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Abstract 
Objective: The objective of this paper is to present a driver sleepiness detection model based on 

electrophysiological data and a neural network consisting of Convolutional Neural Networks and a 

Long Short-Term Memory architecture.  

Approach: The model was developed and evaluated on data from 12 different experiments with 269 

drivers and 1187 driving sessions during daytime (low sleepiness condition) and night-time (high 

sleepiness condition), collected during naturalistic driving conditions on real roads in Sweden or in an 

advanced moving-base driving simulator. Electrooculographic and electroencephalographic time 

series data, split up in 16634 2.5-minute data segments was used as input to the deep neural 

network. This probably constitutes the largest labelled driver sleepiness dataset in the world. The 

model outputs a binary decision as alert (defined as ≤6 on the Karolinska Sleepiness Scale, KSS) or 

sleepy (KSS≥8) or a regression output corresponding to KSS ϵ [1-5,6,7,8,9]. 

Main results: The subject-independent mean absolute error (MAE) was 0.78. Binary classification 

accuracy for the regression model was 82.6% as compared to 82.0% for a model that was trained 

specifically for the binary classification task. Data from the eyes were more informative than data 

from the brain. A combined input improved performance for some models, but the gain was very 

limited.   

Significance: Improved classification results were achieved with the regression model compared to 

the classification model. This suggests that the implicit order of the KSS ratings, i.e. the progression 

from alert to sleepy, provides important information for robust modelling of driver sleepiness, and 

that class labels should not simply be aggregated into an alert and a sleepy class. Furthermore, the 

model consistently showed better results than a model trained on manually extracted features based 

on expert knowledge, indicating that the model can detect sleepiness that is not covered by 

traditional algorithms. 

Keywords: Sleepiness detection, driving, EEG, EOG, deep learning  

1 Introduction 
About 1.35 million people are killed in road crashes every year (World Health Organization, 2018), 

and it is estimated that driver fatigue, including sleepiness, contributes to about 20 % of these deaths 

(Åkerstedt, 2000, Connor et al., 2002). Enforcement officers report difficulties in identifying driver 

fatigue (Radun et al., 2013) and there is a high degree of underreporting (Phillips and Sagberg, 2013). 

Yet, crash rates where fatigue was reported as a contributing factor are significantly higher than 
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baseline crash rates, and drivers reporting sleepiness at the wheel have more than a two-fold 

increase of being involved in a crash (Bioulac et al., 2017).  

Fatigue may result from various causes such as physical exertion, lack of physical activity, insufficient 

sleep, boredom, worry or overwork. In this paper we focus on fatigue due to sleepiness as an effect 

of insufficient sleep in combination with night-time driving in the window of circadian low. Sleep-

related forms of fatigue are characterised by a slowing of visual processing, loss of selective 

attention, distractor inhibition, reduced peripheral processing capacity and wake state instability 

(Chee, 2015, Krause et al., 2017), all of which are detrimental for safe driving. Driver fatigue 

detection systems can here be used to convince fatigued drivers to pull over for a rest or nap, or to 

detect when a driver is unfit to take back control from an automated vehicle. 

There has been considerable development in the area of driver fatigue detection (see for example 

the following reviews: Balandong et al., 2018, Liu et al., 2009, Ramzan et al., 2019, Sikander and 

Anwar, 2018, Golz et al., 2010, Chowdhury et al., 2018, Sahayadhas et al., 2012). Fatigue detection 

systems are typically based on vehicular, behavioural, or physiological information. Vehicle-based 

measures, such as steering wheel activity and lane positioning, are already available in today’s 

vehicles and have the advantage of being nonobtrusive. However, the warnings are often inaccurate 

and unreliable (Sahayadhas et al., 2012). Behavioural measures, such as gaze behaviour and eye 

closures, can be camera-based and are thus nonintrusive, but the extraction of eye features from 

video data is still difficult, especially in direct sunlight or quickly changing light conditions (Fernández 

et al., 2016). Physiological measures have been found to be more reliable (Sahayadhas et al., 2012), 

but they are as of yet very obtrusive. This paper focus on sleepiness detection based on physiological 

measures. 

When designing fatigue classification systems based on physiological data, the main sources of 

information are electroencephalography (EEG) to measure brain activity, electrooculography (EOG) 

to measure eye and blink behaviour, and electrocardiography (ECG) or photoplethysmography (PPG) 

to measure heart rate and heart rate variability (HRV). EEG data are typically quantified using the 

power in the theta (4–7 Hz), alpha (8–15 Hz) and beta (16–31 Hz) frequency bands, where increased 

theta power reflects sleep need (Shahid et al., 2010) and increased alpha power indicates driver 

sleepiness (Kecklund and Åkerstedt, 1993, Simon et al., 2011). EOG data are typically quantified in 

terms of blink durations or eyelid opening/closing velocities (eg. Schleicher et al., 2008, Åkerstedt et 

al., 2005), whereas cardiorespiratory function is measured with different HRV metrics (van den Berg 

et al., 2005, Apparies et al., 1998, Tran et al., 2009, Patel et al., 2011, Yang et al., 2010, Vicente et al., 

