
Linköpings universitetSE–581 83 Linköping+46 13 28 10 00 , www.liu.se

Linköping University | Department of Computer and Information Science
Bachelor’s thesis, 16 ECTS | Datateknik
2021 | LIU-IDA/LITH-EX-G--21/014--SE

A Model-Based Approach toHands Overlay for AugmentedReality
Fredrik Adolfsson

Supervisor : Zeinab GanjeiExaminer : Mikael Asplund

External supervisor : Alojz Milicevic

http://www.liu.se

Upphovsrätt

Detta dokument hålls tillgängligt på Internet - eller dess framtida ersättare - under 25 år från publicer-ingsdatum under förutsättning att inga extraordinära omständigheter uppstår.Tillgång till dokumentet innebär tillstånd för var och en att läsa, ladda ner, skriva ut enstaka ko-pior för enskilt bruk och att använda det oförändrat för ickekommersiell forskning och för undervis-ning. Överföring av upphovsrätten vid en senare tidpunkt kan inte upphäva detta tillstånd. All annananvändning av dokumentet kräver upphovsmannens medgivande. För att garantera äktheten, säker-heten och tillgängligheten finns lösningar av teknisk och administrativ art.Upphovsmannens ideella rätt innefattar rätt att bli nämnd som upphovsman i den omfattning somgod sed kräver vid användning av dokumentet på ovan beskrivna sätt samt skydd mot att dokumentetändras eller presenteras i sådan form eller i sådant sammanhang som är kränkande för upphovsman-nens litterära eller konstnärliga anseende eller egenart.För ytterligare information om Linköping University Electronic Press se förlagets hemsida
http://www.ep.liu.se/.

Copyright

The publishers will keep this document online on the Internet - or its possible replacement - for aperiod of 25 years starting from the date of publication barring exceptional circumstances.The online availability of the document implies permanent permission for anyone to read, to down-load, or to print out single copies for his/hers own use and to use it unchanged for non-commercialresearch and educational purpose. Subsequent transfers of copyright cannot revoke this permission.All other uses of the document are conditional upon the consent of the copyright owner. The publisherhas taken technical and administrative measures to assure authenticity, security and accessibility.According to intellectual property law the author has the right to bementionedwhen his/her workis accessed as described above and to be protected against infringement.For additional information about the Linköping University Electronic Press and its proceduresfor publication and for assurance of document integrity, please refer to its www home page:
http://www.ep.liu.se/.

© Fredrik Adolfsson

http://www.ep.liu.se/
http://www.ep.liu.se/

Abstract

Augmented Reality is a technology where the user sees the environment mixed with a
virtual reality containing things such as text, animations, pictures, and videos. Remote
guidance is a sub-field of Augmented Reality where guidance is given remotely to identify
and solve problems without being there in person. Using hands overlay, the guide can use
his or her hand to point and show gestures in real-time. To do this one needs to track the
hands and create a video stream that represents them. The video stream of the hands is
then overlaid on top of the video from the individual getting help. A solution currently
used in the industry is to use image segmentation, which is done by segmenting an image
to foreground and background to decide what to include. This requires distinct differences
between the pixels that should be included and the ones that should be discarded to work
correctly. This thesis instead investigates a model-based approach to hand tracking, where
one tracks points of interest on the hands to build a 3D model of them. A model-based
solution is based on sensor data, meaning that it would not have the limitations that image
segmentation has. A prototype is developed and integrated into the existing solution. The
hand modeling is done in a Unity application and then transferred into the existing appli-
cation. The results show that there is a clear but not too significant overhead, so it can run
on a normal computer. The prototype works as a proof of concept and shows the potential
of a model-based approach.

Acknowledgments

Firstly, I would like to thank my supervisor Zeinab Ganjei for the constructive comments,
help, and support throughout this thesis. It has been greatly appreciated. Secondly, I would
like to thank my examiner Mikael Asplund for his input. I would also like to express my
gratitude towards XMReality for the opportunity to do this thesis. A special thanks for the
input and help from the people at the company, Alojz Milicevic, Lillemor Blom and Alexan-
der Widerberg.

iv

Contents

Abstract iii

Acknowledgments iv

Contents v

List of Figures vii

1 Introduction 1
1.1 Motivation . 2
1.2 Aim . 2
1.3 Research Questions . 2
1.4 Delimitations . 2

2 Theory 3
2.1 Related work . 3
2.2 Current Implementation of Hands Overlay . 3
2.3 Hand Tracking . 5
2.4 Leap Motion Controller . 5
2.5 Used technologies . 6

