
An Evaluation of Machine Learning Methods for
Predicting Flaky Tests
Azeem Ahmada, Ola Leiflera and Kristian Sandala

aLinköping University, 581 83 Linköping, Sweden

Abstract
The quality of the product is uncertain if the test cases change their outcome(i.e., from pass to fail or vice versa) without
modifications in the codebase. Tests that change their outcome without any modification in the code base are called flaky
tests. The common method to detect test flakiness is to re-run the test cases to ensure if test cases outcomes are deterministic.
The cost of re-running tests is often high. In addition to re-running tests, developers put effort and time to investigate
the root causes of test flakiness. The need for prevention of flaky tests is evident before adding it to a test suite. In this
paper we have investigated as a means of prevention the feasibility of using machine learning (ML) classifiers for flaky
test prediction in project written with Python. This study compares the predictive accuracy of the three machine learning
classifiers (Naive Bayes, Support Vector Machines, and Random Forests) with each other. We compared our findings with the
earlier investigation of similar ML classifiers for projects written in Java. Authors in this study investigated if test smells
are good predictors of test flakiness. As developers need to trust the predictions of ML classifiers, they wish to know which
types of input data or test smells cause more false negatives and false positives. We concluded that RF performed better when
it comes to precision (> 90%) but provided very low recall (< 10%) as compared to NB (i.e., precision < 70% and recall >30%)
and SVM (i.e., precision < 70% and recall >60%).

Keywords
Improve Software Quality, Flaky Test Detection, Machine Learning Classifiers, Experimentation, Test Smells

1. Introduction
Developers need to ensure that their changes to the
code base do not break existing functionality. If test
cases fail, developers expect test failures to be con-
nected to the changes. Unfortunately, some test fail-
ures have nothing to do with the code changes. Devel-
opers spend time analyzing changes trying to identify
the source of the test failure, only to find out that the
cause of the failure is test flakiness (TF). Many stud-
ies [1, 2, 3, 4] have been conducted to determine the
root causes of test flakiness. These studies concluded
that the main root cause of TF is the test smells. Test
smells are poorly written test cases and their presence
negatively affect the test suites and production code
or even the software functionality [5]. Another defi-
nition is "poor design or implementation choices applied
by programmers or testers during the development of test
cases" [2] . Asynchronous wait, input/output calls, and
test order dependency are some of the test smells that
have been found to be the most common causes of TF
[1]. The results presented by Luo et al. [1] were par-
tially replicated by Palomba and Zaidman [2], leading

Woodstock’20: Symposium on the irreproducible science, June 01–05,
2020, Woodstock, NY
" azeem.ahmad@liu.se (A. Ahmad); ola.leifler@liu.se (O. Leifler);
kristian.sandahl@liu.se (K. Sandal)
� 0000-0003-3049-1261 (A. Ahmad)

© 2020 Copyright for this paper by its authors. Use permitted under Creative
Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

to the conclusion that the most prominent causes of
TF are test smells such as asynchronous wait, concur-
rency, and input output issues. There is strong evi-
dence that the main reasons for test flakiness are spe-
cific test smells. Luo et al. suggested that "developers
should avoid specific test smells that lead to test flak-
iness". Authors in [2] investigated the question: "To
what extent can flaky tests be explained by the presence
of test smells?" They concluded that the "cause of 54%
of the flaky tests can be attributed to the characteristics
of the co-occurring test smell".

Mapping test smells to flaky test resemble the prob-
lem of mapping words to spam/ham email. Certain
words (i.e., sale, discount etc.) are more frequent in
spam emails. Many studies [6, 7, 8, 9, 10, 11, 12, 13,
14, 15] have been conducted to predict email class (i.e.,
spam or ham) based on email contents. We adopted a
similar approach in this study to determine the flak-
iness of test cases based on the test case code. Ma-
chine Learning approaches have been widely studied
and there are lots of algorithms that can be used in
e-mail classification including Naive Bayes [16][17],
Support Vector Machines [18][19][15, 14], Neural Net-
works [20][21], K-nearest neighbor [22].

Recently, Pinto et al. evaluated five machine learn-
ing classifiers (Random Forest, Decision Tree, Naive
Bayes, Support Vector Machine, and Nearest Neigh-
bour) to generate flaky test vocabulary [23]. They con-
cluded that Random Forest and Support Vector Ma-

mailto:azeem.ahmad@liu.se
mailto:ola.leifler@liu.se
mailto:kristian.sandahl@liu.se
https://orcid.org/0000-0003-3049-1261
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org


chine provided best prediction of flaky tests. The in-
vestigated test cases were written in Java and the au-
thors concluded that: "future work will have to investi-
gate to what extent their findings generalize to software
written in other programming languages [23].

In this study, we implemented supervised ML classi-
fiers to detect if the test case is flaky or not based on the
contents of a test cases written in Python. We com-
pared our findings with what was presented by Pinto
et al. [23]. We looked for evidence if machine learning
classifiers are applicable in predicting flaky tests and
the results can be generalized to test cases written in
other languages. In addition to this, our unique contri-
bution is to investigate if test smells are good predic-
tors of test flakiness. Through manual investigation of
false positives and false negatives, we concluded a list
of test smells that are strong and weak predictors of
test flakiness. We investigated the following research
questions in this study.

RQ1: What are the predictive accuracy of Naive Bayes,
Support Vector Machine and Random Forest concerning
flaky test detection and prediction?

RQ2: To what extent the predicting power of machine
learning classifiers vary when applied on software writ-
ten in other programming language?

RQ3: What can we learn about the predictive power of
test smells using machine learning classifiers mentioned
in RQ1?

2. Data Set Description and
Prepossessing

We wrote a script to extract the contents of all test
cases from open-source projects, mentioned in Table
1. After the test case content’s extraction, we checked
which of the test cases, in our database, has been men-
tioned in [24] as flaky. After this mapping, we finalized
a database with the project name, test case name, test
case content and a label. There are many keywords in
the test case code that are irrelevant for the identifi-
cation of test flakiness. We performed extensive data
cleaning such as removing punctuation marks, digits
and specific keywords (i.e., int, string, array, assert*)
as well as converting text to lower case.

