useful to display temporal data and perform comparison tasks [16].
They have also been found effective for reading values at specific temporal loca-
tions [39]. While different layouts (12-hour cycle mimicking the display of an analog
clock and full 24-hour cycle) have been used to display such data, little research
has been found in the literature on comparing the layouts. Moreover, Waldner et
al. [102] found that displaying hourly data with two separate representations (one
for AM and one for PM) is not useful for detection of salient features [102].

Method
A quantitative user study split intro three experiments was conducted to investigate
six radial representations for their usability to present hourly data (see Figure 5.1).
Completion time and accuracy were measured on four commonly used tasks (locate
time, locate min/max, compare values, and compare ranges) for each radial design.
The first experiment investigated the Adjacent and Stacked 12-hour (Figure 5.1(a),
Figure 5.1(b)), and Combined 24-hour (Figure 5.1(c)). The findings were then
used in a second experiment investigating three new designs Overlaid and Layered
12-hour (Figure 5.1(d), Figure 5.1(e)) and Rose 24-hour (Figure 5.1(f)). Finally,
the representation where users performed best with were compared in the third
experiment (Adjacent, Overlaid and Layered).

Results and Lessons Learned
The results showed that radial representations were useful for displaying hourly data.
It was also found that radial representations might not be optimal for comparison
tasks, when proximity between visual elements are important. Such tasks often
require users to combine multiple element properties (e.g., value location, color,
height) to search for the answers, making comparison tasks hard. This was especially
difficult in 24-hour design as users were required to compare non-neighboring visual
elements, which forced them to move their eyes over longer distances in the graph
while simultaneously memorizing the element properties. Another challenge with
proximity arose due to interruptions between elements for the compare range
tasks, making the range a continuous area or detached elements depending on the
radial design. Moreover, the color property was used for distinguishing between
the elements (i.e., AM and PM), an important aspect, however, using multiple
baselines (as in Figure 5.1(b) and Figure 5.1(e)) will confuse the viewers. It is easy
to misunderstand such radial representations, if not carefully designed. The 24-hour
design was more plausible to misunderstand as the placement of the wedges (before
or after the hour) might have been affected by cultural and linguistic factors.
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(a) Adjacent 12-hour (b) Stacked 12-hour (c) Combined 24-hour

(d) Overlaid 12-hour (e) Layered 12-hour (f) Rose 24-hour

Figure 5.1: The six radial representations (four 12-hour and two 24-hour) investigated
in Paper A. The bar elements placed (a) adjacent with the zero baseline starting from
the inner circle, (b) stacked, where the zero baseline starts from the middle circle, (c)
combined, where the values are separated into each side, (d) overlaid, where the bar
elements are close, (e) layered, where the direction of the bars is the same, and (f) rose,
where wedges are used to present the data values. (Images taken from [5], used with permission.)

Radial representations are useful for presenting a low number of variables, but
the representation have some limitations. While they are useful for displaying
hourly data (i.e., up to 24 hours), they might not be able to handle more variables
without introducing visual clutter. Using color is crucial to use for distinguishing
the variables and the gestalt principles of visual perception play a major role (e.g.,
proximity, enclosure, similarity).

5.2 Paper B
The aim of this work was to investigate the usability, through efficiency, effectiveness
and satisfaction, of parallel coordinates for displaying temporal datasets (see Fig-
ure 5.2). The parallel coordinates representation is a well-established approach and
used for presenting and analyzing non-temporal multivariate data [47, 53]. The
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(a) 2D Parallel Coordinates

V1 V2

T T

(b) 3D Parallel Coordinates

Figure 5.2: The two version of the parallel coordinates representation investigated
in Paper B, (a) standard 2D version where the rightmost axis presents the time dimension
with the brush interaction, and (b) the 3D version with rotation interaction and the
time dimension displayed on one of the three axes. (Image taken from [4] ©2019 IEEE, used with
permission.)

representation has been improved in many ways to handle such data in different
settings [53]. However, little investigation has been discussed in the literature
regarding their potential value for the analysis of temporal datasets.

