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Background: Although contrast agents would be beneficial, they are seldom used in four-dimensional (4D) flow magnetic
resonance imaging (MRI) due to potential side effects and contraindications.
Purpose: To develop and evaluate a deep learning architecture to generate high blood–tissue contrast in noncontrast 4D
flow MRI by emulating the use of an external contrast agent.
Study Type: Retrospective.
Subjects: Of 222 data sets, 141 were used for neural network (NN) training (69 with and 72 without contrast agent). Evalu-
ation was performed on the remaining 81 noncontrast data sets.
Field Strength/Sequences: Gradient echo or echo-planar 4D flow MRI at 1.5 T and 3 T.
Assessment: A cyclic generative adversarial NN was trained to perform image translation between noncontrast and con-
trast data. Evaluation was performed quantitatively using contrast-to-noise ratio (CNR), signal-to-noise ratio (SNR), struc-
tural similarity index (SSIM), mean squared error (MSE) of edges, and Dice coefficient of segmentations. Three observers
performed a qualitative assessment of blood–tissue contrast, noise, presence of artifacts, and image structure visualization.
Statistical Tests: The Wilcoxon rank-sum test evaluated statistical significance. Kendall’s concordance coefficient assessed
interobserver agreement.
Results: Contrast in the regions of interest (ROIs) in the NN enhanced images increased by 88%, CNR increased by 63%,
and SNR improved by 48% (all P < 0.001). The SSIM was 0.82 ± 0.01, and the MSE of edges was 0.09 ± 0.01 (range [0,1]).
Segmentations based on the generated images resulted in a Dice similarity increase of 15.25%. The observers managed to
differentiate between contrast MR images and our results; however, they preferred the NN enhanced images in 76.7% of
cases. This percentage increased to 93.3% for phase-contrast MR angiograms created from the NN enhanced data. Visual
grading scores were blood–tissue contrast = 4.30 ± 0.74, noise = 3.12 ± 0.98, and presence of artifacts = 3.63 ± 0.76.
Image structures within and without the ROIs resulted in scores of 3.42 ± 0.59 and 3.07 ± 0.71, respectively (P < 0.001).
Data Conclusion: The proposed approach improves blood–tissue contrast in MR images and could be used to improve
data quality, visualization, and postprocessing of cardiovascular 4D flow data.
Evidence Level: 3
Technical Efficacy: Stage 1
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In conventional magnetic resonance (MR) angiography, con-
trast agents are crucial to generate blood–tissue contrast.1

However, their use may be contraindicated in patients with
renal impairment,2,3 and recent reports have shown some
deposition in the brain after the examination.4,5

Phase-contrast magnetic resonance imaging (PC-MRI)
acquisition techniques can be employed to generate angio-
graphic images without the use of contrast agents. Among
them, four-dimensional (4D) flow MRI can be obtained by
using flow encoding in three spatial directions to generate
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time-resolved volumes containing both morphology and
blood-flow velocity information.6,7 These content-heavy
images require longer acquisition times and typically result in
lower blood–tissue contrast when compared with routine car-
diac MRI. Consequently, their focus is commonly not on
morphological diagnostics but on functional assessment of the
blood flows throughout the cardiovascular system. These
images would benefit from techniques that improve their
quality at the postprocessing stage.

Using deep learning, the task of generating an image of
a specific class has been solved by training a neural network
(NN) to infer the probability distribution of the input data
and generate new samples in this distribution.8 Generative
adversarial networks (GANs) are a type of NN in which two
entities—a generator and a discriminator—are trained simul-
taneously using ideas originated from game theory.9 The gen-
erator focuses on understanding the distribution of the data,
while the discriminator estimates the probability of a sample
belonging to the true distribution rather than having been
created by the generator. This approach has been used to gen-
erate highly realistic images in several categories, including
medical imaging.8,10 Recently, Zhu et al11 achieved excellent
performance in image-to-image translation using cycle-
consistent adversarial networks (CycleGANs), a variation of
the GAN model that aims to translate images from a specific
domain A to domain B, and vice versa. A CycleGAN can be
treated as unsupervised learning,10 only requiring a set of
images for each domain, without the need for pairs of images
corresponding to each input. This is a significant advantage
in medical imaging, where acquiring multiple data sets from
each subject is typically unfeasible. The CycleGAN has been
successfully used for synthesis and denoising of medical
images.12,13

Thus, the aim of this study was to develop and evaluate a
CycleGAN architecture to emulate the effect of a contrast agent
in 4D flow MR images acquired without using contrast agents.

