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A B S T R A C T   

The objective of this study was to compare the development of sleepiness during manual driving versus level 2 
partially automated driving, when driving on a motorway in Sweden. The hypothesis was that partially auto-
mated driving will lead to higher levels of fatigue due to underload. Eighty-nine drivers were included in the 
study using a 2 × 2 design with the conditions manual versus partially automated driving and daytime (full 
sleep) versus night-time (sleep deprived). The results showed that night-time driving led to markedly increased 
levels of sleepiness in terms of subjective sleepiness ratings, blink durations, PERCLOS, pupil diameter and heart 
rate. Partially automated driving led to slightly higher subjective sleepiness ratings, longer blink durations, 
decreased pupil diameter, slower heart rate, and higher EEG alpha and theta activity. However, elevated levels of 
sleepiness mainly arose from the night-time drives when the sleep pressure was high. During daytime, when the 
drivers were alert, partially automated driving had little or no detrimental effects on driver fatigue. Whether the 
negative effects of increased sleepiness during partially automated driving can be compensated by the positive 
effects of lateral and longitudinal driving support needs to be investigated in further studies.   

1. Introduction 

Fatigued drivers show slower visual processing, loss of selective 
attention, poor distractor inhibition, reduced peripheral processing ca-
pacity as well as lapses and wake state instability (Chee, 2015; Krause 
et al., 2017; Van Dongen et al., 2011). This leads to worsened decision 
making, slower reaction times, reduced attention to the forward 
roadway and driving performance incapability (Anderson and Horne, 
2013; MacLean, 2019). As such, sleepiness and fatigue are contributing 
factors in 5–50 % of all crashes (cf. Dawson et al., 2018), with median 
values usually falling between 15–25 % (Åkerstedt, 2000), and elevating 
the crash risk with 1.29–1.34 times compared to driving without fatigue 
(Moradi et al., 2019). These fatigue related crashes typically occur 
during night-time or in the early morning hours, after too many unin-
terrupted hours behind the wheel, or after extended periods of high or 
low workload (Williamson et al., 2011). In this paper, fatigue is defined 

as the biological drive for recuperative rest, with sleepiness as a special 
case referring to accumulated sleep debt, prolonged wakefulness, or 
troughs in the circadian rhythm. 

A range of countermeasures can be implemented to address fatigue- 
related issues in transport, including public awareness campaigns, legal 
approaches, roadside initiatives, and in-vehicle technologies (Anund 
and Kecklund, 2011; Fletcher et al., 2005; Phillips et al., 2017). Some of 
these countermeasures aim to reduce the likelihood of fatigue-related 
driving whereas others aim to reduce the consequences of driving 
while fatigued. Driver support and intervention systems is a relatively 
new countermeasure that belongs to the latter category. These systems 
aim to prevent or reduce the impact of crashes in general, and as such 
they may also alleviate fatigue-related crashes. For example, lane de-
parture warnings and lane keeping assistance reduce single-vehicle, 
sideswipe, and head-on injury crash rates (Cicchino, 2018; Sternlund 
et al., 2017; Wang et al., 2020). These crash types are often associated 
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with driver fatigue and inattention. If these positive effects carry over to 
even more advanced systems, such as the partially automated functions 
with combined lateral and longitudinal support, is not known. 

According to the taxonomy of the Society of Automotive Engineering 
(SAE, 2018), in level 2-type partial automation, the driver is responsible 
and obliged to monitor traffic, while at the same time being relieved 
from the actual driving task (steering and using the pedals). This 
transformation of the driving task from active driving to active moni-
toring may lead to increased levels of fatigue due to boredom and 
under-stimulation. For example, Körber et al. (2015) found indications 
of passive fatigue in terms of decreased pupil diameter, increased blink 
frequency, longer blink durations and increased mind wandering during 
partially automated driving in a simulator study where 20 participants 
drove on a six-lane motorway for 42.5 min (note that the study did not 
include a baseline comparison with manual driving). Similarly, 
Hjälmdahl et al. (2017) found higher levels of subjective sleepiness in 
partially automated truck platooning compared to a baseline condition. 
Research on fatigue, sleepiness and sleep during automated driving has 
otherwise mostly examined higher levels of automation that are not yet 
available on the market. 