Method

The study was designed with one within-subject factor: visual representation (2D,
3D) investigated with synthetic temporal data. The representation investigated in
this work were both kept simple using transparent and semi-opaque with additive
blending monochrome line elements to render the patterns between the axes.
Filtering and brushing the data simultaneously was implemented in 2D parallel
coordinates (see Figure 5.2(a)), while rotation with a restriction of ±45°around
pitch (i.e. horizontal axis) and yaw (i.e. vertical axis) was implemented for the
3D parallel coordinates to restrict users rotating the representation into a 2D view
(see Figure 5.2(b)). The participants were required to solve pattern recognition
tasks. For each participant, efficiency was measured through completion time
(response time in seconds) while effectiveness was measured through the terms
of achieved goal (accuracy). Between each condition, the participants filled in a
questionnaire regarding their subjective preference (satisfaction) with the tested
representation.
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Results and Lessons Learned
The result showed that using 3D parallel coordinates was easier than using standard
2D parallel coordinates for pattern finding in temporal data. One reason was that
the rotation interaction in 3D was found natural to work with when analyzing the
data. While in 2D, participants had to brush and filter out the data values thus
losing overview, and making the pattern identification task harder. Additionally,
the type of interaction used in 3D helped the viewing process to be a perception
task (finding and matching patterns) rather than a cognitive task (thinking about
how the variables evolve to conclude the patterns). Therefore, when working
with such high-level tasks, it is necessary to display all the data and to avoid
losing overview and cohesion. This study investigated these specific versions of
parallel coordinates, further research is needed for fully understanding how parallel
coordinates and other multiple axes representations might be used for displaying
temporal datasets.

5.3 Paper C
The aim of this work was to investigate different visual representations based on
a linear timeline, by using shared-space and split-space concept, that would be
relevant to use for such domain and the challenges faced. The indoor climate is
affected by a number of factors such as temperature, ventilation, humidity, CO2
levels etc. One way to improve the indoor climate is by placing active plant walls
in the environment (see Figure 5.3). These plant walls can help improve the
indoor climate via evaporation, air purification, and water retention [3]. Sensors
attached on the plant walls collect information about the environment as well as
the well-being of the plant wall. The collected data is updated in real-time and
consists of many dimensions which makes it difficult to understand. Therefore,
presenting the data visually could help in understanding it better and aid domain
experts in decision making regarding the indoor climate quality and well-being of
the plant walls.

Method
A line graph, a stacked area graph, and a horizon graph (see Figure 5.4) were
qualitatively evaluated with the domain experts. The stacked area graph used a
shared-space design while the line graph and the horizon graph used a split-space
design. Interaction was not implemented as the focus was on the static benefits
and limitations of the representations.
The goal was to understand domain experts’ subjective experience and preference
for the different visual representations when exploring the data. Relevant tasks
were used to evaluate the three visual representations with five domain experts.
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Figure 5.3: An example of an active plant wall hanging on the wall in a local company.
(Image taken from [3] ©2019 MDPI/Data, used with permission.)

They were asked to find correlations between variables and Think-Aloud protocol
was used to collected their feedback. This feedback was transcribed to develop an
understanding of how the experts reasoned when working with the representation.
Additionally, a semi-structured interview was conduced after each experiment for
collecting further feedback regarding their preference. Thematic content analy-
sis [20] was used to derive useful findings from the audio recordings, and answers
from the semi-structured interviews were open-coded [20].

Results and Lessons Learned

Based on the study findings and complemented by previous research [21, 93],
stacked area graphs were not well suited for temporal multivariate data. Overall,
when end-users with little visualization knowledge need to analyze data, it is vital
to use simple and intuitive representations. The simplicity of the representations
will effect the learnability, with simpler representations being more helpful in work
tasks. For this domain, a line graph, was found useful, but a shared-space might
be more optimal to use. Moreover, a horizon graph was also recommended for
analyzing such data, even though further research needs to be conducted to assess
the usability of these representations further.
The indoor climate data analyzed is often large and multivariate. Therefore, when
displaying such variables, it is important to keep in mind that the visual represen-
tation can quickly become visually cluttered. Using a split-based representation
could potentially decrease the visual clutter. However, with such approach some
variables will be rendered far apart, which might be challenging for certain tasks,
such as comparison tasks. Ordering the variables might be necessary for finding
hidden patterns, especially so for improving usability of stacked area graphs.