2016). On the negative side, EEG-based measures suffer from noise in naturalistic settings, large 

inter-individual variability, and the fact that some individuals do not respond despite being clearly 

sleepy (Sparrow et al., 2018, Sandberg et al., 2011a, Åkerstedt et al., 2010). Cardiorespiratory metrics 

often show ambiguous results since they not only by modulated by sleepiness and fatigue but also by 

several other time-varying inter- and intra-individual factors such as age, gender, posture, distress, 

boredom and relaxation (Persson et al., 2019). Finally, EOG metrics suffer from individual differences 

and small effect sizes (e.g. Caffier et al., 2003, Campagne et al., 2005, Ingre et al., 2006b, Schleicher 

et al., 2008, Papadelis et al., 2007).  

Numerous signal analysis methods have been used to extract fatigue indictors, or features, based on 

domain knowledge. These include phase synchronization (Kong et al., 2017), spectral analysis (Fu et 

al., 2016, Golz et al., 2007, Hu et al., 2013, Li et al., 2015, Picot et al., 2012), joint time/frequency and 

wavelet analysis (Golz et al., 2016, Khushaba et al., 2011, Liu et al., 2010), and nonlinear approaches 

such as fractal dimensions and different entropies (Golz et al., 2007, Mu et al., 2017, Papadelis et al., 

2007). These features are then often used as input to various machine learning algorithms, such as 



neural networks (Lin et al., 2012, Patel et al., 2011, de Naurois et al., 2018), support vector machines 

(Golz et al., 2007, Golz et al., 2016, Hu et al., 2013, Khushaba et al., 2011, Li and Chung, 2015, Li et al., 

2015, Mårtensson et al., 2019), and hidden Markov models (Fu et al., 2016, Liu et al., 2010, Yang et 

al., 2010).  

Another approach is to include the feature extraction step in the machine learning model using deep 

learning. Detection of different stages of fatigue using deep learning is a relatively new and 

unexplored area. However, deep learning has successfully been used for automatic classification of 

physiological signals in other domains. Roy et al. (2019) reviewed 156 papers on deep learning-based 

EEG analysis. In their review, there were no papers on sleepiness or fatigue scoring, but 15 that 

investigated the related topic of sleep staging. Most of the reviewed work used pre-processing steps 

such as filtering of the EEG data and a few papers used artifact handling. Roughly half of the 

reviewed papers used frequency domain features as raw EEG data features while other papers used 

the raw EEG time series. The selection of network architectures was reported to vary over the years 

but in total almost half (41%) used Convolutional Neural Networks (CNN) and a smaller amount (14 

%) used Recurrent Neural Networks (RNN) or Autoencoders (13 %). Hybrid approaches combining 

CNNs and RNNs were less common (7 %) but showed an increasing trend.  

A few recent papers have presented results on driver fatigue classification based on deep learning 

and EEG-data. Chai et al. (2017) used sparse-deep belief networks and reached an accuracy of 93.1% 

on a dataset with 43 participants driving on a monotonous road in a driving simulator. Zeng et al. 

(2018) used a combination of CNN and deep residual learning and reached an accuracy of 92.7% 

(subject-dependent classification) and 84.4% (subject-independent classification) on a dataset with 

10 participants driving on a monotonous road in a driving simulator. Ma et al. (2019) used a principal 

component analysis network and reached an accuracy of 95% on a dataset with 5 participants, also in 

a driving simulator setting. Song et al. (2019) used a CNN and reached an accuracy of 75.9 % on a 

dataset with 36 participants. Here, the participants were instructed to perform a series of facial 

expressions such as yawning, slow blink rate and falling asleep while driving in a driving simulator. A 

limitation that these studies have in common is that the work was carried out on small datasets with 

low ecological validity. Further, fatigue was invoked either as task related underload or by asking the 

participants to act sleepy. This is in stark contrast with work on sleep stage classification based on 

deep learning, where large clinical databases with thousands of participants are used.  

The work presented in this paper is inspired by recent work on automatic sleep staging using deep 

recurrent and convolutional neural networks (Biswal et al., 2017, Biswal et al., 2018, Stephansen et 

al., 2018). The aim is to explore the potential of deep learning to classify different levels of driver 

sleepiness based on electrophysiological data. A secondary goal is to compare the classification 

performance of deep features extracted by the deep learning model versus manually defined 

features based on domain knowledge. A third goal is to investigate if EEG, EOG or a combination of 

EOG and EEG is most suitable for driver sleepiness classification. 