With automation levels where the driver no longer need to supervise 
the automation at all times, higher levels of fatigue has been found 
compared to manual driving (Jamson et al., 2013; Omae et al., 2005), 
especially if the drivers are sleep-deprived (Vogelpohl et al., 2019) or if 
they are not engaged in non-driving related tasks while on the move 
(Jarosch et al., 2019a, 2019b; Naujoks et al., 2018; Schömig et al., 2015; 
Vogelpohl et al., 2019; Wu et al., 2020). A fatigued state is typically 
reached within 20–40 min of highly automated driving (Feldhütter 
et al., 2019; Jarosch et al., 2017), and after 50 min, this affects take-over 
performance (Jarosch et al., 2019a, 2019b). The elevated levels of fa-
tigue that arise in highly automated driving have been found to decrease 
when switching from automated to manual driving, but the alerting 
effect of 10 min of manual driving only lasts for 4–6 min after control is 
handed back to the vehicle (Wu et al., 2019). 

The purpose of the present study was to compare the effects of 
manual versus level 2 partially automated driving on subjective and 
objective indicators of sleepiness. This was done by comparing the 
development of driver sleepiness while driving on a motorway with real 
traffic during both daytime (full sleep) and night-time (sleep deprived). 
The hypothesis was that partially automated driving will lead to higher 
levels of fatigue due to underload. A secondary objective was to collect 
video data for the development of driver fatigue monitoring systems, a 
topic that will not be explored in the present paper. 

2. Methods 

2.1. Participants 

Eighty-nine drivers (36 women and 53 men) participated in the 
study. Selection criteria were experience with advanced driving assis-
tance systems such as adaptive cruise control, lane keep assist and 
similar, a body mass index below 30 (to reduce the risk of sleepiness due 
to undiagnosed obstructive sleep disorders), no sleep disorders, no dis-
abilities that prevented the participant from driving an ordinary car, and 
no problems with motion sickness. The participants’ mean age was 38 
years (SD = 11 years, range = 20–59 years). The experience requirement 
had to be made less strict in the end of the data collection period since 
these advanced systems are still quite rare and it is difficult to recruit 
experienced drivers, especially on short notice in case of drop-outs. An 
extension of the data collection period was not an option, partly for 
budget and practical reasons, but mostly due to the outbreak of COVID- 
19. The last slots were therefore made available to drivers with less 
experience of advanced driving assistance systems. The final study 
population consisted of 54 drivers experienced with adaptive cruise 
control, 44 experienced with lane keeping assistance, 48 with parking 
assistance, and 19 with level 2 assistance. Seventeen drivers did not have 

any experience with advanced driving assistance systems. Each partic-
ipant received 4000 SEK (≈400 USD) for participation to compensate for 
loss of income. The Swedish government approved the experiment with 
sleepy drivers on real roads (N2007/5326/TR), and the study was 
approved by the Swedish Ethical Review Authority (Dnr 2019− 04813). 

2.2. Design and procedure 

The study has a within-subject 2 × 2 design, with factors for condition 
(daytime versus night-time driving) and for automation mode (manual 
versus partially automated level 2 driving). Sixteen 10 km segments 
were extracted from the 180 km drives to analyse changes over time on 
task. An approximately equal number of women and men was strived for 
to account for gender differences. Two instrumented vehicles were used 
in the trials, allowing 4 drivers to participate each experiment day. Each 
participant first drove in the afternoon (daytime, alert condition) and 
again during night-time (sleep deprived condition). The afternoon drive 
started at 15.00 h (drivers A and C) or 17.00 h (drivers B and D) and the 
night drive started at 01.00 h (drivers A and C) or 03.00 h (drivers B and 
D). 

The manual and automated driving sessions took place on different 
days, thus requiring two visits to the laboratory. Automation mode was 
counterbalanced, but since the government approval to use sleepy 
drivers on real roads was restricted to night-time hours, the daytime 
(alert) condition will always precede the night-time (sleep deprived) 
condition. 

