Appendix 4. Komplett litteraturlista

Vetenskapliga publikationer n=892

2. (2020). "Note from the editors: Don't stop thinking about tomorrow." Eurosurveillance 25(1).
3. (2020). "Rapid risk assessment from ECDC: Resurgence of reported cases of COVID-19 in the EU/EEA, the UK and EU candidate and potential candidate countries." Eurosurveillance 25(26).
43. Andersson, E. and A. Sönnerborg (2020). "[Future testing for SARS-CoV-2: not only more but smarter]." Lakartidningen 117.


102. Boretti, A. (2020). "After Less Than 2 Months, the Simulations That Drove the World to Strict Lockdown Appear to be Wrong, the Same of the Policies They Generated." Health Serv Res Manag Epidemiol 7: 2333392820932324.


147. Chamberlain, L. R., et al. (2020). "Therapist-supported online interventions for children and young people with tic disorders: Lessons learned from a randomized controlled trial and considerations for future practice." JMIR Mental Health 7(10).


158. Chernyshov, P. V., et al. (2020). "Position statement of the European Academy of Dermatology and Venereology Task Force on Quality of Life and Patient Oriented Outcomes on quality of life issues in


464. Liu, P., et al. (2020). "Combination treatments with hydroxychloroquine and azithromycin are compatible with the therapeutic induction of anticancer immune responses." OncoImmunology 9(1).
34. Lv, J., et al. (2020). "How can E-commerce businesses implement discount strategies through social media?" Sustainability (Switzerland) 12(18).
45. Malmberg, H. and T. Britton (2020). "Inflow restrictions can prevent epidemics when contact tracing efforts are effective but have limited capacity: Inflow restrictions can prevent epidemics when
contact tracing efforts are effective but have limited capacity." Journal of the Royal Society Interface 17(170).


711. Savulescu, J. (2020). "Good Reasons to Vaccinate: Mandatory or Payment for Risk?" Journal of Medical Ethics.


805. Tobias, G. and A. B. Spanier (2020). "Developing a mobile app (iGAM) to promote gingival health by professional monitoring of dental selfies: User-centered design approach." JMIR mHealth and uHealth 8(8).
Eurosurveillance 25(26).


19. A mathematical model to investigate the transmission of COVID-19 in the Kingdom of Saudi Arabia. Fehaid Salem Alshammari. medRxiv 2020.05.02.20088617; doi: https://doi.org/10.1101/2020.05.02.20088617


33. A novel predictive mathematical model for COVID-19 pandemic with quarantine, contagion dynamics, and environmentally mediated transmission. Diego Carvalho, Rafael Barbasteftano, Dayse Pastore, Maria Clara Lippi. medRxiv 2020.07.27.20163063; doi: https://doi.org/10.1101/2020.07.27.20163063

34. A pandemic at the Tunisian scale. Mathematical modelling of reported and unreported COVID-19 infected cases. Ines Abdeljaoued-Tej. medRxiv 2020.05.21.20108621; doi: https://doi.org/10.1101/2020.05.21.20108621


37. A pitfall in estimating the effective reproductive number Rt for COVID-19. daniel wyler, markus petermann. medRxiv 2020.05.12.20099366; doi: https://doi.org/10.1101/2020.05.12.20099366


42. A retrospective analysis of the dynamic transmission routes of the COVID-19 in mainland China. Xiandeng Jiang, Le Chang, Yanlin Shi. medRxiv 2020.03.01.20029645; doi: https://doi.org/10.1101/2020.03.01.20029645


45. A simple model to fit the time evolution of the daily death rate of Covid-19 in European Union countries. Tristan Beau, Julien Browaeys, Olivier Dadoun. medRxiv 2020.05.06.20093062; doi: https://doi.org/10.1101/2020.05.06.20093062


48. A two-wave epidemiological model of COVID-19 outbreaks using MS-Excel® Agenor De Noni Junior, Bernardo Araldi da Silva, Felipe Dal-Pizzol, Luismar Marques Porto. medRxiv 2020.05.08.20095133; doi: https://doi.org/10.1101/2020.05.08.20095133


54. Agent-Based Simulation for Evaluation of Contact-Tracing Policies Against the Spread of SARS-CoV-2. Martin Richard Bicher, Claire Rippinger, Christoph Urach, Dominik Brunmeir, Uwe Siebert, Niki Popper. medRxiv 2020.05.12.20098970; doi: https://doi.org/10.1101/2020.05.12.20098970


61. An SEIR Model with Contact Tracing and Age-Structured Social Mixing for COVID-19 outbreak. Ali Teimouri. medRxiv 2020.07.05.20146647; doi: https://doi.org/10.1101/2020.07.05.20146647


63. Analysis and prediction of Covid-19 spreading through Bayesian modelling with a case study of Uttar Pradesh, India. Deepmala, Nishant Kumar Srivastava, Vineet Kumar, Sanjay Kumar Singh. medRxiv 2020.08.25.20180265; doi: https://doi.org/10.1101/2020.08.25.20180265


73. Assessing the effect of global travel and contact reductions to mitigate the COVID-19 pandemic and resurgence. Shengjie Lai, Nick W Ruktanonchai, Alessandra Carioli, Corrine Ruktanonchai, Jessica Floyd, Olivia Prosper, Chi Zhang, Xiangjun Du, Weizhong Yang, Andrew J Tatem. medRxiv 2020.06.17.20133843; doi: https://doi.org/10.1101/2020.06.17.20133843


83. Bayesian nowcasting with adjustment for delayed and incomplete reporting to estimate COVID-19 infections in the United States. Melanie H Chitwood, Marcus Russi, Kenneth Gunasekera, Joshua
85. Behavioral changes before lockdown, and decreased retail and recreation mobility during lockdown, contributed most to the successful control of the COVID-19 epidemic in 35 Western countries. Koen Deforche, Jurgen Vercauteren, Viktor Müller, Anne-Mieke Vandamme. medRxiv 2020.06.20.20136382; doi: https://doi.org/10.1101/2020.06.20.20136382
94. Change points in the spread of COVID-19 question the effectiveness of nonpharmaceutical interventions in Germany. Thomas Wieland. medRxiv 2020.0. 7.05.20146837; doi: https://doi.org/10.1101/2020.07.05.20146837
95. Changing transmission dynamics of COVID-19 in China: a nationwide population-based piecewise mathematical modelling study. Jiawen Hou, Jie Hong, Boyun Ji, Bowen Dong, Yue Chen, Michael P. Ward, Wei Tu, Zhen Jin, Jian Hu, Qing Su, Wenge Wang, Zheng Zhao, Shuang Xiao, Jiaqi Huang, Wei Lin, Zhijie Zhang. medRxiv 2020.03.27.20045757; doi: https://doi.org/10.1101/2020.03.27.20045757