Materials and Methods
The research was performed in line with the Declaration of Helsinki
and was approved by the regional ethics board. The exams were per-
formed specifically for research purposes. All subjects gave written
informed consent.

Study Data
A total of 222 4D flow MR data sets were used in this study. From
this total, 141 were included in the training process: 72 were
acquired without contrast medium, and 69 directly after a gadolin-
ium contrast agent (Magnevist; Bayer Schering Pharma AG) was
injected into the subjects prior to the acquisition of a late-
enhancement study. An additional group of 81 4D flow MRI data
sets acquired without contrast medium was used to test the trained
network and evaluate the results. The training set of 141 subjects
included 59 healthy volunteers, 27 with and 32 without contrast.
There were 46 healthy volunteers in the test set. The included

patients represented a wide range of medical disorders including
chronic ischemic heart disease, idiopathic dilated cardiomyopathy,
diastolic heart failure, history of atrial fibrillation, mild to moderate
mitral valve regurgitation, postmitral valve repair, and diabetes type
2. The study data did not include patients with congenital heart dis-
ease. Exclusion criteria for both groups (contrast and noncontrast)
were contraindication for MRI and significantly irregular ventricular
rhythm. Exclusion criteria for the contrast group were very low qual-
ity due to the presence of artifacts and/or noise and timing issues
during the acquisition generating very low blood–tissue contrast in
the magnitude images.

Free-breathing, respiratory-motion-compensated, 4D flow
examinations were acquired on 1.5-T and 3-T MRI scanners
(Ingenia; Philips Healthcare, The Netherlands). Scan parameters
included sagittal-oblique slab covering the whole heart and thoracic
aorta, velocity encoding (VENC) 120 cm/sec–150 cm/sec, flip angle
5�–10�, echo time 2.5 msec–5.0 msec, repetition time 4.2 msec–
9.1 msec, Sensitivity Encoding (SENSE) speed up factor 3 (AP
direction) or 4 (2 in Anterior-Posterior (AP) and 2 in the Right-Left
(RL) direction), k-space segmentation factor 2–3 for gradient-echo
and read-out factor 3–7 for echo-planar-imaging-based sequence,
acquired temporal resolution of 30.0 msec–52.8 msec, and spatial
resolution �3 mm3. Typical scan time was 4–10 minutes, with
respiratory navigator efficiency of 60%–80%.

Data Preprocessing
Each 4D flow MR magnitude volume was sliced in the
anteroposterior direction to obtain images of the cardiovascular sys-
tem’s coronal plane. Each image was then resampled to the same size
of 128 × 128. A segmentation of the heart and major vessels gener-
ated using an automatic atlas-based method was used to locate the
main regions of interest (ROIs).14 A rectangle encompassing these
regions was used to exclude areas of large dissimilarity between dif-
ferent subjects, such as the chest, abdomen, and spine. Finally, two
groups (contrast and noncontrast) of 117,120 two-dimensional
(2D) images each were used to train the network. Only the magni-
tude image included in each 4D flow MR data set was used as input
to the network; consequently, the velocity information included in
the acquisition was not altered in any way.

Network Architecture
The CycleGAN model was composed of two discriminators and two
generators that achieve translation between two domains, A and
B. In addition, the networks were trained to minimize cycle consis-
tency losses,11 which aim to guarantee consistency when forward
and backward translations are applied successively on an image. A
detailed depiction of the network can be seen in Fig. 1.

The model was implemented using TensorFlow15 and trained for
approximately 2.5 epochs with the following parameters: batch size = 24,
generator with six residual blocks,16 Adam optimizer,17 and learning
rate = 0.0002. Residual blocks were composed of two convolutional
layers followed by instance normalization,18 and Rectified Linear Unit
(ReLU) activation.

Training was performed on a workstation with a 3.6-GHz,
six-core processor with 64-GB RAM, NVIDIA Quadro
P6000 GPU.
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Evaluation
Evaluation of the NN enhanced images was performed quantitatively
and qualitatively using metrics that focus on the main areas of inter-
est: blood–tissue contrast, noise, artifacts, and structural consistency.

The quantitative evaluation was performed on the original
data, the NN enhanced data, and, for reference, data on which
contrast-limited adaptive histogram equalization (CLAHE)19 was
applied. The following metrics were used:

• Signal difference (contrast) between ROIs (heart and great vessels)
and the remaining image.