The participants were instructed to sleep for at least 7 h during the 
three days before the trials, to go to bed no later than 24.00 h, and to get 
up no later than 09.00 h. Before arrival, they were also asked to fill in a 
background questionnaire with background information and a sleep 
diary covering the three nights before the experiment day. Upon arrival 
to the laboratory, the participant received further instructions, both 
concerning the experiment itself and the automated vehicle, and signed 
an informed consent form. After that, electrodes for the physiological 
measurements were posed (see Section “Measurements” below). Before 
and after each drive the participants did a 10-minute psychomotor 
vigilance task (PVT; Dinges and Powell, 1985). A post-drive question-
naire was filled in after each drive. The participants were not allowed to 
bring their own food or beverages but were offered dinner, fruits, rice 
cakes, water, red tea, or decaffeinated coffee during the evening. The 
participants were aware that the coffee and tea did not contain caffeine. 
The calorie intake was not logged. The dinner was served at 18.00 h 
(drivers A and C) or at 19.30 h (drivers B and D) and consisted of 
traditional Swedish home cooked food with an estimated calorie content 
of 600–800 calories. 

The test route comprised a 90-km section of a dual-lane motorway 
(road E4, Sweden) where the participants drove from exit 111 (Link-
öping) to exit 104 (Gränna) and back, resulting in a 180 km drive. The 
posted speed limit was 120 km/h on the whole section, and the annual 
average daily traffic for this road section is about 8000–15000 vehicles 
according to the Swedish Transport Administration. The participants 
were always accompanied by a test leader ready to intervene using dual- 
command if the drivers were too sleepy to continue or if they showed 
signs of inappropriate or dangerous driving. The test leader did not talk 
to the driver during the data acquisition. 

2.3. Measurements 

The tests were carried out in two different test vehicles, a 2015 Volvo 
XC90 and a 2020 Volvo V60. Note that each participant drove the same 
vehicle on both visits, either with or without partially automated func-
tions activated. Both vehicles were instrumented with ODB-II loggers to 
log GPS and vehicle kinematics, eye tracking systems, and video logging 
of the forward roadway, the drivers’ face, and the drivers’ upper body. 
Respiration and an electrocardiogram (ECG) were also recorded in both 
vehicles, and in addition, an electrooculogram (EOG) and a 64-channel 
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electroencephalogram (EEG) were recorded in the Volvo XC90. The 
reason for not including EOG and EEG in both vehicles is that the 
obstructing electrodes in the face and on the head may limit the gen-
eralisability of the dataset. For example, the electrodes may interfere 
when developing computer vision algorithms for driver fatigue moni-
toring, which is a future objective with the present dataset. 

Of the 356 planned trials, 2 were cancelled due to bad weather, 1 was 
cancelled due to technical issues with the logging equipment, 4 were 
cancelled due to hazardous drivers, and 18 were cancelled due to 
scheduling and availability issues, leaving 333 trials for analysis. 

2.3.1. Test vehicles and partially automated functions 
The tests were carried out in two different instrumented vehicles, a 

2015 Volvo XC90 and a 2020 Volvo V60. Both vehicles were equipped 
with the second version of the Volvo Pilot Assist system. Pilot Assist 
consists of the combined operation of adaptive cruise control and lane 
keeping assistance. The driver may remove the hands from the steering 
wheel for no longer than approximately 15 s. The status of the system is 
indicated by a symbol representing a steering wheel, which is integrated 
in the speedometer. When the system is active and Pilot Assist is 
providing steering assistance, the symbol is represented in green. 
However, if the detection of the lane markings is temporarily inter-
rupted (e.g. degraded lane markings), the system enters a stand-by 
mode, and the symbol turns grey. Then, only adaptive cruise control is 
active until the detection of the lane markings is resumed. The change 
from active to stand-by mode is only informed by the change in the 
symbol colour, and no other auditory or haptic warning is presented. 
When the system is turned off completely, the symbol is not shown. In 
this experiment, adaptive cruise control was available and activated 
98.96 ± 2.04 % of the time during partially automated driving in the 
Volvo XC90. The corresponding availability for lane keeping assistance 
was 94.14 ± 3.72 %, which was also the availability for the Pilot Assist 
system. The availability of the Pilot Assist system in the present exper-
iment is not known for the Volvo V60. Both cars were equipped with 
dual command to allow the test leader to intervene if needed. 

2.3.2. Vehicle kinematics 
Both cars were equipped with a GPS module and OBD-II logger 

(AutoPi.io ApS, Aalborg, Denmark) that logged latitude, longitude, 
speed, engine speed, lateral and longitudinal acceleration and throttle 
positon. 