101. Comparing the impact on COVID-19 mortality of self-imposed behavior change and of government regulations across 13 countries. Julian Jamison, Donald Bundy, Dean Jamison, Jacob Spitz, Stephane Verguet. medRxiv 2020.08.02.20166793; doi: https://doi.org/10.1101/2020.08.02.20166793


109. Containing Covid-19 outbreaks with spatially targeted short-term lockdowns and mass-testing. Justin Alsing, Naiři Usher, Philip JD Crowley. medRxiv 2020.05.05.20092221; doi: https://doi.org/10.1101/2020.05.05.20092221


113. Cooperative virus propagation in COVID-19 transmission Ziwei Dai, Jason W Locasale. medRxiv 2020.05.05.20092361; doi: https://doi.org/10.1101/2020.05.05.20092361

114. Correlating Covid-19 mortality and infection levels. Mughda Gadgil, Chetan Gadgil. medRxiv 2020.05.01.20087320; doi: https://doi.org/10.1101/2020.05.01.20087320

115. Correlation between daily infections and fatality rate due to Covid-19 in Germany. Dieter Mergel. medRxiv 2020.08.03.20167304; doi: https://doi.org/10.1101/2020.08.03.20167304


117. COVID 19 healthcare facility demand forecasts for rural residents. Andrio Adwibowo. medRxiv 2020.06.05.20123380; doi: https://doi.org/10.1101/2020.06.05.20123380

118. COVID-19 :Determinants of Hospitalization, ICU and Death among 20,293 reported cases in Portugal. Vasco Ricoca Peixoto, Andre Vieira, Pedro Aguiar, Paulo Sousa, Carlos Carvalho, Daniel Rhys Thomas, Alexandre Abrantes, Carla Nunes. medRxiv 2020.05.29.20115824; doi: https://doi.org/10.1101/2020.05.29.20115824


120. COVID-19 case forecasting model for Sri Lanka based on Stringency Index. Achala U. Jayatilleke, Sanjeewa Dayaratne, Padmal de Silva, Pandula Siribaddana, Rushan A.B. Abeygunawardana, Olivia Nieveras, Nilanthi de Silva, Janaka de Silva. medRxiv 2020.05.20.20103887; doi: https://doi.org/10.1101/2020.05.20.20103887


123. COVID-19 death rates by age and sex and the resulting mortality vulnerability of countries and regions in the world. Christophe Z Guilmoto. medRxiv 2020.05.17.20097410; doi: https://doi.org/10.1101/2020.05.17.20097410

125. Covid-19 dynamics considering the influence of hospital infrastructure: an investigation of brazilian scenarios. Pedro M.C.L. Pacheco, Marcelo A. Savi, Pedro V. Savi. medRxiv 2020.06.03.20121608; doi: https://doi.org/10.1101/2020.06.03.20121608

126. COVID-19 effective reproductive ratio determination: An application, and analysis of issues and influential factors. Luis Alfredo Bautista Balbás, Mario Gil Conesa, Gil Rodríguez Caravaca, Blanca Bautista Balbás. medRxiv 2020.07.15.20154039; doi: https://doi.org/10.1101/2020.07.15.20154039


128. COVID-19 Epidemic Outside China: 34 Founders and Exponential Growth. Yi Li, Meng Liang, Xianhong Yin, Xiaoyu Liu, Meng Hao, Zixin Hu, Yi Wang, Li Jin. medRxiv 2020.03.01.20029819; doi: https://doi.org/10.1101/2020.03.01.20029819

129. COVID-19 healthcare demand and mortality in Sweden in response to non-pharmaceutical (NPIs) mitigation and suppression scenarios. Henrik Sjödin, Anders F. Johansson, Åke Brännström, Zia Farooq, Hedi Katre Kriit, Annelies Wilder-Smith, Christofer Åström, Johan Thunberg, Mårten Söderquist, Joacim Rocklöv. medRxiv 2020.03.20.20039594; doi: https://doi.org/10.1101/2020.03.20.20039594


131. CoViD-19 in Italy: a mathematical model to analyze the epidemic containment strategy and the economic impacts. Fabio Verachi, Luca G Trussoni, Luciano Lanzì. medRxiv 2020.05.28.20115790; doi: https://doi.org/10.1101/2020.05.28.20115790


135. COVID-19 Infection Forecasting based on Deep Learning in Iran. Mehdi Azarafza, Mohammad Azarafza, Jafar Tanha. medRxiv 2020.05.16.20104182; doi: https://doi.org/10.1101/2020.05.16.20104182


