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Abstract
As a successful business strategy for enhancing environmental sustainability and decreasing the natural resource consump-
tion of societies, the product-service system (PSS) has raised significant interests in the academic and industrial community. 
However, with the digitisation of the industry and the advancement of multisensory technologies, the PSS providers face 
many challenges. One major challenge is how the PSS providers can fully capture and efficiently analyse the operation and 
maintenance big data of different products and different customers in different conditions to obtain insights to improve their 
production processes, products and services. To address this challenge, a new operation mode and procedural approach are 
proposed for operation and maintenance of bigger cluster products, when these products are provided as a part of PSS and 
under exclusive control by the providers. The proposed mode and approach are driven by lifecycle big data of large cluster 
products and employs deep learning to train the neural networks to identify the fault features, thereby monitoring the prod-
ucts’ health status. This new mode is applied to a real case of a leading CNC machine provider to illustrate its feasibility. 
Higher accuracy and shortened time for fault prediction are realised, resulting in the provider’s saving of the maintenance 
and operation cost.
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1  Introduction

Environmental sustainability has been an important aspect 
for manufacturing companies [1–3], which calls for high 
availability, quality and utilisation rate of manufacturers’ 
products [4]. Among other things, natural resource con-
sumption is also an increasingly important issue, which has 
led to high interest in a circular economy (CE) strategy [5, 
6]. To decrease the resource consumption of our societies, 
sharing manufacturing resources by multiple users combined 
with the PSS contract offered by industrial firms has been a 
promising way [7, 8]. Within the PSS paradigm, the sharing 
business is used by more industrial practitioners to increase 
the utilisation of their products [9, 10]. For instance, car 
sharing is a well-known conventional example of a PSS with 
group’s sharing cars resulting in fewer cars than with indi-
vidual ownership, but their mobility needs maintained [11]. 
Meanwhile, with the specialised maintenance and faults 
diagnosis services of the PSS providers, the availability and 
reliability of products can be enhanced, thereby benefit the 
customers.
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Currently, the connectivity through the Internet of things 
(IoT) among products, manufacturers, and users has contrib-
uted to sharing business with more convenience and higher 
value, as it is a fundamental part of any sharing economy 
[12]. Moreover, sharing business also has the potential for 
other sectors, such as consumer electronics as a service with 
IoT techniques [13]. Obviously, the sharing business of the 
PSS is utilised by an increasing number of manufacturers, 
which has created opportunities for manufacturers to better 
control and management of their products.

At the same time, manufacturers’ roles in our societies are 
also changing, influenced by the growth of sharing economy. 
A movement of Fabrication Laboratories, which are small 
workshops that offer tools and services for digital manu-
facturing to a large number of users, has shown remarkable 
development [14]. From the environmental sustainability 
perspective, such manufacturing processes are more acces-
sible to public users and is gaining increased interest in the 
industrial community [15, 16]. In such a context, sharing 
industrial facilities for manufacturing is also getting atten-
tion in research and practice. For instance, crowdsourced 
manufacturing, where companies share their manufactur-
ing facilities depending on their demands and capacity, is 
evaluated by industry [17]. Furthermore, agent-based control 
combined with a matching algorithm, is proposed to increase 
the utilising ratio of manufacturing facilities [18]. Interest-
ingly in this article, sharing business can be in general, 
facilitated by big data analytics (BDA) [19]. Therefore, the 
potential of sharing industrial facilities for manufacturing in 
combination with BDA is evident. However, its research is 
still in its infancy, as reviewed above. Some questions need 
to be investigated and answered including: (1) how can PSS 
providers fully usage the multi-source operation and main-
tenance data of products in different conditions to improve 
the management and control capability of their products; (2) 
how can implementation of a procedural approach for con-
ducting real-time data analysis to evaluate the health status 
and identify the faults of products pre-emptively.

2 � Related Work and Knowledge Gap

Recent investigations show that appropriate operation mode 
aligns accessible product data with efficient data analytics, 
strongly interacts, and jointly determines the achievement of 
the desired product availability, utilisation rate, production 
planning and product quality for manufacturers [4, 20–23].

However, with the digitisation of the industry and the 
advancement of multisensory technologies, the PSS pro-
viders face many challenges. One major challenge is how 
to accurately and comprehensively capture the operation 
and maintenance big data of products during the whole 
PSS delivery processes (especially, the operational data of 

different products and different customers in different condi-
tions). It provides complete and reliable data for PSS provid-
ers or customers to adjust and optimise their decision-mak-
ing dynamically (e.g. fault diagnosis, maintenance measures 
predicting, production planning, sharing and leasing strategy 
planning, etc.). To solve this challenge, some PSS providers 
have begun to acquire big data and store it using cutting-
edge information and communication technologies (ICT) 
[24, 25]. For instance, big data about product operation, 
including operation environment in the use phase can be 
measured through various sensors [26–29]. The acquired 
data can be analysed using existing data analytics techniques 
to derive broader and more useful information on health 
monitoring and fault diagnosis for the PSS providers [30]. 
Focused on the data acquisition and management within 
PSS, some frameworks to realise the processes mentioned 
above were also proposed [26, 31, 32]. However, most exist-
ing studies have been primarily focused on operation and 
maintenance decision-making based on the operational data 
of ‘smaller cluster products’. It should be noted that the term 
‘smaller cluster products’ refers to a single category of prod-
ucts. Moreover, the users of the product are also relatively 
single and scattered. This is very common in existing and 
traditional product fault diagnosis method and PSS-based 
operation mode. As a result, the real potential of big data 
was not be showed and assessed, which have led to low effi-
ciency of fault diagnosis and wastage of resources during 
maintenance procedures. Therefore, a new PSS-based opera-
tion mode to collect the operation status data of different 
products and multiple users in different conditions is needed.