2.1. Classifiers:
An NBC, first proposed in 1998, is a probabilistic model
which can determine the outcome (i.e., flaky or not
flaky) of an instance (i.e., test case) based on the con-
tents of its features (i.e., test case code). In our case,

the outcome of NBC is binary. NBC is widely applied
in classification and known to obtain excellent results.
[25].

The attractive feature of SVM is that it eliminates
the need for feature selections, which makes spam clas-
sification easy and faster [14]. SVM deals with the dual
categories of classification and can find the best hyper-
plane to partition a sample space [15].

RF is an ensemble classification method (a technique
that combines several base models to produce an opti-
mal predictive model) suitable for handling problems
that involve grouping data into different classes. RF
predicts by using decision trees. Trees are constructed
during training which can later be used for class pre-
diction. There is a vote associated with each tree and
once the class vote has been produced for all individ-
ual trees, the class with the highest vote is considered
to be the output.

2.2. Performance Metrics and
Parameters Tuning

To evaluate the predictive accuracy of classifiers, accu-
racy as the only performance indices is not sufficient
[16]. We must consider precision, recall, F1-score, ROC
curve, false positives and false negatives [16]. There is
always some cost associated with false positives and
false negatives. When a non flaky test wrongly clas-
sified as flaky, it gives rise to a some what insignifi-
cant problem, because an experienced user can bypass
the warning by looking at test case code. In contrast,
when a flaky test is wrongly classified as non flaky test,
this is obnoxious, because it indicates the test suite still
have test cases whose outcome cannot be trusted.

The experiment started with the implementation of
simple NB without Laplace smoothing. The results did
not provide good accuracy or precision, because with-
out Laplace smoothing, the probability of appearing a
rare test smell (i.e., test smell that was not in the train-
ing set) in the test set is set to 0, given the formula

𝜃𝑗 = 𝑛𝑗𝑐/𝑛𝑐

where the 𝜃 is the probability that an individual test
smell is present in a flaky test, 𝑛𝑗𝑐 represents the num-
ber of times that particular test smell appeared in a
test case and 𝑛𝑐 represents the number of times that
test smell appeared in any test case. Laplace smooth-
ing refers to the modification in the equation:

𝜃𝑗 = (𝑛𝑗𝑐 + 𝛼)/(𝑛𝑐 + 𝛼)

where we set the 𝛼 = 1 so that classifier adds 1 to the
probability of rare test smells that were not present in



Table 1
Open-source project names provided by [24] with number
of total test cases and flaky tests

Project Name Total Number of
TCs

Flaky
Tests

apache-qpid-0.18 2357 284
hibernate 4 3231 273
apache-wicket-1.4.20 1250 216
apache-karaf-2.3 163 102
apache-struts 2.5 2346 60
apache-derby-10.9 3832 40
apache-lucene-solr-3.6 764 7
apache-cassandra-1.1 523 4
apache-nutch-1.4 7 4
apache-hbase-0.94 29 2
apache-hive-10.9 23 2
jfreechart-1.0.18 2292 0

the training set. Another step is to identify the thresh-
old (i.e., 0.0 - 1.0) which will increase the predictive ac-
curacy of the outcome. As far as SVM was concerned,
although the feature data set space was linear, we de-
cided to use both kernels (i.e., linear and poly) for the
sake of experiment. For random forest, we used ntree
between 300 - 700 as well as restricting number of vari-
ables available for splitting at each tree node known as
mtry between 25 and 100.

3. Results
This section discusses the performance of NBL, SVM
and RF with different parameters. We compared our
results with the findings of Pinto et al. to discuss how
results vary between Java and Python projects. We
also discussed why some classifiers do not perform as
expected and what can we learn about the predictive
power of test smells for test flakiness detection and
prediction.

3.1. RQ1: Performance of Naive Bayes
Classifier, Support Vector Machine
and Random Forest

Table 2 shows the 20 features with the highest infor-
mation gain together with their frequency with respect
to flaky and non-flaky tests. We assigned the features
to the categories presented by Luo et al. in [1]. We
manually traversed the code of flaky and non-flaky
tests to understand the context and how features were
used in the tests to assign categories. The top fea-
ture "conn" appeared in 1361 flaky tests and only 15
non-flaky tests. This feature is associated with exter-
nal connection to input/output devices and lies under
the category of "IO", presented by Luo et. al in [1].

The second top feature is "double" which appeared in
1190 flaky tests and 12 non-flaky tests assigned to the
category of "IO" followed by "floating points opera-
tions". The top 3rd feature "tabl" was related to table
creation during runtime for databases queries and ap-
peared 1150 times in flaky tests and 52 times in non-
flaky tests.

Figure 1 (A) represents the ROC curve [26] concern-
ing NBC with Laplace smoothing denoted as NBL with
different threshold (i.e., from 0.0 to 1.0). We conducted
different experiments with different training and test
data sets such as 50/50, 60/40, 70/30, 80/20 and 90/10.
We found similar values for k-fold cross validation.
ROC curve provides a comparison between sensitivity
and specificity helping in organizing classifiers and vi-
sualizing their performance [26]. Sensitivity also known
as the true positive rate represents a benefit of predict-
ing flaky tests correctly and specificity also known as
false positive rate represents the cost of predicting non
flaky tests as flaky tests. In the case of false positive,
developers need to spend effort and time, just to find
out that this is a classifier mistake and the test case is
not flaky. The optimal target, in the ROC curve, is to
rise vertically from origin to the top left corner (higher
true positive rate) as soon as possible because then the
classifier can achieve all true positives with the cost
of committing a few false positive. The diagonal line,
in Figure 1 (A), represents the strategy of randomly
guessing the outcome. Any classifier that appears in
the lower right triangle performs worse than a ran-
dom guessing and we can see that NBL lies in the up-
per left triangle. Looking at 1 (A), NBL with 70/30 data
partition is suitable to proceed further with 0.4 prob-
ability score. NBL, as shown in 1 (A), has stopped is-
suing positive classification (i.e., flaky test prediction)
around 0.76 - 0.87 threshold. After 0.87, it commits
more false positive rate.