5.4 • Paper D 29

a) b) c)

Figure 5.4: Examples of how the three representations where implemented for
displaying the temporal indoor climate data in Paper C. From left, a line graph using
split-space concept, a stacked area graph using a shared-space concept, and a horizon
graph using a split-space concept. (Image taken from [3] ©2019 MDPI/Data, used with permission.)

5.4 Paper D
The aim of this study was to further develop and evaluate the findings from Paper C,
and present a tailor-made visual analytics tool—TimePlant for monitoring indoor
climate as well as controlling the plant walls (see Figure 5.5). A tailored solution
was necessary as existing solutions that use visualization were either not useful, too
expensive, or not tailored to the domain needs. Today, service personnel have to
physically visit each plant wall for maintenance, which becomes a time-consuming
and expensive activity. With the tool, the service personnel can keep track of
the plant walls’ health and system functions as well as remotely controlling them.
Moreover, real-time and historical indoor climate data can be monitored, analyzed
and improved via the tool. Involving domain experts in the development process
ensures that tailor-made solutions are implemented that best fit their requirements.
It also created a clear communication channel which minimizes knowledge and
interest gaps between the domain experts and the visualization researchers [101].

Method
The tool was developed in close collaboration with one domain expert in two
workshops, where the domain challenges, tool requirements and graphical interface
were discussed in workshop one before a prototype was developed and shown to
the domain expert in workshop two. The line graph and horizon graph were added
based on the findings from Paper Cwhile a third representation (a silhouette graph)
was added based on the discussions from the two workshops. Furthermore, the
feedback provided in the workshops hinted on two types of interaction (Brush and
Zoom), which were implemented to be investigated with the tool. The tool was
qualitatively evaluated with six other domain experts who were not part of the
development process.
Tasks relevant for the domain experts (locate, compare, explore) were used to
investigate the experts’ understanding of the visual representations, the interaction
techniques and the usability of the tool. The study was audio and screen recorded,
and the Think-Aloud protocol was used to collect subjective feedback. After the
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Figure 5.5: The TimePlant tool showing the analytical view. To the left, the
user can filter by dynamic querying the data, selecting the representations and the
variables. To the right are the actuators displayed using an eventViewer [1], the selected
representation, and the interaction using Focus+Context [60]. (Image taken from [6], used with
permission.)

study a semi-structured interview commenced. Thematic content analysis [20] was
used to derive useful findings from the audio and screen recordings, and answers
from the semi-structured interviews were open-coded [20].

Results and Lessons Learned
The shared-space concept evaluated in this work was found useful but sometimes
difficult as it could quickly become visually cluttered. In this study, the line graph
was using shared-space, as it was suggested from the previous study conducted
with domain experts. The visual clutter was caused by the color property used
for each variable and the number of variables displayed. Therefore, a low number
of variables was experienced as useful for this representation, a similar result also
found by [52]. The other two representations investigated used a split-space concept.
The silhouette graph was more preferred by the domain experts, while the horizon
graph needed more time to work with before understanding and being experienced
as useful. Although, the horizon graph was mentioned to be easy for getting an
overview of the data as it used to colors only. The investigation also showed that
using an interaction technique based on focus+context with zoom navigation was
more intuitive than a brush navigation for such domains and tasks. The domain
experts easily lost the overview of the data with the brush navigation. While
the three representation had different strengths and weaknesses, they were all
experienced as useful for solving different tasks, such as horizon graph providing a
easy overview of trends while the line graph provided a more detailed view. This
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shows the importance to chose visual representation based on the user needs and
reasons to use visualization. Therefore, all three representations were kept in the
final version of the tool with the zoom navigation.