2.3.3. Eye tracking and video recordings 
Both cars were equipped with a remote Blackbird3 3-camera eye 

tracking system (Smart Eye AB, Gothenburg, Sweden), an interior 
camera (acA1300− 75gm, Basler AG, Ahrensburg, Germany) and a for-
ward view camera (acA1300− 75gc, Basler AG, Ahrensburg, Germany). 
A monitor showing the camera view from the Blackbird3 cameras was in 
front of the glove compartment, granting the test leader high-resolution 
videos of the driver’s face. The gaze direction was calibrated using 13 
calibration points distributed throughout the cockpit. Raw videos from 
the three eye tracking cameras was stored and eye tracking was carried 
out in a post-processing procedure using the Smart Eye TrackingSW SDK 
version 0.9.0 (Smart Eye AB, Gothenburg, Sweden). 

2.3.4. Physiological measurements 
Electrophysiological data were recorded with bio-amplifiers (Vita-

port 2, Temec Instruments BV, the Netherlands in the Volvo V60 and 
eego sports, ANT Neuro, Hengelo, the Netherlands in the Volvo XC90). 
An electrocardiogram (ECG, lead II) and respiration (chest strap) were 
recorded in both vehicles, and in addition, a vertical electrooculogram 
(EOG) and a 64-channel electroencephalogram (EEG) were recorded in 
the Volvo XC90. Before each drive, the impedance was checked, and the 
electrodes were adjusted and filled with more conductive gel if needed. 

Physiological data were acquired with a sampling rate of 512 Hz but 
later down-sampled to 256 Hz. The ECG was band-pass filtered between 

0.3 and 30 Hz, the respiration signal was high-pass filtered at 1 Hz, and 
the EOG was band-pass filtered between 0.3 and 11.5 Hz. All filtering 
was carried out with zero-phase 5th order Butterworth filters. The EEG 
data was pre-processed in EEGLAB version 2019.1 (Delorme and 
Makeig, 2004) by high-pass filtering the data at 1 Hz, removing line 
noise by adaptively estimating and removing sinusoidal components, 
removing bad channels and transient or large-amplitude artifacts using 
artifact subspace reconstruction (Chang et al., 2020), and interpolation 
of missing or removed channels. Independent component analysis was 
used to suppress ocular and movement artifacts according to Pion-To-
nachini et al. (2019). In total, 75.9 ± 10.9 % of the EEG data were 
deemed as useful for further analyses after suppression of ocular arti-
facts and removal of movement artifacts. Only data from the ECG and 
the Fz-T7 (frontal), Cz-T8 (central) and Pz-Oz (parietal) derivations will 
be presented here. 

2.4. Sleepiness indicators 

Subjective and physiological measures related to sleepiness were 
calculated in 10 km segments along the route. The segment surrounding 
the turning point in Gränna was excluded in the analyses. The reason for 
defining the segments based on distance rather than time was to facili-
tate comparisons across drives and to reduce the impact of environ-
mental differences. 

2.4.1. Subjective sleepiness ratings 
The Karolinska Sleepiness Scale (KSS; Åkerstedt and Gillberg, 1990) 

was used to acquire self-reported sleepiness every fifth minute during 
the drives. KSS has nine anchored levels: 1 – extremely alert, 2 – very 
alert, 3 – alert, 4 – rather alert, 5 – neither alert nor sleepy, 6 – some signs 
of sleepiness, 7 –sleepy, no effort to stay awake, 8 – sleepy, some effort to 
stay awake, and 9 – very sleepy, great effort to keep awake, fighting 
sleep. The reported value corresponds to the average feeling during the 
last 5 min. The KSS ratings were upsampled to 1 Hz by retrospectively 
copying each KSS rating backwards in time. Subjective sleepiness was 
then calculated as the mode of the KSS ratings in each segment. 

2.4.2. EEG measures 
The total power in the 5–9 Hz theta frequency range and in the 8–14 

Hz alpha frequency range was calculated for the three EEG derivations 
using Welch’s power spectral density estimate (time window of 4 s and 
75 % overlap). These two frequency bands were selected since an in-
crease in the 5–9 Hz frequency range has been put forward as a sign of 
sleep need (e.g. Aeschbach et al., 1997; Cajochen et al., 1995) and an 
increase in alpha content has been found to be a robust indicator of 
sleepiness in a driving setting (Kecklund and Åkerstedt, 1993; Simon 
et al., 2011). Note that EEG-based measures suffer from noise in natu-
ralistic settings, large inter-individual variability, and the fact that some 
individuals do not respond despite being clearly sleepy (Sandberg et al., 
2011; Sparrow et al., 2018; Åkerstedt et al., 2010). 