We tuned different parameters in NBL, SVM and RF
before conducting further experiments. We do not in-
tend to provide the results of all experiments because
those experiments were only conducted to find the op-
timal parameters. The rest (i.e., simple NB, SVM with
radial and sigmiod kernels) were not included in fur-
ther experiments and discarded. Figure 1 (A-E) pro-
vides comparisons of NBL, SVM-Linear and SVM-Poly
(i.e., different kernels) for accuracy, precision, recall
and F1-score. All classifiers have achieved good ac-
curacies ranging from 93% - 96%. NBL outperformed
SVM although the difference between them is not dra-
matic. Looking only at the accuracy results of classi-
fiers can be deceiving. The important factor for classi-
fier selection is to ask the right question and motivate
the choice of using specific classifier such as are we



0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
1 − specificity

se
ns

iti
vi

ty

name

NBL−50/50L

NBL−60/40L

NBL−70/30L

NBL−80/20L

NBL−90/10L

A

●

●

●
●

●

93

94

95

50/5060/4070/3080/2090/10
Data Partitions

A
cc

ur
ac

y 
V

al
ue

s 
(%

)

Classifier

● NBLaplace=1

SVM−Linear

SVM−Poly

B
●

●
●

●

●

20

30

40

50

60

50/5060/4070/3080/2090/10
Data Partitions

P
re

ci
si

on
 V

al
ue

s 
(%

)

Classifier

● NBLaplace=1

SVM−Linear

SVM−Poly

C

●
●

●

●
●

20

30

40

50

60

50/5060/4070/3080/2090/10
Data Partitions

R
ec

al
l V

al
ue

s 
(%

)

Classifier

● NBLaplace=1

SVM−Linear

SVM−Poly

D

●

●

●
●

●

20

30

40

50

60

50/5060/4070/3080/2090/10
Data Partitions

F
1 

S
co

re

Classifier

● NBLaplace=1

SVM−Linear

SVM−Poly

E

Figure 1: Performance comparison among classifiers. (A) represents the ROC curve of NBL classifier with different data
partition and probability score. (B-E) represents the accuracy, precision, recall and F1-score of different classifiers with a
different data partition, respectively.

interested in detecting flaky tests correctly (i.e.,
precision) or marking a non flaky test as flaky
is not cost effective (i.e, recall). It is important to
look at precision, recall and accuracy all together for
classifier selection. We can assume that practitioners
are more interested in precision than recall because
the test suite size, in many organizations, is very large
and they cannot inspect all test cases. In this partic-
ular case, any classifier that correctly flag flaky tests
will be encouraged. Precision can answer the question;
"If the filter says this test case is flaky, what’s the
probability that it’s flaky?”. Figure 1 (C,D) provides
precision and recall values for NBL and SVM. It can be
noticed that NBL precision is increasing (in C) with the
gradual decrease in recall (in D). NBL precision of 65%
dictates that 35% of what was marked as flaky was not
flaky. Recall is also lower in NBL as compared to SVM-
Linear. SVM-Poly performs worst in terms of precision
and recall as expected due the fact that the input data
set is not polynomial and is well suited for image pro-
cessing whereas linear kernel performs better for text
classification.

F1-score, as presented in Figure 1 (E), is the har-
monic mean of precision and recall. F1-score is use-
ful and informative because of prevalent phenomenon
of class imbalance in text classification [27]. NBL is a
suitable candidate although it has a lower F1-score as

compared to SVM-Linear because NBL performs bet-
ter with short documents as in our case, the training
test case consists of 6-15 lines of code [28]. NBL pro-
vides higher precision and lower recall as compared
to SVM-linear. Another disadvantage of SVM is that
it requires high computation and are very sensitive to
noisy data [29].

RF provides lesser classification error and better F1-
scores as compared to decision trees, NBL and SVM.
The precision, in which we are most interested, is usu-
ally better than that of SVM and NBL. Authors in [16]
also concluded that RF performs better than NBL and
SVM. The class outcomes are based on "votes" which
are calculated by each tree in the forest. The outcome
(i.e., flaky or not flaky) is selected based on the higher
votes. Figure 2 presents the performance of RF with re-
spect to selected metrics. mtry represents the number
of variables randomly sampled as candidates at each
split while ntree is the number of trees to grow. There
is no way to find an optimal mtry and ntree, so we ex-
perimented with different settings, as shown in Figure
2. The mtry has a direct effect on precision and recall
as shown in Figure 2. With an increase in mtry, the
precision is decreasing and recall in increasing; an un-
wanted situation. The optimal value of mtry is 5 where
precision is higher and recall is lower regardless of the
number of trees. The change in mtry did not affect the



Accuracy F1−Score Precision Recall

25 50 75 100 25 50 75 100 25 50 75 100 25 50 75 100

25

50

75

mtry

V
al

ue
s

300

400

500

600

700

ntree

Figure 2: Performance of RF with different parameters (i.e., number of trees and mtry).

Table 2
Top 20 features and assigned category

Features #FT #Non
-FT

Assigned category
from Luo et. al [1]

conn 1361 15 IO
double 1190 12 floating point
tabl* 1150 54 -
rsnext 500 22 Unordered collec-

tions
for 241 15 -
jdbcassertfullresultsetr 900 0 IO
messag 1101 87 concurrency
null 334 88 -
sclose 360 0 IO
select 1080 15 IO
sgettransactioncommit 700 15 IO
expr 162 2 -
tcommit 134 5 -
true 700 11 -
epsilon 383 0 floating point
fail 269 13 -
jdbcassertcolumnnamesr 366 0 IO
throw* 592 49 -
rsclose 300 0 IO
row 161 3 -

accuracy but as we discussed earlier, we are not only
interested in accuracy but precision too.