138. COVID-19 outbreak in Algeria: A mathematical Model to predict cumulative cases. Mohamed Hamidouche Sr. medRxiv 2020.03.20.20039891; doi: https://doi.org/10.1101/2020.03.20.20039891
143. COVID-19 pandemic brings a sedentary lifestyle: a cross-sectional and longitudinal study. Chen Zheng, Wendy Yajun Huang, Sinead Sheridan, Cindy Hui-Ping Sit, Xiang-Ke Chen, Stephen Heung-Sang Wong. medRxiv 2020.05.22.20110825; doi: https://doi.org/10.1101/2020.05.22.20110825
144. COVID-19 peak estimation and effect of nationwide lockdown in India. R V Belfin, Piotr Bródka, B L Radhakrishnan, V Rejula. medRxiv 2020.05.09.20095919; doi: https://doi.org/10.1101/2020.05.09.20095919
146. COVID-19 Scenarios: an interactive tool to explore the spread and associated morbidity and mortality of SARS-CoV-2. Nicholas B Noll, Ivan Aksamentov, Valentin Druelle, Abrie Badenhorst, Bruno Ronzani, Gavin Jefferies, Jan Albert, Richard A Neher. medRxiv 2020.05.05.20091363; doi: https://doi.org/10.1101/2020.05.05.20091363
148. Covid-19 testing strategies and lockdowns: the European closed curves, analysed by “skew-normal” distributions, the forecasts for the UK, Sweden, and the USA, and the ongoing outbreak in Brazil. Stefano De Leo. medRxiv 2020.06.01.20119461; doi: https://doi.org/10.1101/2020.06.01.20119461
150. COVID-19 Transmission Dynamics and Effectiveness of Public Health Interventions in New York City during the 2020 Spring Pandemic Wave. Wan Yang, Jaimie Shaff, Jeffrey Shaman. medRxiv 2020.09.08.20190710; doi: https://doi.org/10.1101/2020.09.08.20190710
151. Covid-19 transmission dynamics during the unlock phase and significance of testing. Abhijit Paul, Samrat Chatterjee, Nandadulal Bairagi. medRxiv 2020.08.18.20176354; doi: https://doi.org/10.1101/2020.08.18.20176354
152. COVID-19 transmission in Mainland China is associated with temperature and humidity: a time-series analysis. Hongchao Qi, Shuang Xiao, Runye Shi, Michael P. Ward, Yue Chen, Wei Tu, Qing Su,
153. COVID-19 trend in Bangladesh: deviation from epidemiological model and critical analysis of the possible factors. Asif Ahmed, Mohammad Mahmudur Rahman. medRxiv 2020.05.31.20118745; doi: https://doi.org/10.1101/2020.05.31.20118745

154. COVID-19 Utilization and Resource Visualization Engine (CURVE) to Forecast In-Hospital Resources. Shih-Hsiung Chou, James T Kearns, Philip Turk, Marc A. Kowalkowski, Jason Roberge, Jennifer S. Priem, Yhenneko J. Taylor, Ryan Burns, Pooja Palmer, Andrew D. McWilliams. medRxiv 2020.05.01.20087973; doi: https://doi.org/10.1101/2020.05.01.20087973


160. COVID-19: Predictive Mathematical Models for the Number of Deaths in South Korea, Italy, Spain, France, UK, Germany, and USA. Athanasios S. Fokas, Nikolaos Dikaios, George A. Kastis. medRxiv 2020.05.08.20095489; doi: https://doi.org/10.1101/2020.05.08.20095489


167. Cumulative Active and Recovery Rates Based Criterion for Gradual Lockdown Exit: A Global Observation of SARS-Cov-2 Management. Dhananjay V Raje, Abhay Bajaj, Moumita Chakraborty, Hemant J. Purohit. medRxiv 2020.06.05.20123364; doi: https://doi.org/10.1101/2020.06.05.20123364


170. Cytokine biomarkers of COVID-19. Hai-Jun Deng, Quan-Xin Long, Bei-Zhong Liu, Ji-Hua Ren, Pu Liao, Jing-Fu Qiu, Xiao-Jun Tang, Yong Zhang, Ni Tang, Yin-Yin Xu, Zhan Mo, Juan Chen, Jieli Hu, Ai-Long Huang. medRxiv 2020.05.31.20118315; doi: https://doi.org/10.1101/2020.05.31.20118315

171. Data driven inference of the reproduction number (R0) for COVID-19 before and after interventions for 51 European countries. Petr Karnakov, George Arampatzis, Ivica Kitić, Fabian Wermelinger, Daniel Wälchli, Costas Papadimitriou, Petros Koumoutsakos. medRxiv 2020.05.21.20109314; doi: https://doi.org/10.1101/2020.05.21.20109314


173. Data-driven Optimized Control of the COVID-19 Epidemics. Afroza Shirin, Yen Ting Lin, Francesco Sorrentino. medRxiv 2020.08.27.20183574; doi: https://doi.org/10.1101/2020.08.27.20183574


176. Demographic science aids in understanding the spread and fatality rates of COVID-19. Jennifer Beam Dowd, Liliana Andriano, Valentina Rotondi, David M. Brazel, Per Block, Xuejie Ding, Yan Liu, Melinda C. Mills. medRxiv 2020.03.15.20036293; doi: https://doi.org/10.1101/2020.03.15.20036293


182. Differential Effects of Intervention Timing on COVID-19 Spread in the United States. Sen Pei, Sasikiran Kandula, Jeffrey Shaman. medRxiv 2020.05.15.20103655; doi: https://doi.org/10.1101/2020.05.15.20103655
189. Dynamic Estimation of Epidemiological Parameters of COVID-19 Outbreak and Effects of Interventions on Its Spread. Hongzhe Zhang, Xiaohang Zhao, Xuezhen Yin, Yiren Yan, Wei Qian, Bintong Chen, Xiao Fang. medRxiv 2020.04.01.20050310; doi: https://doi.org/10.1101/2020.04.01.20050310
191. Dynamical model for social distancing in the U.S. during the COVID-19 epidemic. Shirish M. Chitanvis. medRxiv 2020.05.18. 20105411; doi: https://doi.org/10.1101/2020.05.18.20105411
196. Easing social distancing index after COVID-19 pandemic. Li-Sheng Chen, Ming-Fang Yen, Chao-Chih Lai, Chen-Yang Hsu, Hsiu-Hsi Chen. medRxiv 2020.06.11.20128165; doi: https://doi.org/10.1101/2020.06.11.20128165
207. Epidemiological model for the inhomogeneous spatial spreading of COVID-19 and other diseases. Yoav Tsori, Rony Granek. medRxiv 2020.07.08.20148767; doi: https://doi.org/10.1101/2020.07.08.20148767


213. Estimating the Changing Infection Rate of COVID-19 Using Bayesian Models of Mobility. Luyang Liu, Sharad Vikram, Junpeng Lao, Xue Ben, Alexander D'Amour, Shawn O'Banion, Mark Sandler, Rif A. Saurous, Matthew D. Hoffman. medRxiv 2020.08.06.20169664; doi: https://doi.org/10.1101/2020.08.06.20169664


217. Estimating the establishment of local transmission and the cryptic phase of the COVID-19 pandemic in the USA. Jessica T Davis, Matteo Chinazzi, Nicola Perra, Kunpeng Mu, Ana Pastore y Piontti, Marco Ajelli, Natalie E Dean, Corrado Gioannini, Maria Litvinova, Stefano Merler, Luca Rossi, Kaiyuan Sun, Xinyue Xiong, M. Elizabeth Halloran, Ira M Longini Jr., Cécile Viboud, Alessandro Vespignani. medRxiv 2020.07.06.20140285; doi: https://doi.org/10.1101/2020.07.06.20140285