2.4.3. Eye and blink related measures 
Mean blink durations, percentage of closed eyes over time (PER-

CLOS), and pupil diameter, were obtained from the Smart Eye system. In 
this experiment, the availability of eyelid tracking was 99.91 ± 0.37 % 
and the availability of pupil tracking was 91.84 ± 8.12 % (using a 
quality threshold of 0.2). Note that the SmartEye system defines PER-
CLOS as the percentage of time where the eyes are fully closed, but 
despite this difference, the term PERCLOS will still be used here. 
Increased PERCLOS is often cited to be the most reliable and valid ocular 
sleepiness parameter (e.g. Sparrow et al., 2018; van Loon et al., 2015) 
while blink durations has been found for increasing levels of driver 
sleepiness in essentially all studies were blink duration has been 
measured (e.g. Schleicher et al., 2008; Åkerstedt et al., 2005). The effect 
size may however be small and both parameters have difficulties in 
predicting sleepiness on an individual level in a specific time epoch 
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(Ingre et al., 2006; Jimenez-Pinto and Torres-Torriti, 2012; Wierwille 
et al., 1996). 

A decreases in pupil diameter is also associated with fatigue (Morad 
et al., 2000; Schmidt et al., 2017). Note that changes in overall lumi-
nance cause large fluctuations in pupil diameter (Lohani et al., 2019), 
which has to be kept in mind when interpreting the results, especially if 
comparisons are made between the daytime versus night-time 
conditions. 

2.4.4. Heart rate measures 
Heart beats (R-peaks) were extracted from the ECG using a filter- 

bank approach (Afonso et al., 1999) and an RR time-series was 
derived as the time difference between heart beats. The corresponding 
normal to normal (NN) time series was obtained by a recursive pro-
cedure where RR intervals were removed if they differed from the mean 
of the surrounding RR intervals with more than 30 % (Karlsson et al., 
2012). A lowered heart rate gives more room for variability between 
successive heartbeats allowing higher heart rate variability. This is 
typically seen during sleepiness when the body is winding down to 
prepare for sleep (e.g. Buendia et al., 2019). As with most sleepiness 
indicators, heart rate and heart rate variability usually give clear results 
on a group level, but results vary between individuals and over time 
within individuals, depending on both internal and external factors 
(Persson et al., 2020). Heart rate was here expressed as the mean 
NN-interval in each segment and heart rate variability was quantified as 
the root mean square of successive differences (RMSSD) between normal 
heartbeats (Shaffer and Ginsberg, 2017). 

2.4.5. Driving performance 
Driving performance metrics such as speed, variability in lateral 

position and line crossings are commonly used in driver sleepiness 
research (e.g. Hallvig et al., 2014; McDonald et al., 2014; Mårtensson 
et al., 2019; Sikander and Anwar, 2018). However, since both longitu-
dinal and lateral behaviour are influenced by the automated functions 
under scrutiny in this experiment, it was decided to not include any 
driving performance metrics in this paper (c.f. Gonçalves and Bengler, 
2015). 

2.4.6. Psychomotor vigilance task 
The PVT was set up according to Loh et al. (2004), with random 

stimuli onsets with an interval of 2–10 s between stimuli, a maximum 
stimulus duration of 2 s, and a total test duration of 10 min. The PVT is a 
widely used test of vigilant attention, with high reliability and predictive 
validity and lack of aptitude and learning effects (Basner et al., 2018, 
2020). Increased sleepiness levels typically result in longer mean reac-
tion times and higher percentages of lapses/misses (here defined as re-
action times >500 ms). However, the test is sensitive to confounds from 
loss of motivation or presence of distractions during testing (Sparrow 
et al., 2018). 