2 Methods 
Two methodological approaches have been used for driver sleepiness classification in this paper. A 

classic machine learning framework with feature extraction based on domain knowledge combined 

with shallow learning and a deep learning framework where relevant features are automatically 

extracted from the electrophysiological data. Common for both approaches were a pre-processing 

stage where EOG and EEG data were filtered, normalized, and divided into 2.5-minute segments. Pre-

processing were carried out in MATLAB 2019a (Mathworks Inc., Natick, MA, USA) whereas the neural 



networks were implemented using Keras deep learning library in Python 3.7 using the TensorFlow 

backend. 

2.1 Sleepiness database 
Datasets from 12 separate driver sleepiness experiments were combined in this paper. Five of the 

experiments were run on real roads, either on a rural road or on a highway outside Linköping, 

Sweden. The remaining seven experiments were run in a high-fidelity moving-base driving simulator1. 

The cars used in the on-road experiments were equipped with dual control to allow a safety driver to 

intervene if needed. Permission to conduct driving sessions with sleep deprived drivers on public 

roads was given by the Swedish government (N2007/5326/TR). All experiments were approved by 

the Swedish Ethical Review Authority, see the referenced papers in Table 1 for more detailed 

information. 

The participants were recruited by random selection from the Swedish register of vehicle owners. All 

drivers were prepared in a similar way in all experiments. Before arrival, the participants were 

requested to avoid alcohol for 72 hours and to abstain from nicotine and caffeine for 3h before 

driving. All participants reported that they were healthy with good to excellent sleep quality. In 11 of 

12 experiments, the 225 drivers drove in at least one alert condition during daytime and one sleep 

deprived condition during night-time after being awake since early morning. In the 12th experiment, 

the 44 drivers only drove in a sleep deprived state in the early morning hours after a night shift. The 

duration of the driving sessions ranged from 30 to 90 minutes. 

Electrophysiological data (EEG and EOG) were recorded with a bio-amplifier (Vitaport 2 or 3, Temec 

Instruments BV, the Netherlands or g.HIamp, g.tec Medical Engineering GmbH, Austria). The 

electrodes used for the EOG (measured vertically and horizontally across the eyes) were of the 

disposable Ag/AgCl type. The EEG was measured via three bipolar derivations positioned at Fz-A1, Cz-

A2 and Oz-Pz using silver plated non-disposable electrodes. 

The Karolinska Sleepiness Scale (KSS) was used to acquire self-reported sleepiness every fifth minute 

during the drives. KSS has nine anchored levels (Åkerstedt and Gillberg, 1990): 1 - extremely alert, 2 - 

very alert, 3 - alert, 4 - rather alert, 5 - neither alert nor sleepy, 6 - some signs of sleepiness, 7 - 

sleepy, but no effort to keep alert, 8 - sleepy, some effort to keep alert, and 9 - very sleepy, great 

effort to keep alert, fighting sleep. The reported value corresponds to the average feeling during the 

past 5 minutes. The KSS values were used as the target values when training the machine learning 

algorithms. 

Table 1: Summary of datasets used to train and test the developed classifiers.  

Dataset Driving 
environment 

Number 
of drivers 

Number 
of 
sessions 

Reference 

1 Road 24 3 Anund et al. (2013) 

2 Road 43 3 Hallvig et al. (2014) 

3 Road 18 2 Silveira et al. (2019) 

4 Sim 14 6 Åkerstedt et al. (2010) 

5 Road 18 5 Sandberg et al. (2011a) 

6 Road 24 2 Schwarz et al. (2012) 

7 Sim 12 4 Radun et al. (2014) 

8 Sim 12 3 Leandersson Olsson (2012) 

 
1 https://www.vti.se/en/research-areas/vtis-driving-simulators/ 



9 Sim 30 18 Barua et al. (2019) 

10 Sim 10 2 Ingre et al. (2006a) 

11 Sim 20 2 Bekiaris et al. (2005) 

12 Sim 44 1 Anund et al. (2008) 

 

2.2 Preprocessing 
The EOG and EEG time series were split into 2.5-minute segments. Since the KSS-ratings were given 

every 5th minute, this provided two segments per KSS-rating. The 2.5-minute segment duration was 

chosen as a compromise between having enough raw data to calculate the features, and short 

enough to give a reasonably fast sleepiness detection. 

The EOG signals were lowpass filtered with a 5th order Butterworth filter at 11.52 Hz. Baseline drift 

and saturation due to motion artifacts was removed by subtracting a piecewise linear function using 

breakpoints located at large absolute derivatives >50mV/s and at the borders of saturated segments. 

Each 2.5-minute EOG-segment was then normalised by subtracting the mean value and division by 

the median blink amplitude. The blink amplitudes were extracted according to Jammes et al. (2008). 

Segments with a maximum amplitude below 5 μV were removed since such low amplitudes is an 

indication of a detached electrode. 