5.5 Paper E
The aim of this work was, with the power of visualization, to help domain experts
working with temporal data collected in the periglacial areas of Antarctica to
interactively explore and discover temporal patterns, trends and gain further
insight into the data. Today, this information is often analyzed with standard
tabular representations, and tools to explore the data are seldom available or are
not tailored to the domain experts’ needs. While these tabular representations
might be useful to draw general conclusions, temporal patterns and trends are
usually difficult to find using such representations. Furthermore, the collected data
is often incomplete and involves uncertainty, a challenge difficult to notice without
visualization.

Method

As domain experts usually lack visualization knowledge, close collaboration is
necessary to achieve successful results. The domain experts in this collaboration
desired a visual analytics tool as one software to display datasets collected from
multiple sources simultaneously for faster analysis (see Figure 5.6). Temporal data,
air temperature, wind speed, and soil temperature at 5cm and 15cm depth, are
every 30 minutes measured and stored. To measure and collect the snow level,
multiple cameras around boulders of interests are, every three hours, taking photos
of bamboo stick marked with uniformly black labels indicating snow height in
centimeters.
Multiple informal sessions with one domain expert were conducted to understand
and set the tool requirements. A prototype was then developed and tested in a pilot
study with two domain experts, and the feedback was used to improve it further.
Finally, the tool was evaluated in a qualitative user study with five additional
domain experts. The evaluation was focused on measuring the usability of the tool.
The domain experts solved multiple tasks regarding value, range, and correlation
finding. Each session was audio and screen recorded, and thematic content analysis
was used to analyze the data [20]. The feedback collected from the transcribed
data was incorporated into the final version to improve the tool one final time and
discussed with two experts in an informal interview before deploying it.
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Figure 5.6: The visual analytics tool implemented in Paper E, (a) schematic map
view of the spatial area of measurements spots, (b) a bar graph and a line graph
visualizing average snow level and air temperatures, (c) a rose diagram visualizing the
wind speed, and (d) uncertainty information in the collected data as well as brushing
interaction. (Image taken from [73] ©2020 IEEE, used with permission.)

Results and Lessons Learned
The tool implemented used the multiple view concept for displaying different data
sources in one view. Without using color to distinguish the variables, such tool
would be challenging to work with, especially for the data uncertainty representation
at the bottom of the tool. Moreover, such an integrated view requires different,
yet simple and intuitive, interaction methods. Regular zoom interaction was
implemented for the line and bar graph, while the uncertainty representation
was implemented with a brush interaction feature. The abstract map was also
interactive and connected to the graphs for updating the data when a camera or
sensor was clicked. The proximity between the representations and the variables
helps users analyze the displayed data better as they do not have to move their eye
between farther distances. The study suggests that complex visual representation
are not always necessary for solving the domain experts’ tasks. This shows the
importance of understanding the users needs when visualizing the data.
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6
Discussions and Reflections

There’s something that doesn’t make sense. Let’s go and poke it with a stick.

—Dr Who (Steven Moffat)

The goal of the work presented in this thesis was to investigate how visual repre-
sentations can facilitate analysis and exploration of temporal data. This was done
by investigating usability of different visual representations, exploring different
representation structures, and studying how interaction supports users when ana-
lyzing the data. Even though the work has focused on a few visual representations
for displaying temporal data, the findings and impact should be applicable to
a broader range of visual representations used in the field. In this chapter, the
combined knowledge and limitations from all studies are discussed and reflected
upon, and possible future directions are suggested. The main contributions can be
summarized as follows:
• investigations of different representation spaces based on shared-space, split-

space, multiple axes, and 3D for visualizing multivariate temporal data,

• investigations of different representation layouts based on linear and radial
timelines for visualizing multivariate temporal data,

• explorations of multiple interaction methods for analyzing and exploring such
data, and

• five user evaluations of visual representations with different types of data sources
and user tasks.
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Figure 6.1: Possible static alternatives to map time, (a) angles and slopes, (b) line
length, (c) line width and color brightness, (d) texture, and (e) text label. (Image adopted
from [1].)