3 Method 8
3.1 Overview . 8
3.2 Building the Hand Model . 9
3.3 Convert Model to Image Data . 10
3.4 Transfer Image Data to XM-Client . 10
3.5 Integrating Hand Frames with XM-Application 10
3.6 Evaluating the Prototype Based on FPS, CPU, and Memory Usage 11

4 Results 12
4.1 Hand Modeler . 12
4.2 XM-Application . 13
4.3 XM-Call . 14
4.4 Evaluation . 15

5 Discussion 17
5.1 Result . 17
5.2 Method . 17
5.3 Thesis in a Larger Context . 18

6 Conclusion 19
6.1 Can hands overlay be done using a leap motion camera and software? 19
6.2 How are the frame rate and computational needs compared to the old solution? 19

v

6.3 How can it be integrated into the XM-client? . 19
6.4 Future Work . 20

Bibliography 21

vi

List of Figures

2.1 Flowchart of how the XM-Application works . 4
2.2 A leap motion controller . 5
2.3 Caption for LOF . 6

3.1 The three layers of the XM-application and where frames from Hand Modeler is
sent and received. 9

3.2 Information flow from the Leap Motion Controller into Hand Modeler 9

4.1 Virtual hands seen from Hand Modeler. 12
4.2 The virtual hands after being received in the XM-application 13
4.3 Hands overlay in a video session using the prototype 14
4.4 Diagram showing CPU usage for different use cases 15
4.5 Diagram showing Memory usage for different use cases 16

vii

1 Introduction

Augmented Reality is a technology where the user sees the environment mixed with a virtual
reality containing things such as text, animations, pictures, and videos. One of the most
famous examples of AR is in the game Pokemon Go 1, where Pokemon’s are displayed as
if they were in the real world. Another famous example is Snapchat 2 and the way they
use their filters to combine the real world image with virtual elements. Remote guidance
is a sub-field of Augmented Reality where guidance is given remotely to identify and solve
problems without being there in person. Remote guidance can be done on many devices
such as smartphones, desktops, or using AR-glasses. This is usually done by having a video
session with one person receiving guidance and one or more persons guiding. The receiver
can, with the help of video, let the other person see what he or she sees. The person guiding
can then show where to focus, instruct what to do with the help of their voice, or add things
such as pointers, text, or hands overlay. When using hands overlay, the guide can use his
or her hand to point and show gestures in real-time overlaid on top of the video from the
individual getting help.

Today an approach to hands overlay actively used in the industry is made based on image
segmentation and the works of Poole[1]. It is done by segmenting an image to foreground,
the part of the image that shall be included, and background, the part of the image that shall
be discarded. The segmentation is done by analyzing pixels and grouping pixels with similar
values together. Probability is then used to determine if the pixels should be included. So
one tries to find the hand in an image and crop it out. This thesis instead investigates a
model-based approach to hand tracking. A model-based approach tracks the position and
rotation of points of interest of the hand, such as fingers, palm, and joints. That information
is then used to build a model of the hand. A leap motion controller is used to do this. It
is a lightweight commercial product which consists of 2 image sensors and three infrared
LEDs 3. Snapshots of those models are then used to implement hands overlay. The leap
motion technology has been studied based on great demand in different fields such as stroke
rehabilitation[3], sign language recognition[5], and robotic arm controlling [2]. It has also
been used in entertainment, 3D modeling, graphics, and manufacturing, while it still got a
lot of unexplored potential[8].

1https://www.pokemongo.com/
2https://www.snapchat.com/
3http://blog.leapmotion.com/hardware-to-software-how-does-the-leap-motion-controller-work/

1

1.1. Motivation

1.1 Motivation

The demand for doing tasks remotely and working from home keeps growing. With the
current events of the corona pandemic, this is more clear than ever. Remote guidance and
hands overlay can be a powerful tool to enable this. To solve problems over distance, one
needs to be able to identify the problem and give instructions. A reason this is often done in
person is the need to show things using hand gestures. Hands overlay makes it possible to
show things using hand gestures remotely.

Image segmentation is based on analyzing pixel values or the colors of pixels. The hand
is then cropped out of the image being analyzed. The current implementation of this requires
distinct differences between the pixels that should be included and the ones that should be
discarded to work correctly. Therefore, it works best on a uniform background with a solid
color that is different from the hand. Since the alternative solution in this thesis is instead
based on sensor data, it would not have these limitations. Using a model instead of a real
hand also enables the perspective from which it is seen to be modified effortlessly. This makes
it possible to for example see the hand in first-person instead of from the perspective of the
camera. Having a first-person perspective is something that can make guiding more intuitive.