As pointed by Kusiak [23], big data is a long way from 
transforming manufacturing, because most of the manufac-
turers and customers do not know what to do with the big 
data they have. Hence, how to apply the advanced analytics 
techniques to carry out efficient BDA is a vital task for man-
ufacturers to transform their manufacturing mode and deter-
mine their competitiveness [33, 34]. For example, in order 
to optimise the design scheme of new products, the agent-
based system (ABS) and artificial neural networks (ANN) 
were investigated [35, 36]. Based on the industrial Internet 
of things (IIoT) and manufacturing big data, a cyber-physical 
energy system to improve the energy efficiency of the dyeing 
process was developed [37]. The authors recommended that 
the system can optimise the dyeing process using machine 
learning techniques and manufacturing big data by adjusting 
cyber-physical energy systems without utilising expensive 
equipment. The genetic algorithm (GA) and fuzzy logic 
theory were used to optimise the shop floor scheduling [38, 
39] and to control the product quality [40, 41] in a manufac-
turing big data environment. The machine learning-based 
techniques were used to predict material removal rate in pol-
ishing [42], to identify faults of motor bearing [30], and to 
better maintenance in semiconductor device manufacturing 
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[43]. Processes enabled by these methods and techniques 
can revolutionise the design and operation and maintenance 
towards intelligence. However, major challenges exist in 
applying data-driven decision-making to capture the eco-
nomic and business value of big data, such as how to design 
a solution to analyse the operational data timely and identify 
fault early for better management of products. Therefore, 
there are urgent demands for developing an efficient and 
procedural approach to analyse the data from PSS delivery 
processes and provide informed decisions for the operation 
and maintenance processes. Insights into this challenge 
are especially missing partly due to the lack of empirical 
research within industrial settings.

Recently, the opportunities arising from combined big 
data and PSS strategy were exploited by Opresnik and 
Taisch [44]. The authors pointed out that the value of big 
data depends on an adopted business model, including an 
operation mode and a way of value capture. This means that 
the challenges exist in how BDA brings value through an 
appropriate business model. Meanwhile, different business 
models have been researched in the production community 
to undergird the PSS providers’ competitive advantage. 
Meier et al. [7] and Annarelli et al. [45] provided a system-
atic overview of PSS and different methods, tactics, benefits, 
barriers, and partly also on drivers for them, while Roy et al. 
[46] focused on key technologies applied to maintenance 
services: self-repair technologies, digital maintenance repair 
overhaul (MRO), big data and visualisation of maintenance 
tasks. A lean PSS and its application in a mould making 
industrial were investigated by Mourtzis et al. [47]. A set 
of key performance indicators (e.g. design, manufacturing, 
customer, environment, and sustainability) for evaluating 
and improving the lean PSS design were recommended. 
Gao et al. [10] investigated a service-oriented manufacturing 
paradigm characterised by business model, industry insight 
and technology strength. The authors documented a practice 
of PSS in the turbomachinery industry where the provider 
accesses data of equipment in use by installing sensors. Lay 
et al. [48] reported the practice of PSS in industry and pro-
posed several categories for operation modes: the provider 
not only maintains the ownership of machines but also oper-
ates and maintains them for multiple customers. Overall, bet-
ter conditions for accessing data as wished may be provided 
by PSS to bring higher value from data. However, virtually 
no literature provides knowledge of exploiting PSS to bring 
out value from big data.

As reviewed above, the interaction of accessible product 
data and efficient data analytics and appropriate business 
model has attracted much attention in the literature recently. 
Current research mostly combines either available product 
data and BDA [49, 50] or align PSS with BDA [44, 51]. The 
researches that align with all three aspects are rarely avail-
able in the literature. This means that a knowledge gap exists 

in how available product data and BDA techniques bring 
value through an appropriate business model.

To address the foregoing challenges and fill in the gaps 
of scientific knowledge, this paper proposes a PSS-based 
and advanced operation mode that benefits from accessible 
product lifecycle big data and BDA technology. The leasing 
and sharing manner is important for the innovation of the 
proposed operation mode and is different from the existing 
ones. For the advanced operation mode, all shared prod-
ucts (e.g. processing devices or production machines) are 
exclusively controlled and managed by the PSS providers 
in the premises they provide and in a centralised manner. 
This manner can help industrial practitioners centralise the 
scattered orders to make full use of the processing devices 
and reduce resource and energy consumption. Besides, in 
the advanced operation mode, the customers do not need to 
purchase products and build plants, let alone ship products 
to their factories. The customers only need to pay the PSS 
providers by the usage time or by the processing quantity.

The rest of this paper is organised as follows: Sect. 3 
describes the proposed PSS-based operation mode. Sec-
tion 4 presents a procedural approach for fault diagnosis 
involving BDA based on the proposed operation mode. Sec-
tion 5 demonstrates the application of this new mode to a 
real case of a leading CNC machine provider. In Sect. 6, the 
authors discuss the practical advantages of the new mode. 
Section 7 highlights the contributions and the future works 
of the paper.

3 � Overview of the Proposed Operation 
Mode

The volume of data for operation and maintenance decision-
making increases significantly with the wide application of 
sensors and wireless technologies in the PSS business solu-
tions. Most PSS providers intend to interpret these big data 
and to improve their processes and services and products. 
Although the future of big data-enabled business strategy 
is promising, the implementation of comprehensive data 
access and efficient BDA in PSS is in its infancy. Within the 
existing PSS, an appropriate operation mode that including 
the full data access manner and useful knowledge capture 
approach is rarely available. Based on the existing PSS, this 
paper presents a new type and high-level operation mode, 
the so-called production-side sharing (also known as shared-
use production machines), where the production machines 
are under exclusive control by the PSS providers.

For better understanding, the proposed operation mode is 
described with six characteristics compared to those exist-
ing ones in the industry according to literature, as shown in 
Table 1. The product is owned by the provider, located at the 
provider’s premises, and operated by the provider or multiple 
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customers. Furthermore, the operation and maintenance pro-
cesses data is collected and accessed by the provider. This 
contrasts to a traditional product sales mode in the rightmost 
column, which is valid for many cases until today. Further-
more, in the proposed operation mode, multiple customers 
use a product at a predefined location of the PSS providers, 
while in the traditional mode each of the customers uses its 
own product at their location individually. This means that 
multiple customers share a product (i.e., rent or share it by 
a time-bound contract or by the processing quantity) in the 
proposed mode. According to the order quantity of custom-
ers and the production capacity of machines, the provider 
can formulate and adjust the lease contract dynamically. 
In this way, machine idle caused by a decline in orders for 
the traditional operation mode could be avoided, thereby 
enhancing the utilisation rate of the production machines.

