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Abstract
We present the third generation of the C++-based open-source skeleton programming
framework SkePU. Its main new features include new skeletons, new data container
types, support for returning multiple objects from skeleton instances and user func-
tions, support for specifying alternative platform-specific user functions to exploit e.g.
custom SIMD instructions, generalized scheduling variants for the multicore CPU
backends, and a new cluster-backend targeting the custom MPI interface provided by
the StarPU task-based runtime system. We have also revised the smart data contain-
ers’ memory consistency model for automatic data sharing between main and device
memory. The new features are the result of a two-year co-design effort collecting
feedback from HPC application partners in the EU H2020 project EXA2PRO, and
target especially the HPC application domain and HPC platforms. We evaluate the
performance effects of the new features on high-end multicore CPU and GPU systems
and on HPC clusters.

Keywords High-level parallel programming · Heterogeneous computing · Skeleton
programming · Co-design approach · Cluster computing

1 Introduction

The recently observed slowdown of Moore’s Law implies, for the foreseeable future,
that further performance growth in high-performance computing (HPC) critically
depends on efficiently utilizing hardware resources, leveraging evenmore heterogene-
ity in the form of accelerators such as GPUs and scaling up to even higher degrees
of cluster-level parallelism. This leads to programmability and portability issues on
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the software side. High-level programming using algorithmic skeletons is a promising
approach to bridge this widening gap.

SkePU is a C++-based open-source skeleton programming framework for hetero-
geneous parallel systems. Based on an already modern and type-safe programming
interface, we have redesigned SkePU to especially target the HPC application domain.
The resulting third generation of SkePU presented in this paper is the result of a two-
year co-design effort taking into account the feedback from HPC application partners
in the EU H2020 project EXA2PRO, and aims at striking a good balance between
improved programmability for HPC applications and decent performance and scal-
ability on HPC platforms while keeping the strict portability approach of SkePU.
The main new features include new skeletons, new data container types for multi-
dimensional data and scalable data movement at distributed execution, support for
returning multiple objects from skeleton instances and user functions, support for
specifying optional, also platform-specific variants of user functions to exploit e.g.
custom SIMD instructions, generalized scheduling variants for the multicore CPU
backends, and a new cluster-backend targeting the custom MPI interface provided by
the StarPU task-based runtime system.We have also revised the smart data containers’
memory consistencymodel for automatic data sharing betweenmain and devicemem-
ory. We evaluate the performance effects of the new features on high-end multicore
CPU and GPU systems and on HPC clusters.

The remainder of this article is organized as follows. Section 2 briefly revisits fun-
damental concepts of skeleton programming. Section 3 introduces the main concepts
in SkePU (as already available in SkePU 2). Section 4 surveys the extensions in SkePU
3. Section 5 presents new skeletons as well as new features and modernized interfaces
of existing ones. Section 6 presents new container types. Section 7 explains the new
coherence model of SkePU 3, and Sect. 8 presents the principles for execution on
clusters. Section 9 reports on experimental results. Related work is discussed in Sects.
10, and 11 concludes.

2 Skeleton Programming Fundamentals

(Algorithmic) Skeletons [5,6] are generic high-level programming constructs based
on higher-order functions such as map, reduce, scan etc. that can be instantiated by
plugging in sequential problem-specific code parameters, so-called user functions and
that implement a frequently occurring, often domain-specific, characteristic pattern
of control and data dependence for a possibly parallel, distributed or heterogeneous
target platform. Especially in the context of heterogeneous systems, it is common
that a skeleton comes with multiple implementations (called backends) for different
target platforms, such as backends for sequential, multi-threaded, message-passing or
accelerator execution. Skeletons can be realized as libraries or as (often, embedded)
domain-specific languages (DSLs) atop a sequential programming language, where
C++ is most common today, see also Sect. 10 for an overview of further skeleton
programming environments.
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Skeleton instances are thus the result of composing multiple software artifacts (a
skeleton and one or several user functions), but can be used (invoked) in the same way
as traditional hand-written functions.

While skeletons are high-level abstractions of computation, they usually also work
on high-level abstractions for collections of operand data, often in the formof STL-like
data containers that encapsulate and transparently manage their elements internally
[9].

The foremost objective of skeleton programming is improved programmer produc-
tivity compared to explicit parallel programming, i.e., to make writing programs for
parallel, distributed and heterogeneous systems as easy as well-structured sequential
programming—where the available set of skeletons fits. Portability at a high level of
abstraction is also important, especially in the context of heterogeneous computing
systems, where an obvious tuning possibility is the automated selection of the fastest
backend depending on the execution context [8]. The cost of abstraction might be
a certain loss in efficiency compared to explicitly parallel code written by system
experts, however the abstraction might even lead to higher performance where the
better structuring and the knowledge of dependence patterns can enable automated
optimizations.

3 A Short History of SkePU

SkePU (1) was introduced in 2010 [11] as a skeleton programming library for het-
erogeneous single-node but multi-accelerator systems, from the beginning designed
for portability to include single- and multi-GPU backends for the C-based OpenCL
and for CUDA (which then only partly supported C++), and had thus been technically
based on C++03 and on C preprocessor macros as the interface to user functions.

SkePU 2, introduced in 2016 [16], was a major revision of the SkePU [11] library,
ushering in modern C++ to the skeleton programming landscape. Rebuilding the inter-
face from the ground up, the skeleton set was updated to be variadic, leaving the old
fixed-arity skeletons from SkePU 1 behind. Variadic skeleton signatures was the first
main motivator of SkePU 2: flexible skeleton programming.