1.2 Aim

Hands overlay is done in real-time. For this to be useful, the delay between the real world
hands and the hands seen in the application must be sufficiently small. The current imple-
mentation uses 25 frames per second and works well, making it a good aim. The compu-
tational power should also ideally be low enough, so it can run on the computers currently
used in the industry.

The objective of this thesis is to create a prototype that uses a leap motion controller to
model a hand. This prototype is then integrated into the XM-application, which is described
in Section 2.2, and hands overlay is implemented with the help of it. The prototype and the
evaluation of it should be helpful to decide if it is a good idea to develop this further and
potentially take it to production.

1.3 Research Questions

This section contains the research questions that this thesis aims to answer.

• Can hands overlay be done using a leap motion camera and the leap motion software?

• How are the frame rate and computational needs compared to the old solution?

• How can it be integrated into the XM-application?

1.4 Delimitations

Hands overlay is only implemented for Windows OS. The thesis aims only for a proof of
concept and does not need to be fully integrated into the XM-application.

2

2 Theory

The following chapter describes the necessary information needed to solve the problem and
to help design an appropriate method. It first explains how hand tracking is done and then
describe the programming languages and tools needed to implement a prototype. The pro-
gramming languages are briefly explained to allow the user to understand the structure of
the application.

2.1 Related work

Although there exists both studies in hand tracking and remote guidance, the two combined
is not very explored. In an article by Mather et al [4] both hands overlay and remote guidance
is studied together from a user experience perspective. The study found that subjects got a
positive experience and that the guidance was as helpful as it would have been if the teacher
was there in person. This further show why this thesis could be useful, by adding to the
technical aspects. In a article by Oda et al [6] they describes a system for remote guidance
where an expert is guiding a subject to do complex tasks. The expert shows what to do by
manipulating 3D replicas of real world objects. They compare a 3D augmented reality system
to a 2D drawing system and found that subjects were able to preform the task faster when
getting guidance with the augmented reality system. The system implemented in their study
is similar to what was done in this thesis, but focusing on modeling hands instead of real
world objects.

2.2 Current Implementation of Hands Overlay

XMReality AB1 develops and sells a remote guidance solution that allows users to under-
stand and solve problems over vast distances quickly. The solution that XMreality offers,
henceforth called XM-application, works on many platforms. The Windows version of this
application was used as a starting point, and then modified and extending in this thesis. It
can be used both in iOS, Android, Windows-desktop, and on the web. The flowchart for the
app can be seen in Figure 2.2. The XM-application has three layers. To ease the development
for cross-platform, they have a library written in C++ that executes most heavy calculations

1https://xmreality.com

3

2.2. Current Implementation of Hands Overlay

such as generating, merging and manipulating frames. The library also handles transfer of
frames from one device to another. The library is the same regardless of platform. Connec-
tions between users are established with the help of a server, using WebRTC2. All video and
sound streams are sent directly between users using web sockets. With this comes a platform-
specific front end client which is what the users see and interact with. For Windows, which is
the focus of this thesis, this is written in C#. To link the front end client with the library, XM-
Reality have implemented a platform-specific bridge layer which handles all communication
between the two.

Figure 2.1: Flowchart of how the XM-Application works

2https://webrtc.org/

4

2.3. Hand Tracking

2.3 Hand Tracking

Hand tracking has been researched quite extensively. What technology used is often deter-
mined by cost and how flexible hardware setup one needs. Some technologies require multi-
ple cameras and used to be really expensive. The method used in this thesis is model-based
hand tracking and is described below.

Model-based Hand Tracking

Rehg and Kanade [7] describe a model-based hand tracking system. In their work, they
track the position, rotation, and orientation of many points of interest or states, such as the
palm, fingers, or finger joints. They have divided the palm into seven such points of interest,
each finger into four and the thumb into five. The points are also connected. The tip of the
index finger is connected to the joint closest to it, for example. So a hand pose is represented
by 28 states. They then show how this can be used to build a model of the hand. These
states are estimated by extracting line and point features from unmarked images of hands.
They do this from one or two viewpoints. When trying to find the points of the hand, they
use information about the current state generated by previous frames to get a good starting
point. Their approach then searches the image along a line close to the starting point, where
the previous angle of the finger determines the angle of the line. So to avoid pixel processing,
they try to reduce the size of the image search. Searching a smaller part of the image allows
one to use a higher sampling rate, which in turn gives more accurate starting points. When
having multiple views, partial observations can be used. Points of interest found in one view
but missing in another because of it being blocked can still be incorporated, giving a more
accurate representation.

