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ABSTRACT

This paper illustrates the efficacy of an artificial intelligence (Al) (a convolutional neural
network, based on the U-Net), for the burn-depth assessment using semantic segmentation of
polarized high-performance light camera images of burn wounds. The proposed method is
evaluated for paediatric scald injuries to differentiate four burn wound depths: superficial
partial-thickness (healing in 0—7 days), superficial to intermediate partial-thickness (healing
in 8—13 days), intermediate to deep partial-thickness (healing in 14—20 days), deep partial-
thickness (healing after 21 days) and full-thickness burns, based on observed healing time.
In total 100 burn images were acquired. Seventeen images contained all 4 burn depths and
were used to train the network. Leave-one-out cross-validation reports were generated and
an accuracy and dice coefficient average of almost 97% was then obtained. After that, the
remaining 83 burn-wound images were evaluated using the different network during the
cross-validation, achieving an accuracy and dice coefficient, both on average 92%.
This technique offers an interesting new automated alternative for clinical decision support to
assess and localize burn-depthsin 2D digital images. Further training and improvement of the
underlying algorithm by e.g., more images, seems feasible and thus promising for the future.
© 2021 The Authors. Published by Elsevier Ltd. This is an open access article under the CCBY
license (http://creativecommons.org/licenses/by/4.0/).

and contact duration with the skin, different burn depths

1. Introduction develop. Burn depth may be classified into separate levels [1]:

superficial partial-thickness (), superficial to intermediate
Burn wounds occur when the skin comes in contact with fire, partial-thickness (II), intermediate to deep partial-thickness
hotwater, electricity, or chemicals. Depending on temperature (Il1), deep partial and full-thickness burns (IV). Importantly,
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burns of deep partial or full-thickness depth benefit from excision
and skin grafting to heal appropriately. Patients less than 4 years
old who get aburn due to hot water (Scald) represent the 30—40%
of the patients arriving at a Burn Centre. Being an age defined
and a homogenous group facing burns mainly on the trunk and
arms they were chosen for this evaluation.

Burn depths are correctly classified by expert clinicians with
an accuracy around 64—76% and around 50% by non-expert
clinicians [2—7]. Today, one tool thathasbeen used successfully
as a decision support for clinicians are based on laser Doppler
[8,9] and onits mostrecent development: laser speckle contrast
imaging (LSCI) [10—12]. Such instruments have been advocated
in order to improve burn depths assessment and they are used
occasionally by clinicians as a decision support device [13].
These techniques provide perfusion images of the injured skin.
Shortcomingsinclude thattheyrequire trainingand knowledge
to be fully operational and most importantly is that the image
generating procedure is challenging and thus time consuming.
This hasled to the limited clinical use of the methodology. From
anaccuracy perspective, thetechniquealsorequiresatleasttwo
consecutive measurements to be able to classify the burn depth
with reliable accuracy [10].

Forthesereasons, an automatic, fast, objective, and accurate
methodis sought to evaluate such types of injuries and with the
goal to help clinicians (decision support), decide if a patient will
bemefit from surgical treatment of the burn wound or not.

1.1. Al based burn depth assessment by semantic image
segmentation

Artificial intelligence based on Convolutional neural networks for
semantic image segmentation as fully convolutional neural
networks [14], SegNet [15], U-Net [16], etc. became very attractive
models in medicine because they combine local and globalimage
information after which a pixel-wise based classification is
provided [17]. The only disadvantage is that these models require
ademandinglearning and training process at the beginning (by a
large computer calculating capacity), but after that, they compute
separate image segmentation in a few seconds. During the last
years, the U-Net has become quite popular in the medical field, so
that many modified U-Nets were created and applied in medical
applications. For example: V-Net [18], to segment the prostate;
DUnet [19], to segment retinal vessels; H-DenseUNet [20], for
segment liver and tumours in it; Attention U-Net [21], to segment
the pancreas; and No new-Net [22] (2nd place winner in BraTS
2018 challenge), to segment brain tumours. In this paper we used
a modified U-Net with residuals to segment four different burn-
depths (superficial partial-thickness (I), superficial to intermedi-
ate partial-thickness (II), intermediate to deep partial-thickness
(I11), deep partial and full-thickness (IV)) in images generated by a
high-performance light camera with polarisation filters with the
aim to provide automated and objective images to be used by the
burn surgeon for the burn-wound assessment support.