219. Estimating the infection fatality risk of COVID-19 in New York City during the spring 2020 pandemic wave. Wan Yang, Sasikiran Kandula, Mary Huynh, Sharon K Greene, Gretchen Van Wye, Wenhui Li, Hiu Tai Chan, Emily McGibbon, Alice Yeung, Don Olson, Anne Fine, Jeffrey Shaman. medRxiv 2020.06.27.20141689; doi: https://doi.org/10.1101/2020.06.27.20141689


221. Estimating the reproduction number of COVID-19 in Iran using epidemic modeling. Ebrahim Sahafizadeh, Samaneh Sartoli. medRxiv 2020.03.20.20038422; doi: https://doi.org/10.1101/2020.03.20.20038422


226. Estimating weekly excess mortality at sub-national level in Italy during the COVID-19 pandemic. Marta Blangiardo, Michela Cameletti, Monica Pirani, Gianni Corsetti, Marco Battaglini, Gianluca Baio. medRxiv 2020.06.08.20125211; doi: https://doi.org/10.1101/2020.06.08.20125211


232. Estimation of Transmission Potential and Severity of COVID–19 in Romania and Pakistan. Muhammad Ozair, Takasar Hussain, Mureed Hussain, Aziz Ullah Awan, Dumitru Baleanu. medRxiv 2020.05.02.20088989; doi: https://doi.org/10.1101/2020.05.02.20088989


234. European lockdowns and the consequences of relaxation during the COVID-19 pandemic. David H Glass. medRxiv 2020.05.19.20106542; doi: https://doi.org/10.1101/2020.05.19.20106542

235. Evaluating Data-Driven Forecasting Methods for Predicting SARS-CoV2 Cases: Evidence From 173 Countries. Ghufran Ahmad, Furqan Ahmed, Muhammad Suhail Rizwan, Javed Muhammad, Hira Fatima, Aamer Ikram, Hajo Zeeb. medRxiv 2020.08.03.20167189; doi: https://doi.org/10.1101/2020.08.03.20167189


238. Evaluating the effect of public health intervention on the global-wide spread trajectory of Covid-19. Zixin Hu, Qiyang Ge, Shudi Li, Li Jin, Momiao Xiong. medRxiv 2020.03.11.20033639; doi: https://doi.org/10.1101/2020.03.11.20033639

239. Evaluating the effectiveness of social distancing interventions against COVID-19. Laura Matrajt, Tiffany Leung. medRxiv 2020.03.27.20044891; doi: https://doi.org/10.1101/2020.03.27.20044891


244. Evolution of disease transmission rate during the course of SARS-COV-2: Patterns and determinants. Zhu J, Gallego B. Research Square 2020-07-21. Doi: https://doi.org/10.21203/rs.3.rs-44647/v1


246. Extended SEIQR type model for COVID-19 epidemic and data analysis. Swarnali Sharma, Vitaly Volpert, Malay Banerjee. medRxiv 2020.08.10.20171439; doi: https://doi.org/10.1101/2020.08.10.20171439

248. Extrapolation of Infection Data for the CoVid-19 Virus in 21 Countries and States and Estimate of the Efficiency of Lock Down. Walter Langel. medRxiv 2020.06.17.20134254; doi: https://doi.org/10.1101/2020.06.17.20134254


250. Feasibility of Controlling COVID-19 Outbreaks in the UK by Rolling Interventions. Po Yang, Jun Qi, Shuhao Zhang, Xulong wang, Gaoshan Bi, Yun Yang, Bin Sheng, Xuxin Mao. medRxiv 2020.04.05.20054429; doi: https://doi.org/10.1101/2020.04.05.20054429


254. Forecasting COVID-19 cases and deaths in epidemic-mitigating European countries by Richards function-based regression analyses. Cheng Long, Xinmiao Fu. medRxiv 2020.05.18.20106146; doi: https://doi.org/10.1101/2020.05.18.20106146


256. Forecasting COVID-19 impact in India using pandemic waves Nonlinear Growth Models. Pavan Kumar, Ram Kumar Singh, Chintan Nanda, Himangshu Kalita, Shashikanta Patairiya, Yagya Datt Sharma, Meenu Rani, Akshaya Srikanth Bhagavathula


266. From 5Vs to 6Cs: Operationalizing Epidemic Data Management with COVID-19 Surveillance. Akhil Sai Peddireddy, Dawen Xie, Pramod Patil, Mandy L. Wilson, Dustin Machi, Srinivasan Venkatramanan, Brian Klahn, Przemyslaw Porebski, Parantapa Bhattacharya, Shirish Dumbre, Erin Raymond, Madhav Marathe. medRxiv 2020.10.27.20220830; doi: https://doi.org/10.1101/2020.10.27.20220830
268. Fusing a Bayesian case velocity model with random forest for predicting COVID-19 in the U.S. Gregory L. Watson, Di Xiong, Lu Zhang, Joseph A. Zoller, John Shamshoian, Phillip Sundin, Teresa Bufford, Anne W. Rimoin, Marc A. Suchard, Christina M. Ramirez. medRxiv 2020.05.15.20102608; doi: https://doi.org/10.1101/2020.05.15.20102608
269. Genetic drift and regional spreading dynamics of COVID-19. Saverio Alberti, Roberta Di Pietro, Mariangela Basile, Laura Antolini. medRxiv 2020.05.08.20095448; doi: https://doi.org/10.1101/2020.05.08.20095448
271. Global Analysis of an SEIRS Model for COVID-19 Capturing Saturated Incidence with Treatment Response. David Adeyemi Oluyori, Helen O. Adebayo, Ángel G. C. Pérez. medRxiv 2020.05.15.20103630; doi: https://doi.org/10.1101/2020.05.15.20103630
272. Global analysis of daily new COVID-19 cases reveals many static-phase countries including US and UK potentially with unstoppable epidemics. Xinmiao Fu. medRxiv 2020.05.08.20095356; doi: https://doi.org/10.1101/2020.05.08.20095356

276. Global projections of lives saved from COVID-19 with universal mask use. medRxiv 2020.10.08.20209510; doi: https://doi.org/10.1101/2020.10.08.20209510


