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ABSTRACT
Designing useful human-AI interaction for clinical workflows re-
mains challenging despite the impressive performance of recent
AI models. One specific difficulty is a lack of successful examples
demonstrating how to achieve safe and efficient workflows while
mitigating AI imperfections. In this paper, we present an interactive
AI-powered visual search tool that supports pathologists in cancer
assessments. Our evaluation with six pathologists demonstrates
that it can 1) reduce time needed with maintained quality, 2) build
user trust progressively, and 3) learn and improve from use. We
describe our iterative design process, model development, and key
features. Through interviews, design choices are related to the over-
all user experience. Implications for future human-AI interaction
design are discussed with respect to trust, explanations, learning
from use, and collaboration strategies.

CCS CONCEPTS
• Human-centered computing → Empirical studies in inter-
action design; • Applied computing → Life and medical sci-
ences; • Computing methodologies → Machine learning.
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1 INTRODUCTION
Recent machine learning (ML) techniques have achieved near expert-
level predictive accuracy on several medical imaging tasks [1, 21,
34]. However, certain shortcomings make current probabilistic AI
models imperfect and create challenges for translating experimen-
tal results into clinical workflows. For instance, unknown subsets
of cases in real practice can cause unpredictable errors [24, 28].
Due to variability in manual processes and equipment changes, the
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predictive capability can also decay over time [27, 32]. As an alter-
native to computational methods for creating models with less bias
and better generalizability, successful user interfaces for human-AI
interaction could help physicians deal with these “imperfections”
[6] while still employing the technology to increase positive patient
outcomes.

Successful human-AI interaction is, however, difficult to design
due to the need to balance trade-offs between exploiting AI capabil-
ities and mitigating its imperfections [39]. Designers report being
hampered by a lack of design patterns, prototyping methods and
examples of user interfaces matching AI capabilities to user value
[11, 37, 38].

This paper presents Rapid Assisted Visual Search (RAVS) – a
human-AI interface that utilises an imperfect model’s strengths to
aid digital pathologists in assessing colorectal cancer. Specifically,
we address the task of searching regional lymph nodes for signs
of tumour metastasis, a process routinely performed after surgical
resections [10].

To create RAVS, we adopted a design-led approach where ideas
on technical properties and interactive behaviours were prototyped,
refined, and assessed in an iterative process in collaboration with
pathologists. The process included data collection from retrospec-
tive cases, model development, workplace observations, interaction
design, and system development. We describe RAVS through its
computational components and user interface features. To concisely
motivate features, we annotate them with insights gained from the
explorative design process.

Evaluation with six pathologists demonstrates that RAVS can
reduce review time with maintained quality. Our interviews reveal
that users could adapt their trust progressively by being in control of
decision-making, sensitivity, and the AI-features used. Additionally,
human-AI systems that allow user-corrections of predictions can
theoretically improve through the data collected in use. However,
care must be taken to incentivise such action without negatively
affecting the user experience [19, 40]. We designed RAVS to make
this aspect effortless. In a computational evaluation, we show that
the usage logging in RAVS can indeed improve predictive accuracy
on future cases.

In summary, the main contributions of this paper are:

• Rapid Assisted Visual Search (RAVS), a human-AI user inter-
face for low-prevalence search tasks that is compatible with
imperfect AI models and can learn from being used

• An empirical evaluation showing that our system is fast, ac-
curate and helpful in aiding pathologists assessing colorectal
lymph nodes for signs of tumour metastasis
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2 RELATEDWORK
2.1 Artificial Intelligence for Digital Pathology
The CAMELYON challenge and the associated datasets attracted nu-
merous ML-researcher’s to the task of identifying tumour metasta-
sis in lymph nodes [2, 20]. Most high-scoring approaches utilise ma-
chine learning using convolutional neural networks (CNN), some-
times adding random forests for the final classification [2]. One
particularly strong approach has been the LYNA [21] method that
overall performed well, but produced occasional failures due to out-
of-focus or scanning artefacts. Similar CNN-based approaches have
demonstrated impressive performance in experimental settings for
other digital pathology tasks, such as, Ki67-scoring in breast car-
cinomas [18], performing Gleason grading for prostate biopsies
[5] and identifying basal cell carcinomas [8]. However, there is
relatively little evidence to assess whether and how these could be
useful in a clinical setting where there might exist sociotechnical
challenges [3], more considerable variations in image quality and
rare target phenomena.