2.5. Statistical analyses 

The sleepiness indicators were analysed by deriving analyses of 
variance (ANOVA) tables from mixed linear regression models. Separate 
regression models were created using each of the sleepiness indicators as 
dependent variables. Condition (daytime versus night-time driving), 
automation mode (manual versus partially automated) and time on task 
(10 km segment) were used as within-subjects independent variables 
while vehicle (Volvo V60 versus Volvo XC90) and gender (male versus 
female) were used as between-subjects variables. Participant was 
modelled as a factor with random slope and intercept for condition and 
time on task, nested within gender and vehicle. Note that the factor time 
on task relates to distance driven rather than time. The factor vehicle 
was included to account for confounding effects due to vehicle type 
(cross-country versus sport utility vehicle). 

The PVT results were analysed using a mixed-model five-factor 

ANOVA. Condition (daytime versus night-time driving), automation mode 
(manual versus partially automated) and time (before versus after the 
driving task) were used as within-subjects independent variables while 
vehicle (Volvo V60 versus Volvo XC90) and gender (male versus female) 
were used as between-subjects variables. Participant was included as a 
random factor. Two-way interactions between condition, automation 
mode and time on task were included. Two different dependent vari-
ables were analyses, mean reaction times and minor lapses. 

The significance level was set to 0.05 and Bonferroni correction was 
used to compensate for multiple comparisons. 

3. Results 

Night-time driving expectedly led to increased sleepiness levels in 
KSS, blink duration, PERCLOS, pupil diameter and interbeat interval 
(Fig. 1 and Table 1). Significant time on task effects were found in KSS, 
pupil diameter and interbeat interval, and as interaction effects between 
night-time and time on task in KSS, blink duration, PERCLOS, pupil 
diameter and in EEG parietal alpha and theta power. In general, the 
development of sleepiness showed a faster increase with time on task 
during night-time. Note that the main changes in pupil diameter be-
tween daytime and night-time is likely due to changes in light condition 
rather than sleepiness. 

Partially automated driving, as compared to manual driving, led to a 
significant but small increase in sleepiness levels for KSS, blink duration, 
pupil diameter, interbeat interval, EEG central alpha, EEG frontal theta 
and EEG central theta (Fig. 1 and Table 1). In partially automated 
driving the reported KSS values were 0.07 units higher, blink durations 
were 4.5 ms longer, the pupil diameter was 0.1 mm narrower, the 
interbeat interval was 9.22 ms longer, EEG central alpha was 0.16 dB/ 
Hz higher, EEG frontal theta was 0.04 dB/Hz higher and EEG central 
theta was 0.36 dB/Hz higher (Table 2). The drivers reported lower KSS 
levels for partially automated driving during daytime and higher KSS 
levels for partially automated driving during night-time, compared to 
manual driving. Blink duration showed a steeper increase with time on 
task during night-time compared to daytime, especially during partially 
automated driving (Fig. 1). 

Note that the proportion of variability explained by the models was 
considerably lower for the EEG metrics compared to the other sleepiness 
indicators (R2 in Table 1). Even though there was an interaction effect 
between night-time and time on task in parietal EEG alpha and theta 
power, and even though the general trend in Fig. 1 indicate higher alpha 
and theta content in the EEG indicators during night-time and with 
increased time on task, there were no significant main effects of night- 
time driving nor time on task in any of the EEG indicators. For these 
reasons, it is difficult to interpret the effects of partially automated 
driving on the EEG sleepiness indicators. 

Male participants showed slightly higher levels of subjective sleepi-
ness and frontal theta power, but except from these findings, there were 
no significant differences in relation to gender. No significant differ-
ences were found for vehicle type. 

PVT results only showed minor differences with respect to the ana-
lysed factors. The marginal mean reaction time was 10.69 ms longer 
(F(1,557) = 149.3, p < 0.001) for the night-time condition compared to 
the daytime condition, 6.81 ms longer (F(1,557) = 80.6, p < 0.001) after 
the driving session compared to before, and 0.96 ms shorter (F(1,557) =

9.3, p = 0.002) when driving with partial automation. A significant 
interaction effect indicated slower reaction times after the night-time 
drive compared to after the daytime drive (F(1,557) = 18.4, p < 0.001). 
The number of minor lapses increased with 0.48 (F(1,557) = 39.9, p <
0.001) at night-time, with 0.38 (F(1,557) = 28.9, p < 0.001) after the 
driving session compared to before driving. Partial automation did not 
significantly change the number of minor lapses. The factor participant 
was significant for both variables, indicating large interindividual 
differences. 
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4. Discussion 

This paper set out to investigate the effects of partially automated 
driving on subjective and objective indicators of sleepiness. The hy-
pothesis was that partially automated driving will lead to higher levels 
of sleepiness and fatigue due to underload. The results showed that 
partially automated driving led to slightly higher KSS values, longer 
blink durations, decreased pupil diameter, longer interbeat intervals, 
and higher central alpha, frontal theta, and central theta power. 