Table 1 also shows two other modes relatively advanced 
from the traditional one. However, the product sharing mode 
[48] is different from the proposed mode in terms of who 
installs sensors and who accesses the operation data. The 
other one [10] is a mode where the provider installs sensors 
and may access the operation data to use the acquired data 
effectively. It means that the proposed mode can be regarded 
as a hybrid of these two modes in the literature [48] and [10].

According to the above analyses, the correlation and 
difference between the proposed operation mode and the 
normal PSS can be identified. It is worth noting that the 
advanced operation mode proposed in this paper is benefit-
ing from the combination of the emerging ICT techniques 
with the PSS paradigm. Therefore, it has the same charac-
teristics as the normal PSS and today’s digital servitisation 
business paradigm, such as Smart PSS/Cyber-Physical PSS 
[52, 53]. For example, the ownership of products is retained 
by the PSS providers, and the customers can lease, share 
and use products by a time-bound contract. It can facilitate 
sustainable production and consumption, decrease hazardous 
materials that end up in landfills, and help the PSS providers 
make more profits, and so on.

However, the leasing/sharing manner for the advanced 
operation mode is different from the existing PSS. In the 
proposed operation mode, all products can form a resource 
pool, and then they are leased and shared by various cus-
tomers with an integrated service contract. As mentioned 

previously, all leased/shared products are completely man-
aged by the PSS providers in the premises they provide and 
in a centralised manner. Therefore, the operational data of 
different products and diverse users in widely varied condi-
tions can be collected more completely and accurately. In 
other words, the data from ‘large cluster products’ can be 
collected to obtain more training samples and to improve 
the fault diagnosis and fault prediction performance. Here, 
the term ‘large cluster products’ is named relative to the tra-
ditional PSS-based sharing mode. This is also an important 
characteristic of the advanced operation mode proposed in 
this paper, and it is also a special application scenario under 
this mode. Moreover, customers do not need to purchase 
products and build plants, decreasing the customers’ opera-
tion costs and investment risks. Meanwhile, the real-time 
and multi-source operations status data of different products 
and different users in diverse conditions can be collected 
more easily and comprehensively. This is very difficult (or 
only partially possible) for the traditional PSS leasing/shar-
ing mode, since different products are often distributed in 
different factories of diverse regions and operated by differ-
ent customers.

A major advantage of the proposed mode is the provider’s 
access to such data that is effective for various purposes 
(e.g. monitoring the health status and performing intelli-
gent fault diagnosis). This is facilitated by the provider’s 
unique knowledge and rich experience on what is effective 
to be measured as well as its freedom for how sensors are 
installed. In addition, real timeliness of the data access and 
full access to the data (i.e., no loss of measured data) are 
advantages thanks to the provider’s control of the product’s 
operation. Another advantage is the provider’s faster physi-
cal access to the products because it is located at the PSS 
provider’s premises. The main advantages lie in the pro-
vider’s potential to deliver services to customers effectively 
and promptly.

Besides that, the proposed operation mode also has the 
following advantages: (1) sharing professional technicians 
with other customers, and guaranteeing the processing qual-
ity of products, especially for the technically sophisticated 
products; (2) sharing production orders with other customers 
so that each independent customer can finish orders timely 
and shorten product delivery cycles, and achieve value 

Table 1   The proposed mode as 
compared with existing ones in 
literature

Proposed Sharing [48] Accessing data [10] Traditional

Product owner Provider Provider Provider/customer Customer
Product location Provider Provider Customer Customer
Operator Provider/customer Provider Customer Customer
Customers Multiple Multiple Multiple Single
Sensor installer Provider Not available Provider Provider/customer
Access to data by Provider Not available Provider/ Customer Customer
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sharing with all stakeholders; (3) reducing the customers’ 
investment in personnel, equipment, workplace, etc., espe-
cially for the small and medium-sized enterprise (SMEs); 
and (4) reducing environmental impact by increasing prod-
uct utilisation and decreasing product quantity in circulation.

The proposed operation mode extends beyond the mere 
sharing and leasing of the products as included in the tra-
ditional PSS. Through the IIoT and cyber-physical system 
(CPS) technologies, all products at the provider’s predefined 
location are able to sense and interact and reason, and to 
enable the ubiquitous connectivity and dynamic synchroni-
sation. Therefore, the sharing of production, resource, staff, 
technology and service can be achieved in the proposed 
operation mode. As a result, the advanced operation mode 
may change the traditional manner of management, control 
and maintenance of the products. It can also be adopted to 
promote the transformation and upgrading of the traditional 
manufacturing industry, integrate existing resources, and 
maximise the value of all stakeholders.

4 � A Procedural Approach for Fault Diagnosis 
Based on the Proposed Operation Mode

Based on the proposed operation mode, a large amount of 
real-time and multi-source operation status data of produc-
tion machines (e.g. used by different customers, different 
machines and different operating conditions) is produced. 
These multi-source data are promising assets that can be 
used to monitor machines’ health status and discover the hid-
den fault features. Therefore, within the proposed mode, this 
article focuses on fault diagnosis of a production machine 
using acquired operational data and efficient data analytics, 
and proposes a procedural approach, which consists of four 
main modules (as seen in Fig. 1) namely: (1) establishing 
smart production machines; (2) acquisition and preprocess-
ing multi-source data; (3) establishing deep neural network 
(DNN) models; and (4) DNN-based intelligent fault diagno-
sis. They are described in Sects. 4.1 to 4.4 in detail.

4.1 � Establishing Smart Production Machines

The smart production machines should be established to 
improve the sensing and interacting capability of all kinds 
of machines within the predefined location of the provider. 