EEG data were bandpass filtered with a 5th order Butterworth filter with cut-off frequencies at 0.3 Hz 

and 40 Hz. EEG-segments with amplitudes above 200 µV were considered as artifacts and removed 

from further analyses, as were segments with maximum amplitudes below 5 µV. This is a very 

rudimentary artifact handling procedure, and the aim was simply to remove the worst outliers from 

the data. Each EEG-segment was normalized using the 1st and 99th percentiles of the signal to 

robustly squeeze the values into a range close to [-1,1]. All filtering was done with zero-phase 

forward and reverse digital IIR filtering. 

Sleepiness detection was performed using both binary classification to classify alert vs. sleepy (where 

alert was defined as KSS ≤ 6 and sleepy as KSS ≥ 8), and regression to estimate the reported KSS score 

on a finer level (KSS ϵ [1-5,6,7,8,9]). To obtain a clear separation of the two binary classes, segments 

with KSS = 7 were discarded as outlined by Sandberg et al. (2011b). The class definitions are justified 

by the observation that hardly any line crossings, i.e. when the vehicle is about to veer out of lane, 

occur at KSS ≤ 6, whereas a markedly increased frequency of unintentional lane deviations occurs at 

KSS ≥ 8 (Hallvig et al., 2014, Åkerstedt et al., 2014). In the regression model, KSS 1–5 were merged 

into one alert class since these ratings all represent different levels of “non-sleepiness”. These class 

definitions resulted in the label distribution presented in Figure 1. 



 

Figure 1: Label distribution in the case of regression and binary classification, respectively. 

2.3 Classification with manually extracted features 
Blink behaviour features were extracted from the vertical EOG signal with an automatic blink 

detection algorithm based on derivatives and thresholding (Jammes et al., 2008). For each eye blink, 

the blink duration, eyelid closure speed, peak closing speed, eyelid opening speed, peak opening 

speed, delay of eyelid reopening, closing time and opening time were extracted. To reduce problems 

with concurrence of eye movements and blinks, the blink duration was calculated at half the 

amplitude of the upswing and the downswing of each blink and defined as the time elapsed between 

the two. The blink parameters were extracted in each 2.5-minute segment and summarized using the 

1st percentile, 25th percentile, 50th percentile, 75th percentile and 99th percentile of each blink 

parameter. The resulting shape of the input data for the classifier was (N, 45), where N is the number 

of segments, and the 45 features are the 5 percentiles for each of the 9 blink parameters.  

Brain activity features were extracted using a frequency representation of the EEG data from the Oz-

Pz channel. The power spectral density was estimated via Welch's method using a window size of 1 

second, an overlap of 0.5 seconds, and 31 frequency bins ranging from 0-30 Hz. The resulting shape 

of the input data to the classifier was (N, 31), where N is the number of segments. 

A shallow feedforward network architecture was used, consisting of a fully connected layer using 

ReLU activation functions and 64 nodes, followed by the output layer with one node using linear 

activation in the case of regression and two nodes with softmax activation in the case of binary 

classification. In the regression case, the order of the ordinal KSS scale was conveniently considered 

by the imposed regression structure. Three input modalities were used; only EOG features, only EEG 

features, as well as EOG and EEG features combined. In the third case the features from EOG and 

EEG were concatenated to a single channel with 76 features. The model is described in detail in Table 

2. 

Table 2: Detailed summary of the fully connected network architecture. Note that the size of the input and output layers 
depend on the data and task (regression or binary classification), respectively. The batch size is not included in the output 
shape. 

Layer Parameters Output shape 

0 Input EOG input 
EEG input 
EOG+EEG input 

(45) 
(31) 
(76) 

1 Dense 64 output features (64) 



2 ReLU  (64) 

3 Dense 1 output feature (regression) 
2 output features (binary classification) 

(1) 
(2) 

4 Output activation Linear (regression) 
Softmax (binary classification) 

(1) 
(2) 

 

2.4 Deep learning classification 
A network combining a CNN architecture and a recurrent Long Short-Term Memory (LSTM) 

architecture was set up based on earlier work on sleep staging (Biswal et al., 2017). The CNN network 

aimed to find temporal patterns in the input data while the LSTM network was intended to account 

for long-term dependencies in the automatically extracted features. The proposed network design is 

visualized in Figure 2. 

 

Figure 2: Schematic overview of the CNN-LSTM network architecture. For more details, see Table 3. 

 

The EEG and vertical EOG data that were used as input to the CNN-LSTM network were down-

sampled to 64 Hz. To allow the use of an LSTM, each of the N 2.5-minute segments was split into 

T=10 subsegments of length L=960 sample points (64Hz × 150s / 10). The data were then structured 

in an input tensor of size (N, T, L, C), where N is the number of segments, and C is the number of 

channels (C=1 for EOG, C=3 for EEG, and C=4 when both EEG and EOG was used as input).  