We performed several experiments to find optimal
parameters within a classifier before comparing it to
other classifiers. After these experiments, we identi-
fied three unique classifiers with unique and optimal
parameters. Since, we are most interested in higher
precision, we can see that RF with mtry = 5 and ntree=250
outperforms all other classifiers only for precision. RF
has achieved more than 90% precision with less than
10% recall. We did not achieve high precision (i.e.,

>90%) in all classifiers. NBL provides unexpected re-
sults although it holds a good reputation in terms of
detecting spam emails [29]. As compared to NBL and
SVM, RF have distinct qualities such as 1) it can work
with thousands of different input features without any
feature deletion 2) it calculates approximation of im-
portant features for classification and 3) it is very ro-
bust to noise and outliers [30]. Caruana in [17] com-
pared 10 different ML classifiers and concluded that
decision trees and random forest outperform all other
classifiers for spam classification.

3.2. RQ2: Predicting Power of ML
Classifiers with Respect to Other
Languages

In comparison of our findings with what was presented
by Pinto et al. [23], we observed two differences. First,
the top 20 features are very different in both studies.
Only two features such as "tabl" and "throw" marked
as star (*) in Table 2 were similar in both the find-
ings. However, we noticed that most of the our fea-
tures were related to "IO" output category, as presented
in Table 2, which complemented the findings of Pinto
et al. stating "that all projects manifesting flakiness
are IO-intensive" [23]. Second, we have a very lower
precision, recall and f1-score as compared to Pinto et
al. except at a instance where random forest provided
0.92 precision. Table 3 provides detail statistics of pre-
cision, recall, and f1-score of three algorithms for com-
parison. The algorithms on Python language contin-
uously performed worst contrary to what pinto et al.
claimed: "Although the studied projects are mostly writ-



Table 3
Comparison of Precision, Recall and F1-Score between our
findings (A) and Pinto et al. (B)

Precision Recall F1-Score Diff
Algo. A B A B A B
Random Forest 0.92 0.99 0.4 0.91 0.09 0.95 ↘
Naive Bayes 0.62 0.93 0.15 0.8 0.24 0.86 ↘
Support Vector 0.51 0.93 0.61 0.92 0.57 0.93 ↘

ten in Java, we do not expect major differences in the re-
sults if another object-oriented programming language
is used instead, since some keywords maybe shared among
them" [23].

We speculate that there could be several reasons as-
sociated with these performance reduction such as (1)
We implemented the code ourselves using R libraries
for aforementioned classifiers whereas pinto et al. used
Weka [31] which is an open source machine learn-
ing software that can be accessed through a graphi-
cal user interface, standard terminal applications [32],
(2) Number of features were very high in the training
samples and in these cases other models should be con-
sidered (i.e., regularized linear regression) that might
performed better, (3) the versatility offered by param-
eter tunning can become problematic and require spe-
cial considerations that can impact the classifiers, etc.

3.3. RQ3: Test Smells Analysis and their
Predictive Power for Test Flakiness
Detection and Prediction

We investigated manually different cases of true pos-
itives (i.e., correct flaky test prediction), false positive
(i.e., flaky test cases marked as non flaky) and false
negative (i.e., non flaky test cases marked as flaky) and
true negatives (correct non flaky test prediction) to an-
swer RQ3. We observed that it is not only the fre-
quency of test smell that makes a test case flaky but
its co-existence with the class code or external factors
such as operating systems or specific product. For ex-
ample, The test smell ’Conditional Test Logic’ as men-
tioned in [3] refers to nested and complex ’if-else’ struc-
ture in the test case. Depending on which branch of
’if-else’ is executed, the system under test may require
specific environment settings. Failing to set the envi-
ronment, during different executions, will flip the test
case outcome, thus making it flaky.

After manual investigation of all true/false positives
and true/false negatives, we come up with a list of
test smells that are strong or weak predictors of test
flakiness, as shown in Table 4. Strong predictors refer
to those test smells that existed in true positives and

true negatives cases whereas weak predictors only ex-
isted in false negatives and false positives. Test smells
that are classified as weak predictors in this study are
still useful and can help in identification of test flak-
iness, but they are not useful with machine learning
classifiers because they require additional information
such as what operating system they are running on
and whether or not specific configurations should be
deployed. Test smells that are classified as strong pre-
dictors are very useful with machine learning classi-
fiers because they only exist in test case function as
one unit and do not require additional information.

4. Lesson Learned
ML and AI algorithms in recent years have established
a good reputation for predicting diseases based on symp-
toms, spam emails based on email contents and many
more. We believe that given a proper input data set
which clearly distinguishes between flaky and non flaky
tests, ML and AI can provide high prediction capabil-
ities saving effort, time and resources. We strongly
believe that practitioners, during training of data set,
should not consider complete test cases as an input but
only the test codes (i.e., only few lines) that reveal test
flakiness.

It is inconclusive that predicting power of machine
learning vary with respect to software written in an-
other languages. Investigation on Java test cases [23]
revealed good results while findings for Python test
cases performed unexpected, thus requiring more in-
vestigations whether lexical information can be traced
to flakiness.

Async wait, precision, randomness and IO test smells
are string predictors can be predicted by machine learn-
ing classifiers with 100% precision because they only
exist in test case code and do not require additional in-
formation from test class or operating system. Whereas
all other test smells mentioned in Table 4 are weak pre-
dictors of test flakiness and require additional sources
of information. We are only aware of test smells that
are investigated in open-source repositories and liter-
ature on test smells in closed-source software is scarce.