2. Method
2.1. Patient population

Consecutively arriving children, in the age range 0—4 years, at
the outpatient clinic at the Linkdping Burn Centre were

included. Laser Doppler and laser Doppler Speckle imaging
data from this cohort has previously been presented in a series
of publications [2,3,10,11,23,24]. In short, the patients were
anesthetised rectally with ketamin [25] and the wound bed
was properly cleaned prior to image capture. Image capturing
was done in a climate controlled room with regular indoor
lightning (no windows). For this study, based on a high-
performance light camera, images were taken in parallel to the
one presented in the previous publication [3].

2.2. Data

One hundred burn wound images were acquired from patients
with age equal or less 4 years old using a TiVi700, which is a
tissue viability imaging device (WheelsBridge AB, Sweden).
TiVi700 is a high-performance digital camera equipped with
polarisation filters and flashlights all around its lens to avoid
the reflecting artefact due to room light and/or the camera
flash and burn wound fluid.

An example of such data is given in Fig. 1a, which shows a
burn wound image captured by the TiVi700; whereas Fig. 1b
shows its ground-truth labelled manually by a burn clinician
expert of the Link6ping University Hospital Burn Centre. The
ground-truths, as the one in Fig. 1b, were defined based on the
wound's healing time: a superficial partial-thickness wound
healed within 7 days, a superficial to intermediate partial-
thickness healed between 8—13 days; an intermediate to deep
partial-thickness healed within 14—20 days; and a deep partial
or full-thickness, which did not heal within 20 days and
underwent surgery. Importantly, surgery was always done
after day 20, which gives ground-truth a high degree of
reliability as all children were observed until day 20 and
healing earlier than that was recorded by one clinician. These
earlier healing events were divided into re-epithelialization
within 7, 14 or 21 days, respectively.

The target of this projectis achieving a segmentation result,
as in Fig. 1b, from a burn wound image, as in Fig. 1a, using
artificial intelligence, more specifically a convolutional neural
network, similar to the U-Net proposed by Ronneberger et al.
[16], but with different depth, loss function, optimizer, and
applying the residuals theory on it.

Since each burn wound image has a really complex
background rich of objects (i.e. healthy skin, blanket, medical
tools, nurses’ gloves, monitors, etc.), this isremoved in order to
let the CNN only focuses on segmenting the region of interest,
the burn wound, and distinguish between the four different
burn-depths.

Convolutional neural networks minimise the dice loss
[18,26] to achieve a good segmentation result rather than the
more generally used cross-entropy loss, because the former
does not count in the true negatives (the background), which
normally have the major number of pixels in the image. The
higher the dice coefficient is the higher the accuracy is, but the
contrary is not true. The dice loss is mathematically defined as

C N
DL=1-D=1-2 Zc:l We Zn 9enPen (1)
C N ’
Zc:l We Zn 9en + Den

where DL stands for the dice loss, D for dice coefficient, C for
number of classes, N for number of pixels, w, for the weight
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(a) Original image

(b) Ground-truth

Fig. 1 - Original burn wound image (a) and its burn depth areas ground-truth (b) drew by a clinician specialist: white for deep
partial and full-thickness depth; silver for intermediate to deep partial-thickness; grey for superficial to intermediate partial-
thickness; dark grey for superficial partial-thickness; and, in the end, black for uninjured skin and the background.

assigned to class ¢,gc, and pe, for the n-th pixel which belongs to
the ground-truth and to the network’s prediction on c-th class
respectively. When w, is not a vector of ones, Eq. (1) represents
the generalized dice-loss. Otherwise, w, is defined as

Ns

We = CiNH )

where N is the number of pixels in the image and N, the
number of pixels that belong to the class c. In this way all the
classes are balanced, because the network weighs each class
according to the respective weight. If, for example, there are
many pixels belonging to one class over the whole dataset, its
weight will be low; vice-versa, if there are few pixels belonging
to one class, its weight will be high according to Eq. (2). So, the
network will pay more attention to learn a class represented by
few pixels rather than a class by many pixels.

Since the burn image database has images representing all
or some of the four burn depths, the segmentation step is
applied only to the images that represent burns with all the
burn depths (there are 17 in total) in order to enable the
convolutional neural network to learn from a homogeneous
dataset. A simplified diagram of the semantic segmentation is
described in Fig. 2.