Mapping Time
The representations investigated in this thesis were all static and implemented
using a time-to-space mapping. That is, mapping the time dimension to one of the
visual axes in the spatial space, while the data value occupied the other spatial
dimension and mapped to visual encoding (e.g., height of the bars). There are other
timeline shapes, such as spiral, arbitrary and grid, to investigate with temporal data.
However, such ways of presenting the time dimension might limit the possibilities
of encoding the data depending on time. Another approach is to map the time
dimension to the graphical elements and properties instead, such as angles, and
slopes, line width, line length, brightness, texture, labels (see Figure 6.1). Perin
et al. [75] investigated how some of these visual encodings can be used to map
time and speed on 2D+time trajectories. Their study showed that using color
brightness was found less useful for such mapping, while using line length was
found useful for mapping time and speed. However, further research is required for
knowing whether these types of mapping of the time dimension would be useful for
domains, data, users, and tasks similar to those explored within this thesis. Such
investigations could also be conducted on different display sizes, as small devices
are common nowadays.
Representations Spaces
When using shared-space representations, such as a line graph or a stacked area
graph, as explored within the work of this thesis, the number of variables possible
to visualize without introducing visual clutter and distraction is limited. The visual
clutter is often caused by the color property used to distinguish between different el-
ements representing the data variables. Using a qualitative color scheme is common
as the colors are perceptually easy to distinguish. Shared-space representations
have been found useful for locating values only when a low number of variables
are displayed [52]. This was found for stacked area graph used in Paper C and
the line graph in Paper D . Therefore, if a shared-space representation must be
used, a low number of variables should be displayed with pleasant and intuitive
colors. Another way to overcome the clutter issue is by rendering each variable
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(a) Standard horizon graph (b) Heatmaps

Figure 6.2: A Possible future investigation of horizon graph and pixel-based repre-
sentations (e.g., heatmaps) Investigate horizon graphs with pixel based horizon

with its own representation space, often called split-space or small multiples. The
advantage with such approach is that visual clutter is less possible, even if each
variable is rendered with its own color. Although, comparing variables becomes
challenging as they might be far apart. Furthermore, as each representation is
rendered on a small space, it might become difficult to read exact values in the
representation. Therefore, such representations, i.e., horizon graphs, are often
useful for providing an overview of the data rather than value reading. One in-
teresting question left to answer is how many variables can be superimposed in
a horizon graph, displayed on a standard computer monitor, before the values
become too difficult and a pixel-based representation must be used (i.e., see the
illustration in Figure 6.2). Moreover, exploring how heat-maps representation
would perform with a split-spaced concept would be another idea to investigate
further. Nevertheless, interaction, i.e., grouping, filtering, zooming, hovering, etc.
is crucial for exploration of temporal data with such implementations.
Moving on, split-space concepts are not always the most useful option. Previous
research has found that displaying hourly data (AM and PM) with two separate
radial representations is not recommended [102] as it make the analysis more
difficult. Therefore, the work in Paper A investigated multiple radial designs
based on shared-space concept for displaying hourly data. Minimal difference was
found between using a 12-hour and 24-hour design, and using the metaphor of an
analog clock did not improve the analysis. Moreover, as only two variables were
displayed, the use of color did not clutter the representation but was necessary for

1 2 3 4 65 1 12 23 34 46 65 5

11 22 33 44 55 66

Figure 6.3: The radial representation used in Paper A could potentially be compared
with a standard bar graph, stacked bar graph, and a bar graph with hour values
presented on each side.
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Figure 6.4: Other possible layouts that could be used to visualize hourly data, (a)
radial bar graph with AM and PM hour values next to each other, (b) hour values for
AM first, then values for PM, (c-d) AM and PM hour values presented on each side.