• Contrast-to-noise ratio (CNR) calculated as

CNR =
j SROI−SBg j

σo

where SROI and SBg are the signal intensities in the ROI and the
remaining background, respectively; and σo is the standard deviation
of the noise.

• Signal-to-noise ratio (SNR) in the whole image calculated as

SNR =
μim
σo

where μim is the average signal in the image.

• SNR in the ROIs calculated as

SNR =
μROI

σo

where μROI is the average signal in the ROIs.

• The structural similarity index (SSMI), a quality assessment met-
ric, used to compare an image to its reference focusing on struc-
tural information while also incorporating luminance and contrast
components.20 The resulting index is in the range [0, 1], where
1 indicates that the two images are identical.

• Mean squared error (MSE) of the outlines generated using Canny
edge detection21 between the original images and NN enhanced
images.

Additional quantitative evaluation was performed on the utility of
the NN enhanced images to create three-dimensional
(3D) segmentations of the heart and great vessels. Phase-contrast
MR angiograms (PC-MRAs) were created from the NN enhanced as
well as from the original data by combining the magnitude and
velocity information contained in the 4D flow MRI, as proposed in
the study by Bock et al.22 An appropriate threshold for each PC-
MRA was found using Otsu’s method.23 Segmentations of the car-
diac chambers, aorta, and pulmonary artery were also generated
automatically from the original data using an atlas-based method,14

which after manual correction served as a reference standard. Com-
parison of the PC-MRA segmentations with reference standard was
performed using Dice similarity coefficient.24

Qualitative evaluation of the results was performed by three
observers (one imaging expert and two clinicians: T.E., C-J.C., and
J.S.) with 22, 16, and 4 years’ experience with 4D flow MRI, respec-
tively. The evaluation was done using a questionnaire with the fol-
lowing tasks:

• Task 1: The observer received 30 images and was asked whether
each image was a contrast MR image or an NN enhanced image.

FIGURE 1: Network architecture. Top: General design of the training process. GAB is the forward generator that transforms and
element “a” from group A to group B, resulting in “b’”; and vice versa for the backward generator GAB. DA and DB are the
discriminators in A and B domains, respectively. Cycle consistency losses are calculated between an original element and the result
of applying the two generators consecutively. Bottom: Generator and discriminator architectures. Each layer includes the number of
filters, filter size, and stride.
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• Task 2: The observer received 20 image pairs consisting of an
original (noncontrast) 4D flow image and its processed equivalent.
The observer then graded blood–tissue contrast, noise level, and
artifact level of the NN enhanced image in comparison to the
original using the scales (1–5) provided in Table 1. Comparative
image structure visualization was graded using the scale (1–4) pro-
vided in Table 2.

• Task 3: The observer received 20 blinded image pairs consisting
of an original (noncontrast) 4D flow image and its processed
equivalent and was asked which one they believed had better
quality.

• Task 4: The observer received 10 blinded video pairs of PC-
MRAs generated from an original (noncontrast) 4D flow MR
image and its processed equivalent and was asked which one they
believed had better quality.

The tasks were done without washout in the sequence order
previously described. Each reader performed their analysis
independently.

Statistical Analysis
All differences between quantitative parameters (noncontrast original
data vs. NN enhanced) were evaluated for statistical significance
using the Wilcoxon rank-sum test. A P-value of 0.001 was consid-
ered statistically significant.

Kendall’s concordance coefficient (W) was used to describe
the interobserver agreement of qualitative parameters.25

Results
The CycleGAN model was successfully created and trained,
as demonstrated by the examples from the original non-
contrast MR images and their corresponding NN enhanced
images shown in Fig. 2. A comparison of PC-MRAs gener-
ated from 4D flow MRI before and after applying the pro-
posed method can be seen in Fig. 3. Only 2D images are
included in this section due to space constraints, and 3D ver-
sions of these images in video format have been included as
in the Supplementary Material.

Quantitative Evaluation
Figure 4(a,b) shows the comparison of signal difference (con-
trast) and CNR between the original images, the NN enhanced
images, and images after application of adaptive histogram equal-
ization. Quantitative evaluation showed that the NN enhanced
images had significantly higher contrast and CNR in the heart
and great vessels (both P < 0.001): 0.47 ± 0.05 vs. 0.25 ± 0.04,
and 18.0 ± 2.58 vs. 11.03 ± 2.59 (an increase in contrast of
88% and an increase in CNR of 63%). Application of adaptive
histogram equalization produced higher contrast when compared
with the original images (0.32 ± 0.05); however, CNR decreased
to 6.04 ± 1.09. These comparisons were also statistically signifi-
cant (P < 0.001).