The accuracy (Acc), F; coefficient, intersection over union
(IoU), precision (P) and sensitivity (S) are calculated for
measuring the performance of the segmentation obtained
from the second convolutional neural network using the
ground truth. These metrics are calculated as:

Original image

Background
removal

Burn wound mask

TP + TN

ACC= T TN PP EN ®
F1= o7p +2§}P>J YEN @
loU = ﬁ ©)
P= %ﬁw (6)
S= e 7)

where TP, TN, FP and FN represent true positive, true negative,
false positive, and false negative, respectively. These values
are calculated on the binary class images, so, for example
there is a TP when both the ground-truth and model’s
prediction segmentation have value 1 for the same pixels.
Fig. 3 illustrates the space of the defined metrics for an image
segmentation.

The algorithm was written in Python 3.6, using the Keras
library [27] functions on a super-computer with 512 GB RAM, 2
Intel(R) Xeon(R) CPU E5-2697 v4 @ 2.30 GHz, 18 cores each, and
3 Nvidia GTX 1080 8 GB.

Prediction

CNN burn depths
segmentation

A

Fig. 2 — Diagram semantic segmentation process.
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Predicted
pixels in class

Ground truth
pixels in class

Fig. 3-Illustration of true positive (TP), true negative (TN), false
positive (FP) and false negative (FN) between a binary ground-
truth and its prediction.

This study was approved by the Regional Ethics Committee
in Link6ping and conducted in compliance with the “Ethical
principles for medical research involving human subjects” of
the Helsinki Declaration.

2.3.  Training of the algorithm

Before starting the training process, since there were only
17 images available with all the burn depths present, data
augmentation is strongly needed. In order to evaluate the
convolutional neural network, leave-one-out cross-valida-
tion is computed, so 16 images are used for the training and
validation set and just 1 for the testing set. On these
16 original images, rotations of 0°, 90°, 180° and 270° are
applied and for each of these rotated images other new
40 images are created using the elastic deformation
technique [28]. In the end, 3936 images are augmented from
16 original ones and then split 90—-10% into training and
validation set respectively for the second convolutional
neural network training process.

From Table 1, it is possible to notice that the best network,
the one with the highest dice coefficient, is the number 3.
Minimizing the dice-loss, accuracy and dice coefficient
converge at almost the same value and, after leave-one-out
cross-validation, the system has average accuracy and dice
coefficient of 96.81%. Moreover, the average weights for each
class to balance the training process, calculated using Eq. (2)
after image augmentation on each leave-one-out fold, are:

wo (Background)
w1 (Superficial I)
wy (Superficial Partial thickness II)
ws (Deep Partial Thickness III) )
wy (Full Thickness IV)

w=

where wy is the weight which belongs to the background,
whereas the others to the burn-depth classes [, II, IIl and IV
respectively (see Eq. (2)). As wanted, the background weight
has a small value and, on the other hand, the full and deep-

Table 1 - Accuracy and dice coefficient values obtained
after leave-one-out cross-validation.

Network Accuracy Dice coefficient
1 0.8814 0.8812

2 0.8042 0.8040

3 0.9977 0.9977

4 0.9968 0.9967

5 0.9972 0.9972

6 0.9930 0.9930

7 0.9568 0.9567

8 0.9937 0.9936

9 0.9906 0.9906

10 0.9911 0.9911

11 0.9976 0.9976

12 0.9852 0.9852

13 0.9865 0.9864

14 0.9867 0.9867

15 0.9840 0.9480

16 0.9898 0.9898

17 0.9619 0.9617

Average 0.9681 + 0.0498 0.9681 + 0.0498

thickness depth weight has a high value, whereas class I and
Il have similar weights, so probably the classification between
them might be complicated.

Fig. 4, here below, shows four different semantic segmen-
tation results, using the networks 3,10, 12 and 16 of Table 1. on
their respective test images. Each image illustrates the burn
wound without the background, its ground-truth and the
convolutional neural network’s prediction. Moreover, it
reports the accuracy, F; coefficient, intersection over union,
precision and sensitivity metrics extracted from the ground-
truth and the convolutional neural network’s prediction for
each class (see Egs. (3)—(7)).

It is possible to conclude that Fig. 4 illustrates four good
semantic segmentation results because the metrics reported
have really high values. In Table 2 are reported the average of
the same metrics over all the 17 burn-wound images for each
class, and itis possible to notice that class Il and class Il are the
ones with lower metrics values. This was expected since it
happened also in [3] and also because burn expert clinicians
have more difficulties to distinguish those classes. Neverthe-
less, they have high accuracy and suitable F; coefficient,
precision and sensitivity to help the burn clinicians and
surgeons to achieve a better diagnosis. There are no problems
to distinguish class I and class IV since their metrics values
have F, coefficient of 93.46% and 86.77%, intersection over
union of 88.68% and 78.53%, precision of 93.35% and 83.96%,
sensitivity of 93.86% and 92.80% respectively.