The CNNs of the network consisted of 5 convolution blocks, each comprising a 1D convolutional layer 

(filter size 5), leaky ReLU activation (α = 0.1), max-pooling (size 3), batch normalization, and 1D 

spatial dropout (20%). The output of the CNNs was flattened and the extracted features for each 

subsegment fed to a bidirectional LSTM with 10 cells. The output from each cell was concatenated 

and fed to a fully connected layer with tanh activation function followed by a dropout layer (20%). 

The output layer was designed in the same way as for the shallow network outlined above, with a 1-

node linear activation for the regression task and a 2-node softmax activation for the binary 

classification. Table 3 summarizes the network architecture in more detail. 

      

       

                    

           

                      

                

  

              

          

                   

              

               

                    

            



The CNNs were implemented using the TimeDistributed wrapper in the Keras deep learning library. 

This enables weight sharing across the subsegment-dimension of the data, i.e. the 10 CNNs are 

trained as a single entity and the feature extraction is therefore identical for each subsegment. 

  



Table 3: Detailed summary of the CNN-LSTM network architecture. Note that the size of the input and output layers depend 
on the data and task (regression or binary classification), respectively. The batch size is not included in the output shape. 

Layer Parameters Output shape 

 

0 Input 1 input channel (EOG) 
3 input channels (EEG) 
4 input channels (EOG+EEG) 

(10,960,1) 
(10,960,3) 
(10,960,4) 

Ti
m

e 
D

is
tr

ib
u

te
d

 

1 Conv1D 32 filters, kernel size 5 (10,960,32) 

2 Leaky ReLU α = 0.1 (10,960,32) 

3 Batch norm 
 

(10,960,32) 

4 Max pooling Kernel size 3 (10,320,32) 

5 Spatial dropout Probability 20% (10,320,32) 

6 Conv1D 32 filters, kernel size 5 (10,320,32) 

7 Leaky ReLU α = 0.1 (10,320,32) 

8 Batch norm 
 

(10,320,32) 

9 Max pooling Kernel size 3 (10,107,32) 

10 Spatial dropout Probability 20% (10,107,32) 

11 Conv1D 32 filters, kernel size 5 (10,107,32) 

12 Leaky ReLU α = 0.1 (10,107,32) 

13 Batch norm 
 

(10,107,32) 

14 Max pooling Kernel size 3 (10,36,32) 

15 Spatial dropout Probability 20% (10,36,32) 

16 Conv1D 64 filters, kernel size 5 (10,36,64) 

17 Leaky ReLU α = 0.1 (10,36,64) 

18 Batch norm 
 

(10,36,64) 

19 Max pooling Kernel size 3 (10,12,64) 

20 Spatial dropout Probability 20% (10,12,64) 

21 Conv1D 64 filters, kernel size 5 (10,12,64) 

22 Leaky ReLU α = 0.1 (10,12,64) 

23 Batch norm 
 

(10,12,64) 

24 Max pooling Kernel size 3 (10,4,64) 

25 Spatial dropout Probability 20% (10,4,64) 

26 Flatten  (10,256) 

 27 Bidirectional LSTM 24 output features (in both directions) (10,48) 

 28 Flatten  (480) 

 29 Dense 128 output features (128) 

 30 Tanh activation  (128) 

 31 Dropout Probability 20% (128) 

 32 Dense 1 output feature (regression) 
2 output features (binary classification) 

(1) 
(2) 

 33 Output activation Linear (regression) 
Softmax (binary classification) 

(1) 
(2) 

 

2.5 Model training and evaluation criteria 
The data were partitioned into three datasets: training 56 %, validation 24 %, and test 20 %. The test 

set consisted of data from the first 20% of the drivers in each experiment in Table 1. This means that 



the evaluation was subject-independent, i.e. done on data from drivers that were not used in the 

training process. The remaining 80% of the data were randomly assigned to the training and 

validation sets.  

The loss function used when training the models was binary cross-entropy in case of binary 

classification and mean absolute error (MAE) in case of regression. All training was performed using 

the Adam optimizer with an initial learning rate of 0.0004 for CNN-LSTM networks and 0.001 for 

shallow networks. L1 (1%) and L2 (1%) weight-regularization was used for all layers in the CNN-LSTM. 

Training was carried out using mini-batch gradient descent with a batch size of 256. The number of 

epochs was set to 300 for CNN-LSTM networks and 1000 for shallow networks. Early stopping was 

not used, but the learning rate was reduced by a factor 2 after 50 epochs without significant 

improvement to the validation loss. These parameters were found empirically to give the best and 

most consistent results. Class weights were used in the training to correct for class imbalances in the 

data (see Figure 1). 