5. Discussion and Implication
Precision Depends on Data Set: In the literature of
ML, particularly with spam detection, it is acknowl-
edged that precision is a function of the combination
of the classifier and the data set under investigation.
Classifier’s precision, in isolation of data set, does not



Table 4
Test Smells as Strong and Weak Predictors Together with Source of their Existence

Test Smell Category Prediction Cate-
gory

Test
Case

Test
Class

Operating
System

External
Libraries

Hardware/Product

Async wait Strong [✔] - - - -
Precision (float operations) Strong [✔] - - - -
Randomness Strong [✔] - - - -
IO Strong [✔] - - - -
Unordered Collection Weak [✔] [✔] [✔] - -
Time Weak [✔] [✔] [✔] - [✔]
Platform Weak [✔] [✔] [✔] [✔] -
Concurrency Weak [✔] [✔] [✔] - -
Test order dependency Weak [✔] [✔] [✔] [✔] [✔]
Resource Leak Weak [✔] [✔] [✔] - -

make sense. The right question is "how precise a clas-
sifier is for a given data set". Unfortunately, there
is no data available that provides test case contents
and an associated label thus, limiting the use of ad-
vanced ML and AI algorithms. In addition to lack of
flaky test data, all research has been conducted with
open-source software and we know a little about what
test smells are present in closed-source software. Ah-
mad et. al. concluded that there are specific test smells
that are associated with the nature of the product [33]
known as ’company-specific’ test smells. The classifier
which are trained on a specific data set or a domain
cannot be generalized to be used with another data set
or domain. There is a long road ahead to explore the
best classifier given different data sets.
Beyond Static Analysis of Test Smells and their
Frequency: ML is capable of incorporating different
sources of information to increase predictive accuracy
as compared to the limited experiment in this study
where we only utilized the frequency of test smells in
the test case. During the investigation of the cases of
’false negative’ and ’false positive’, it has been observed
that the frequency of test smells in the test case will not
be sufficient for prediction. Some test case code (i.e.,
seeds()) will cancel the effect of test smell (i.e., ran-
dom()), no matter how frequent the random() function
appears in the test case. Some test smell, even with
single appearance, will weight more than a test smell
for higher frequency.
Precision Vs Recall: When a test suite grows in size,
developers would like any indications of tests that are
more likely to be flaky rather than adopting an ap-
proach of re-run which of-course is not cost effective
in terms of time and resources. Developers like to in-
crease precision at the expense of recall. When en-
countering ’false negative’, an experienced developer,
having sufficient knowledge of the test smells, will by-
pass the outcome, however, with ’false positive’, de-

velopers are unaware of the fact that test suite still
contains flaky tests. The motivation of employing ML
classifiers (i.e., higher precision - low recall vs balances
precision and recall) should be made clear before pro-
ceeding with implementation.
Multi-Factor Input Criteria for Flaky Test Detec-
tion: We observed that the ML algorithm should in-
clude different sources of information to increase pre-
dictive accuracy. These sources may include 1) assign-
ing specific weight (i.e., in numbers) to specific test
smells or test code, 2) developer’s experience (i.e., new
developer, unaware of the test design guidelines are
more likely to write flaky tests), 3) company-specific
test smells.

6. Related Work
Luo et al., in [1], investigated 52 open-source projects
and 201 commits and categorized the causes of test
case. Asynchronous wait (45%), concurrency (20%),
and test order dependency (12%) were found to be the
most common causes of TF. Palomba and Zaidman in
[2] partially replicated the results presented by Luo et
al. concluding that the most prominent causes of TF
are asynchronous wait, concurrency, and input output
and network issues. Authors investigated, in [3], the
relationship between smells and TF. Another empiri-
cal study of the root causes of TF in Android Apps was
conducted by Thorve et al. [4] by analyzing the com-
mits of 51 Apache open-source projects. Thorve et al.
[4] complement the results of Luo et al. and Palomba
and Zaidman, but they also report two additional test
smells (user interface and program logic) that are re-
lated to TF in Android Apps. Bell et al. in [34] and pro-
posed a new technique called DeFlaker, which moni-
tors the latest code coverage and marks the test case
as flaky if the test case does not execute any of the



changes. Another technique called PRADET [35] does
not detect flaky tests directly, rather it uses a system-
atic process to detect problematic test order dependen-
cies. These test order dependencies can lead to flak-
iness. King et al. in [36] present an approach that
leverages Bayesian networks for flaky test classifica-
tion and prediction. This approach considers flakiness
as a decease mitigated by analyzing the symptoms and
possible causes. Teams using this technique improved
CI pipeline stability by as much as 60%. To best of our
knowledge, no study has been conducted to evaluate
the predictive accuracy of machine learning classifiers
that can help developers in flaky test case prediction
and detection.

Pinto et al. evaluated five machine learning classi-
fiers (Random Forest, Decision Tree, Naive Bayes, Sup-
port Vector Machine, and Nearest Neighbour) to gen-
erate flaky test vocabulary written in Java [23]. The
concluded that Random Forest and SVM performed very
well with high precision and recall. They concluded
that features such as "job", "action", and "services" were
commonly associated with flaky tests.

7. Validity Threats
The authors in this study selected only those ML clas-
sifiers which have established a good reputation of high
accuracy in spam detection thus reducing the selection
bias.

The authors in this study reduced the experimenter
bias by performing several experiments with different
thresholds (i.e., probability scores, kernels, number of
trees, etc.) before selecting a champion.

External validity refers to the possibility of gener-
alizing the findings, as well as the extent to which the
findings are of interest to other researchers and practi-
tioners beyond those associated with the specific case
being investigated. Since the precision strongly de-
pends on the data set under investigation, we have an
external validity threat. We cannot generalize the find-
ings of this study for other data set.