After having trained the algorithm on these 17 images the
remaining 83 were examined.

3. Results

Since we did not have access to other than 83 burn-wound
images which unfortunately did not contain all the burn-
depth, the 17 convolutional neural networks created during
the leave-one-out cross-validation needed to be used to
evaluate the final set of images (n = 83). If a convolutional

Please cite this article in press as: M.D. Cirillo, et al., Improving burn depth assessment for pediatric scalds by Al based on semantic
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Network 3
Burn wound Ground-truth Prediction

| 0.9987 0.9773 0.9555 0.9694 0.9853
n 0.9981 0.7809 0.6405 0.7719 0.7900
1] 0.9989 [ 0.9032 0.8236 0.9434 0.8664
v 0.9996 0.9586 0.9206 0.9671 0.9503

Network 10
Burn wound Ground-truth Prediction

7

1 0.9966 0.9719 0.9454 0.9748 0.9691
1] 0.9934 0.9315 0.8717 0.9543 0.9097
m 0.9940 0.8497 0.7386 0.8172 0.8849
v 0.9981 0.9387 0. 8848 0.9071 0.9725

Network 12

Burn wound Ground-truth Prediction

1 0.9904 0.9781 0.9571 0.9762 0.9800
[} 0.9858 0.9381 0.8834 0.9377 0.9385
1] 0.9948 0.9682 0.9384 0.9742 0.9623
v 0.9995 0.9175 0.8476 0.9102 0.9249

Network 16
Burn wound Ground-truth Prediction

Class Acc F1 loU P S
| 0.9956 0.9188 0.8499 0.9788 0.8658
1} 0.9940 0.8480 0.7361 0.7903 0.9148
1] 0.9939 0.7664 0.6212 0.8752 0.6816
v 0.9961 0.9459 0.8974 0.9002 0.9965

Fig. 4 - Semantic segmentation results using the network 3, 10, 12 and 16 on the relative images. Each segmentation results
show the burn wound image, the ground-truth and the convolutional neural network’s prediction. Moreover, accuracy (Acc),
F1 coefficient (F1), intersection over union (IoU), precision (P) and sensitivity (S) metrics are reported for each burn-depth class.
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Table 2 - Average of accuracy (Acc), F, coefficient (F,),
intersection over union (IoU), precision (P) and sensitivity

(S) over all the 17 burn wound images for each burn-depth
after leave-one-out cross-validation.

Class Acc F1 IoU P S

I 0.9925 0.9346 0.8868 0.9335 0.9389
I 0.9867 0.7890 0.6907 0.8423 0.7800
111 0.9763 0.7287 0.6177 0.7501 0.7464
v 0.9806 0.8677 0.7853 0.8396 0.9280

neural network learnt how to distinguish four burn-depths in
an image, it should be able to do that also in one image that
does not present all of them. Accuracy and dice coefficient are
reported in Table 3 for each network. From Table 3 itis possible
to notice that all the networks report accuracies and dice
coefficients above the 90%, with the 4-th the best one with
approximately 93% for both of them.

4, Discussion

In this paper we used a modified U-Net with residuals to
segment four different burn-depths (superficial partial-thick-
ness (I), superficial to intermediate partial-thickness (II),
intermediate to deep partial-thickness (III) and deep partial
and full-thickness (IV)) in images generated by a high-
performance light camera with polarisation filters with the
aim to train the network to predict burn depth. After acquiring
100 burn images, seventeen images were used for training.
Leave-one-out cross-validation reports were generated and an
accuracy and dice coefficient average of almost 97% was then
obtained. After that, the remaining 83 burn-wound images
were evaluated using the different network during the cross-
validation, achieving an accuracy and dice coefficient, both on

Table 3 - Accuracy and dice coefficient values for the

remaining 83 burn wound images which do not show all
the burn depths, but some of them.

Network Accuracy Dice coefficient
1 0.9202 0.9202

2 0.9160 0.9156

3 0.9173 0.9173

4 0.9306 0.9305

5 0.9218 0.9218

6 0.9070 0.9070

7 0.9257 0.9257

8 0.9079 0.9070

9 0.9143 0.9142

10 0.9191 0.9191

11 0.9207 0.9207

12 0.9207 0.9207

13 0.9251 0.9251

14 0.9147 0.9147

15 0.9239 0.9239

16 0.9218 0.9218

17 0.9152 0.9150

Average 0.9189 + 0.0059 1.9188 + 0.0060

average 92%. The F1 score, or dice score coefficient, is that
metric typically used to evaluate image segmentation results
because it does not consider in its equation (see Egs. (1) and (4))
the true negatives, whereas it focuses more on the true
positives and where the prediction in this clinical setting most
often fails (false negative and false positives). In other words, it
measures how good a predicted segmentation by the network
overlaps with the “true” segmentation provided by the
clinician specialist in this study made at day 20 after burn.