Binary classification performance was evaluated in terms of accuracy, sensitivity, specificity, F1 score 

and area under receiver operator characteristics curve (AUC). The threshold for calculating the 

performance metrics was selected to maximize Youden’s index, sensitivity + specificity – 1 (Youden, 

1950). Regression performance was evaluated in terms of MAE and accuracy, where accuracy was 

determined after rounding the continuous output to the nearest class label. In addition to this, the 

regression models were also evaluated as binary classifiers to compare their predictive power with 

the models specifically trained for binary classification. The threshold used to discretize the 

continuous regression output into an alert and a sleepy class was, again, determined by maximizing 

Youden’s index. Just as for the binary classification models, this evaluation excluded data with KSS = 

7. The main difference between these two binary classification approaches is that the implicit order 

of the KSS ratings is taken into account in the regression model but not in the model that was trained 

specifically for the binary classification task.  

For each task, 10 separate models were trained from random initial weights. The model with best 

performance on the validation dataset was evaluated on the test dataset. This is a robust method to 

select a high-performing model, while ensuring unbiased performance metrics on the test set. For 

regression networks the validation performance was measured using MAE, and for binary 

classification AUC was used. 

3 Results 
Data from the 269 drivers, 1187 driving sessions and 16634 2.5-minute data segments were fed to 

the different neural network architectures. In general, the deep CNN-LSTM models performed better 

than the shallow models, and the EOG data scored higher than the EEG data, see Table 4, Table 5, 

Figure 3 and Figure 4. 

Results from the regression analyses are provided in Figure 3. The best performance is achieved 

when using both EOG and EEG data as input to the CNN-LSTM model. The deep nets have a mean 

absolute error (MAE) around 0.8 while the shallow nets have an MAE around 1.0, meaning that on 

average the estimated sleepiness level is about 1 unit off from the reported KSS score. Investigating 

the confusion matrices in Figure 3, it is however clear that there is great overlap between different 

KSS ratings despite the low MAE. For example, 17% of the segments where the drivers rated 

themselves as severely sleepy (KSS≥8) were estimated to be alert (KSS≤6).  



 

Figure 3: Summary of results from the regression analyses. The continuous regression output was rounded to the nearest 
class label when compiling the confusion matrices and when calculating the accuracy. The top row is for CNN-LSTM models 
with time-series input, and the bottom row for the shallow feedforward networks with manually extracted features based 

on domain knowledge. 

The results from the binary classification models are shown as ROC curves in Figure 4 (left), and the 

performance at the optimal threshold is summarized in Table 4. The best overall performance was 

achieved with the CNN-LSTM model using both EEG and EOG as input. The sensitivity, i.e. the ability 

to correctly detect drivers who rated themselves as sleepy, was however better when only EEG data 

was used as input to the deep net. 

When evaluating the regression models for binary classification, the CNN-LSTM model with only EOG 

data as input performed consistently better than the other models, as seen in Figure 4 (right) and in 

Table 5. Furthermore, as seen by comparing Table 4 and Table 5, this model even performed better 

than the best of the binary models, the CNN-LSTM model with EOG and EEG as input, for all 

performance metrics. 



 

Figure 4: ROC curves for binary classification models (left) and regression models when used for binary classification (right). 
The circles mark the optimal points that maximize Youden’s index for each model. The area under the ROC curves is given in 

the figure legend. 

Table 4: Performance of the binary classification models. “Manual” refers to the shallow feedforward networks with manual 
feature extraction based on domain knowledge. The best model, per performance metric, is marked in bold. 

 Accuracy 
(%) 

Sensitivity 
(%) 

Specificity 
(%) 

F1 
(%) 

AUC Trainable 
parameters 

EOG 81.4 84.2 80.4 69.9 0.89 157,762 
EEG 76.9 87.1 73.3 65.8 0.87 158,082 

EOG+EEG 82.0 82.1 82.0 70.0 0.90 158,242 
EOG (manual) 75.2 78.4 74.0 63.6 0.83 3,074 
EEG (manual) 68.9 67.0 69.6 54.3 0.72 6,146 

EOG+EEG (manual) 73.8 77.7 72.3 62.1 0.81 9,026 

 

Table 5: Performance of the regression models when the continuous output is discretized as alert or sleepy as in the binary 
classification case. “Manual” refers to the shallow feedforward networks with manual feature extraction based on domain 
knowledge. The best model, per performance metric, is marked in bold. 

 Accuracy 
(%) 

Sensitivity 
(%) 

Specificity 
(%) 

F1 
(%) 

AUC Trainable 
parameters 

EOG 82.6 84.1 82.1 71.2 0.90 157,633 
EEG 74.0 79.9 72.0 61.1 0.84 157,953 

EOG+EEG 76.5 85.6 73.4 65.1 0.87 158,113 
EOG (manual) 75.6 79.3 74.2 64.3 0.84 3,009 
EEG (manual) 69.7 79.2 66.1 59.1 0.79 6,081 

EOG+EEG (manual) 77.7 77.7 77.7 65.9 0.83 8,961 

 

To investigate if the number of data segments were enough to train the deep network architectures, 

AUC was calculated as a function of an increasing number of training examples. The model used was 

the binary CNN-LSTM network with both EOG and EEG time series data as input. The data was 

shuffled before all the training sessions. Class weights were used to compensate for imbalances in 

the dataset. The results show that after an initial rapid increase in performance, the AUC continues 



to increase until the maximum number of available data segments is reached, see Figure 5. This 

indicates that adding more data would help improving the classifier further. 