This rewrite also took the opportunity to integrate patched-on functionality in
SkePU 1 into the core design of the programming model. One such example is the
absorption of SkePU 1 MapArray into the basic SkePU 2 Map. MapArray was a
dedicated skeleton in SkePU 1 created as a clone of Map with the ability to accept an
auxiliary, random-accessible array operand into the user function, allowing deviations
from the strictly functional map-style patterns when demanded by the target appli-
cation. This was one of the first lessons from practical experience [23] that skeleton
patterns are not always perfectly suited to algorithms in real-world application code.

SkePU 2 also introduced the pre-compiler, lifting SkePU from its origins as a pure
template include-library into a full-fledged compiler framework.

Table 1 gives a synopsis of the different features of SkePU versions.
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4 SkePU 3 Overview

SkePU provides data-parallel skeletons, all of which are of arbitrary arity and poly-
morphic in the operand container shape and element type. Skeleton instances accept
operands that are statically grouped (by a template parameter) into element-wise acces-
sible and random-accessible parameters [16]. The Map skeleton computes every result
container element by element-wise application of a user function f to the corre-
sponding (for element-wise accessed operands) or possibly any (for other operands)
elements; MapOverlap applies a stencil function in one or several dimensions of an
element-wise accessed operand that can also access elements in a limited neighbor-
hood of the corresponding operand container element(s); Reduce applies reduction
for a binary associative user function; MapReduce provides a combination of Map
and Reduce; Scan computes generic prefix-sums for the provided binary associative
user function; and Call simply calls the user function for each position of the output
container ; in combination with multi-variant user functions it also provides a portable
escape mechanism to invoke explicitly parallelized code where the available skeletons
do not fit (well) [15]. The new skeletons added or generalized in SkePU 3 (cf. Table 1)
are described in Sect. 5.

SkePU allows to select the backend for each skeleton instance call statically or
dynamically. A tuning mechanism allows for automated backend selection depending
on a call’s operand sizes and locations. Hence, it might be statically unknown where
a skeleton call will execute.

Operands to skeleton instances are to be passed in data containers, which are STL-
like, generic collection abstract data types like Vector and Matrix that encapsulate
C++ array-type data. We call them smart containers [9] because they transparently
perform data transfer and memory management for their elements in (heterogeneous)
systems with distributed memory, as well as global optimizations for data locality
[14]. Using C++ iterators, skeleton instance calls may also operate on a proper subset
of a container’s elements only. New containers in SkePU 3 (see Table 1) are described
in Sect. 6.

5 Skeleton Set and Interface Extensions

This section covers most of the major changes to the skeleton API in SkePU 3, with a
notable exception in the multi-variant user function feature which is already detailed
in [15]. We begin with MapPairs and MapPairsReduce, which are variants of
Map resp. MapReduce on a 2D domain that are explicit about the access pattern of
lower-dimensional (1D) operands (Fig. 1).

5.1 MapPairs

The MapPairs skeleton, added as an additional top-level skeleton in SkePU 3,
applies a Cartesian product-style pattern from two Vector<T> sets (note that the
templated type may differ across these vectors). Each vector set may contain an arbi-
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Fig. 1 MapPairs computes a Cartesian mapping of 1D vectors into a 2D space

Listing 1 Using the MapPairs skeleton.

1 // MapPairs user function
2 int mult(int a, int b) { return a * b }
3
4 // MapPairs skeleton instantiation and usage
5 // size_t Vsize , Hsize defined here
6 auto outerproduct = skepu :: MapPairs(mult);
7
8 skepu ::Vector <int > v1(Vsize , 3), h1(Hsize , 7);
9 skepu ::Matrix <int > res(Vsize , Hsize );
10 outerproduct(res , v1 , h1);

trary number of vector containers, similar to the variadicity of Map. All of the vectors
in a set are expected to be of the same size. Each Cartesian combination of vector set
indices generates one user function invocation, the result of which is an element in a
Matrix. As in Map, there is an optional Index2D parameter in the user function
signature to access this index. An example is shown in Listing 1.

Advanced andmore flexible use of MapPairs can be carried out similarly to other
SkePU skeletons. For instance, it retains flexibility of Map with regard to variadic-
ity (5-way variadic, compared to Map being 4-way variadic): (1) resulting outputs
(see Sect. 5.3), (2) element-wise-V (”vertical”, column-aligned) input arguments, (3)
element-wise-H (”horizontal”, row-aligned) input arguments, (4) random-access input
arguments, and (5) uniform input arguments.

A MapPairs instance of higher order would look like in the example below:
auto pairs = skepu::MapPairs<3, 2>(...);

This instance will accept three vertical and two horizontal input vectors.
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Listing 2 N-body simulation code using Map.

1 auto nbody_init = skepu ::Map <0>(init);
2 auto nbody_simulate_step = skepu ::Map <1>(move);
3
4 nbody_init(particles , np);
5
6 for (size_t i = 0; i < iterations; i += 2)
7 {
8 nbody_simulate_step (doublebuffer , particles , particles );
9 nbody_simulate_step (particles , doublebuffer , doublebuffer );
10 }

Listing 3 N-body simulation code using MapPairsReduce in SkePU 3.

1 auto nbody_init = skepu ::Map <0>(init);
2 auto nbody_influence = skepu :: MapPairsReduce <1, 1>(influence , sum);
3 auto nbody_update = skepu ::Map <2>( update);
4
5 nbody_init(particles , np);
6
7 for (size_t i = 0; i < iterations; ++i)
8 {
9 nbody_influence(accel , particles , particles );
10 nbody_update(particles , particles , accel );
11 }

5.2 MapPairsReduce

MapPairsReduce is the combination of a MapPairs followed by a row-wise
or column-wise reduction over the generated matrix elements. Like MapPairs it
supports arbitrary arities of the vertical and horizontal input Vector groups (<0,0>
and up). It returns a Vector containing the row-wise or column-wise sums, where
the summing dimension is specified as in 2D Reduce.