A similar comparison was done for the SNR computed
in the whole image and in the heart and great vessels and can
be seen in Fig. 4(c,d). The effect of the proposed method was
statistically significant (P < 0.001) for increasing SNRs in
both cases, especially in the heart and great vessels:
14.49 ± 1.9 vs. 17.63 ± 1.65, and 18.01 ± 2.65
vs. 26.6 ± 2.32 (an increase of 21% for the whole image, and
48% for the heart and great vessels). Adaptive histogram
equalization resulted in significantly lower SNR values on
both cases (P < 0.001): 9.61 ± 0.69 for the whole image, and
11.0 ± 0.92 for the heart and great vessels.

TABLE 1. Image Quality

Grades Blood–tissue contrast Noise Artifacts

1 Significantly less contrast than
original

Significantly more noise than
original

Significantly more artifacts than
original

2 Slightly less contrast than original Slightly more noise than original Slightly more artifacts than original

3 Identical or nearly identical to
original

Identical or nearly identical to
original

Identical or nearly identical to
original

4 Slightly more contrast than original Slightly less noise than original Slightly less artifacts than original

5 Significantly more contrast than
original

Significantly less noise than
original

Significantly less artifacts than
original

TABLE 2. Image Structure

Grades

Structural Changes
Within the Heart
and Major Vessels

Structural Changes
Outside the Heart
and Major Vessels

1 Evident changes
visible

Evident changes
visible

2 Moderate changes
visible

Moderate changes
visible

3 Slight changes visible Slight changes visible

4 No changes visible No changes visible

4

Journal of Magnetic Resonance Imaging



The metrics related to structural consistency
(Fig. 5) also resulted in positive outcomes, with the
SSIM having an average close to the maximum
value of one (0.82 ± 0.01), while the MSE of the com-
parison of edges between the images was quite low
(0.09 ± 0.01).

With respect to the segmentation component of the
evaluation, Dice similarity coefficients of the segmentations
created using the PC-MRAs of the original images and the
NN enhanced ones can be seen in Fig. 6. The average Dice
coefficient for the original images was 0.59 ± 0.1, while the

average for the NN results was 0.68 ± 0.06, representing an
increase of 15.25% (P < 0.001).

Qualitative Evaluation
A summary of the results obtained during the qualitative evalua-
tion is shown in Fig. 7. It was relatively easy for the observers to
differentiate between real contrast MR images and the NN
enhanced images; as can be seen in the results for task 1, where
the observers were able to identify the correct option in 84.4%
of the cases. However, when the choice was between an original
noncontrasted MR image and an NN enhanced one (tasks

FIGURE 2: Example results. Top: Original magnetic resonance (MR) images acquired without contrast. Middle: Result of applying the
proposed method. Bottom: Result of applying contrast-limited adaptive histogram equalization (CLAHE) to the original images.

FIGURE 3: Example phase-contrast magnetic resonance (MR) angiography results. Top: Phase-contrast MR angiograms (PC-MRAs)
generated from 4D flow MR images acquired without contrast. Bottom: PC-MRAs generated after applying the proposed method.
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FIGURE 4: Quality measures. Blue: original magnetic resonance (MR) images, red: neural network (NN) enhanced images, and
orange: images after application of contrast-limited adaptive histogram equalization (CLAHE). (a) Contrast difference between the
region of interest (heart and great vessels) and the remaining image. (b) Contrast-to-noise ratio (CNR) at the region of interest (heart
and great vessels) compared with the remaining image. (c) Signal-to-noise ratio (SNR) in the whole image. (d). SNR in the heart and
great vessels. Mean and standard deviation for each group is also indicated.

FIGURE 5: Structural measures. (a) Structural similarity index (SSIM) of the neural network (NN) enhanced images using the original
magnetic resonance (MR) images as reference. (b) Mean squared error (MSE) of the edges in the original MR images vs. NN
enhanced images. Mean and standard deviation for each group is also indicated.
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3 and 4), the proposed method’s results were chosen more fre-
quently, especially when comparing angiographic images (76.7%
in the case of the MR images and 93.3% for the PC-MRAs).