8. Conclusion
At the moment of writing this paper, literature is scarce
on test flakiness (i.e., root causes, challenges, mitiga-
tion strategies, etc.) which requires significant atten-
tion from researchers and practitioners. We extracted
flaky and non flaky test case contents from open source
repositories. We implemented three ML classifiers such
as Naive Bayes, Support Vector Machine and Random

Forest to see if the predictive accuracy can be increased.
The authors concluded that only RF performs better
when it comes to precision (i.e., > 90%) but the recall
is very low (< 10%) as compared to NBL (i.e., preci-
sion < 70% and recall >30%) and SVM (i.e., precision
< 70% and recall >60%). The authors concluded that
predicting accuracy of ML classifiers are strongly as-
sociated with the lexical information of test cases (i.e.,
test cases written in Java or Python). The authors in-
vestigated why other classifiers failed to produce ex-
pected results and concluded that; 1) it is a combina-
tion of the test smell and an external environment that
makes a test case flaky, and in this study, the exter-
nal environment was not taken into consideration, 2)
ML classifiers should not only consider the frequency
of test smells in the test case but other important test
codes that have an ability to cancel the effect of test
smells.

References
[1] Q. Luo, F. Hariri, L. Eloussi, D. Marinov, An Empir-

ical Analysis of Flaky Tests, in: Proceedings of the
22Nd ACM SIGSOFT International Symposium on Founda-
tions of Software Engineering, FSE 2014, ACM, New York,
NY, USA, 2014, pp. 643–653. URL: http://doi.acm.org/10.1145/
2635868.2635920. doi:10.1145/2635868.2635920, event-
place: Hong Kong, China.

[2] F. Palomba, A. Zaidman, Does Refactoring of Test Smells In-
duce Fixing Flaky Tests?, in: 2017 IEEE International Confer-
ence on Software Maintenance and Evolution (ICSME), 2017,
pp. 1–12. doi:10.1109/ICSME.2017.12.

[3] F. Palomba, A. Zaidman, The smell of fear: on the relation
between test smells and flaky tests, Empirical Software En-
gineering 24 (2019) 2907–2946. URL: https://doi.org/10.1007/
s10664-019-09683-z. doi:10.1007/s10664-019-09683-z.

[4] S. Thorve, C. Sreshtha, N. Meng, An Empirical Study of Flaky
Tests in Android Apps, in: 2018 IEEE International Confer-
ence on Software Maintenance and Evolution (ICSME), 2018,
pp. 534–538. doi:10.1109/ICSME.2018.00062.

[5] V. Garousi, B. Küçük, Smells in software test code: A survey of
knowledge in industry and academia, Journal of Systems and
Software 138 (2018) 52–81. URL: http://www.sciencedirect.
com/science/article/pii/S0164121217303060. doi:10.1016/j.
jss.2017.12.013.

[6] R. Shams, R. E. Mercer, Classifying Spam Emails Using Text
and Readability Features, in: 2013 IEEE 13th International
Conference on Data Mining, 2013, pp. 657–666. doi:10.1109/
ICDM.2013.131, iSSN: 2374-8486.

[7] S. K. Tuteja, N. Bogiri, Email Spam filtering using BPNN classi-
fication algorithm, in: 2016 International Conference on Auto-
matic Control and Dynamic Optimization Techniques (ICAC-
DOT), 2016, pp. 915–919. doi:10.1109/ICACDOT.2016.
7877720, iSSN: null.

[8] E. Sahın, M. Aydos, F. Orhan, Spam/ham e-mail classification
using machine learning methods based on bag of words tech-
nique, in: 2018 26th Signal Processing and Communications
Applications Conference (SIU), 2018, pp. 1–4. doi:10.1109/
SIU.2018.8404347, iSSN: null.

[9] K. Mathew, B. Issac, Intelligent spam classification for mo-
bile text message, in: Proceedings of 2011 International

http://doi.acm.org/10.1145/2635868.2635920
http://doi.acm.org/10.1145/2635868.2635920
http://dx.doi.org/10.1145/2635868.2635920
http://dx.doi.org/10.1109/ICSME.2017.12
https://doi.org/10.1007/s10664-019-09683-z
https://doi.org/10.1007/s10664-019-09683-z
http://dx.doi.org/10.1007/s10664-019-09683-z
http://dx.doi.org/10.1109/ICSME.2018.00062
http://www.sciencedirect.com/science/article/pii/S0164121217303060
http://www.sciencedirect.com/science/article/pii/S0164121217303060
http://dx.doi.org/10.1016/j.jss.2017.12.013
http://dx.doi.org/10.1016/j.jss.2017.12.013
http://dx.doi.org/10.1109/ICDM.2013.131
http://dx.doi.org/10.1109/ICDM.2013.131
http://dx.doi.org/10.1109/ICACDOT.2016.7877720
http://dx.doi.org/10.1109/ICACDOT.2016.7877720
http://dx.doi.org/10.1109/SIU.2018.8404347
http://dx.doi.org/10.1109/SIU.2018.8404347


Conference on Computer Science and Network Technology,
volume 1, 2011, pp. 101–105. doi:10.1109/ICCSNT.2011.
6181918, iSSN: null.

[10] A. B. M. S. Ali, Y. Xiang, Spam Classification Using Adaptive
Boosting Algorithm, in: 6th IEEE/ACIS International Confer-
ence on Computer and Information Science (ICIS 2007), 2007,
pp. 972–976. doi:10.1109/ICIS.2007.170, iSSN: null.

[11] R. K. Yin, Case study research design and methods, 4th ed ed.,
Thousand Oaks, Calif Sage Publications, 2009. URL: https://
trove.nla.gov.au/work/11329910.

[12] A. A. Alurkar, S. B. Ranade, S. V. Joshi, S. S. Ranade, P. A.
Sonewar, P. N. Mahalle, A. V. Deshpande, A proposed data
science approach for email spam classification using machine
learning techniques, in: 2017 Internet of Things Business Mod-
els, Users, and Networks, 2017, pp. 1–5. doi:10.1109/CTTE.
2017.8260935, iSSN: null.