2.4 Leap Motion Controller

A leap motion controller is a commercial product developed by Ultraleap 3 and is used for
hand tracking. It consists of two image sensors and three infrared LEDs.

Figure 2.2: A leap motion controller

Similar to Rehg and Kanade [7] they use a model-based tracking system. Each finger,
including the thumb, has four tracking points. It tracks the base of the finger, the joints, and
the tip. The palm has seven points and the wrist five. These points, excluding some for the
wrist, can be seen in Figure 2.3.

The controller is limited to a reach of about 80 cm due to decreasing intensity from the
IR LED when increasing distance. Data is streamed from the controller to a computer via
USB. The data that the controller streams are two grayscale images of the near-infrared light

3https://www.ultraleap.com/
4http://blog.leapmotion.com/getting-started-leap-motion-sdk/hand-hierarchy/

5

2.5. Used technologies

Figure 2.3: Points being tracked by leap motion controller4

spectrum (one for each camera). This is what is used by the Leap Motion software to get the
tracking points and model the hand.

Weichert et al.[9] shows that the Leap Motion Controller has excellent accuracy with the
difference between the desired 3D position and the measured position being below 0.2 mm
with a static setup and under 2.5 mm when moving the reference point. As a baseline, the
accuracy of a human hand is said to be around 0.4 mm.

2.5 Used technologies

This section explains the technologies used in the thesis.

C++

C++ is a high-level, general-purpose programming language. It was first created as an ex-
tension to C or C with classes. It has expanded steadily over time, and today it supports
object-oriented, generic, and functional programming. It also allows for low-level memory
manipulation. C++ is a compiled language and is known for being fast. C++ does not have
any garbage collector, so one has to manage the memory used. The speed makes it suitable
for heavy calculations in image processing.

C#

C# is a strongly typed object-oriented programming language. Microsoft developed it and
released it in 2001. It has a garbage collector that takes care of memory clean up and also sup-
ports exception handling. Microsoft’s strong support for this language and the control that
comes with that often makes this the language of choice when doing front-end in a Windows
environment.

C++/CLI

C++/CLI (Common Language Infrastructure) is a language specification created by Mi-
crosoft. It is used for achieving interoperability between C++ and C# applications. With
it, one can have both unmanaged classes in C++ style and managed classes in C# style in the
same program. It is essential if one wants to link a C++ library with a front-end built with C#.

6

2.5. Used technologies

TCP and UDP

Both TCP (Transmission Control Protocol) and UDP (User Datagram Protocol) are protocols
used for sending data over an IP network.

A TCP-connection is made with a three-way handshake, first initiating and then acknowl-
edging the connection. After a request has been made each packet is numbered to ensure
them being in order and the receiving end must confirm that each packet has been delivered.
If the confirmation is missing (if the packet was lost or an error occurred) the packet will be
resent. A congestion control is in place to not overflow the receiver if it can handle the num-
ber of packets being sent. TCP is all about being reliable and because of that is a bit slower
compared to UDP.

UDP does not have a connection. The packets are sent without any checks. They are
unnumbered so they can get lost, be out of order, or sent multiple times. If an error occurs
that packet is discarded. UDP is all about speed and is often used for streaming.

Unity

Unity 5 is a cross-platform game engine developed by Unity Technologies. It can be used
to create 2D, 3D, Augmented reality, or Virtual reality games. It can also be used to create
simulations, films/animations, or in engineering. The scripting API for Unity uses C#. Unity
can ease the use of textures, rendering, and modeling a lot. One can also import and use
many finished assets from various sources. One such example is the Software development
kit that exists for leap motion in Unity 6. With it, one can get finished models, shaders, and
example scripts that can be used as a stepping stone.

Image Format BGRA32

Image formats describe how pixel data is stored in memory. BGRA stands for blue, green,
red, and alpha, where alpha is the transparency. Each of those values is stored in a byte,
which together takes 32 bits to represent a pixel. In Unity, the programmer can specify what
format to be used by textures. In this project, BGRA32 is used.