Establishing smart production machines

Establishing DNN model DNN-based intelligent fault diagnosis

DNN 
model

Real-�me 
data Iden�fying 

faults

Model upda�ng

Acquisition and pre-processing  multi-source data

WIFI WALN

Monitoring 
system

Thin films 
force sensor

Accelerometer Vibra�on sensor 

Thermometer 
sensor

Legend: Data Inner process

Original data: 
<�me, machine ID, 
fault text, …>

Target data: 
<�me, fault 

parts, …>
• Maintenance records

• Failure protocols• Design data
• Sensors data

Data clean 
& extract

… … … …… … …

Model training based 
on auto-encoder

Model fine-turning 
based on BP algorithm

Process

• …

Data acquisi�on Data pre-processing

Predic�ng 
faults

Real-�me data Real-�me data

Fig. 1   Processes for fault diagnosis based on the proposed mode
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Therefore, the configuration of the multiple sensing devices 
in production machines is necessary for achieving the pro-
posed operation mode and fault diagnosis approach, when 
putting them into use. According to the methods to config-
ure the smart objects of different lifecycle stages, radio fre-
quency identification (RFID) and smart sensor [54, 55] are 
used to establish the smart production machines and to col-
lect the usable data sets for the fault diagnosis as exemplified 
in Table 2. The production machines have a certain degree 
of intelligence because they can act like humans to sense the 
environment by sensors, decisions by control appliance of 
the monitoring system, and to communicate with the WIFI 
or WLAN technology.

4.2 � Acquisition and Preprocessing Multi‑Source 
Data

Based on the configuration of the smart production 
machines, an active sensing environment can be constructed. 
As a result, the real-time and multi-source operation status 
data of production machines (e.g. used by different custom-
ers, different machines and different operating conditions) 
can be captured timely. The operational data of machines 
captured by sensors is the main data for traditional model 
establishment. To improve the accuracy and efficiency of 
fault diagnosis, in this article, the data of other lifecycle 
stages (e.g. product design, machining process and historical 
maintenance records) is also taken into account, to provide 
comprehensive data for model training.

The data generated from the machining process could be 
presented as a stream of tuples in the form MP_data = {O, 
M, EPC, J, T}, since these data are mainly captured by RFID 
in the smart production environment. Here, O is the opera-
tor responsible for executes the machining task. M is the 
machine where the machining task executed. EPC (Elec-
tronic Product Code) is the unique identifier of material 
machined by an operator on a machine. J is a specific job 
that associates with a certain order. T is a timestamp that 
records the exact time when the machining task takes place. 

The machining process data cube is established to store the 
tuples. Additionally, the real-time data warehouse is estab-
lished to organise and manage the tuples according to a time 
sequence and address the complex logic relationship among 
enormous tuples (as seen in Fig. 2).

The machining process data cube contains four dimen-
sions: tuple, information, production logic and time. Key 
attributes including Operator, Machine, EPC, Job and 
Timestamp are described in the tuple dimension. This 
indicates who did what, where, and on what time. In the 
information dimension, the tuple dimension attributes are 
converted into meaningful and specific sub-attributes, as 
shown on the top of the data cube. The predefined produc-
tion operations are executed in the production logic dimen-
sion, including material delivery task, machining sequence, 
and machining code. In the time dimension, the time stamp 
of the machining process data cube is recorded. By combin-
ing the time dimension and production logic, the information 
of the machining element can be tracked.

The inaccuracy, incompletion and redundancy exist in 
the created machining process data cubes, which should be 
reduced by data cleansing operation. For data cleaning oper-
ation, the input is a set of machining process data cube from 
the real-time data warehouse. The processes of data cleans-
ing operation are described as follows: (1) define inputs and 
constraint conditions of the data cleaning operation; (2) 
select machining process data cube from the real-time data 
warehouse; (3) check whether each cell in machining process 
data cube meets a predefined constraint condition; (4) delete 
the cell from machining process data cube if the cell cannot 
meet the condition; (5) repeat (2) to (4) until all machining 
process data cube are traversed; (6) output and return the 
cleaned machining process data cube.

The cleaned machining process data cubes are typically 
still huge. Data analyses of huge amounts of data may make 
it impractical or infeasible. Therefore, a data extract opera-
tion is performed to remove the data with little meaning 
for fault analysis, acquire critical machining process data 
cubes, and obtain a reduced representation of the cubes that 

Table 2   Sensing devices relevant to the proposed mode (examples)

Sensing device Location Measuring parameter Relevance to the proposed mode

RFID reader Production machine Real-time data of the critical compo-
nent

Find potential fault factors more accu-
rately

RFID Tag Critical component Real-time data from work-in-process 
(WIP) to a product

Provide real-time data and predict faults 
more timely

Thin films force sensor Embedded in tools Cutting force Find potential fault factors more accu-
rately

Accelerometer Bearing block Axial and radial displacement Provide multi-source data and predict 
faults more accurately

Thermometer/vibration sensor Around production machine Temperature/vibration of the external 
environment

Provide multi-source data and identify 
more faults features
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are much smaller in volume. Meanwhile, it must retain the 
integrity of the original data. As a result, the critical machin-
ing process data cubes are transmitted to the cube that con-
tains the key impact factors related to fault analysis. For 
data extract operation, the input is the cleaned machining 
process data cubes. The output is the reduced data cubes. 
The processes of data extract operation are described as fol-
lows: (1) select cubes with have same Machine ID from the 
cleaned machining process data cubes; (2) check whether 
each attribute in the selected cubes meets the logic in the 
tuple mentioned above; (3) produce a new sequence set if 
the all attributes of the selected cubes meet predefined logic 
of tuple; (4) repeat (1) to (3) until all cleaned machining 
process data cubes are traversed; (5) output and return the 
extracted data cubes.