In some systems, the predictive components only partly aid the
task, assisting the operator in what is sometimes called human-
in-the-loop systems. In a study of one such system, the efficiency
and quality effects of using the LYNA model with an AI-powered
user interface was evaluated and shown to reduce review time, but
only for a small subset of cases [33]. The assistive system consisted
of a zoomable user interface visualising regions of interest using
bounding boxes, color-coded for prediction certainty. In a system
for Gleason grading, AI assistance increased concordance for most
observers [4]. In a study of a content-based retrieval system for
pathologists, the system demonstrated potential to resolve some
difficult decisions by allowing users to refine results interactively
[6]. While these works confirm that human-AI interaction can yield
improvements in some situations, the larger factors contributing to
success remain mostly unknown. Further work is needed to under-
stand the gap between potential benefit in experimental settings
and systems that can improve patient outcomes in clinical use.

2.2 Designing Human-AI interaction
A growing body of research addresses more general design and
human-computer interaction challenges in using predictive models
to interactively aid users. For instance, the presentation style of
decision aids can affect human-AI ensemble performance [15]. Some
have suggested guidelines that aid designers when seeking desirable
properties and behaviours, including recommendations for treating
prediction failures [1, 12, 30]. Within the explainable AI domain, the
black-box nature of machine learning-based models is commonly
identified as a threat to user trust and decision accountability, and
several explanatory strategies have been proposed to mitigate this
issue [7, 17, 26, 36].

Traditional user-centered design methods are challenging to
apply to human-AI interactions, partly due to the predictive com-
ponent being central to the overall experience and a lack of viable
low-fidelity prototyping methods to simulate realistic prediction
behaviour [11, 39]. Few works present high fidelity design concepts
or user interface patterns that are explicitly useful over a more
extensive range of human-AI interactive systems and associated
tasks.

Especially relevant for our targeted search task, Forlines and
Balakrishnan [14] presented and evaluated three techniques, all
based on segmenting objects and recombining them in novel ways.
Notably, a grid-based layout slightly improved error rates on low-
prevalence tasks without a speed penalty, while a Rapid Serial
Visual Presentation [31] technique further improved error rates,
but at the cost of search time.

3 DESIGN: RAPID ASSISTED VISUAL SEARCH
In this section we describe the development of our predictive model
and the design of the user interface that aims to utilise the strengths
of the model together with a human in the loop for a visual search
task.

3.1 Background: Assessing Lymph Nodes for
Tumour Metastasis

Colorectal cancer is the third most common cancer worldwide and
second in terms of mortality [9]. The most common treatment is
surgical removal of the tumour and surrounding tissue. During
this procedure, regional lymph nodes are also removed to assess
whether the tumour has spread to the lymphatic system. If the
tumour has spread, the patient will be offered chemotherapy or
other adjuvant therapies to increase life expectancy.

As part of regular procedure, at least 12 lymph nodes are ex-
tracted, cut into multiple thin sections, placed on glass slides and
subjected to microscopic examination by a pathologist [10]. In re-
cent years, several clinics have started using high-resolution scan-
ners and viewing the resulting gigapixel images through a zoomable
user interface on a computer workstation instead of a microscope
[35]. For an example, see Figure 1.

Assessing lymph nodes for signs of tumour metastasis can be
characterised as a search task where the goal is, for each lymph
node, to determine whether a target (a tumour-positive region)
is either present or absent. If a target is found, the search can
immediately continue to the next lymph node. Positive regions can
be small. Thus, to determine target-absent, the pathologist will need
to systematically review the entire specimen in high magnification
or use some internal threshold of “done” to decide when they have
reviewed it in enough detail. When all nodes are examined, the
lymph node status is reported as the number of nodes examined
and number of nodes positive.

In general, search tasks can be characterised by the frequency of
targets. In the clinically representative dataset used for this study,
only five percent of sections were positive. Low prevalence, when
the sought object is rare, has been associated with a detrimental
effect on sensitivity [13].

To perform this assessment of lymph nodes in a typical digital
pathology system, pathologists must click each image of a case,
identify and navigate to a lymph node section and then search the
zoomable image for signs of cancer. During this process the patholo-
gist must keep track of the number of normal versus positive lymph
nodes observed. The process is visually depicted in the top part of
Figure 3. Determining lymph node status is only one part of the
work that the pathologists perform on the case, which also includes
grading and classifying the primary tumour and documenting any
accidental findings.
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Figure 1: Scanned lymph nodes. (left) Two sections cut from resected lymph nodes are shown at 1X magnification. A yellow
rectangle indicates the viewport shown to the right, which shows a tumour region in 10X magnification.