5https://unity.com/
6https://developer.leapmotion.com/unity#5436356

7

3 Method

The following chapter includes details on how the prototype was developed. Firstly describ-
ing how the images of the hands are generated. Secondly, how they are transferred and
integrated into the XM-application. Finally, the evaluation of the prototype is described.

3.1 Overview

The prototype used the XM-application, explained in Section 2.2, as a starting point. The
structure of the prototype can be seen in Figure 3.1. The client takes all the input from the
user and is what the user sees. The library does all the heavy calculations and transfer data
between users, while the bridge handles communication between the library and the client.
The bridge was modified and integrated into the existing application. The client and library
was not modified. Hand Modeler is a Unity-application made from scratch. It takes input
from the leap motion controller, converts it to a 3D-model, converts that model to a byte
array, and then finally send that byte array to the XM-application using a TCP-connection.
Different approaches were investigated to find out in which part of the XM-application the
frames that are sent from Hand Modeler should be received. If it was put into the client layer,
one would not be able to use functions from the library and if it instead was put directly into
the library it would be hard to know when hands overlay should be activated or deactivated.
In the bridge layer, one can communicate both with the client layer and the library layer,
which was essential when merging frames from Hand Modeler and the streamed video from
user cameras. It was therefore put in the bridge.

8

3.2. Building the Hand Model

Figure 3.1: The three layers of the XM-application and where frames from Hand Modeler is
sent and received.

3.2 Building the Hand Model

When creating a 3D model a leap motion controller and its software was used to do the hand
tracking. The output was then used in Hand Modeler. Figure 3.2 describes the information
flow. The leap motion controller feeds the leap motion software with data that is converted to
points of interest representing a model of a hand, as described in Section 2.4. The leap motion
SDK1 (Software Development Kit) comes with an API (Application Programming Interface)
which can be used when making applications in Unity. It was used to convert the models
made by the leap motion software to actual 3D models. The solution used the example project
included in the Leap Motion SDK as a starting point and used the two scripts that came with
it. The first script is the leap service provider, which handles the communication between the
leap motion software and Hand Modeler. It checks if a controller is connected and extracts
the data, if any is sent. The second script is for handling the hand models.

Figure 3.2: Information flow from the Leap Motion Controller into Hand Modeler

1https://developer.leapmotion.com/unity

9

3.3. Convert Model to Image Data

3.3 Convert Model to Image Data

Hand Modeler renders the 3D representation of the hands in a scene. However, the models
are not meant to be seen in the Hand Modeler application but instead meant to be transmitted
to the XM-application and displayed there. To do this, we create a Texture2D2 which repre-
sents an image. The width, breadth, and image format was set of this texture to 640, 480, and
BGRA32, to match what is used in the XM-application. Pixels are then read from the scene
and saved into that texture. The raw pixel data can then be extracted and stored in a byte
array. This byte array has a size of 640 * 480 * 4, and are now ready to be transferred to the
XM-application.

3.4 Transfer Image Data to XM-Client

The image data is sent using a TCP-connection. When working with an image, it is essential
to know the format. Although somewhat slower than a UDP-connection, TCP enables one
not to worry about packet loss and the programmer can assume that each frame has the same
size. It is a trade-off between speed and reliability. In the worst case, package losses on the
client side could cause segmentation errors that would crash the application.

The application is, on a separate thread, listening for new connections. Once a connection
is established, the frames are streamed as long as the connection is active. The frame rate
that these are streamed at can easily be modified and is limited by the available computing
power. A problem that occurred was that the receiving side got the contents in the byte array
representing the image in reversed order. This resulted in the image being mirrored. To
maintain the pixel format a workaround for this was to first reverse the image vertically and
then horizontally.

3.5 Integrating Hand Frames with XM-Application

In this project, the goal was to get a proof of concept and a demonstration. One could display
the hand models in the client layer but would then not fully integrate into the XM-application.
It would allow one to see how good the leap motion controller works but not compare it to
the old solution. The old solution was used as a starting point to integrate into the XM-
application as smoothly as possible. The way it worked is that it took frames from a camera,
and applied an image segmentation algorithm. The output of this algorithm was a frame
with the hand, and the rest of the image was masked with a solid background (black or white
depending on which settings are used). This new frame is then sent to the library, where it is
merged with the current video. The XM-library also sends it to the other user if in a call. The
approach used here was to replace the image that previously came from a camera and fed to
the image segmentation algorithm with the frames coming from Hand Modeler. The frames
from Hand Modeler have a solid background and do not need to be manipulated before being
sent to the library. If this is done correctly, the old pipeline can still work the way it did and
continue to work on all platforms.