[13] S. Vahora, M. Hasan, R. Lakhani, Novel approach: Naïve Bayes
with Vector space model for spam classification, in: 2011
Nirma University International Conference on Engineering,
2011, pp. 1–5. doi:10.1109/NUiConE.2011.6153245, iSSN:
2375-1282.

[14] M. R. Islam, W. Zhou, M. U. Choudhury, Dynamic Fea-
ture Selection for Spam Filtering Using Support Vector Ma-
chine, in: 6th IEEE/ACIS International Conference on Com-
puter and Information Science (ICIS 2007), 2007, pp. 757–762.
doi:10.1109/ICIS.2007.92, iSSN: null.

[15] T.-Y. Yu, W.-C. Hsu, E-mail Spam Filtering Using Support Vec-
tor Machines with Selection of Kernel Function Parameters,
in: 2009 Fourth International Conference on Innovative Com-
puting, Information and Control (ICICIC), 2009, pp. 764–767.
doi:10.1109/ICICIC.2009.184, iSSN: null.

[16] E. G. Dada, J. S. Bassi, H. Chiroma, S. M. Abdulhamid, A. O.
Adetunmbi, O. E. Ajibuwa, Machine learning for email
spam filtering: review, approaches and open research prob-
lems, Heliyon 5 (2019) e01802. URL: http://www.sciencedirect.
com/science/article/pii/S2405844018353404. doi:10.1016/j.
heliyon.2019.e01802.

[17] R. Caruana, A. Niculescu-Mizil, An empirical comparison of
supervised learning algorithms, in: Proceedings of the 23rd in-
ternational conference on Machine learning, ICML ’06, Asso-
ciation for Computing Machinery, Pittsburgh, Pennsylvania,
USA, 2006, pp. 161–168. URL: https://doi.org/10.1145/1143844.
1143865. doi:10.1145/1143844.1143865.

[18] C.-Y. Chiu, Y.-T. Huang, Integration of Support Vector Ma-
chine with Naïve Bayesian Classifier for Spam Classification,
in: Fourth International Conference on Fuzzy Systems and
Knowledge Discovery (FSKD 2007), volume 1, 2007, pp. 618–
622. doi:10.1109/FSKD.2007.366, iSSN: null.

[19] Z. Jia, W. Li, W. Gao, Y. Xia, Research on Web Spam Detec-
tion Based on Support Vector Machine, in: 2012 International
Conference on Communication Systems and Network Tech-
nologies, 2012, pp. 517–520. doi:10.1109/CSNT.2012.117,
iSSN: null.

[20] A. S. Katasev, L. Y. Emaletdinova, D. V. Kataseva, Neural Net-
work Spam Filtering Technology, in: 2018 International Con-
ference on Industrial Engineering, Applications and Manufac-
turing (ICIEAM), 2018, pp. 1–5. doi:10.1109/ICIEAM.2018.
8728862, iSSN: null.

[21] M. K., R. Kumar, Spam Mail Classification Using Combined
Approach of Bayesian and Neural Network, in: 2010 Interna-
tional Conference on Computational Intelligence and Commu-
nication Networks, 2010, pp. 145–149. doi:10.1109/CICN.
2010.39, iSSN: null.

[22] L. Firte, C. Lemnaru, R. Potolea, Spam detection filter us-
ing KNN algorithm and resampling, in: Proceedings of
the 2010 IEEE 6th International Conference on Intelligent

Computer Communication and Processing, 2010, pp. 27–33.
doi:10.1109/ICCP.2010.5606466, iSSN: null.

[23] G. Pinto, B. Miranda, S. Dissanayake, What is the Vocabulary
of Flaky Tests? (2020) 11.

[24] W. Lam, R. Oei, A. Shi, D. Marinov, T. Xie, iDFlakies: A
Framework for Detecting and Partially Classifying Flaky Tests,
in: 2019 12th IEEE Conference on Software Testing, Valida-
tion and Verification (ICST), 2019, pp. 312–322. doi:10.1109/
ICST.2019.00038, iSSN: 2159-4848.

[25] M. Sasaki, H. Shinnou, Spam detection using text clustering,
in: 2005 International Conference on Cyberworlds (CW’05),
2005, pp. 4 pp.–319. doi:10.1109/CW.2005.83, iSSN: null.

[26] T. Fawcett, An introduction to ROC analysis, Pattern Recogni-
tion Letters 27 (2006) 861–874. URL: http://www.sciencedirect.
com/science/article/pii/S016786550500303X. doi:10.1016/j.
patrec.2005.10.010.

[27] D. Zhang, J. Wang, X. Zhao, Estimating the Uncertainty of
Average F1 Scores, in: Proceedings of the 2015 International
Conference on The Theory of Information Retrieval, ICTIR ’15,
Association for Computing Machinery, Northampton, Mas-
sachusetts, USA, 2015, pp. 317–320. URL: https://doi.org/10.
1145/2808194.2809488. doi:10.1145/2808194.2809488.

[28] Wang, Baselines and bigrams | Proceedings of the 50th An-
nual Meeting of the Association for Computational Linguis-
tics: Short Papers - Volume 2, ???? URL: https://dl-acm-org.e.
bibl.liu.se/doi/10.5555/2390665.2390688.

[29] S. Abu-Nimeh, D. Nappa, X. Wang, S. Nair, A compari-
son of machine learning techniques for phishing detection,
in: Proceedings of the anti-phishing working groups 2nd
annual eCrime researchers summit on - eCrime ’07, ACM
Press, Pittsburgh, Pennsylvania, 2007, pp. 60–69. URL: http:
//portal.acm.org/citation.cfm?doid=1299015.1299021. doi:10.
1145/1299015.1299021.

[30] L. Breiman, Random Forests, Machine Learning 45 (2001) 5–32.
URL: https://doi.org/10.1023/A:1010933404324. doi:10.1023/
A:1010933404324.