As a small example, we use the force calculation phase of N-body simulation using
this new skeleton. In SkePU 2, using themore generalMap skeleton, it could bewritten
as shown in Listing 2.

In SkePU 3 (Listing 3), the use of MapPairsReduce eliminates the explicit loop
required in the user function (move, omitted here for space). Moreover, this formu-
lation intrinsically avoids the double-buffering requirement for the existing approach,
and hence memory pressure is reduced.

The total number of user-function calls is now quadratic in the number of particles
np (an inherent property ofMapPairs), compared to linear before, so goodperformance
is even more reliant on compiler optimization, in particular, user function inlining.

5.3 Multi-Valued Return in Map Skeletons

SkePU 3 introduces tuple-like return functionality for cases where a single skele-
ton instance requires multiple (element-wise) output containers. This way, multiple
return values can be computed by the same user function, operating on the inputs in

123



International Journal of Parallel Programming

Fig. 2 Difference in return value storage between using multi-valued return (left) and single-value (by
manually managed array-of-struct) return (right)

Listing 4 User function with multi-valued return.

1 skepu ::multiple <int , float >
2 multi_f(skepu :: Index1D index , int a, int b, skepu ::Vec <float > c,
3
4 int d)
5 {
6 return skepu ::ret(a * b, (float)a / b);
7 }

Listing 5 Using multi-valued return with Map in SkePU 3.

1 skepu ::Vector <int > v1(size), v2(size), r1(size);
2 skepu ::Vector <float > e(1);
3
4 auto multi = skepu ::Map <2>( multi_f );
5
6 multi(r1 , r2 , v1 , v2 , e, 10);

one sequence, potentially improving data locality compared to two separate skeleton
invocations after each other. Although the values are returned in a tuple-like manner,
the output containers are completely separate objects (see Fig. 2). This distinguishes
this new feature from the existing use of custom structs as (inputs or) return val-
ues, as those are stored in array-of-records format. To use this feature, we specify the
return type in the user function signature as skepu::multiple<[basic_type,
...]>, i.e., analogous to std::tuple. Then, at the site of the return statement,
we construct this compound object by skepu::ret([expression, ...]).
Listing 4 shows an example of a user function utilizing the multi-valued return fea-
ture.

The skeleton instance declaration and invocation follow the syntax of ordinary Map,
but instead of supplying one output container as the first argument, specify several of
the correct types and order. Listing 5 gives an example.

Multi-valued return statements are available in the skeletons Map, MapPairs,
MapOverlap, MapReduce, and MapPairsReduce.

5.4 Dynamic Scheduling with OpenMP Backends

In SkePU 2, all skeletons, in particular the Map based skeletons, assumed an equal load
distribution of the user function executions over the entire range of input container
elements. Some applications may however exhibit an irregular workload distribution
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Listing 6 A MapOverlap user function in SkePU 2.

1 float over_2d( int oi, int oj , size_t stride , const float *r,
2 const skepu ::Mat <float > stencil )
3 {
4 float res = 0;
5 for (int i = -oi; i <= oi; ++i)
6 for (int j = -oj; j <= oj; ++j)
7 res += r[y*(int)stride+x] * stencil.data[(i+oi)*ox +
8 (j+oj)];
9 return res;
10 }

instead, especially in CPU-affine computations and sometimes even in combination
with very short input vectors.

For these cases, SkePU 3 adds in all skeletons (except Scan and Call) an option
for dynamic scheduling in the OpenMP backend.

spec.setSchedulingMode( skepu::Backend::Scheduling::
Dynamic );

Other supported Scheduling modes in the OpenMP backends are ::Guided
(for guided self-scheduling), ::Auto (for auto-tuned scheduling as implemented in
the used OpenMP compiler), and of course ::Static which remains the default
scheduling mode.

In addition, a chunk size locally overriding the default chunk size (defined for each
scheduling mode as in OpenMP) can be set:

spec.setCPUChunkSize(8);
Performance evaluation results for three load-balancing / nondeterministic-time

benchmarks are given in Sect. 9 and show in each case some improvement over the
static SkePU 2, in spite of some overhead for the dynamic schedulingmodes; speedups
for unbalanced workloads up to 60 % (for Mandelbrot-set computation) have been
observed.

5.5 Revised Syntax for MapOverlap

Experiences from SkePU users, and in particular the application of SkePU in teaching,
has showed that the syntax for MapOverlap user functions is one of the more chal-
lenging aspects of SkePU. In SkePU 2, a stencil operator was specified as in Listing 6
(here, for a rectangular 2oi + 1 × 2oj + 1 stencil implemented by 2 nested loops).

For SkePU 3 we have redesigned and simplified the programming interface for
specifying stencil operators. The stencil computation from Listing 6 is shown with
with SkePU 3 syntax in Listing 7.

6 NewData-Containers

The availability of smart containers, previously restricted to vector and matrix types,
has a significant effect on the usability of a skeleton programming framework. Even

123



International Journal of Parallel Programming

Listing 7 New syntax for MapOverlap user function in SkePU 3.

1 float over_2d( skepu ::Region2D <float > r, const skepu ::Mat <float >
2 stencil )
3 {
4 float res = 0;
5 for (int i = -r.oi; i <= r.oi; ++i)
6 for (int j = -r.oj; j <= r.oj; ++j)
7 res += r(i, j) * stencil(i + r.oi, j + r.oj);
8 return res;
9 }

though a basic one-dimensional data set can be used to emulate more complex data
representations, doing so at a framework level rather than on the user level provides
more information to the implementation about access patterns, thus bringing increasing
opportunities for optimizing communication and memory access patterns; while also
providing a more intuitive user interface and reduced application code size for users.