2https://docs.unity3d.com/ScriptReference/Texture2D.html

10

3.6. Evaluating the Prototype Based on FPS, CPU, and Memory Usage

3.6 Evaluating the Prototype Based on FPS, CPU, and Memory Usage

The XM-application can run on both mobile devices and on desktop. Since it runs on mobile
devices, power usage is of interest. It was therefore decided that the visual gains from having
a frame rate of more than 30 was not worth the cost in power usage. As a baseline, the old
solution has a frame rate of 25. This project tried to get the highest possible frame rate up to
a maximum of 30. The frame rate is dependant on how fast images can be sent from Hand
Modeler and then received in the XM-application. If the XM-application is unable to keep up,
the frames will start stacking up, and the delay starts increasing. This makes it easy to notice
and test. It was achieved, so a frame rate of 30 was used for testing.

Performance-wise, two things are interesting, delay and computational needs. Since the
goal frame rate was achieved, delay was not a problem. Because of this only the computa-
tional needs, CPU and memory usage, was recorded and evaluated. The use cases this thesis
is affecting is in-call with hands overlay and is what was evaluated. Hands overlay was
tested with or without hands present since this affects the leap motion controller’s power
usage. This was compared to the old version with hands overlay. For the purpose of having
a baseline, both the new prototype and the old solution was recorded while being idle. The
measurements were done on a system with an Intel Core i7-6700HQ processor, 16 GB ram, a
Geforce GTX 960m graphics card and running 64-bit Windows 10. The measurements were
done using Windows Performance Monitor. Each experiment ran for at least 10 minutes with
measurements taken every five seconds.

11

4 Results

This chapter presents the results relative to the research questions being investigated. Firstly
the prototype is described, and then the evaluation of it is presented.

4.1 Hand Modeler

In the final version of the product, Hand Modeler just runs in the background and does not
display anything. However, for testing purposes and if one wants to adjust anything, it can
still be useful to know how it looks. In Figure 4.1 an example image of the hand models is
shown. The models are put onto a solid black background. The models can be with or without
the wrist and have a light or dark skin tone. If one adds more 3D models or textures, choices
could be further extended. The perspective chosen is first-person. Therefore, the hands added
to the video have roughly the same position as one’s own hands. The perspective is easily
modified by changing the position and angle of the camera in Hand Modeler. The frame rate
is set to 30 frames per second in order to limit CPU-usage.

Figure 4.1: Virtual hands seen from Hand Modeler.

12

4.2. XM-Application

4.2 XM-Application

After the hand image is transferred from Hand Modeler to the XM-application, the back-
ground is masked away. Examples of resulting images can be seen in 4.2. Small parts of the
background at the edges of the hand can still be seen in screenshots. However, this is not as
visible when the video is streamed and with the hands possibly moving. The refresh rate is
limited by how many frames are sent per second by Hand Modeler.

Figure 4.2: The virtual hands after being received in the XM-application

13

4.3. XM-Call

4.3 XM-Call

The prototype presented in this thesis is only available for windows. However, it can still
communicate with all types of devices supported by the original solution. One can still
make calls to mobile devices, web, or desktops. Compared to the current solution, noth-
ing is changed for the receiving end except what the image coming in looks like and has the
same memory and CPU usage as before. Figure 4.3 shows how it can look during a video
session. The screenshots are from a call to an IOS device.

Figure 4.3: Hands overlay in a video session using the prototype

14

4.4. Evaluation

4.4 Evaluation

The prototype was evaluated based on CPU and memory usage. The results for CPU-usage
can be seen in Figure 4.4. The use-cases measured were the app being idle (blue line), being
in a call but not having any hands present (yellow line), and being in call with the hands
(green line). The old solution was used as a benchmark for comparison (red line). Both
versions draw about the same when idle and use less than ten percent of the processor power.
In call, there is about a ten percentage points increase without the hands and another ten
percentage points with hands. The solution can be divided into three parts: XM-application,
Hand Modeler, and Leap motion software. Hand Modeler is not affected if one has hands
present or not and explains the difference between the old solution and no hands. The leap
motion software used to track the hands accounts for the remaining increase.

Figure 4.4: Diagram showing CPU usage for different use cases

15

4.4. Evaluation

Memory usage was evaluated when in call, with or without hands present, and compared
to the old solution. An increase of about ten percent can be seen when using the new solu-
tion and having hands present. There is also a small increase even without the hands. The
memory usage does not change over time.