282. How did governmental interventions affect the spread of COVID-19 in European countries? Richard Andries Jacobus Post, Marta Regis, Zhuozhao Zhan, Edwin R van den Heuvel. medRxiv 2020.05.27.20114272; doi: https://doi.org/10.1101/2020.05.27.20114272


284. How to evaluate the success of the COVID-19 measures implemented by the Norwegian government by analyzing changes in doubling time. Biljana Stangeland. medRxiv 2020.03.29.20045187; doi: https://doi.org/10.1101/2020.03.29.20045187


290. Impact of relaxing Covid-19 social distancing measures on rural North Wales: a simulation analysis. Rhodri P Hughes, Dyfrig A Hughes. medRxiv 2020.05.15.20102764; doi: https://doi.org/10.1101/2020.05.15.20102764


295. Importance of Interaction Structure and Stochasticity for Epidemic Spreading: A COVID-19 Case Study. Gerrit Grossmann, Michael Backenkoehler, Verena Wolf. medRxiv 2020.05.05.20091736; doi: https://doi.org/10.1101/2020.05.05.20091736

296. Importance of suppression and mitigation measures in managing COVID-19 outbreaks. Michael E. Hochberg. medRxiv 2020.03.31.20048835; doi: https://doi.org/10.1101/2020.03.31.20048835

297. Incubation Period and Reproduction Number for novel coronavirus (COVID-19) infections in India. Seema Patrikar, Atul Kotwal, Vijay Bhatti, Amitav Banerjee, Kunal Chatterjee, Renuka Kunte, Murlidhar Tambe. medRxiv 2020.06.27.20141424; doi: https://doi.org/10.1101/2020.06.27.20141424

298. Indian community’s Knowledge, Attitude & Practice towards COVID-19. Balvir Singh Tomar, Pratima Singh, Supriya Suman, Preeti Raj, Deepak Nathiya, Sandeep Tripathi, Dushyant Singh Chauhan. medRxiv 2020.05.05.20092122; doi: https://doi.org/10.1101/2020.05.05.20092122


300. Inferring the effective start dates of non-pharmaceutical interventions during COVID-19 outbreaks. Ilia Kohanovski, Uri Obolski, Yoav Ram. medRxiv 2020.05.24.20092817; doi: https://doi.org/10.1101/2020.05.24.20092817

301. Influence of countries adopted policies for COVID-19 reduction under the view of the airborne transmission framework. Charles Roberto Telles. medRxiv 2020.05.20.20107763; doi: https://doi.org/10.1101/2020.05.20.20107763
302. Inhomogeneous mixing and asynchronic transmission between local outbreaks account for the spread of COVID-19 epidemics. Carlos I Mendoza. medRxiv 2020.08.04.20168443; doi: https://doi.org/10.1101/2020.08.04.20168443


305. Insufficient social distancing may be related to COVID-19 outbreak: the case of Ijuí city in Brazil. Thiago Gomes Heck, Rafael Zancan Frantz, Matias Nunes Frizzo, Carlos Henrique Ramires François, Mirna Stela Ludwig, Marilia Arndt Mesenburg, Giovano Pereira Buratti, Lígia Beatriz Bento Franz, Evelise Moraes Berlezi. medRxiv 2020.06.22.20132910; doi: https://doi.org/10.1101/2020.06.22.20132910


312. Lifestyle acquired immunity, decentralized intelligent infrastructures and revised healthcare expenditures may limit pandemic catastrophe: a lesson from COVID-19. Asif Ahmed, Tasnima Haque, Mohammad Mahmudur Rahman. medRxiv 2020.05.23.20111104; doi: https://doi.org/10.1101/2020.05.23.20111104

313. Local protection bubbles: an interpretation of the decrease in the velocity of coronavirus’s spread in the city of Sao Paulo. Jose Paulo Guedes Pinto, Patricia Camargo Magalhaes, Gerusa Maria Figueiredo, Domingos Alves, Diana Maritza Segura-Angel. medRxiv 2020.08.11.20173039; doi: https://doi.org/10.1101/2020.08.11.20173039


317. Mathematical framework to model Covid-19 daily deaths. Poulami Barman, Nabarun Deb, Sumit Mukherjee. medRxiv 2020.05.18.20106104; doi: https://doi.org/10.1101/2020.05.18.20106104


322. Medical Capacity Shortages Facilitated the Rapid Dissemination of COVID-19 in Wuhan, New York State, and Italy. Yuehao Xu, Cheng Zhang, Lixian Qian. medRxiv 2020.11.05.20226530; doi: https://doi.org/10.1101/2020.11.05.20226530

323. Meta-analysis of several epidemic characteristics of COVID-19. Panpan Zhang, Tiandong Wang, Sharon Xiangwen Xie. medRxiv 2020.05.31.20118448; doi: https://doi.org/10.1101/2020.05.31.20118448

324. Metapopulation modeling of COVID-19 advancing into the countryside: an analysis of mitigation strategies for Brazil. Guilherme S. Costa, Wesley Kota, Silvio C. Ferreira. medRxiv 2020.06.05.20093492; doi: https://doi.org/10.1101/2020.06.05.20093492

325. Model Based Covid-19 Case Studies in the UK, the USA and India. Santanu Basu. medRxiv 2020.05.31.20118760; doi: https://doi.org/10.1101/2020.05.31.20118760
332. Modeling COVID-19 dynamics in Illinois under non-pharmaceutical interventions. George N Wong, Zachary J Weiner, Alexei Tkachenko, Ahmed Elbanna, Sergei Maslov, Nigel Goldenfeld. medRxiv 2020.06.03.20120691; doi: https://doi.org/10.1101/2020.06.03.20120691
335. Modeling the COVID-19 dissemination in the South Region of Brazil and testing gradual mitigation strategies. Rafael Marques Da Silva. medRxiv 2020.07.02.20145136; doi: https://doi.org/10.1101/2020.07.02.20145136


344. Modelling Singapore COVID-19 pandemic with a SEIR multiplex network model. Ning Ning Chung, Lock Yue Chew. medRxiv 2020.05.31.20118372; doi: https://doi.org/10.1101/2020.05.31.20118372


348. Modelling the Occurrence of the Novel Pandemic COVID-19 Outbreak; A Box and Jenkins Approach. Nurudeen Ayobami Ajadi, Isqeel Adesegun Ogunsola, Saddam Adams Damisa. medRxiv 2020.06.15.20131136; doi: https://doi.org/10.1101/2020.06.15.20131136