In SkePU 3 this is recognized on two levels: newmulti-dimensional tensor contain-
ers, as well as new “proxy” containers in user functions for accessing a single row or
column from a matrix. (RegionND<T> is another new set of proxy container used
in the new MapOverlap syntax.)

6.1 Tensors

The SkePU container set is extended with tensors, which are higher-dimensionality
containers. In SkePU 3 there are tensors of three and four dimensions, complementing
the existing 1D (vector) and 2D (matrix) formats. The interfaces for these containers
are virtually identical to those of the other containers, differing in the obvious ways of
naming and element access as detailed below. The full set of smart containers in SkePU
3 now covers up to four-dimensional structures; see Listing 8 for their definitions.

Listing 8 Smart container set in SkePU 3.

1 skepu ::Vector <float > v(dim1);
2 skepu ::Matrix <float > m(dim1 , dim2);
3 skepu ::Tensor3 <float > t3(dim1 , dim2 , dim3);
4 skepu ::Tensor4 <float > t4(dim1 , dim2 , dim3 , dim4);

The set of Index object types in SkePU, usable in e.g. user function signatures to
identify the index of the element being operated on, is likewise extended with 3D and
4D equivalents (see Listing 9).

Listing 9 Index types corresponding to each smart container.

1 struct Index1D { size_t i; };
2 struct Index2D { size_t row , col; }; // note!
3 struct Index3D { size_t i, j, k; };
4 struct Index4D { size_t i, j, k, l; };

Tensors are available in the skeleton API as element-wise inputs to Map, Reduce,
MapReduce, Scan, and MapOverlap. They are also accessible freely in user
functions as proxy objects, where applicable. In some skeleton configurations the
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Fig. 3 Element accessibility for MatRow vs. Mat parameters in a user function

Listing 10 Matrix-vector multiply using MatRow in SkePU 3.

1 template <typename T>
2 T arr(const skepu ::MatRow <T> mr , const skepu ::Vec <T> v)
3 {
4 T res = 0;
5 for (size_t i = 0; i < v.size; ++i)
6 res += mr.data[i] * v.data[i];
7 return res;
8 }

dimensionality of element-wise inputs is irrelevant by design, though in Map-based
skeletons it can be accessed by using Index parameters.

6.2 MatRow Container Proxy

SkePU has since version 2 offered flexible parameter lists for user functions, includ-
ing random-access containers (implemented as lightweight proxy objects) in addition
to the default element-wise inputs. While this allows for powerful expressivity, very
little about the access patterns of these random-access containers is known to SkePU,
and performance may thus not always be ideal.

One very common pattern when using Matrix as a random-access container
parameter is that each user function invocation is only interested in one row of the
matrix.This pattern is seen inmatrix-vectormultiplication and similarmulti-reduction-
style computations.To improveSkePUperformance in these cases, SkePU3 introduces
a new proxy object, MatRow<T>. Bridging the gap between element-wise mapped
and random-access container arguments, this proxy type when used in a Map skele-
ton instance1 that maps over vectors (i.e., the result container(s) of the skeleton are
Vector), makes available one single row of the argument matrix container to the
user function, see Fig. 3.

1 Matrix proxy arguments are available in user functions for Map, MapReduce, and MapOverlap.
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Listing 11 Matrix-vector multiply in the SkePU 2 style.

1 template <typename T>
2 T arr(skepu :: Index1D row , const skepu ::Mat <T> m, const skepu ::
3 Vec <T> v)
4 {
5 T res = 0;
6 for (size_t i = 0; i < v.size; ++i)
7 res += m.data[row.i * m.cols + i] * v.data[i];
8 return res;
9 }

As an example, matrix-vector multiplication using MatRow<T> may be imple-
mented as in Listing 10. Compared to the closest corresponding SkePU 2 implemen-
tation below (still valid in SkePU 3), which only offers the more generic Mat<T>
proxy container, the code is more succinct and there is more information about the
access pattern available to SkePU.

There is no change in syntax of skeleton instantiation or skeleton invocation needed
for this feature to apply.

The performance benefit of using MatRow<T> (where applicable) instead of the
more general Mat<T> container proxy comes from significantly reduced operand
data transfer volume when executing over distributed memory scenarios, both in
multi-GPU execution and in cluster execution: the communication pattern with
MatRow<T> is a scatter operation, while with Mat<T> it is a broadcast.

7 ConsistencyModel

Experiences from users of SkePU 2 demonstrated that the dual-mode model of SkePU
can be a bit challenging to adapt to. As inGPUprogrammingmodels, SkePU programs
execute code in one of twomodes (in GPU programming parlance “host” and “kernel”
mode). In SkePU, these are represented by being either outside or inside the dynamic
scope of a skeleton user function. While syntactically similar, the capabilities in each
mode are different. Host SkePU code is effectively like any C++ environment, as it is
the goal of the framework to be possible to embed in existing C++ applications. This
means that the programmer can use any C++ constructs and idioms such as classes,
dynamically allocated structures, etc. Inside a user function, however, the environment
is effectively a single-threaded, no-side-effects, C-like land.2

These differences also mean that the memory (coherency) models are different in
the two views. SkePU handles memory consistency at the boundary—during entry and
exit of a skeleton invocation and the user function evaluation. Inside the user function,
side effects are not allowed and therefore random memory reads are disabled, and the
coherency model is straightforward.