[31] I. H. Witten, E. Frank, Data mining: practical machine learn-
ing tools and techniques with Java implementations, ACM
SIGMOD Record 31 (2002) 76–77. URL: https://doi.org/10.1145/
507338.507355. doi:10.1145/507338.507355.

[32] Weka 3 - Data Mining with Open Source Machine Learning
Software in Java, ???? URL: https://www.cs.waikato.ac.nz/ml/
weka/index.html.

[33] A. Ahmad, O. Leifler, K. Sandahl, Empirical Analysis of Fac-
tors and their Effect on Test Flakiness - Practitioners’ Percep-
tions, arXiv:1906.00673 [cs] (2019). URL: http://arxiv.org/abs/
1906.00673, arXiv: 1906.00673.

[34] J. Bell, O. Legunsen, M. Hilton, L. Eloussi, T. Yung, D. Mari-
nov, DeFlaker: Automatically Detecting Flaky Tests, in: 2018
IEEE/ACM 40th International Conference on Software Engi-
neering (ICSE), 2018, pp. 433–444. doi:10.1145/3180155.
3180164.

[35] A. Gambi, J. Bell, A. Zeller, Practical Test Dependency De-
tection, in: 2018 IEEE 11th International Conference on Soft-
ware Testing, Verification and Validation (ICST), 2018, pp. 1–
11. doi:10.1109/ICST.2018.00011.

[36] T. M. King, D. Santiago, J. Phillips, P. J. Clarke, Towards
a Bayesian Network Model for Predicting Flaky Automated
Tests, in: 2018 IEEE International Conference on Soft-
ware Quality, Reliability and Security Companion (QRS-C),
IEEE Comput. Soc, Lisbon, 2018, pp. 100–107. doi:10.1109/
QRS-C.2018.00031.

[37] P. Runeson, M. Host, A. Rainer, B. Regnell, Case Study Re-
search in Software Engineering: Guidelines and Examples, 1st
ed., Wiley Publishing, 2012.

http://dx.doi.org/10.1109/ICCSNT.2011.6181918
http://dx.doi.org/10.1109/ICCSNT.2011.6181918
http://dx.doi.org/10.1109/ICIS.2007.170
https://trove.nla.gov.au/work/11329910
https://trove.nla.gov.au/work/11329910
http://dx.doi.org/10.1109/CTTE.2017.8260935
http://dx.doi.org/10.1109/CTTE.2017.8260935
http://dx.doi.org/10.1109/NUiConE.2011.6153245
http://dx.doi.org/10.1109/ICIS.2007.92
http://dx.doi.org/10.1109/ICICIC.2009.184
http://www.sciencedirect.com/science/article/pii/S2405844018353404
http://www.sciencedirect.com/science/article/pii/S2405844018353404
http://dx.doi.org/10.1016/j.heliyon.2019.e01802
http://dx.doi.org/10.1016/j.heliyon.2019.e01802
https://doi.org/10.1145/1143844.1143865
https://doi.org/10.1145/1143844.1143865
http://dx.doi.org/10.1145/1143844.1143865
http://dx.doi.org/10.1109/FSKD.2007.366
http://dx.doi.org/10.1109/CSNT.2012.117
http://dx.doi.org/10.1109/ICIEAM.2018.8728862
http://dx.doi.org/10.1109/ICIEAM.2018.8728862
http://dx.doi.org/10.1109/CICN.2010.39
http://dx.doi.org/10.1109/CICN.2010.39
http://dx.doi.org/10.1109/ICCP.2010.5606466
http://dx.doi.org/10.1109/ICST.2019.00038
http://dx.doi.org/10.1109/ICST.2019.00038
http://dx.doi.org/10.1109/CW.2005.83
http://www.sciencedirect.com/science/article/pii/S016786550500303X
http://www.sciencedirect.com/science/article/pii/S016786550500303X
http://dx.doi.org/10.1016/j.patrec.2005.10.010
http://dx.doi.org/10.1016/j.patrec.2005.10.010
https://doi.org/10.1145/2808194.2809488
https://doi.org/10.1145/2808194.2809488
http://dx.doi.org/10.1145/2808194.2809488
https://dl-acm-org.e.bibl.liu.se/doi/10.5555/2390665.2390688
https://dl-acm-org.e.bibl.liu.se/doi/10.5555/2390665.2390688
http://portal.acm.org/citation.cfm?doid=1299015.1299021
http://portal.acm.org/citation.cfm?doid=1299015.1299021
http://dx.doi.org/10.1145/1299015.1299021
http://dx.doi.org/10.1145/1299015.1299021
https://doi.org/10.1023/A:1010933404324
http://dx.doi.org/10.1023/A:1010933404324
http://dx.doi.org/10.1023/A:1010933404324
https://doi.org/10.1145/507338.507355
https://doi.org/10.1145/507338.507355
http://dx.doi.org/10.1145/507338.507355
https://www.cs.waikato.ac.nz/ml/weka/index.html
https://www.cs.waikato.ac.nz/ml/weka/index.html
http://arxiv.org/abs/1906.00673
http://arxiv.org/abs/1906.00673
http://dx.doi.org/10.1145/3180155.3180164
http://dx.doi.org/10.1145/3180155.3180164
http://dx.doi.org/10.1109/ICST.2018.00011
http://dx.doi.org/10.1109/QRS-C.2018.00031
http://dx.doi.org/10.1109/QRS-C.2018.00031

	1 Introduction
	2 Data Set Description and Prepossessing
	2.1 Classifiers:
	2.2 Performance Metrics and Parameters Tuning

	3 Results
	3.1 RQ1: Performance of Naive Bayes Classifier, Support Vector Machine and Random Forest
	3.2 RQ2: Predicting Power of ML Classifiers with Respect to Other Languages
	3.3 RQ3: Test Smells Analysis and their Predictive Power for Test Flakiness Detection and Prediction

	4 Lesson Learned
	5 Discussion and Implication
	6 Related Work
	7 Validity Threats
	8 Conclusion