Figure 4.5: Diagram showing Memory usage for different use cases

16

5 Discussion

This chapter discusses, comments on, and criticizes the result and method. It also discusses
the thesis in a larger context.

5.1 Result

The prototype allows one to use hands overlay with the leap motion controller. There is a
clear overhead compared to the old solution. The memory overhead is quite small, about
10 percent. This should not be an issue for users. However, there is a significant increase
in CPU usage. Creating a 3D model requires more computation than just using a 2D image.
There is also an overhead when converting the model to an image and then sending that from
Unity into the application. The overhead only affects Windows users though. When calling to
another device, the other side has no decreased performance but can still see the new hands
overlay. Power drain is mainly a factor on mobile devices, and as long as the application
can run on a regular computer, the overhead should not be crucial for windows users. This
prototype allows one to choose perspective, choose what model to use, and all one need is
a small device that can easily be transported. It works with any background as opposed to
the old solution working only with uniform ones. A drawback is that only the hands can be
tracked. Tools, for example, can not be seen.

The flexibility that the new solution offers is most likely hard to increase, even if a different
approach was used. However, when implementing software many choices are made that can
affect performance. If one could do the modeling directly in the XM-app instead of in Hand
Modeler, it would probably have lower CPU usage. Nevertheless, it is Hand Modeler that
lets one change models or perspectives. It is a trade-off between utility versus performance.
When integrating the prototype with the XM-app as much as possible of the old solution was
left untouched, modifications could probably yield performance gains.

5.2 Method

The method worked and led to good results. The prototype works as a proof of concept and
shows the potential of the leap motion controller. However, the method could be improved
in some aspects.

17

5.3. Thesis in a Larger Context

This thesis shows one way that hands overlay can be done. The prototype reuses a lot of
the old solution, and it would be interesting to see what the performance would be if one did
everything from scratch. Since images transferred from Hand Modeler have a perfect solid
background, one could use a more simple way of image segmentation. This would probably
reduce the overhead. Unity was chosen for doing the hand modeling, mainly because of ease
of development. It is neat and flexible. However, it would most likely require less CPU if it
was done directly in the XM-application. There is an overhead doing the modeling in Hand
Modeler and then transferring it into the app.

The main purpose of the evaluation is to see if a normal computer can run the program.
Nevertheless, the idea of what a normal computer is can differ from person to person. It
could be interesting to test and have lower fps and see the difference in computational needs.
We argue that the main point is to see the difference between the new and the old solution.
Furthermore, one could reduce the fps on the old solution, which should make the relative
overhead about the same.

The sources in this thesis are mostly from either published papers or the creator of the
tool/product. For example, with sources regarding the Leap motion controller they are from
the company itself, what they say should be valid.

5.3 Thesis in a Larger Context

Hands overlay is an important part of remote guidance which allows people to avoid travel-
ing on site. This allows expertise to instead be shared over distance, making it more accessi-
ble. As the part of expertise delivered over distance increases the need for traveling decreases,
which should have a positive environmental impact, as well as economic, for everyone in-
volved. If this thesis helps improve the experience and popularity of remote guidance, it will
increase that effect.

18

6 Conclusion

This chapter concludes the thesis relative to its research questions.

6.1 Can hands overlay be done using a leap motion camera and software?

A prototype and a proof of concept are introduced in this thesis. It shows that hands over-
lay can indeed be done using a leap motion controller and the software that comes with it.
With the help of the prototype developed, the potential of a model-based approach can be
seen. This is helpful when deciding if this is something the field of Remote guidance should
continue researching.

6.2 How are the frame rate and computational needs compared to the old
solution?

There is a clear increase in CPU-usage compared to the old solution. This is partly because
images are transferred from Hand Modeler and then into the XM-application. Interprocess
communication comes with some overhead. The rest of the increase comes from the leap
motion controller, building a model is more draining than taking a picture. There is a small
increase in memory usage. People should still be able to run this on their normal computer.
The overhead should, therefore, not be too important. The frame rate is the same compared
to the current solution.

6.3 How can it be integrated into the XM-client?

This thesis proposes an approach where one only changes how the images of hands overlay
are generated. That allows one to reuse the old solution as much as possible. The Hand
Modeler extension is integrated into the bridge-layer which had to be modified. The lib and
front-end is unchanged but still used. The images are generated in Hand Modeler and then
transferred into the application via a TCP-connection. This allows the prototype to keep all
the functionality from the old solution.