350. Modelling to Predict Hospital Bed Requirements for Covid-19 Patients in California. Santanu Basu. medRxiv 2020.05.17.20104919; doi: https://doi.org/10.1101/2020.05.17.20104919


353. Monitoring Italian COVID-19 spread by an adaptive SEIRD model. Elena Loli Piccolomini, Fabiana Zama. medRxiv 2020.04.03.20049734; doi: https://doi.org/10.1101/2020.04.03.20049734

354. Monitoring life expectancy levels during the COVID-19 pandemic: Example of the unequal impact in Spanish regions. Sergi Trias-Llimos, Tim Riffe, Usama Bilal. medRxiv 2020.06.03.20120972; doi: https://doi.org/10.1101/2020.06.03.20120972


361. Multiscale dynamics of COVID-19 and model-based recommendations for 105 countries. Jithender J. Timothy, Vijaya Holla, Guenther Meschke. medRxiv 2020.06.05.20123547; doi: https://doi.org/10.1101/2020.06.05.20123547


364. Non-COVID-19 Deaths After Social Distancing in Norway. Ralph Catalano, Joan A Casey, Tim-Allen Bruckner, Alison Gemmill. medRxiv 2020.06.05.20123695; doi: https://doi.org/10.1101/2020.06.05.20123695


375. On Reliability of the COVID-19 Forecasts. Hemanta Kumar Baruah. medRxiv 2020.06.01.20118844; doi: https://doi.org/10.1101/2020.06.01.20118844


379. On the secondary waves of the pandemic launched in Iran and other countries. Dmitry Kovriguine, Svetlana Nikitenkova. medRxiv 2020.06.20.20136283; doi: https://doi.org/10.1101/2020.06.20.20136283


381. On the temporal spreading of the SARS-CoV-2. Francesca Bertacchini, Eleonora Bilotta, Pietro S. Pantano. medRxiv 2020.08.01.20166447; doi: https://doi.org/10.1101/2020.08.01.20166447


390. Outbreak analysis with a logistic growth model shows COVID-19 suppression dynamics in China. Yi Zou, Stephen Pan, Peng Zhao, Lei Han, Xiaoxiang Wang, Lia Hemerik, Johannes Knops, Wopke van der Werf. medRxiv 2020.03.25.20043539; doi: https://doi.org/10.1101/2020.03.25.20043539

391. Outbreak of Covid-19 worldwide is on the decline -----Recurrent Neural Reinforcement Learning and Health Interventions to Curb the Spread of Covid-19 in the world. Qiyang Ge, Zixin Hu, Kai Zhang, Shudi Li, Wei Lin, Li Jin, Momiao Xiong. medRxiv 2020.07.08.20149146; doi: https://doi.org/10.1101/2020.07.08.20149146


393. Outdoor PM2.5 Concentration and Rate of Change in COVID-19 Infection in 31 Provincial Capital Cities in China. Yang Han, Jacqueline C.K. Lam, Victor O.K. Li, Jon Crowcroft, Peiyang Guo, Jinqi Fu, Qi Zhang, Andong Wang, Shanshan Wang, Illana Gozes, Zafar Gilani. medRxiv 2020.05.19.20106484; doi: https://doi.org/10.1101/2020.05.19.20106484


399. Population vulnerability to COVID-19 in Europe: a burden of disease analysis. Grant MA Wyper, Ricardo MA Assunção, Sarah Cuschieri, Brecht Develeeschauwer, Eilidh Fletcher, Juanita A Haagsma, Henk Hilderink, Jane Idavain, Tina Lesnik, Elena Von der Lippe, Marek Majdan, Milena S Milicevic, Elena Pallari,
José L Peñalvo, Sara M Pires, Dietrich Plaß, João V Santos, Diane L Stockton, Sofie T Thomsen, Ian Grant. medRxiv 2020.04.29.20064279; doi: https://doi.org/10.1101/2020.04.29.20064279


401. Predicted COVID-19 fatality rates based on age, sex, comorbidities, and health system capacity. Selene Ghisolfi, Invigld Invigld Almas, Justin Sandefur, Tillman von Carnap, Jesse Heitner, Tessa Bold. medRxiv 2020.06.05.20123489; doi: https://doi.org/10.1101/2020.06.05.20123489


403. Predicting the cumulative medical load of COVID-19 outbreaks after the peak in daily fatalities. Claudius Gros, Roser Valenti, Lukas Schneider, Benedikt Gutsche, Dimitrije Markovic. medRxiv 2020.09.03.20183384; doi: https://doi.org/10.1101/2020.09.03.20183384

404. Predicting the Growth and Trend of COVID-19 Pandemic using Machine Learning and Cloud Computing. Shreshth Tuli, Shikhar Tuli, Rakesh Tuli, Sukhpal Singh Gill. medRxiv 2020.05.06.20091900; doi: https://doi.org/10.1101/2020.05.06.20091900


410. Prediction of curve flattening time for COVID-19 infected countries using trends from recovered countries. Kumar S. Research Square 2020-06-19. Doi: https://doi.org/10.21203/rs.3.rs-30358/v1


412. Predictive accuracy of a hierarchical logistic model of cumulative SARS-CoV-2 case growth. Levente Kriston. medRxiv 2020.06.15.20130989; doi: https://doi.org/10.1101/2020.06.15.20130989

413. Predictive Analysis for COVID-19 Spread in India by Adaptive Compartmental Model. Sudhansu Sekhar Singh, Dinakrushna Mohapatra. medRxiv 2020.07.08.20148619; doi: https://doi.org/10.1101/2020.07.08.20148619

415. Progression of COVID-19 in Indian States - Forecasting Endpoints Using SIR and Logistic Growth Models. Bhoomika Malhotra, Vishesh Kashyap. medRxiv 2020.05.15.20103028; doi: https://doi.org/10.1101/2020.05.15.20103028


423. Quantitative COVID-19 infectiousness estimate correlating with viral shedding and culturability suggests 68% pre-symptomatic transmissions. Meher K. Prakash. medRxiv 2020.05.07.20094789; doi: https://doi.org/10.1101/2020.05.07.20094789