Detailed qualitative scores assigned by the observers dur-
ing task 2 are shown in Table 3, and bar plots of the percent-
ages obtained for each score in the scale can be seen in Fig. 7.
Regarding blood–tissue contrast, which was the main focus of
the study, the observers rated the NN enhanced images with
an average of 4.30 ± 0.74 on a scale from 1 to 5, which repre-
sents a slight to considerable improvement when compared
with the original MR images acquired without contrast. Quali-
tative evaluation of noise resulted in a mean of 3.12 ± 0.98,
which (from Table 1) can be interpreted as no evident differ-
ences detected between the original and NN enhanced images
on average. Visual evaluation of the presence of artifacts in the
images before and after the application of the proposed method
resulted in a mean of 3.63 ± 0.76, which (from Table 1)
suggested a moderate improvement in this category.

With respect to the image structure, the average score
obtained when focusing on the heart and great vessels was
3.42 ± 0.59, and the average in the rest of the image was
3.07 ± 0.71. On the suggested scale of 1–4 (Table 2), this
corresponds to slight or no changes visible in the ROIs, while

FIGURE 6: Comparison of segmentations generated using the
phase-contrast magnetic resonance angiograms (PC-MRAs).
Blue: PC-MRA computed using the original MR images, and red:
PC-MRA computed using the neural network (NN) enhanced
magnitude images. Mean and standard deviation for each group
is also indicated.

FIGURE 7: Qualitative test results. Tasks 1,3, and 4 are depicted using pie charts to represent the observers’ answers. Task 2 is
shown using bar plots of the percentages of scores assigned to the neural network (NN) enhanced images when compared to the
original noncontrast magnetic resonance images.
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slight changes were found to be present in the areas outside
these regions.

Percentage agreement between the observers was high
overall, ranging from 86% to 94%; Kendall’s concordance
coefficient ranged from 0.54 to 0.63, also denoting substan-
tial strength of agreement between raters. Detailed results can
be seen in Table 3.

Discussion
In this study, we have developed and evaluated a deep
learning-based method for the emulation of the effect of con-
trast agent on noncontrast cardiac 4D flow MRI. The tech-
nique resulted in an overall increase in contrast and lower
artifact visibility, especially in ROIs within the thoracic cav-
ity. This increase in quality could improve the utility of 4D
flow MRI in the clinical setting and may simplify the calcula-
tion of functional parameters derived from these images.

Comparison with a classic technique such as adaptive
histogram equalization served to demonstrate the superiority
of the proposed method. Histogram equalization intensifies
the artifacts and noise present in the original MR image and
is only able to increase the general signal present in the image,
without focusing on specific ROIs.

MRI data were acquired using two different MR scan-
ners (1.5 T and 3 T). Although we did not explore the possi-
ble distinctions quantitatively, visual inspection showed no
major quality differences due to the different scanners used.
However, because both scanners are used regularly in our
clinical routine, it was important for the NN to train in a
group of images as diverse as possible. This was also the rea-
son behind the inclusion of patients with a wide variety of
diseases in addition to healthy volunteers.

The proposed technique can be applied in approxi-
mately 2 minutes for a full cardiac 4D flow MRI composed
of approximately 2000 2D images. This method may there-
fore represent a fast way of improving image quality without
extending the already long acquisition time of these images.

The generator network in the proposed model pro-
duces images by applying a succession of operations to the
original image. The first section “encodes” the input image
into a set of features of different sizes, while the second
“decodes” these features into a result. It is therefore possible
that the generated images could be affected by structural
changes unintentionally added by this process, especially if
the network suffers from overfitting.26 However, the quanti-
tative metrics related to structure similarity obtained (SSIM
and MSE of the edges) showed good agreement with the
original images, and the qualitative scoring resulted in no
obvious differences. It is important to note that the SSIM
can be hard to interpret in this situation because it typically
expects the reference image (the original MRI in this case)
to be of better quality than the evaluated image, which is
not necessarily true here. In addition, during the qualitative
test, the observers were required to focus on either the main
ROIs (heart and great vessels) or on the remaining sections
outside this area. In this case, the goal was to obtain an eval-
uation specific to the areas corresponding to the heart and
vessels because structural differences in these regions would
negatively affect the results the most. The qualitative results
obtained suggest that structural changes were indeed less vis-
ible within the heart and vessels, if found at all. Qualitative
evaluation also indicated a moderate decrease in both noise
and artifact visualization in the NN enhanced images. This
was probably due to the higher overall quality of the contra-
sted training group.