distinguishing between AM and PM. Even though a shared-space concept was used
with the elements close, comparing the variables was found challenging, especially
with a 24-hour design as users had to move their eyes over longer distances while
simultaneously memorizing the element properties. The radial design investigated
within the scope of this thesis could potentially be compared with different linear-
based representations for visualizing hourly data (see Figure 6.3) or investigate
other approaches to visualize hourly data with radial designs (see Figure 6.4).
Multiple Axes
Representations that use multiple axes, e.g., parallel coordinates as used within
the work of this thesis, for displaying multivariate data can be useful for revealing
correlations and patterns between many variables. The work conducted in Pa-
per B investigated whether they would be able to handle pattern finding in temporal
multivariate data. The results showed that using a 3D might be more optimal for
displaying temporal data and for such comparison tasks. One possible explanation
for this was the type of interaction used. The Brush interaction used to filter
the data in the 2D version introduced a loss of overview of the data. In contrast,
the rotation in 3D did not filter out data but helped users analyze the data from
different perspectives. What was not investigated in the scope of this thesis is how
to use other graphical elements and properties, such as line width, color, brightness,
texture, labels, to map the time dimension. One possible future investigation is to
compare three approaches on how to map time in parallel coordinates, e.g., map
time to one of the vertical axes, use color, or area and color (see Figure 6.5).
For advancing the visualization field, it is necessary to both design new methods and
visualization concepts as well as ensuring the usability of these visual representations
in other domains. When working with end-users, there are often two gaps between
visualization researchers and users that need to be addressed, the knowledge gap and
the interest gap [101]. This was also found in Paper C, Paper D, and Paper E. The
experts taking part in the visualization research were focused on a final product that
could help them solve their problems fast. However, as a user-centered approach
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(a) Standard Parallel coordinates with one of
the vertical axis as the time dimension.
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(b) Parallel coordinates using color property
to map the time dimension.
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(c) Parallel coordinates using area element to map the time dimension going outward from
the screen. (Image adopted from [54])

Figure 6.5: Possible investigation of which alternative to map the time dimension in
parallel coordinates would be most useful and easily understood.

was taken where the domain experts were involved in all development steps, such
an issue was mitigated, and joint agreements were possible. Therefore, a crucial
aspect to remember is that selecting the optimal representations is challenging and
often requires involving the end-users in each stage of the design process where
their needs, wants, and limitations are given extensive attention.
While the purpose of visualization is to gain insight [72], the path to reach this
insight might be different depending on the user. Users are different with different
levels of knowledge and with interest in different aspects of a dataset. This
level of difference creates a challenge for the visualization researcher in knowing
and understanding which visual representation to use for helping users to gain
insight. One user might find the line graph the best representation for exploring
the data, solve a task and gain insight into the data, while others might find
radial representations easier. Such challenges were to a certain degree addressed in
Paper D, but further research needs to be conducted.
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7
Concluding Thoughts

We’re all stories in the end. Just make it a good one, eh?

—The Eleventh Doctor, Doctor Who (Matt Smith)

There are many different perspectives to investigate the visualization of temporal
data. The five studies conducted within the scope of this thesis investigated
various visual representations for different domains, users, and tasks. Visualizing
multivariate temporal data is challenging. We need to know and understand the
data and the time dimension, the need to visualize the data, and how to visualize
the complex data adequately. Because of these challenges and thanks to people’s
curiosity, the visualization community can frequently introduce new ideas, tools,
and approaches to display, analyze, and explore multivariate temporal data. A
challenge that will remain in the field for many years is the usability assessment of
the methods introduced for analyzing and exploring multivariate temporal data.
Visually analyzing data is something users have to learn and get familiar with
before mastering it, as the information is presented through abstract graphical
elements and properties. Therefore, I hope the work presented in this thesis will
inspire and encourage further investigations of how temporal data can be displayed,
explored, and understood. It is not by chance that a line graph is easy to use; it
has been around for more than two centuries and is most often made by easy to
understand graphical elements. If visualization researchers and practitioners have
such simplicity in mind when creating new methods, some of them might become
the new line graph, and It is About Time!

Kahin Akram





“Run, you clever boy ... and be a Doctor”
Clara Oswin Oswald
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