3.2 Design Goal
Our primary goal was to support pathologists when assessing
lymph nodes for signs of tumour metastasis, intending to help
them classify each node as either positive (target-present) or nega-
tive (target-absent) and report the total. In this process, the quality
of the outcome and the speed at which decisions can be made are
important. Hence, when compared to the current manual approach,
our design might improve speed, quality or both. We derived sec-
ondary desiderata from what might be barriers to clinical adoption
of AI-assistance:

• That the pathologist feels in control and confident in the
decision-making.

• That the pathologist can explain how they received support
for a particular case.

• That the pathologist can choose the level of support by as-
sessing when the tool should be used or not.

Additionally, we also sought to design the interaction so that the
AI component could learn from pathologists through use.

3.3 Design Process
Overall a user-centered design methodology was used in combina-
tion with computational experimentation, including data extraction,
annotation and supervised machine learning. During the design
phase, we used both low- and high-fidelity prototyping. However,
our experiences with paper-based sketches led us to use interactive
prototypes earlier and to a higher degree than is typical for non-
AI-based designs. One primary collaborator, a junior pathologist,
provided formative input in monthly sessions for eight months.
In addition, we performed formative evaluations of interim high-
fidelity prototypes. One version was evaluated with three patholo-
gists, and a later version evaluated by two pathologists. We used
an explorative design approach to discover requirements and itera-
tively construct an interactive assistive tool.

3.4 Model development
The behaviour and achievable performance of predictive models
can be hard to prototype using low-fidelity methods [11], and our
experiences second this. To reach similar performance as reported
from prior studies on breast lymph nodes, we wanted a “good
enough” tumour classification model for colorectal lymph nodes.
As no dataset was readily available, we extracted 977 images from
39 patients, and one pathologist annotated normal and tumour
areas. The dataset, including images and annotations, has been
published separately as AIDA-LNCO [22]. We applied supervised
machine learning using a simple four-layer convolutional neural
network with standard colour and geometrical data augmentations.
As described in the next section, our user interface depends on
relative rather than absolute prediction values. Thus, to avoid over-
confidence, we added an entropy penalty to our loss function [25].
Additionally, we combined eight models trained with small varia-
tions in hyperparameters into an ensemble. The model achieved an
area under the ROC curve (AUC) of 99.5% on a test set, see Figure
2. Operating at perfect sensitivity, that corresponds to an accuracy
of 97.3%.
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Figure 2: Receiver operating characteristic (ROC) curve for
ourmodel. (left). The green line shows ourmodel’s ability to
discriminate positive from negative sections at varying dis-
crimination thresholds. (right) Same curve focused on the
top-left corner.
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Our model’s performance is comparable to other works on iden-
tifying tumours in lymph nodes. For instance, LYNA achieved an
AUC of 99.6% on sentinel lymph nodes from breast [21]. While this
predictive accuracy can appear high, the number of false positives
is likely unacceptable for clinical use. For instance, in the study by
Steiner. et al. assessing an AI-assistant for breast lymph nodes, all
but one pathologist had perfect specificity in the manual condition
[33].

3.5 System Description
Rapid Assisted Visual Search (RAVS) is conceptualised as a tool
that can be opened by the pathologist as part of her regular digital
pathology system. We chose to situate RAVS as an opt-in tool since
the assessment of lymph nodes is only one part in the larger process
of reviewing a case from a colorectal resection.

In RAVS, the use of ML-models assists the user in multiple non-
overlapping ways:

• Navigation between lymph node sections across the case,
regardless of which image they were captured in

• Navigation to AI-suggested regions that need to be reviewed
to determine tumour-present or absent (normal)

• Visualisation of progress throughout the case, including the
regions or sections that will be reviewed next

• Keeping track of the current count of positive, normal and
unreviewed sections

We intentionally designed the system not to recommend de-
cisions or reveal the AI’s prediction for sections and suggested
regions, in order not to bias the pathologist and enhance their sense
of control. The manual and assisted workflows are summarised in
Figure 3.