In addition, some design data related to fault diagnosis 
(e.g. product design specifications and maintenance/service 
instructions) and historical fault records often exist in the 
form of free text with low quality, and cannot be directly 
applied to the model training process. Therefore, the data 
preprocessing should be conducted to extract the keywords 
and topics from the free text. The method of text mining [4, 
56] is used to clean the redundancy data from free text and 
extract the topics that can precisely describe the affected 
data of fault diagnosis. For example, regarding product 
design data, the design specifications and maintenance 
instruction data are extracted for the new data format for 

fault diagnosis: machine ID, fault part ID, spare part ID and 
fault type. For historical maintenance records, the data of 
timestamp, machine ID, fault part ID, fault type, mainte-
nance engineer’s ID, repair time, etc. are extracted.

Compared with the data mentioned above, the sensor data 
sets are usually generated automatically and considered high 
quality and adequate veracity. Relevant data are extracted 
from these sensor data sets, leading to the following formats: 
timestamp, sensor ID, machine ID, part ID, measuring point, 
and measuring value. As a result, the preprocessed machin-
ing process data, product design data, maintenance records, 
and sensor data collectively constitute the multi-source input 
data in the subsequent model training.

4.3 � Establishing DNN Models Based 
on the Preprocessed and Multi‑Source Lifecycle 
Data

Based on the previous two modules, multi-source and avail-
able lifecycle data are acquired. Within this module, how 
to use the preprocessed and available data to learn complex 
association relationships between input data sets and output 
fault types, to adaptively mine the fault features and improve 
the accuracy of fault diagnosis, is challenging. Through deep 
learning, DNNs with deep architectures can be trained to 
achieve these objectives [57]. In generally, DNNs training 
consists of the following two stages: (1) pre-train the DNNs 
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layer by layer with unsupervised learning, such as Auto-
encoder (AE) or sparse filtering; (2) fine-tune the DNNs 
with Back Propagation (BP) or Levenberg–Marquardt (LM) 
algorithm for classification [30].

As an unsupervised neural network, AE is usually used 
for extracting the data feature, which performs much bet-
ter than the basic single hidden layer networks. Moreover, 
the AE can use fewer neurons to denote the information of 
input layer rather than more neurons. As a result, the AE 
can use encoder network transforms the input data from a 
high-dimensional space into codes to extract the features 
of the input data, and then reconstruct the inputs from the 
corresponding codes through decoder network [58]. Con-
sidering the input lifecycle data (i.e. product design data, 
maintenance record, and operation data) has the character-
istics of multi-source and high-dimensional, thus the AE is 
adopted to pre-train the DNNs. For better describing, the 
notations used in the pre-training process are defined as seen 
in Table 3. During the pre-training process, these notations 
are applicable to the training sample of different lifecycle 
stages.

Given an input training sample xk from unlabeled lifecy-
cle data sample set 

{

xk
}K

k=1
 of production machine, xk ⊂ R1×n 

is a sample and n is the dimension of the input sample. Here, 
xk includes multi-source data sample, such as design data, 
maintenance record and operation status of different produc-
tion machines. The encoder network is defined as an encod-
ing function f

�
 , and the AE transforms each input training 

sample xk into a hidden layer encode vector hk through the 
activation function sf  of the encoder network. Similarly, 
the decoder network is defined as a reconstruction function 
g
�′

 . Then the hidden layer encoder vector hk is mapped to a 

reconstruction input vector x̂k through the activation function 
sg of the encoder network.

During this process, the AE aims to train the parameters 
set � = {w, b} and �� =

{

w�
, b�

}

 , and to acquire the mini-
mum reconstruction error �AE

(

�,�
′
)

 between the encoded 
outputs and the original inputs through traversing the whole 
training sample K:

where L
(

xk, x̂k
)

 is a loss function that measures the discrep-
ancy between xk and x̂k:

Based on the DNN pre-training architecture, M AE are 
trained to pre-train an M-hidden-layer DNN, as depicted in 
Fig. 3. This pre-training process has been proven to help to 
achieve better generalisation in classification and fault diag-
nosis tasks. The details of the DNN pre-training process are 
illustrated as shown in Fig. 4. In order to monitor the health 
status of the production machine, the output layer of DNN 
that contains output targets for classification tasks is added. 
The output yk of DNN from the input data xk is expressed as:

where �M+1 is the parameter sets of the output layer.
Suppose that the output target of xk is dk . To approximate 

the output target, the BP algorithm is utilised to calculate 
the parameters in the DNN backwards. The error criterion 
is calculated by:

(1)𝜙AE(𝛼, 𝛼
�) =

1

K

K
∑

k=1

L
(

xk, x̂k
)

(2)L
(

xk, x̂k
)

=
‖

‖

‖

xk − x̂k
‖

‖

‖

2

=
‖

‖

‖

xk − g
𝛼�

(

f
𝛼

(

xk
))

‖

‖

‖

2

(3)yk = f
�M+1

(

hk
M

)

Table 3   The defined notations Notations Description

xk Input training sample for different lifecycle stages of production machine
K Unlabelled sample number for different lifecycle stages
f
�

Encoding function
� The parameter set of encoder network, � = {w, b} , w is the input weight 

matric, b is the bias vector
hk Encode vector
sf The activation function of the encoder network
g
�′

Reconstruction function
�
′ The parameter of decoder network, �� =

{

w�
, b�

}

 , w′ is the output weight 
matric, b′ is the bias vector

x̂k Reconstruction vector
sg The activation function of the decoder network
yk The output of DNN from the input data xk

M The number of hidden layers
dk Output target of xk

� Learning rate of the fine-tune operation
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where A =
{

�
1

,�
2

, ...,�M+1

}

 .  Through minimising 
�DNN(A) , DNN has achieved the fine-tune operation. As a 
result, the DNN model is trained. Furthermore, the param-
eter set A of the DNN can be updated through the learning 
rate � of the fine-tune operation, which is introduced to guar-
antee convergence in the update process:

4.4 � DNN‑based Intelligent Fault Diagnosis Method

The data and model explained in Sects. 4.2 and 4.3 are used 
to discover fault features. A parameter represents each with 
a value (or a set of parameters with values) that characterise 
a symptom of a fault or its causes. For instance, a parameter, 
processing depth of a tool, reflects a symptom, tool wear. A 
large amount of data related to the auxiliary parts and the 
operation parameters are used to learn complex correlations 
between the input multi-source data and fault symptoms to 
identify fault features. The procedure of the DNN-based 
fault diagnosis is shown in Fig. 5. This is expected to pro-
duce higher diagnosis accuracy due to the multi-source big 
data of the production machine, as stated at the beginning 
of Sect. 4.