2 The reason for this is to preserve compatibility with as many accelerator environments as possible, such
as OpenCL C or even FPGAs.
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Listing 12 Examples of using the flush operation.

1 skepu ::Vector <int > v1(n), v2(n);
2 skepu ::Matrix <int > m1(n, n), m2(n, n);
3
4 v1.flush (); // FlushMode :: Default
5 m1.flush (); // FlushMode :: Default
6
7 skepu :: flush(v2 , m2); // FlushMode :: Default
8
9 v1.flush(skepu :: FlushMode :: Dealloc );
10 m1.flush(skepu :: FlushMode :: Dealloc );
11 skepu ::flush <skepu :: FlushMode ::Dealloc >(v2 , m2);

SkePU 3 deprecates the angle bracket [ ]-notation for smart container element
read/write access outside user functions.3 This is part of a simplification of the
coherency mechanisms for manual element access from the host (CPU) side. Instead,
the programmer should flush the whole container instead before doing single-element
accesses of user function data, see below.

Instead of angle brackets, the parentheses ( )-notation is extended to higher
dimensionality. This syntax accepts one index argument for each dimension of the
underlying container. The indices count must equal container dimensionality, other-
wise there is a compile-time error. Formally, the access syntax is container(i,
[, j, [,k, [, l]]]) [= value];

Hence, there is no longer a coherency-satisfying single-element access mecha-
nism to SkePU smart containers except inside user function proxy objects (Vec<T>,
Mat<T>, etc). However, optional runtime checks outside user functions can be (re-
)activated for parenthesis accesses by setting a compiler flag, e.g., for debugging
purposes or for backwards compatibility with code written for SkePU 2.

A common pattern in SkePU applications is that smart containers are used for a
computationally intensive part of the application, and the data is then either handed
over to a non-SkePUized section, or serialized e.g. to disk. To accommodate this
pattern, it is important that there is a way to ensure consistency of the local container
contents. SkePU 3 provides this through the flush operation to complete the new
consistency model.

Flushing smart container data can be performed on smart container instances or
collectively by a variadic free function. Either approach accepts a flush mode enum
argument providing options, e.g. if the remote data buffers should be cleaned up or
not, as seen in Listing 12.

The flush (member) functions are known symbols to the precompiler, so the
presence or absence of flush operations in SkePU source code is subject to static
analysis and optimization.

3 In SkePU 2 (and SkePU 1), the bracket operator is a protected container access, which outside user
functions checks for the accessed element’s state in the data container’s metadata (updated or invalid) and,
if necessary, triggers a (bulk) data movement to update the container’s copy in host memory from a currently
valid device copy. All bracket accesses thus incur runtime overhead for the check.
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8 Cluster Backend

SkePU 3 provides two different modes of using cluster resources:

– Outer MPI mode: the application code already contains explicit MPI code for
cluster-level parallel execution, using SkePU only locally on each node for execu-
tion of skeletons on multicore CPU and/or accelerators.

– Inner MPI mode: The application does not contain any MPI (nor other paralleliza-
tion) code. If an environment for MPI parallel execution is available (usually,
multiple nodes on a cluster), then skeletons can transparently execute in parallel
across these nodes if selecting the MPI backend.

Outer and InnerMPImode aremutually exclusive, i.e., for applications that are pre-
parallelized using explicit MPI code the MPI backends of all skeletons are disabled.

The implementation of inner MPI parallelism is technically based on generat-
ing StarPU task code using the MPI interface of the StarPU runtime system [3],
which detaches each node’s generated send and receive operations into special CPU
“codelets” that are exposed to StarPU as separate tasks for dynamic scheduling [2].
Distributed variants of the smart data-containers (Vector, Matrix etc.) with the
same interface as the node-local counterparts come with default distributions, and
each cluster node runs one copy of the SkePU executable atop a local instance of
StarPU in SPMD style. Execution over distributed container operands follows the
“owner computes rule”, stating that each node only executes those operations that
calculate (write) elements it owns (i.e., are part of its local partition of the result
container).

For use of inner MPI parallelism, no syntactic changes in SkePU code are required,
thus following SkePU’s strict portability principle. The illusion of a single SkePU
process performing all the work on a single node even with the MPI backend is
maintained by implementing the Reduce skeleton by an MPI Allreduce operation so
that the reduction result is available on each of the SPMDprocesses. Theweakmemory
consistency model of SkePU 3 (cf. Sect. 7) applies also to distributed containers: the
programmer must explicitly flush (i.e., gather) them back to the master (i.e., the
rank 0 process) before the most recent values of elements of remote partitions can be
accessed by a read access on the master, or after a write access by the master.

The only remaining issue in SPMD execution is that I/O operations need be pro-
tected from being executed everywhere. To make sure that such code is executed only
by the SPMDmaster process (and distributed data to be output is automatically flushed
and gathered/scattered to/from before/after the access, respectively), such code should
be guarded by the new construct
skepu::external (

[ skepu::read(rdcontlist),] [&]() {
...

} [, skepu::write(wrcontlist)]
);
where the optional arguments skepu::read() and skepu::write() list con-
tainer objects that may be read from resp. written to main memory in the framed code
block (...). This semi-automatic solution with an explicit framing construct allows
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Fig. 4 Execution time (ms) of the SkePU 3 port of the PARSEC benchmark Blackscholes on its largest input
set. Left: Time on the local GPU server with serial, OpenMP, OpenCL backends in SkePU and for manually
multithreaded code in PARSEC. Right: Time and speedup on the Tetralith cluster with the StarPU-MPI
backend

Fig. 5 Execution times of the SkePU 3 port of the PARSEC benchmark Streamcluster on 106 data points,
on the local server

to not depend on static analysis by the precompiler, which may not be feasible in the
context of separate compilation and using libraries.