However, elevated levels of sleepiness mainly arose from the night-time 
drives when the sleep pressure was high. During daytime, when the 
drivers were alert, partially automated driving had little or no detri-
mental effects on driver fatigue. The KSS results even indicated a small 
alerting effect of partial automation during the first half of the drive 
(Fig. 1, top left, red and orange curves). 

During the night-time drives, partial automation led to increased 
driver sleepiness. This was seen in eye related metrics, heart rate-based 
metrics as well as subjective sleepiness, either as main effects or as 

Fig. 1. The mean values of each sleepiness indicator computed every 10 km along the test route (time on task) for the day/night condition during manual versus 
partially automated driving. The error bars represent the standard error of mean. 
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interaction effects (Fig. 1 and Table 1). In other words, when both the 
circadian and the homeostatic sleep pressure is high, a sleepy driver will 
become even sleepier when driving with partial automation. These re-
sults support earlier findings that drivers will become more fatigued 
when the active driving task is replaced by a passive monitoring task (e. 

g. Hjälmdahl et al., 2017; Jamson et al., 2013; Körber et al., 2015; Omae 
et al., 2005; Vogelpohl et al., 2019). It also supports earlier findings on 
task-dependent time-on-task effects on fatigue, showing that the 
execution of monotonous vigilance tasks lead to higher fatigue scores 
than the more motivating task of driving a simulator (Richter et al., 

Table 1 
Coefficient of determination (R2), model fit (-2LL) and ANOVA results (F-values) for the linear regression models. Degrees of freedom are df1 = 1 in all cases, df2 
according to the table. Significant differences at the 0.01 level (0.0005 after Bonferroni correction) are marked in green (**), at the 0.05 level (0.0025 after correction) 
in green/yellow (*) and higher levels in shades from yellow/orange to red. The factor Vehicle was excluded in the EEG analyses since EEG data were only available in 
one of the vehicles.  

Table 2 
Mean change in a sleepiness indicator per factor in the linear regression models. Significant differences at the 0.01 level (0.0005 after Bonferroni correction) are 
marked in green (**), at the 0.05 level (0.0025 after correction) in yellow (*) and higher levels in shades from orange to red. The factor Vehicle was excluded in the EEG 
analyses since EEG data were only available in one of the vehicles.  
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2005). 
Most sleepiness indicators expectedly showed higher sleepiness 

levels during night-time compared to daytime. There were also differ-
ences in the interaction effect of time on task during daytime versus 
night-time, with a steeper increase in sleepiness during night-time. 
These results are supported by previous studies (e.g. Hallvig et al., 
2014; Philip et al., 2005; Åkerstedt et al., 2013). Exceptions are the EEG 
parameters that did not show a significant effect of night-time driving. 
The central and parietal alpha power as well as the parietal theta power 
showed (non-significant) tendencies of higher alpha and theta frequency 
content with increasing time on task during night-time (Fig. 1), some-
thing that also showed up as significant interactions between night-time 
driving and time on task. This lack of significance between daytime and 
night-time driving was unexpected. 

In terms of automation, there were significant main effects of 
partially automated driving on central alpha power, frontal theta power 
and central theta power. There were also significant interaction effects 
between partial automation and night-time driving for several EEG pa-
rameters. However, given the lack of effect between daytime versus 
night-time driving, the differences in EEG power due to partially auto-
mated driving are most likely not driven by sleepiness. Driving with 
adaptive cruise control (Acerra et al., 2019) and with partial automation 
(Stapel et al., 2019) has been associated with increased cognitive load, 
which is characterised by increases in frontal theta and parietal alpha 
(Di Flumeri et al., 2019). This could be one reason for the observed 
changes in the EEG during partially automated driving. 