 

Figure 5: AUC for EOG+EEG CNN-LSTM model as a function of the amount of training data. 10 models were trained and the 
mean (black line) and standard deviation (grey shading) of AUC on test data is shown. The red line indicates the test AUC for 

the model with the highest AUC on validation data, i.e. the unbiased performance of the models. 

4 Discussion 
A driver sleepiness classification system based on a CNN-LSTM classifier, trained on data with high 

ecological validity, has been tested and evaluated. The MAE on the test dataset was 0.78. Binary 

classification accuracy on the test dataset was 82.6% for the regression model and 82.0% for the 

model that was trained specifically for the binary classification task. These results were better than 

what was achieved with a shallow neural network fed with manually extracted features (MAE 0.97, 

accuracy 77.7% in the regression case, 75.2% in the classification case). In general, data from the 

eyes (EOG) were more informative for driver sleepiness classification than data from the brain (EEG), 

and a combined input with both EEG and EOG did not always result in better performance.  

When evaluating the regression models for binary classification (KSS ≤ 6 vs. KSS ≥ 8), the CNN-LSTM 

model with only EOG input substantially outperformed the other regression models. Even more 

surprising, the same model also outperformed the best of the binary models, i.e. the models that 

were trained specifically for the binary classification task. This indicates that the implicit order of the 

KSS labels hold important information that should not be discarded by aggregating them into an alert 

and a sleepy class. It also indicates that the information content is higher in the EOG signal than the 

EEG signal when considering the order of the KSS labels. This should be considered when designing 

future studies. 

Including the feature extraction step in the machine learning model using deep learning provided 

higher classification performance compared to using manually defined domain knowledge-based 

features. This indicates that the deep features picked up information relevant for sleepiness scoring 

that was not picked up by the manually defined sleepiness indicators. To investigate the feature 

extraction capabilities of the CNN-LSTM network and to get a grasp of the extra information that was 

picked up by the deep features, outputs from the intermediate representations of the data were 



visualised. It was noticed that one intermediate layer represented eye blinks. Another early layer 

represented quick changes in amplitude between negative and positive peaks (i.e. saccades). Later 

layers seem to represent aggregates of several simple features, such as clusters of rapid blinking. 

These preliminary findings are well in line with the findings of Massoz (2019), who found inner 

representations of closed eyes, opened eyes, droopy eyes, long blinks, slow eyelid closures in a CNN 

trained to classify driver sleepiness based on video recordings.  

The architecture of the CNN-LSTM network is based on previous work on sleep stage classification 

(Biswal et al., 2017, Stephansen et al., 2018, Biswal et al., 2018). The amount of possible 

combinations of layer types, activation functions, optimization function etc. is huge and all possible 

solutions have not been investigated. Future research should use the results from this work as a 

baseline and conduct a more systematic study of different model architectures. The procedure 

followed here was to start with a few layers and then gradually increase the complexity of the 

network. Using one convolutional layer alone in the feature extraction part of the network resulted 

in a classifier where most of the sleepy examples were classified as alert. As the number of layers 

were increased, the robustness of the classifier and the reproducibility of the results increased. 

Adding LSTM to the CNN network, as suggested by (Biswal et al., 2017), is reasonable from a 

theoretical point of view, as LSTM takes into consideration the time dependency in the signals. The 

added complexity of the classifier has greater potential to reach higher accuracy, but at the same 

time it is likely to require more training examples. We also investigated using separate CNN-networks 

for the EOG and EEG data types, as proposed by Stephansen et al. (2018), but no significant 

performance improvement was found compared to using EOG and EEG data in channels to the same 

CNN.  

With 269 drivers and 1187 driving sessions, this is probably the largest labelled driver sleepiness 

dataset in the world with sleep deprived participants driving in an ecologically valid setting. Even so, 

this dataset is still limited. Figure 5 shows that classification performance increase as a function of 

the number of training examples and the graph indicates that performance will continue to increase 

if more training examples are provided. As a comparison, the clinical datasets that are used to train 

sleep stage classification algorithms typically consist of thousands of patients (Biswal et al., 2018, 

Stephansen et al., 2018). On the positive side, these results indicate that deep learning for driver 

sleepiness detection has not yet reached its full potential. Future research should exploit the 

possibility to pretrain especially the EEG subnetworks with data from medical sleep databases. 