Step 1 collects and standardises multi-sources data to 
be used for training samples. The standardised lifecycle 
data comprise the training set 

{

xi
DD

, di
DD

}K

i=1
 , where xi

DD
 is 

the i th lifecycle data sample of the production machine 
for training, di

DD
 is the health status label of xi

DD
 , and K is 

(4)�DNN(A) =
1

K

K
∑

k=1

L
(

yk, dk
)

(5)A = A − �
��DNN(A)

�A

the number of the lifecycle data sample. Step 2 trains the 
DNN models by using standardised lifecycle data. The 
unsupervised learning is used to pre-train M AEs layer-
by-layer to establish a DNN with M hidden layers. The 
number of input samples is the dimension of the unlabeled 
lifecycle data train set 

{

xi
DD

}K

i=1
 . Then, use the i th encode 

vector hk
i
 as the inputs to train the i + 1 th AE for initialis-

ing parameters of the i + 1 th hidden layer of the DNN, and 
obtain hk

i+1
 . The training process is shown in Fig. 4. This 

process is executed in turn until the Mth AE is trained to 
initialise the final hidden layer of the DNN. Meanwhile, 
the dimension of the output layer number is determined 
according to the number of health status samples of lifecy-
cle data for the production machine. The BP algorithm is 
used to fine-tune the parameters of the DNN, and minimise 
the error between output and labelled health status sample. 
Here, the design specification data of key components and 
auxiliary parts are used as the labelled sample. Step 3 
utilises the trained DNN to output fault diagnosis results 
and to predict the faults.

For the model updating module, it can be carried out in 
two ways. On the one hand, the real-time updated opera-
tion status data of production machines can be served 
as new training and test samples to train and update the 
model. On the other hand, the method of transfer learning 
can be used to modify and update the trained model so as 
to make it suitable for different fault diagnosis problems. 
By model updating module, the time of model training 
and fault diagnosis can be shortened. Moreover, model 
updating will help to discover more hidden fault features 
and to promote the implementation of dynamic prediction 
for product faults.

Fig. 3   Pre-training process of DNN (HL is the abbreviation of the hidden layer)
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5 � Application to a Real Case at a CNC 
Machine Manufacturer

5.1 � Overview of the Target Case Company

The case company is a leading CNC machine manufac-
turer in China. Over 100 key customers use the company’s 
CNC machines to process nearly 200 kinds of precision 
and high-end products: e.g., precision molds and specular 
machining. It is of utmost importance for the company to 
prevent a fault and to ensure the processing quality. The 
company was seeking a new way to realise the potential of 

sensing and using the operation environment data as well 
as using lifecycle big data for fault diagnosis, and therefore 
tested the new operation mode according to Sect. 3.

In this case study, some data and perspectives were 
collected and summarised from the semi-structured inter-
views with the general manager of the case company (also 
a co-author of this paper). Meanwhile, the general man-
ager participated in the whole processes of the case study 
with action research. The interview and action research 
allowed to enhance the validity of the case’s constructs 
and provided strong support to verify the effectiveness and 
feasibility of the method proposed in this paper.

// Step 1: In order to describe the pre-training process of M-hidden-layer DNN based on M AE, the subscript i is 

appended to the parameters to represent the ith AE.

Fig. 4   The flows of DNN pre-training
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5.2 � Configuration of the Smart Production Machine 
and Data Sources

For the simplicity of understanding but without losing gen-
erality of the principle, a certain type of CNC machine is 
selected to illustrate the solution of production machines 
intelligentialisation and multi-source data acquisition 
adopted by the case company. For example, multiple types of 
smart sensors are applied to configure a smart CNC machine 
and capture its multi-source operation data. The deployment 
information is shown in Table 4. In addition, this type of 
CNC machine is leased and shared in the predefined loca-
tion of the company by multiple customers, such as 3C small 
hardware industry, precision mode & die and electrodes 
industry, hard-cutting materials industry.

The proposed mode described in Table 1 was imple-
mented. Two types of data were used in the fault diagnosis: 
(1) design data, i.e., geometric tolerances and specifications. 
(2) NC system and sensor data obtained over 12 months, 
e.g., current of the spindle motor, geometric errors of WIP 
from probes, compressed air humidity from humidity sen-
sors, and temperature and vibration in a room from ther-
mometers and vibration sensors.

Figure 6 shows an example of real-time measuring of the 
geometric errors on the company’s CNC machines. In the 

machining process, the photoelectric touch probe is used to 
firstly measure coordinate values of a series of points from 
a WIP, and secondly calculate the processing depth of tools 
and the geometric errors of the WIP in real-time: e.g., a 
batch of 2 million pieces of products processing, each WIP 
picks up five measuring points and thus, 10 million geomet-
ric error data sets were produced.

An excerpt of the real-time measured geometric error 
data sets for this batch of processing products is shown 
in Table 5: the specified processing depth of a tool T01 is 
0.15 ± 0.02 mm. For the WIPs 00020 to 00029, the meas-
ured value of processing depth was within the tolerance 
(± 0.02 mm), while for WIPs 00235 to 00244, the measured 
value exceeded the tolerance.

In this case study, a 1-input 1-output 2-hidden 4-layer 
DNN was designed to identify the fault features of the pro-
duction machine. A total of 1500 data sets were extracted 
to train and test the fault diagnosis model. Based on experi-
ence settings, the structure of the DNN model is designed 
as [1500, 300, 64, 1], which means the established network 
contains 1-input layer (1500 neurons), 2-hidden layer (300 
and 64 neurons, respectively) and 1-output layer (1 neuron). 