446. Scrutinizing the heterogeneous spreading of COVID-19 outbreak in Brazilian territory. Rafael Marques Da Silva, Carlos Fabio de Oliveira Mendes, Cesar Manchein. medRxiv 2020.06.05.20123604; doi: https://doi.org/10.1101/2020.06.05.20123604


449. Serial interval, basic reproduction number and prediction of COVID-19 epidemic size in Jodhpur, India. Suman Saurabh, Mahendra Kumar Verma, Vaishali Gautam, Akhil Goel, Manoj Kumar Gupta, Pankaj Bhardwaj, Sanjeev Misra. medRxiv 2020.07.03.20146167; doi: https://doi.org/10.1101/2020.07.03.20146167

451. Short-term forecasts and long-term mitigation evaluations for the COVID-19 epidemic in Hubei Province, China. Qihui Yang, Chunlin Yi, Aram Vajdi, Lee W Cohnstaedt, Hongyu Wu, Xiaolong Guo, Caterina M Scoglio. medRxiv 2020.03.27.20045625; doi: https://doi.org/10.1101/2020.03.27.20045625


455. Simple method for estimating daily and total COVID-19 deaths using a Gumbel model. Furutani H, Hiroyasu T, Okuhara Y. Research Square. Doi: https://doi.org/10.21203/rs.3.rs-120984/v1


459. Social Distancing with Movement Restrictions and the Effective Replication Number of COVID-19: Multi-Country Analysis Based on Phone Mobility Data. Mounir Ould Setti, Ari Voutilainen. medRxiv 2020.10.08.20209064; doi: https://doi.org/10.1101/2020.10.08.20209064


463. Spatial and temporal regularization to estimate COVID-19 Reproduction Number R(t): Promoting piecewise smoothness via convex optimization. patrice abry, nelly pustelnik, stephane roux, pablo
jensen, Patrick Flandrin, remi gribonval, Charles G Lucas, eric guichard, Pierre Borgnat, nicolas garnier, benjamin audit. medRxiv 2020.06.10.20127365; doi: https://doi.org/10.1101/2020.06.10.20127365

464. Spread of Covid-19 in the United States is controlled. Zixin Hu, Qiyang Ge, Shudi Li, Tao Xu, Eric Boerwinkle, Li Jin, Momiao Xiong. medRxiv 2020.05.04.20091272; doi: https://doi.org/10.1101/2020.05.04.20091272


466. State-by-State estimates of R0 at the start of COVID-19 outbreaks in the USA. Anthony R. Ives, Claudio Bozzuto. medRxiv 2020.05.17.20104653; doi: https://doi.org/10.1101/2020.05.17.20104653

467. State-specific Projection of COVID-19 Infection in the United States and Evaluation of Three Major Control Measures. Shi Chen, Qin Li, Song Gao, Yuhao Kang, Xun Shi. medRxiv 2020.04.03.20052720; doi: https://doi.org/10.1101/2020.04.03.20052720


470. Studies of Novel Coronavirus Disease 19 (COVID-19) Pandemic: A Global Analysis of Literature. Bach Xuan Tran, Giang Hai Ha, Long Hoang Nguyen, Giang Thu Vu, Hai Thanh Phan, Huong Thi Le, Carl A. Latkin, Cyrus S.H. Ho, Roger C.M. Ho. medRxiv 2020.05.05.20092635; doi: https://doi.org/10.1101/2020.05.05.20092635


472. Supporting Austria through the COVID-19 Epidemics with a Forecast-Based Early Warning System. Martin Bicher, Martin Zuba, Lukas Rainer, Florian Bachner, Claire Ripberger, Herwig Ostermann, Nikolas Popper, Stefan Thurner, Peter Klimek- medRxiv 2020.10.18.20214767; doi: https://doi.org/10.1101/2020.10.18.20214767


475. Temporal dynamics in viral shedding and transmissibility of COVID-19. Xi He, Eric HY Lau, Peng Wu, Xilong Deng, Jian Wang, Xinxin Hao, Yiu Chung Lau, Jessica Y Wong, Yujuan Guan, Xinhua Tan, Xiaoneng Mo, Yanqing Chen, Baolin Liao, Weilie Chen, Fengyu Hu, Qing Zhang, Mingqiu Zhong, Yanrong Wu, Lingzhai Zhao, Fuchun Zhang, Benjamin J Cowling, Fang Li, Gabriel M Leung. medRxiv 2020.03.15.20036707; doi: https://doi.org/10.1101/2020.03.15.20036707

476. Test-adjusted results of mortality for Covid-19 in Germany, USA, UK. Jürgen Mimkes, Rainer Janssen. medRxiv 2020.11.03.20225268; doi: https://doi.org/10.1101/2020.11.03.20225268


481. The autoregressive neural network model for COVID-19 outbreak predictions. Tanujit Chakraborty, Arinjita Bhattacharyya, Monalisha Pattnaik. medRxiv 2020.10.01.20205021; doi: https://doi.org/10.1101/2020.10.01.20205021


487. The Effect of Gender on Covid-19 Infections and Mortality in Germany: Insights From Age- and Sex-Specific Modelling of Contact Rates, Infections, and Deaths. Achim Dörre, Gabriele Doblhammer. medRxiv 2020.10.06.2007951; doi: https://doi.org/10.1101/2020.10.06.2007951


489. The effect of school closures and reopening strategies on COVID-19 infection dynamics in the San Francisco Bay Area: a cross-sectional survey and modeling analysis. Jennifer R Head, Kristin Andrejko, Qu Cheng, Philip A Collender, Sophie Phillips, Anna Boser, Alexandra K Heaney, Christopher M Hoover, Sean L Wu, Graham R Northrup, Karen Click, Robert Harrison, Joseph A Lewnard, Justin V Remais. medRxiv 2020.08.06.20169797; doi: https://doi.org/10.1101/2020.08.06.20169797
490. The effectiveness of eight nonpharmaceutical interventions against COVID-19 in 41 countries. Jan M. Brauner, Sören Mindermann, Mrinank Sharma, David Johnston, John Salvatier, Tomáš Gavenčiak, Anna B. Stephenson, Gavin Leech, George Altman, Vladimir Mikulik, Alexander John Norman, Joshua Teperowski Monrad, Tamay Besiroglu, Hong Ge, Meghan A. Hartwick, Yee Whye Teh, Leonid Chindelevitch, Yarin Gal, Jan Kulveit. medRxiv 2020.05.28.20116129; doi: https://doi.org/10.1101/2020.05.28.20116129