4.1. Related works

Burn wounds assessment made by computer vision techni-
ques are yet not so popular but there are some scientists who
tried to investigate this field. Pinero et al. [6] identified
16 texture features for the burn image segmentation and
classification. These features were then inspected by the
sequential forward and backward selection methods via
fuzzy-ARTMAP neural network. This method achieved an
average accuracy of about 83% using 250 images, 49 x 49 pixels,
divided in 5 burn appearance classes: blisters, bright red, pink-
white, yellow-beige, and brown. Wantanajittikul et al. [29]
used the Hilbert transform and texture analysis to extract
feature vectors and then applied a support vector machine
(SVM) classifier to classify burn depth. The best accuracy result
for a 4-fold cross-validation was 90% using 5 images as the
validation set and 34 images as the training set, and 75%
correct classification on a blind test was then obtained. Acha
etal. [30] applied multidimensional scaling (MDS) analysis and
k-nearest neighbour classifier for burn-depth assessment.
Using 20 images as a training set and 74 for testing, 66%
accuracy was obtained for classifying burn wounds into three
depths, and 84% accuracy was obtained for those that needed
or did not need grafts. Serrano et al. [7] used a strict selection of
texture features of burn wounds for the MDS analysis and SVM
and obtained 80% accuracy in classifying those that needed
grafts and those that did not. Chauhan et al. [31] used Al to
classify body parts from 109 burn-wound images (30 portray
burn wounds on the face, 35 on the hand, 23 on the back and 21
on the inner forearm) with size 350—-450 x 300—400 pixels,
achieving overall classification accuracy of 91% and 93% using
a dependent and an independent convolutional neural
network ResNet-50 respectively. We ourselves [3], also tried
Al similarly for the burn-depth classification. We collected 676
samples of size 224 x 224 pixels from 23 burn-wound images
(almost 100 samples for each class: the four burn-depths plus
the normal healthy skin and the background) and achieved an
average, minimum, and maximum accuracy of 82, 72, and 88%
respectively using the ResNet-101 after 10-fold cross-valida-
tion. Moreover, the average accuracy, sensitivity, and speci-
ficity were extracted for the four burn-depths: 91, 74, and 94%,
respectively.

5. Study limitations

Constructing a training dataset, large volumes of study images
are needed. Given the frequency of scalds, the collection of
very large image databases for training purposes are not
feasible and therefore the dataset used in this study may be
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claimed too small. This albeit the fact that almost two years'
collection of patients were made. To improve this point, a
specific image optimization technique was used (the elastic
deformation technique [28]). By this measure the 16 initial
training images were artificially expanded to 3936 images and
thus improving the prediction metrics. Having more images
for the training setis important for the further improvement of
the technique.

Another study limitation is of course what is claimed “the
final” healing result, and especially determining the day of
total re-epithelialization used to train the prediction method.
In this study we awaited the healing situation at day 20 to
reduce therisk of a subjective effect on the outcome presented.
However, this needs to be addressed further in coming studies.

6. Conclusion

In this paper, we wanted to extend the ambition beyond our
previous publication [3], adding the local classification to the
global one. As shown in the previous section, Al is a powerful
tool that can be used to for the burn-depths assessment,
achieving a global dice coefficient of 97% after leave-one-out
cross-validation, and the average of the F, coefficients over all
the 17 test images of 93%, 79%, 73% and 87% for superficial
partial-thickness, superficial to intermediate partial-thick-
ness, intermediate to deep partial-thickness, and deep partial
and full-thickness burns respectively. These values are
suitable for a better burn diagnosis since the expert clinicians
on burns assess a burn wound with 75% accuracy compared to
the 92% presented in this paper. Importantly it then needs tobe
stressed that the present paper is based on light photography
images rather than laser Doppler based images. Nevertheless,
the convolutional neural network performance and its metrics
may surely increase with the availability of larger burn image
databases. This obstacle might be overtaken with the use of
Generative Adversarial Nets (GANs) [32-34] for the image
augmentation on the training images. Such future improve-
ments appear especially interesting given the accuracy and
practical simplicity of the method presented.
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