9 Performance evaluation

This section presents some performance evaluation of new SkePU 3 features; further
performance results can be found in Ernstsson’s licentiate thesis [13], such as an
embeddedODE solver from the Libsolve library [18], solving the Brusselator 2D-MIX
problem with 7 stage vectors, performing up to 124,532 calls to skeleton instances in
total for the largest problem size, which we have omitted here due to lack of space.

We use two different systems for performance evaluation: a local GPU server with
12 cores (twoXeon E5-2630LCPUswith two-way hardware multi-threading), a K20c
GPU, and 64 GiB of main memory; and the Tetralith supercomputer cluster located
at NSC Linköping. Each Tetralith node has two Xeon Gold 6130 processors with 16
cores each, and a total of 96 GiB of memory per node.
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Fig. 6 Execution time (normalized to the sequential CPU backend time) for three irregular-load benchmarks
on the local server

Execution time results for SkePU 3 ports of PARSEC benchmarks Blackscholes
and Streamcluster can be found in Figs. 4 and 5. The results show that the SkePU
abstraction overhead compared to the hand-multithreaded PARSEC code is small
(Blackscholes) or very small (Streamcluster), and that SkePU provides further targets
for free (here, OpenCL for Blackscholes). The Streamcluster benchmark also exhibits
a common problem encountered in SkePU-izing legacyC/C++ code: arrays containing
a pointer-based data structure (e.g., a directed graph), if packaged e.g. in a Vector
container, work very well with the OpenMP backend but are not portable to execution
on e.g. a GPU with a different address space, as host addresses are not portable to
device memory. For such cases, more advanced container types (e.g., directed graphs)
would be required, which is left for future work.

For the local server, Fig. 6 shows the positive performance effect of using dynamic
scheduling in three data-parallel benchmarks with irregular workload, in spite of the
runtime overhead of dynamic scheduling: (1) Generating a 1024×1024 Mandelbrot
image using the SkePU 3 Map OpenMP backend with different scheduling modes.
Dynamic scheduling (chunksize 16) outperforms the static default mode. (2) Lex-
icographic reduction finding the maximum among 108 date/time tuples. Guided
dynamic scheduling (chunksize 8) outperforms the static default mode. (3) Counting
prime numbers using MapReducewhere dynamic scheduling performs best. Results
for the sequential CPU and OpenCL backends are provided as reference.

Figure 7 shows the scaling behavior of the SkePU 3 port of a brain simulation mini-
application [21] performing 200 time steps with 90000 neurons and dense synapse
connectivity using up to 32 nodes on Tetralith. The version that uses the MatRow
container proxy benefits from more scalable communication compared to using the
default Mat container. For comparison, the diagram also shows anOuter MPI SkePU
implementationwhere the communication structure corresponds to that of theMatRow
version. While the SkePU version of MatRow scales and performs best for larger
numbers of MPI ranks, we also see that there is an execution time overhead of using
SkePU with the StarPU-MPI based backend of up to a factor of 2 as long as running
on a single cluster node (≤ 32 MPI ranks).

Figure 8 shows performance results for the N-body scenario of Sect. 5.2 using
both the OpenMP and cluster backend, measured on the Tetralith cluster. There is
a slight increase in execution time for the MapPairsReduce variant on a single
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Fig. 7 Execution time of a brain simulation application performing 200 time steps with 90000 neurons on
Tetralith. ”Outer MPI” refers to a manual MPI parallelization using (node-local) SkePU and plain MPI, the
two ”Inner-MPI” versions use SkePU’s StarPU-MPI backend instead

Fig. 8 Execution time for two variants of N-body on the Tetralith cluster: the Map variant (Listing 2) and
MapPairsReduce variant (Listing 3), both executed with the OpenMP and cluster backends

node, although too small to account for an inlining issue (discussed in Sect. 5.2). A
likely explanation for the slowdown is due to the change in memory access pattern.
Depending on the environment, themore significant improvement inmemory footprint
might be enough to prefer the MapPairsReduce variant, as it uses only 70% of
the memory compared to the Map variant. On multi-node experiments, the variant
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Table 2 Microbenchmark results of vector initialization; execution time in seconds on the local GPU server

With GPU backends Without GPU backends

Sequential consistency v[i] 0.899 0.308

Weak consistency v(i) 0.313 0.310

advantage is flipped in favour of the MapPairsReduce variant, which is about 15%
faster on 8 nodes (256 cores); we ascribe that to the reduced communication volume.

To illustrate themotivation behind the change of consistencymodel for SkePUsmart
containers (Sect. 7), we have measured the execution time through a microbenchmark.
Allocating and initializing the elements of a SkePU vector using a simple for-loop
results in the numbers in Table 2. If the SkePU application is compiled without either
GPU or CUDA backends there is no appreciable overhead, but as soon as those device
copies are present it is approximately 3x faster to use non-managed access operators.

10 Related work

The skeleton approach to high-level programming of parallel systems has been intro-
duced by Cole in 1989 [5,6]. Since then, many academic skeleton programming
frameworks have been presented, and the concept also increasingly found its way
into commercial/industrial-strength programming environments, such as Intel TBB
for multicore CPU parallelism, Nvidia Thrust or Khronos SYCL for GPU parallelism,
or Google MapReduce and Apache Spark for cluster-level parallelism over huge data
sets in distributed files.

While early skeleton programming environments attempted to define and imple-
ment their own programming language, library-based and DSL-based approaches
have, by and large, been more successful, due to fewer dependencies and lower imple-
mentation effort. Frameworks for skeleton programming became practically most
effective in combinationwith (modern) C++ as base language.Moreover, the approach
was fueled by the increasing diversity of processing hardware with upcoming multi-
core and heterogeneous parallelism since about 2005.