The user interface of RAVS, depicted in Figure 4, has an overview-
detail layout with lymph node sections and detected regions of
interest in the overview pane. The detail pane holds a zoomable
user interface, with a viewing position controlled by the overview
pane. At the beginning of a new case, the tool selects the first
lymph node section, which fills the entire detail pane. The primary
means of navigation is to mark the viewed area as target-present
or absent by pressing ’1’ or ’space’, respectively. As soon as any
part of the section is marked as positive (target-present), the user
is immediately moved to the next section. For each new section,
the view always starts at an overview showing the entire section.
If ’space’ is pressed, the user will continue to the first region of
interest within the current section. If all regions of the section
are marked as negative, the section is marked as negative and
navigation continues to the next section in the overview. The tool
shows the current tally of positive, negative and unseen sections.
All navigation operations are visualised through short zoom-and-
pan animations that fluidly move the viewport to the new positions.
Additionally, the user can mark sections or regions as ’later’, which
defers decisions but makes them easy to return to at a later point.

The computational part of the system consists of lymph node
segmentation that identifies sections on each image, tumour clas-
sification that results in a positivity map, region of interest seg-
mentation that determines the extent of each positive region in the
positivity map and finally, region scoring that determines which
regions are shown, and in what order.

Overall, the design intent has balanced trade-offs between op-
portunities and challenges uncovered during the iterative design
process. We next briefly describe some specific features together
with the insights from the design process that motivated them. The
system implements some well-known HCI principles and concepts:
Rapid Serial Visual Presentation [14, 31],Overviewfirst, then
details on demand [29] and Reversible actions [30].

Furthermore, the system implements several human-AI interaction-
specific features that are less established. We call our key features:
Manual any time,Visualise just enough detail,Hide underly-
ing probabilities,Always show regions,Order by probability,
Incremental sensitivity and finally Learn from use.

3.5.1 Rapid serial visual presentation. Allow for rapid navigation
using the keyboard. Place phenomena of interest in the same screen
position to avoid excessive eye movement. Motivation: Afford a
time-efficient and ergonomic workflow, without losing accuracy.

3.5.2 Overview first, then details on demand. Present the user inter-
face in an overview-detail layout. In addition, during RSVP, present
section overviews for each new section before continuing to de-
tected regions. Motivation: Keep track of where you are. If the
classifier fails, allow using section navigation and counting aid
only, ignoring suggested regions.

3.5.3 Reversible actions. Allow going back through the overview
panel or by pressing the back arrow on the keyboard.Motivation: It
is known that RSVP is associated with errors due to being too fast
[13].

3.5.4 Manual any time. The tool is designed as an opt-in tool. The
user can navigate and use other tools at any time. Pressing one of
the RSVP keys continues the rapid sequence. Motivation: Reality
is messy. The model or other components may fail unexpectedly,
requiring a fallback option. The work might be interrupted. Addi-
tionally, there might not be enough trust to use RAVS.

3.5.5 Visualise just enough AI detail. Only show low contrast boxes
around a few regions of interest. Make region of interest algorithm
consider both the pixel predictions and the viewport that a human
can see without excessive eye movement. Draw the box around
that viewport, rather than the bounding box of positive pixels.
Motivation: Too specific detection regions, e.g., showing detections
as polygons or visualising output as a heatmap, might decrease trust
and drive behaviour that overemphasises details of the prediction
rather than keeping the medical image as the center of attention.

3.5.6 Hide underlying probabilities. Do not show uncertainty or
probability explicitly, e.g., through colour-coded boxes, as percent-
ages or a recommended label. Motivation: Confirmation bias might
lead to reduced specificity. Also, ensure that pathologists feel in
control of the final decision.

3.5.7 Always show regions. Always show N regions even if they
are likely normal. Initial N can be derived from the performance of
the model depending on needed sensitivity. Show the regions with
the highest probability of containing tumour, even if they are close
to zero. Motivation: Filtering detections at some threshold would
lead to many normal sections without any detections. If the trust in
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Figure 3: Comparison of manual (top) and assisted (bottom) workflows. During manual review the pathologist clicks each
image, locates lymph nodes, searches each node for cancer and keeps a tally of present and absent findings. In the assisted
workflow using RAVS, the pathologist marks viewed areas as target-present or absent, navigation and tally are automatic.

Figure 4: RAVS User interface. An overview of sections and selected regions are shown on the left. On the right side, a detail
pane shows the scanned image in a zoomable user interface. Selected regions are also shown here as bounding boxes with a
low-contrast orange color. At the top left of the detail pane, the current position of the viewport is shown in relation to the
current image.
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the system is not enough, the user might revert to slower manual
review.