The improvement observed with regard to the PC-
MRAs could be particularly useful during postprocessing and
analysis because these images are heavily used to guide vessel
segmentation and visualization in 4D flow MRI.22,27 Genera-
tion of a 3D segmentation derived from the NN enhanced
angiograms resulted in higher Dice similarity indexes than
segmentations generated using PC-MRAs from original non-
contrast data when compared to reference standard segmenta-
tions of the heart, aorta, and pulmonary veins. It is worth
noting that the Dice indexes in this test were not expected to

TABLE 3. Qualitative Scores Obtained for Each Metric, Percentage of Agreement Between Observers, and
Kendall’s Concordance Coefficient (W)

Metric 1 2 3 4 5 Total % Agreement W

Blood–tissue contrast 0 0 4 30 26 60 94% 0.58

Noise 0 17 27 8 8 60 86% 0.61

Artifacts 0 3 23 27 7 60 93% 0.54

Metric 1 2 3 4 Total % Agreement W

Structure (Heart and vessels) 0 3 29 28 60 92% 0.54

Structure (Rest of image) 1 10 33 16 60 86% 0.63
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be close to 1.0 because the reference standard segmentations
included the main cardiac and vessel regions (cardiac cham-
bers, aorta, and pulmonary artery) but excluded vessels such
as the venae cavae, pulmonary veins, carotid arteries, and
distal branches of the pulmonary artery.

For the purposes of training the model, areas of large
dissimilarity such as the subject’s chest, abdomen, and spine
were removed from the images. This made both contrast and
noncontrast training groups more consistent and encouraged
the network to focus on ROIs within the thoracic cavity.

One of the main advantages of the chosen network
architecture is that it does not require paired training exam-
ples. While it is possible that the results could be improved
with the use of paired data, it is quite unlikely that a large
number of paired data would be available since the use of
contrast agents and the number of 4D flow MRI acquisitions
are usually restricted to the minimum necessary due to side
effects and higher costs.

Although no unexpected differences in contrast between
slices of the same data set were apparent in the results, a simi-
lar network architecture to that currently used could be
implemented to receive and generate 3D volumes including
the entire ROI at one time frame. However, 3D GANs have
not been explored as extensively as 2D ones, would require
significantly more resources during training, and there is no
guarantee that they would improve the presented results due
to the added complexity.

Limitations
The contrast agent used in our training group was injected as
a bolus for a late gadolinium enhancement study. The 4D
flow MR images were acquired during the waiting time
between the injection of contrast and the gadolinium
enhancement acquisition. Consequently, blood–tissue con-
trast was higher in the 4D flow MR images when compared
with images acquired without contrast, but not as high as if
an intravascular contrast agent had been used. Training on
4D flow MRI data acquired with intravascular contrast agents
could have improved the results further. However, these con-
trast agents are rarely used, and such data were unavailable.

Images corresponding to several different studies (using
different sequences and field strengths) had to be included in
order to reach a sufficiently large group to use during train-
ing. This can be viewed as an advantage for the training pro-
cess because it resulted in a training set with higher
variability. However, as a consequence of this, not all the
images used were of the same width and height and had to be
resized, potentially affecting the sharpness of a portion of the
data used. It is possible that the presented results could be
improved further by including only images of the same size.

A few subjects presenting medical conditions that could
alter the flow dynamics, such as valvular regurgitation, were
included. These issues can introduce some signal loss in the

magnitude images due to turbulence or jet flows possibly
affecting the results; however, we did not study this specifi-
cally during the project since these data sets were a minority
within our training set.

Finally, only magnitude images were used to train the
presented model; however, it may be useful to include addi-
tional information related to the velocity-encoded data. For
instance, PC-MRA data could perhaps serve as a more
defined ROI for the network to focus on during training.

Conclusion
Our results demonstrated the potential of applying a
CycleGAN model to improve image quality in 4D flow MRI,
with special focus on increasing contrast in localized ROIs
within the heart and great vessels. The implemented model
only makes use of the magnitude component of the MR
acquisition, having no impact on the velocity components.
The proposed approach is fast and can be applied as a post-
processing step, and the resulting images could potentially
simplify the application of other postprocessing techniques
routinely employed to assess cardiovascular function using
these MR images.
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