The PVT results after two hours of partially automated driving 
showed a slight but significant reduction in mean reaction time (but not 
in the number of minor lapses), which may suggest that drivers recu-
perated faster from the time on task effect after driving with partial 
automation compared to manual driving. This is however very specu-
lative and needs further investigations. 

The distinction between fatigue due to underload and the physio-
logical drive to fall asleep is important for how the level of fatigue 
should be brought back to normal levels. Fatigue due to underload can 
be countered by doing something else for a while, fatigue due to over-
load can be remedied by a short break, whereas fatigue caused physio-
logical sleepiness (homeostatic and circadian effects) can only be 
countered by actual sleep (Matthews et al., 2019; May and Baldwin, 
2009). Given the results from the present study, activation of partial 
automation will not be an effective sleepiness countermeasure. It is 
difficult to speculate on the impact of partial automation on 
fatigue-related crashes though. On the one hand, sleepiness levels seem 
to increase, which would lead to more crashes, but at the same time, 
automated functionalities such as lane and distance keeping systems 
may prevent these crashes from happening. Adapting safety margin-
s/thresholds to the current state of the driver in combination with pre-
ventive and corrective driver fatigue countermeasures and warnings 
may be a way to further improve the safety of automated vehicles. This 
would however require new and more accurate driver state detection 
algorithms since today’s vehicles’ driver alertness assessment systems 
are indirect (based on driving performance). Such measures are of little 
or no use when driving with automation. This means that direct, robust, 
and accurate camera- or physiology-based detection systems needs to be 
developed. 

Previous studies on fatigue and sleepiness during assisted or auto-
mated driving have been carried out in driving simulators or in Wizard 
of Oz vehicles. While such studies are important, it is also important to 
note that there are clear differences in how sleepiness and fatigue de-
velops in driving simulators compared to on real roads in real traffic 
(Fors et al., 2018; Hallvig et al., 2013). One reason is that it quickly 
becomes boring to participate in monotonous driving simulator exper-
iments. Another reason is that there is no real threat in a simulator. 
Without real consequences of a potential crash, drivers tend to fight less 
hard to remain awake. This motivates studies with sleepy drivers in real 
traffic at high speed. 

There are several limitations to this study, the most important being 
the limited experience with partially automated driving; 19 participants 
were experienced with partially automated driving, 44 had experience 
with lane keeping assistance and 54 drivers had experience with adap-
tive cruise control, while 17 drivers did not have any experience with 
advanced driving assistance systems. A second limitation is the varying 
traffic density and lighting conditions between the day- and night-time 
drives. As already mentioned, changes in overall luminance cause pro-
found fluctuations in pupil diameter (Lohani et al., 2019). It is therefore 
difficult to know if a change in pupil diameter is due to lighting condi-
tions, sleepiness, or both. The decrease in pupil diameter with time on 
task during night-time (Fig. 1, black and grey curves), when it was dark 
throughout the drive, is probably due to increasing levels of sleepiness. 
In contrast, the increase in pupil diameter with time on task during 
daytime (Fig. 1, red and orange curves) is probably a consequence of the 
setting sun. Thirdly, the two vehicles used in the study had different 
vehicle characteristics and partly different physiological measurement 
setups. Vehicle type would probably have caused differences in driving 
performance indicators, but such indicators were not used in this 
investigation. Differences in physiological measurements relates to the 
absence of EEG in one setup and different bio-amplifiers for the collec-
tion of the ECG data. The different brands of bio-amplifiers did however 
not affect the R-peak detection, and consequently not the ECG-based 
sleepiness indicators. Lastly, the experimental design established when 
the partially automated function was activated and when it was disen-
gaged. In reality, the drivers will decide for themselves when to activate 
the system (Hardman et al., 2019). Some drivers may then deactivate the 
system when they are feeling fatigued, in order to keep alert. Others may 
activate the system when severely fatigued, to get help to stay on the 
road. Future naturalistic driving studies are needed to assess how driver 
fatigue and partially automated function usage interact, and how this 
impact crash risk. 

5. Conclusions 

Driving with partial automation leads to higher levels of sleepiness, 
especially during night-time driving when the sleep pressure is high. 
During daytime, when the drivers in the study were alert, partially 
automated driving had little or no detrimental effects on driver fatigue. 
This may have an impact on evaluation and enforcement of driver 
monitoring regulations/assessments such as UNECE GSR 2022 and Euro 
NCAP 2024. 
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