Fig. 5   Procedure of the DNN-based fault diagnosis

Table 4   The deploy information of the smart sensors for a specific type of CNC

Sensor types Locations Measuring parameters

Photoelectric touch probe Spindle Geometric errors of WIP
Refractometer Cutting fluid cooling tank The concentration of cutting fluid
Liquid level sensor Cutting fluid cooling tank Cutting fluid level
Humidity sensor The compressed air inlet of the machine The humidity of compressed air
Temperature / vibration sensor Around the CNC machine Temperature and vibration of machine 

surrounding
Machine numerical control (NC) system – Spindle motor current and load torque

Fig. 6   Real-time measuring of the geometric errors of WIP
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To test the generalisation of the model, the data sets were 
randomly divided into the training data and the test data, 
among which training data accounted for 80%, and test data 
accounted for 20%. In the pre-training process, two AEs are 
used to initialise the weights and thresholds of hidden layers, 
and the maximum iteration number of the AE is set as 100. 
In the fine-tuning process, the maximum iteration number 
of the whole model is set as 300. As a result of these set-
tings, the DNN-based fault diagnosis model of the produc-
tion machine can be established.

5.3 � Results of Applying the Operation Mode 
and Procedure

The data mentioned in Sect. 5.2 was applied to the proce-
dure of Sect. 4.4. In this case study, the computational time 
of DNN model mainly includes three parts: (1) the param-
eters mapping time from the input layer to the first hidden 
layer based on AE1 (56.66 s); (2) the parameters mapping 
time from the first hidden layer to the second hidden layer 
based on AE2 (4.28 s); and (3) the fine-tuning time for the 
whole DNN model (11.59 s). Therefore, the total time for the 
establishment of the DNN model is 72.53 s. Meanwhile, the 
loss function value and the accuracy of the training data are 
0.3874 and 0.9205, respectively; the loss function value and 
the accuracy of the test data are 0.4375 and 0.8968, respec-
tively. The experiments were performed on a workstation 
(Intel(R) Core (TM) i7-7700 K CPU @ 4.20 GHz) with 32G 
of RAM, Windows 10 Enterprise Edition operation system 
with 64-bit, and Matlab 2017a was used to train and test the 
DNN model. The results are described for two fault features, 
spindle position accuracy decrease and spindle shaft break, 
as examples. It was found that there exist strong correlations 
between the tool wear versus the real-time measured WIPs’ 

geometric errors, tools’ processing depth, and spindle motor 
current and load. Details of the correlations are as follows.

Firstly, when the measured over-tolerance is continuously 
lower than -0.01 mm for either the WIP’s geometric error 
or the T01 tool’s processing depth, the tool was likely to 
be worn out. This can be understood as a cause and effect 
relationship between worn-out tools and the two kinds men-
tioned above of over-tolerance phenomena.

Secondly, as the tool wear increases, the spindle posi-
tion accuracy decreases. When the spindle load torque runs 
exceeding 45% of its full load torque for a long time after 
the tool was worn over 50% of the original width, the prob-
ability of spindle shaft break is significantly higher. This 
can be considered as a correlation between tool wear and 
spindle shaft break. When the tool worn width reaches a 
certain threshold (e.g. 50% of the normal width) the spindle 
shaft break is likely to occur. By analysing the load cur-
rent of the spindle motor, which reflects the spindle load 
torque, it was found that, when the tool wear width reaches 
45% -50% of its original width, the spindle load torque will 
reach 40%-60% of its full load torque. This appears a near-
linear growth. As the wear increases, the tools are gradually 
drifting away from the surface of WIPs. Consequently, the 
spindle load torque will drop to 0% while processing WIP. 
This signifies a high risk of the shaft breaking and the tool 
must be changed immediately. For the experiment batch of 
processing among 2 million pieces, the spindle shaft break 
occurred due to worn-out tools five times.

Thirdly, as the compressed air humidity increases, the 
spindle faults are more likely to occur. This makes sense, as 
the higher humidity causes more internal rust of a spindle. 
Together with controllers of the humidity, the procedure 
contributed to decreasing the frequency of the spindle faults: 
from 120 times to less than three times per year and per 1000 
CNC machines.

Table 5   Excerpt of the real-time measured geometric error data sets

WIP ID Tool ID Specified value (mm) Measured 
value (mm)

Deviation WIP ID Tool ID Specified value (mm) Measured 
value (mm)

Deviation

… T01 0.15 ± 0.02 … … … T01 0.15 ± 0.02 … …
00020 0.15 0 00235 0.12 – 0.03
00021 0.16 0.01 00236 0.12 – 0.03
00022 0.16 0.01 00237 0.11 – 0.04
00023 0.15 0 00238 0.12 – 0.03
00024 0.14 − 0.01 00239 0.11 – 0.04
00025 0.15 0 00240 0.11 – 0.04
00026 0.15 0 00241 0.11 – 0.04
00027 0.15 0 00242 0.11 – 0.04
00028 0.14 − 0.01 00243 0.12 – 0.03
00029 0.15 0 00244 0.11 – 0.04
… … … … … …
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The procedure was applied in real-time, and the feed-
back control was realised to predict and prevent the faults in 
advance. According to historical product faults, a large-scale 
knowledge base can be established by the PSS provider. By 
designing and creating a knowledge learning, sharing and 
self-optimisation mechanism among all product users, the 
high-quality fault diagnosis model can be trained using a 
small amount of newly marked data. Therefore, the migra-
tion among similar knowledge can be realised timely. The 
shared and migrated knowledge can provide valuable assets 
for PSS provider to carry out feedback control, fault diag-
nosis and fault prediction. This is difficult to carry out under 
the traditional PSS mode, due to the products are usually 
distributed in different regions and factories.

Table 6 compares the efficiency and effectiveness of the 
fault diagnosis. It can be seen from Table 6 that the fault 
prediction time can be greatly reduced by using the pro-
posed method in this paper. Based on the semi-structured 
interviews with the general manager of the case company, 
the motivations and advantages for reducing the time for the 
prediction are analysed and summarised as follows:

1) By reducing the fault prediction time, the tempo-
rary shutdown caused by accidental failure can be avoided 
to ensure smooth production and improve production 
efficiency.