19

6.4. Future Work

6.4 Future Work

Future work for this thesis could be as follows:

1. Implement hand modeling directly in the XM-application instead of in Hand Modeler.

2. Test and modify the prototype based on user-experience. What hand model and per-
spective should be used? Maybe allow the user to modify it themselves.

3. Investigate a head-mounted setup instead, how would the performance change?

20

Bibliography

[1] Poole Alexander. “Real-Time Image Segmentation for Augmented Reality by Combining
multi-Channel Thresholds”. MA thesis. 2017.

[2] D Bassily, C Georgoulas, J Guettler, Thomas Linner, and T Bock. “Intuitive and adaptive
robotic arm manipulation using the leap motion controller”. In: ISR/Robotik 2014; 41st
International Symposium on Robotics. VDE. 2014, pp. 1–7.

[3] Maryam Khademi, Hossein Mousavi Hondori, Alison McKenzie, Lucy Dodakian,
Cristina Videira Lopes, and Steven C. Cramer. “Free-Hand Interaction with Leap Mo-
tion Controller for Stroke Rehabilitation”. In: CHI ’14 Extended Abstracts on Human Factors
in Computing Systems. CHI EA ’14. Toronto, Ontario, Canada: Association for Comput-
ing Machinery, 2014, pp. 1663–1668. ISBN: 9781450324748. DOI: 10.1145/2559206.
2581203.

[4] CA Mather, Tony Barnett, Vlasti Broucek, Annette Saunders, Darren Grattidge, and Wei-
dong Huang. “Helping hands: using augmented reality to provide remote guidance to
health professionals”. In: Studies in health technology and informatics 241 (2017), pp. 57–62.

[5] M. Mohandes, S. Aliyu, and M. Deriche. “Arabic sign language recognition using the
leap motion controller”. In: 2014 IEEE 23rd International Symposium on Industrial Electron-
ics (ISIE). 2014, pp. 960–965. DOI: 10.1109/ISIE.2014.6864742.

[6] Ohan Oda, Carmine Elvezio, Mengu Sukan, Steven Feiner, and Barbara Tversky. “Vir-
tual Replicas for Remote Assistance in Virtual and Augmented Reality”. In: (2015). DOI:
10.1145/2807442.2807497.

[7] James M Rehg and Takeo Kanade. Digit-Eyes: Vision-based human hand tracking. Tech. rep.
CARNEGIE-MELLON UNIV PITTSBURGH PA DEPT OF COMPUTER SCIENCE, 1993.

[8] Anshul Sharma, Aditya Yadav, Saksham Srivastava, and Ritu Gupta. “Analysis of move-
ment and gesture recognition using Leap Motion Controller”. In: Procedia Computer Sci-
ence 132 (2018). International Conference on Computational Intelligence and Data Sci-
ence, pp. 551–556. ISSN: 1877-0509. DOI: 10.1016/j.procs.2018.05.008.

[9] Frank Weichert, Daniel Bachmann, Bartholomäus Rudak, and Denis Fisseler. “Analysis
of the Accuracy and Robustness of the Leap Motion Controller”. In: Sensors 13.5 (2013),
pp. 6380–6393. ISSN: 1424-8220. DOI: 10.3390/s130506380.

21

https://doi.org/10.1145/2559206.2581203
https://doi.org/10.1145/2559206.2581203
https://doi.org/10.1109/ISIE.2014.6864742
https://doi.org/10.1145/2807442.2807497
https://doi.org/10.1016/j.procs.2018.05.008
https://doi.org/10.3390/s130506380

	Abstract
	Acknowledgments
	Contents
	List of Figures
	Introduction
	Motivation
	Aim
	Research Questions
	Delimitations

	Theory
	Related work
	Current Implementation of Hands Overlay
	Hand Tracking
	Leap Motion Controller
	Used technologies

	Method
	Overview
	Building the Hand Model
	Convert Model to Image Data
	Transfer Image Data to XM-Client
	Integrating Hand Frames with XM-Application
	Evaluating the Prototype Based on FPS, CPU, and Memory Usage

	Results
	Hand Modeler
	XM-Application
	XM-Call
	Evaluation

	Discussion
	Result
	Method
	Thesis in a Larger Context

	Conclusion
	Can hands overlay be done using a leap motion camera and software?
	How are the frame rate and computational needs compared to the old solution?
	How can it be integrated into the XM-client?
	Future Work

	Bibliography