Among the C++-based skeleton programming environments for heterogeneous sys-
tems, we find mostly library-based ones, e.g. SkePU 1 [11], SkeTo [20], SkelCL [25],
GrPPI [10] or pre-compiler based, such as SkePU 2 [16] and Musket [22]. FastFlow
[7], originally designed for multicore CPU execution, added support for GPU and
distributed execution [1] later. SkelCL targeted OpenCL for single- and multi-GPU
systems with explicit data distribution. Muesli [4] initially supported MPI cluster exe-
cution and added support for GPU execution later [12]. MPI execution of skeletons is
also supported e.g. in Musket.

The Allpairs skeleton [24] in SkelCL can be considered as a variant of MapPairs
that accepts matrix operands only; any reduction needs be implemented as part of
the user function in Allpairs (i.e., by nesting), while we provide the combination
MapPairsReduce (i.e., chaining). MapPairs and MapPairsReduce specifi-
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cally support multiple separate 1D vector operands in both dimensions, as requested
for use with the MetalWalls [19] application by EXA2PRO project partner CNRS.

Multiple return values of skeletons and user functions is inspired by Python and
was also found useful in SkePU-izing MetalWalls to avoid duplicated work resulting
from using multiple skeleton calls for different result containers. We are not aware of
any other skeleton programming framework supporting multiple return values from
skeletons and user functions where parameters are passed explicitly. Musket [22],
which also uses a precompiler, requires (except for the this object) using global
container variables in user functions.

11 Conclusions and future work

We have presented the design of the third generation of the SkePU skeleton pro-
gramming framework for heterogeneous systems and HPC clusters. The new features
are the result of a co-design effort together with HPC application partners in the
EXA2PRO project, and are geared towards improving programmability, flexibility,
better performance, or several of these aspects, while keeping SkePU source code
strictly portable and compatiblewith sequential C++11.We provide a sample of results
from performance evaluation experiments; further results can be found in Ernstsson’s
licentiate thesis [13], which also goes into more detail on the design and implementa-
tion approach behind SkePU 3.

Future work will, beyond performance improvements in the implementation, con-
duct performance studies on the four main EXA2PRO applications being ported to
SkePU 3, and further extend the set of SkePU 3 example programs. A survey of
how SkePU 3 embeds in the EXA2PRO high-level programming model can be found
in [17]. SkePU 3 has already been made interoperable with multi-variant functions
(”components”) [17], which provide a flexible escape mechanism for expressing par-
allelizations of computations where no skeleton fits (well) or for using accelerator
types for which no appropriate SkePU backend is available (yet). Moreover, the new
alternative pre-compiler being developed for SkePU 3 (which is technically based
on the BSC Mercurium compiler) will allow for static transformations of skeleton
groups, which is for now only supported to a limited degree as a runtime optimization
for special skeleton sequences [14].

The SkePU 3 source code (with the clang-based precompiler) is publically available
under a modified 4-clause BSD license at https://skepu.github.io.

Acknowledgements This work has been partly funded by EU H2020 project EXA2PRO (801015) and
by the Swedish National Graduate School in Computer Science (CUGS). We thank all project partners in
EXA2PRO for feedback that led to the design of SkePU 3. We also thank the National Supercomputing
Centre (NSC) and SNIC for access to theirHPCcomputing resources (SNIC2016/5-6). Open access funding
has been provided by Linköping University.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If

123

https://skepu.github.io


International Journal of Parallel Programming

material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Aldinucci, M., Campa, S., Danelutto, M., Kilpatrick, P., Torquati, M.: Targeting distributed systems in
FastFlow. In: Euro-Par 2012: Parallel ProcessingWorkshops. LNCS 7640, pp. 47–56. Springer, Berlin
(2013)

2. Augonnet C, Aumage O, Furmento N, Namyst R, Thibault S: StarPU-MPI: Task Programming Over
Clusters of Machines Enhanced with Accelerators. In: Jesper Larsson Träff, Siegfried Benkner, and
Jack J. Dongarra, editors, Recent Advances in theMessage Passing Interface, pages 298–299. Springer,
Berlin (2012)

3. Augonnet, Cédric., Thibault, Samuel, Namyst, Raymond,Wacrenier, Pierre-André.: StarPU: AUnified
Platform for Task Scheduling on Heterogeneous Multicore Architectures. Concurrency and Computa-
tion: Practice and Experience 23(2), 187–198 (2011)

4. Ciechanowicz P, Poldner M, Kuchen H: The Münster Skeleton Library Muesli - a Comprehensive
Overview. ERCIS Working Paper No. 7 (2009)

5. Cole, Murray: Bringing skeletons out of the closet: a pragmatic manifesto for skeletal parallel pro-
gramming. Parall. Comput 30(3), 389–406 (2004)

6. Cole, Murray I.: Algorithmic Skeletons: Structured Management of Parallel Computation. Pitman and
MIT Press, Cambridge, Mass (1989)

7. Danelutto, Marco: Torquati, Massimo: Structured Parallel Programming with “core” FastFlow. Central
European Functional Programming School. volume 8606 of LNCS, pp. 29–75. Springer, Berlin (2015)

8. Dastgeer, Usman, Enmyren, Johan,Kessler, ChristophW.:Auto-tuning SkePU:Amulti-backend skele-
ton programming framework formulti-GPU systems. InProc. 4th InternationalWorkshop onMulticore
Software Engineering, pages 25–32. ACM, (2011)

9. Dastgeer, U., Kessler, C.: Smart containers and skeleton programming for GPU-based systems. Int J
Parall Programm 44(3), 506–530 (2016)