491. The effectiveness of eight nonpharmaceutical interventions against COVID-19 in 41 countries. Jan M. Brauner, Sören Mindermann, Mrinank Sharma, David Johnston, John Salvatier, Tomáš Gavenčiak, Anna B. Stephenson, Gavin Leech, George Altman, Vladimir Mikulik, Alexander John Norman, Joshua Teperowski Monrad, Tamay Besiroglu, Hong Ge, Meghan A. Hartwick, Yee Whye Teh. View ORCID Profile Leonid Chindelevitch, Yarin Gal, Jan Kulveit. medRxiv 2020.05.28.20116129; doi: https://doi.org/10.1101/2020.05.28.20116129


495. The First Wave of COVID-19 in Israel - Initial Analysis of Publicly Available Data. Mark Last. medRxiv 2020.05.05.20091645; doi: https://doi.org/10.1101/2020.05.05.20091645


497. The health sector cost of different policy responses to COVID-19 in low- and middle- income countries. Sergio Torres Rueda, Sedona Sweeney, Fiammetta Bozzani, Anna Vassall. medRxiv 2020.08.23.20180299; doi: https://doi.org/10.1101/2020.08.23.20180299


499. The impact of lockdown on public health during the first wave of covid-19 pandemic: lessons learned for designing effective containment measures to cope with second wave. Mario Coccia. medRxiv 2020.10.22.20217695; doi: https://doi.org/10.1101/2020.10.22.20217695


501. The Infection Rate of the Coronavirus Disease 2019 (COVID-19) in Wuhan, China. Hui-Qi Qu, Zhangkai J. Cheng, Zhifeng Duan, Lifeng Tian, Hakon Hakonarson. medRxiv 2020.05.02.20088724; doi: https://doi.org/10.1101.2020.05.02.20088724
502. The misleading illusion of COVID-19 confirmed case data: alternative estimates and a monitoring tool. Rogelio Macías-Ordóñez, Damián Villaseñor-Amador. medRxiv 2020.05.20.20107516; doi: https://doi.org/10.1101/2020.05.20.20107516


509. The reproduction number of COVID-19 and its correlation with public health interventions. Kevin Linka, Mathias Peirlinck, Ellen Kuhl. medRxiv 2020.05.01.20088047; doi: https://doi.org/10.1101/2020.05.01.20088047


516. The timing of contact restrictions and pro-active testing balances the socio-economic impact of a lockdown with the control of infections. Saptarshi Bej, Olaf Wolkenhauer. medRxiv 2020.05.08.20095596; doi: https://doi.org/10.1101/2020.05.08.20095596


530. Transmission interval estimates suggest pre-symptomatic spread of COVID-19. Lauren C. Tindale, Michelle Coombe, Jessica E. Stockdale, Emma S. Garlock, Wing Yin Venus Lau, Manu Saraswat, Yen-Hsiang Brian Lee, Louxin Zhang, Dongxuan Chen, Jacco Wallinga, Caroline Colijn. medRxiv 2020.03.03.20029983; doi: https://doi.org/10.1101/2020.03.03.20029983


535. Two alternative scenarios for easing COVID-19 lockdown measures: one reasonable and one catastrophic. A.S. Fokas, J. Cuevas-Maraver, P. G. Kevrekidis. medRxiv 2020.05.08.20095380; doi: https://doi.org/10.1101/2020.05.08.20095380

536. Uncertainty Quantification in Epidemiological Models for COVID-19 Pandemic. Leila Taghizadeh, Ahmad Karimi, Clemens Heitzinger. medRxiv 2020.05.30.20117754; doi: https://doi.org/10.1101/2020.05.30.20117754


540. Understanding SARS-CoV-2 propagation, impacting factors to derive possible scenarios and simulations. Lewis E. Mehl-Madrona, Francois Bricaire, Adrian Cuyugan, Jovan Barac, Asadullah Parvaiz,
541. Understanding Spatial Heterogeneity of COVID-19 Pandemic Using Shape Analysis of Growth Rate Curves. Anuj Srivastava, Gerardo Chowell. medRxiv 2020.05.25.20112433; doi: https://doi.org/10.1101/2020.05.25.20112433


547. Using COVID-19 deaths as a surrogate to measure the progression of the pandemics. Carlos Hernandez-Suarez, Efren Murillo-Zamora. medRxiv 2020.09.27.20202564; doi: https://doi.org/10.1101/2020.09.27.20202564


554. Waves of COVID-19 pandemic. Detection and SIR simulations. Igor Nesteruk. medRxiv 2020.08.03.20167098; doi: https://doi.org/10.1101/2020.08.03.20167098
555. What does simple power law kinetics tell about our response to coronavirus pandemic? Prateek K. Jha. medRxiv 2020.04.03.20051797; doi: https://doi.org/10.1101/2020.04.03.20051797


558. Who can go back to work when the COVID-19 pandemic remits? Luis Angel Hierro, David Cantarero, David Patiño, Daniel Rodríguez-Pérez de Arenaza. medRxiv 2020.05.06.20093344; doi: https://doi.org/10.1101/2020.05.06.20093344


563. Worldwide and Regional Forecasting of Coronavirus (Covid-19) Spread using a Deep Learning Model. Cem Direkoglu, Melike Sah. medRxiv 2020.05.23.20111039; doi: https://doi.org/10.1101/2020.05.23.20111039


Grå litteratur n=20

11. Den 2020-12-30 publiceras nya prognoser av FHM med fokus på vårdbelastning.
12. Den 2020-12-29 kom också FHM ut med en rapport som syftar till att skatta antalet nya fall per dag i regionerna.
https://www.folkhalsomyndigheten.se/contentassets/4b4dd8c7e15d48d2be744248794d1438/trendanalysis_region_2020-12-29.pdf
13. Den 2020-09 publicerar socialstyrelsen en rapport över planering i de olika regionerna. dessa är helt baserade på de rapporter FHM tagit fram tidigare.
https://www.msb.se/contentassets/16bfbd5b4edeb4e7bb3a8e2339002e959/scenarier-som-forstarkning-till-befintlig-analys-och-planering-msb1594.pdf
15. Den 2020-09-17 publiceras projektioner över vårdbehov i EU
20. Den 26/5 baseline projections ECDC.