2)The product faults can be located and eliminated in 
advance. Therefore, the risk of damage to other parts and 
the whole system caused by one part fails can be avoided.

3)A high maintenance cost caused by breakdown main-
tenance can be avoided. Meanwhile, it can reduce the threat 
to personal safety operators.

6 � Discussion

The proposed operation mode and procedural approach were 
found effective, as shown in Sect. 5.3. Compared with other 
works, e.g. [30], the main difference lies first in the cov-
erage and the source of collected data. The mode enables 
access to operation status data of non-key components (e.g. 
auxiliary parts), design data, WIPs’ geometric error data, 
and operation parameters (e.g. compressed air humidity) and 
operating environment data. The procedural approach with 
the collected data allows the PSS providers to find more 

fault features and to find conventional fault features within a 
shorter time. Therefore, the DNN-based machine diagnosis 
can improve the PSS performance by minimising the mainte-
nance cost [59] and making machine tool more durable [60]. 
The other main difference is adaptability: the data and pro-
cedure need no prior definition of a specific problem to be 
found tending to focus on data from the key components. For 
instance, improper setting of the operating environment that 
leads to a fault of a key component but is usually overlooked 
can be detected to prevent the fault. The accessible product 
data, procedural approach and advanced operation mode 
as a trichotomy are the keys to exploit the potential of the 
big data. It should be emphasised that the provider’s unique 
knowledge about possible causes for the faults is effectively 
utilised in the proposed mode, in particular, regarding where 
to install appropriate sensors. Lastly, it is evident that what 
cannot be measured cannot be addressed: e.g. under micro-
cutting, the change of spindle load torque is too small to be 
measured, and therefore, fault diagnosis of tool wears and 
spindle shaft break in these conditions are not applicable.

According to the semi-structured interviews with the 
general manager, in the past, even though all machining 
parameters of the machines were set in a suitable range, 
the final product sometimes failed in reaching the required 
precision. By applying the new mode and procedure with 
big data, more fault features were found and thereby, the 
fault diagnosis performance was enhanced. In addition, 
through the advanced operation mode and DNN-based 
machine diagnosis, the case company performed active 
preventive maintenance to eliminate the faults earlier and 
ensure the fluency of production processes. This has moved 
them from planned corrective maintenance to proactive and 
smart maintenance planning, and reduced their maintenance 
costs and customers’ use costs while substantially reducing 
material’s and production time wastage. The general man-
ager also stated that they could share machining technology, 
technical solutions, and even lean management patterns in 
real-time. These have brought more profits and created more 
and more value-added service for them. Although a sub-
stantial amount of cost and effort is needed to invest in the 
new operation mode, the benefits outweigh the investment. 
It should be noted that collecting the big data provides the 
manufacturer with additional benefits such as providing new 
ideas for R&D. Further, other potential benefits of this mode 
exist: e.g., the usage rate of CNC machines can be increased 
because of the shared use, and thereby resource efficiency is 
expected to increase.

The disadvantages of the proposed mode include the 
customer’s need to transport the inputs to and outputs 
from the machine between the machining site and the cus-
tomer. Another downside is the risk of a customer’s sensi-
tive information (e.g. what are produced by the machine) 
being revealed to the provider. These give a limitation to the 

Table 6   The time (seconds) for fault prediction with and without the 
procedure

Tool wear by 
geometric error

Tool wear by 
spindle load

Spindle fault by 
compressed air 
humidity

Without 120 s—180 s 480 s—720 s Not available
With  ≤ 30 s 60 s—120 s  ≤ 5 s
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adoption of the proposed mode. However, most of the cus-
tomers have long-term cooperation with the case company 
and highly trust them. Therefore, this issue was minor as 
compared to the benefits they can gain as explained, such as 
the provider’s unique knowledge utilised within the mode. 
Meanwhile, the emerging Blockchain technology [61, 62] 
could establish a trust mechanism between the customers 
and the PSS providers and solve the data security problem. 
In addition, the authors found that the Recurrent Neural Net-
work, such as 3D Convolutional Neural Network [63, 64] or 
Long and Short Term Memory [65, 66] with recursive struc-
tures can be used to extract temporal features from histori-
cal data and to simulate the temporal relationships between 
individual data points clearly. Therefore, the recursive struc-
tures will be considered and involved in the future to make 
the hidden layers of DNN model to achieve self-invocation 
across time nodes. This is very important in improving the 
accuracy of fault diagnosis and fault prediction and better 
implementing the preventive maintenance strategy.

7 � Conclusions and Future Works

The PSS has become a pervasive business strategy among 
manufacturers, enabling them to improve their sustainable 
competitive advantage and to avoid the potential defect of 
products. However, with the wide application of sensors and 
wireless technologies, the PSS provider faces many chal-
lenges. For example, within existing PSS, there is a lack of 
an appropriate operation mode that combines available data 
collection approaches and efficient data analytics to show 
and assess the real potential and value of the operation and 
maintenance big data of different products, different custom-
ers and different conditions.

To solve the challenges mentioned above and problems, 
this article proposed a new PSS-based operation mode 
and a procedural approach for fault diagnosis using deep 
learning and lifecycle big data to enhance maintenance per-
formance. They were validated with a real case by a CNC 
machine provider. This can be seen as one way of optimis-
ing a production system to improve planning and manage-
ment. The main contribution lies in advanced scientific and 
practical knowledge for how BDA can create value through 
an appropriate operation mode. The operation mode here 
involves organisational issues such as ownership, location, 
and machines operator.

Future works will focus on the following three aspects. 
The first is to explore the approaches of dynamic scheduling 
and allocation of production resources (including personnel, 
equipment, technology, service, etc.) within the proposed 
operation mode, so as to maximise the utilisation rate of 
these resources (as stated in Sect. 3). The second is to inves-
tigate the mode’s effect on resource efficiency as stated in 

Sect. 6 considering environmental sustainability. In the case 
study, the model is only trained by one work element. There-
fore, the third is to verify the generalisation of the proposed 
model based on different datasets or different work elements.
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