There is no truly objective ground truth of driver sleepiness that can be used when training 

supervised algorithms. There are alternatives to the subjective KSS ratings used here, including EEG 

measurements (Gillberg et al., 1996, Picot et al., 2012), blink durations (Schleicher et al., 2008), eye 

aperture (Kozak et al., 2005), reaction time tests (Massoz et al., 2018) and expert ratings based on 

observations (Awais et al., 2014, Rodriguez-Ibañez et al., 2012). However, reaction time tests are 

difficult to administer in real-road driving settings and video-based expert ratings have been found to 

be unreliable since sleepiness is often confused with boredom or underload (Ahlstrom et al., 2015). 

Physiology-based ground truths suffer from intra- as well and inter-individual differences and small 

effect sizes (Sparrow et al., 2018, Sandberg et al., 2011a, Åkerstedt et al., 2010, e.g. Caffier et al., 

2003, Campagne et al., 2005, Ingre et al., 2006b, Schleicher et al., 2008, Papadelis et al., 2007). 

Regardless, both EEG and EOG were used as input data in the present paper and could thus not be 

used as the target label as well. The main drawbacks with KSS are that the subjective feeling does not 

always reflect the actual sleepiness level (Van Dongen et al., 2003), that repeated reporting can have 

an alerting effect (Kaida et al., 2007), and that participants may interpret the levels of KSS differently, 

leading to label noise. On the positive side, KSS correlates with lane departures and has been found 



to be the measure of driver sleepiness least affected by inter-individual variations (Åkerstedt et al., 

2014). In addition, a system based on self-ratings will likely have high acceptance since it detects 

sleepiness in a way that match the drivers’ expectations.  

There are several limitations to the presented sleepiness detection system. First, using physiological 

data as input to the classifier limits its practical usefulness as obtrusive electrodes will never be 

accepted by the drivers. Instead, the developed classifier demonstrates the possibility to estimate 

sleepiness based on sensor data. Such a system can be used as a benchmark when developing future 

unobtrusive systems. It is positive that the performance when using only EOG as input was almost as 

good as when using EOG and EEG combined, and even better in some cases, because ocular 

parameters can be extracted from a video stream which would facilitate contact free driver 

sleepiness detection systems (Massoz et al., 2018, Schmidt et al., 2018). Second, the sleepiness 

dataset contain data recorded in naturalistic real-world settings as well as in an advanced moving-

base simulator. It is well known that the progression from alert to sleepy is more rapid, and the 

absolute levels are generally higher, in a simulator environment (Fors et al., 2018, Hallvig et al., 

2013). However, the physiological signs of sleepiness are similar. Given the need for large datasets 

when developing deep learning models, it was decided that the benefit of increasing the number of 

training examples outweighed the potential limitations of merging data from the two experimental 

settings. Third, the developed algorithm has not been benchmarked against previously presented 

sleepiness detection algorithms. In many cases, algorithms in the literature makes use of 

physiological signals that are not available in our database (muscle tension from the neck, 

respiration, 30-channel EEG etc.). In other cases, the developed algorithms are not subject-

independent, or class imbalances have not been taken into consideration. One study, Mårtensson et 

al. (2019), used a subset of the present dataset and achieved a subject-independent accuracy of 

84.0%, a sensitivity of 41.4% and a specificity of 93.1% based on a classic machine learning pipeline 

with feature selection and a random forest classifier. In comparison, the CNN-LSTM network 

developed here does not show this severe drop in performance for sensitivity. Further 

benchmarking, including comparisons with other network architectures, will be pursued in future 

research. Fourth, a system capable of preventing fatigue related crashes is not only dependent on a 

robust and accurate fatigue detection, but also on the effectiveness of the countermeasure that is 

then used to convince the driver to act in order to prevent an incident. The type of countermeasure 

that is needed depends on the type of fatigue that the driver is experiencing. Fatigue due to 

underload can be countered by doing something else for a while, fatigue due to overload can be 

remedied by a short break, while sleep-related fatigue can only be countered by actual sleep. 

Future works should aim to further exploit the natural order of the KSS labels. This inherent structure 

was here exploited by imposing a regression structure on the output from the developed networks. 

This approach could be extended by also considering the transitions between different KSS levels, as 

well as the transition between alert and sleepy at KSS level 7. An approach could be to have 

overlapping training examples to handle these transitions between KSS levels. One could also 

elaborate on using manually extracted features and feed this data directly into a LSTM network to 

learn deeper eye movement and blink patterns. 

5 Conclusions 
The developed subject-independent CNN-LSTM classifier reached a binary classification accuracy of 

82.0% and a mean absolute error of 0.78 in the regression case. Data from the eyes (EOG) were more 

informative for driver sleepiness detection than data from the brain (EEG). Combining EOG and EEG 

improved the performance for some models, but the gain was very limited. The deep CNN-LSTM 

network performed better than a shallow net fed with manually extracted sleepiness indicators. This 



shows that the deep network can extract information that is not captured by experts’ domain 

knowledge. 
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