10. del RioAstorga, David, Dolz,Manuel F., Fernández, Javier, Daniel García, J.: A generic parallel pattern
interface for stream and data processing. Concurrency and Computation: Practice and Experience,
29(24):e4175, (2017)

11. Enmyren, Johan, Kessler, Christoph W.: SkePU: A multi-backend skeleton programming library for
multi-GPU systems. In Proceedings of the fourth international workshop on High-level parallel pro-
gramming and applications, pages 5–14. ACM, (2010)

12. Ernsting, S., Kuchen, H.: Algorithmic skeletons for multi-core, multi-GPU systems and clusters. Int J
of High Perf Comput Netw 7, 129–138 (2012)

13. Ernstsson, August: Designing a Modern Skeleton Programming Framework for Parallel and Hetero-
geneous Systems. LinkÖping University Electronic Press, Sweden (2020)

14. Ernstsson, A., Kessler, C.: Extending smart containers for data locality-aware skeleton programming.
Concurrency and Computation: Practice and Experience 31(5), e5003 (2019)

15. Ernstsson, August, Kessler, Christoph: Multi-variant user functions for platform-aware skeleton pro-
gramming. In Proc. of ParCo-2019 conference, Prague, Sep. 2019, In: I. Foster et al. (Eds.), Parallel
Computing: Technology Trends, series: Advances in Parallel Computing, vol. 36, IOS press, pages
475–484, (2020)

16. Ernstsson, August, Li, Lu, Kessler, C.: SkePU 2: Flexible and type-safe skeleton programming for
heterogeneous parallel systems. Int J Parall Program 46, 1–19 (2017)

17. Kessler, Christoph, Ernstsson, August, Memeti, Suejb, Ahlqvist, Johan: Embracing heterogeneity for
exascale computing: The EXA2PRO high-level programming model. Proc. Work-in-progress session
at PDP’20 conference, Västerås, Sweden, Report SEA-SR-55-4, Johannes-Kepler Univ. Linz, Austria,
(2020) ISBN 978-3-902457-55-4

18. Korch, Matthias, Rauber, Thomas: Optimizing locality and scalability of embedded Runge-Kutta
solvers using block-based pipelining. J. Parall Distribut Comput 66(3), 444–468 (2006)

19. Marin-Laflèche, Abel, Haefele, Matthieu, Scalfi, Laura, Coretti, Alessandro, Dufils, Thomas, Jean-
mairet, Guillaume, Reed, Stewart K., Serva, Alessandra, Berthin, Roxanne, Bacon, Camille, Bonella,

123

http://creativecommons.org/licenses/by/4.0/


International Journal of Parallel Programming

Sara, Rotenberg, Benjamin, Madden, Paul A., Salanne, Mathieu: Metalwalls: A classical molecular
dynamics software dedicated to the simulation of electrochemical systems. Journal of Open Source
Software 5(53), 2373 (2020)

20. Matsuzaki, Kiminori, Emoto, Kento: Implementing fusion-equipped parallel skeletons by expression
templates. In Marco T. Morazán and Sven-Bodo Scholz, editors, Implementation and Application of
Functional Languages, pages 72–89. Springer, Sweden (2010)

21. Panagiotou, Sotirios, Ernstsson, August, Ahlqvist, Johan, Papadopoulos, Lazaros, Kessler, Christoph,
Soudris, Dimitrios: Portable exploitation of parallel and heterogeneous HPC architectures in neural
simulation using SkePU. In Proc. SCOPES’20. ACM, (2020)

22. Christoph Rieger, Fabian Wrede, and Herbert Kuchen. Musket: a domain-specific language for high-
level parallel programming with algorithmic skeletons. In Proc. Symposium on Applied Computing
(SAC’19), pages 1534–1543. ACM, (2019)

23. Oskar Sjöström, Soon-Heum Ko, Usman Dastgeer, Lu Li, and Christoph Kessler. Portable paralleliza-
tion of the EDGE CFD application for GPU-based systems using the SkePU skeleton programming
library. In Gerhard R. Joubert, Hugh Leather, Mark Parsons, Frans Peters, and Mark Sawyer, editors,
Advances in Parallel Computing, Volume 27: Parallel Computing: On the Road to Exascale. Proc. of
ParCo-2015 conference, Edinburgh, UK, Sep. 2015., pages 135–144. IOS Press, (2016)

24. Steuwer, Michel: Friese, Malte, Albers, Sebastian, Gorlatch, Sergei: Introducing and implementing the
AllPairs skeleton for programming multi-GPU systems. Int J Parall Program 42(4), 601–618 (2013)

25. Michel Steuwer, Philipp Kegel, and Sergei Gorlatch. SkelCL–a portable skeleton library for high-level
GPU programming. In 16th International Workshop on High-Level Parallel Programming Models and
Supportive Environments (HIPS’11), (2011)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123


	SkePU 3: Portable High-Level Programming of Heterogeneous Systems and HPC Clusters
	Abstract
	1 Introduction
	2 Skeleton Programming Fundamentals
	3 A Short History of SkePU
	4 SkePU 3 Overview
	5 Skeleton Set and Interface Extensions
	5.1 MapPairs
	5.2 MapPairsReduce
	5.3 Multi-Valued Return in Map Skeletons
	5.4 Dynamic Scheduling with OpenMP Backends
	5.5 Revised Syntax for MapOverlap

	6 New Data-Containers
	6.1 Tensors
	6.2 MatRow Container Proxy

	7 Consistency Model
	8 Cluster Backend
	9 Performance evaluation
	10 Related work
	11 Conclusions and future work
	Acknowledgements
	References