3.5.8 Order by probability. Order detected regions within each
section by the probability assigned by the model. Ensure that model
training does not produce overconfident models.Motivation: Afford
a time efficient workflow; if a positive region is confirmed, the
user can proceed to the next section. Additionally, when underly-
ing probabilities are hidden, the user needs some implicit way of
assessing the quality of predictions in order to adapt their trust.

3.5.9 Incremental sensitivity. Allow controlling sensitivity through
the fixed number of shown detection regions. A smaller N is used
initially. If the case has many positive sections, stop after one round
through the case. If no or few positives are found, the user can
increase the sensitivity and go through negatives once more. Moti-
vation: Pathologists need varying precision depending on the case
at hand. If a case already has a high number of positive lymph
nodes, finding more will not affect treatment decisions. If the case
appears negative, increasing sensitivity is only one of several op-
tions, which also include re-reviewing suspicious regions marked
as ’later’ or ordering additional immunohistochemical treatment of
the tissue. Also, controlling sensitivity this way allows adaptation
to models of varying performance.

3.5.10 Learn from use. Provide an automatic tally. Motivation:
Since the tool can be used with varying automatic support, create
an incentive for marking both positives and negatives using the
tool so that training data can be collected in use.

4 EVALUATION
4.1 Data
We wanted to evaluate RAVS on cases that reflect regular clinical
review that a deployed system might encounter. We retrospectively
extracted 50 chronologically consecutive cases from patients that
had confirmed colorectal adenocarcinomas and had undergone
surgical removal with subsequent review of lymph nodes. In order
to reflect a dataset shift that might occur, we set the start period
to be one year after the most recent case in the dataset that was
used for model training. This dataset has separately been published
as AIDA-LNCO2 [23]. From the set of 50 consecutive cases, we
randomly sampled 14 cases for use in the user study. After the
experiment, we assessed ground truth showing that out of the 14
cases, seven were positive in the sense that they had at least one
positive section. There were in total 675 lymph node sections, out
of which 35 were positive, corresponding to a target prevalence of
5.2%.

4.2 Participants
We contacted ten pathologists or pathology residents. One declined
directly. Nine responded that they could participate, and six com-
pleted the study. Participants received no reimbursement. Four par-
ticipants were pathology specialists. Two participants were pathol-
ogy residents, one in their final year and the other in the second
year. The second-year resident had over five years of microscopy
experience from another specialisation. Out of the four pathology
specialists, two had less than five years of experience, and two had

over ten years of experience. The participants were from four dif-
ferent medical centres in Sweden. Four of the participants worked
in departments where they used digital pathology systems daily.

4.3 Method
The experiment placed participants in a balanced within-subject
design reviewing all cases both manually and using RAVS in an
assisted condition. The washout period was at least one week. We
measured efficiency as time taken per section, derived from usage
logs. To measure quality, we asked participants to count and score
sections individually as positive or negative. The ground truth
was compiled after all participants had finished the experiment.
For each section, a full consensus was accepted as truth. Sections
without consensus were sent to one senior expert in gastrointestinal
pathology who determined the truth.

The manual condition was performed using a commercial clinic-
grade digital pathology viewer without any AI assistance. The
experiment was self-paced and done unattended over a web inter-
face. Participants received training material in both written form
and as video recordings. The material covered the experiment, the
assistive tool and the underlying model, including its performance
on the test set. Participants were also given five cases to train upon
before commencing the study.

In the assisted condition, we did not allow manual control of
the sensitivity setting, as it might make the quality-speed trade-off
difficult to analyse. Instead, the cases were initially shown with
four regions. In order to gain qualitative insights into the use of
incremental sensitivity, when the participant had finished the case,
they were shown a dialog asking whether they would like to re-
review the case at a higher sensitivity. Regardless of their answer, a
higher sensitivity setting showing eight regions was always enabled.
Unless otherwise stated, we report efficiency and quality outcomes
of the first iteration with four regions.

Additionally, we scored the model in an autonomous AI con-
dition. We used the maximum probability to score sections. The
discrimination threshold value was set to the one yielding the
minimum number of false positives at a sensitivity above 97%, as
observed on the test set of our model training.

After the experiment, we conducted one-hour semi-structured
interviews. In the first part, questions centred on trust and patient
safety, viability for clinical practice and the overall experience. In
the second part, we showed a few design alternatives to spark
discussions on automation issues such as confirmation bias and
being out of the loop. Alternatives included a prototype where
high-probability positive regions were explicitly highlighted and
where very low-probability regions had been hidden altogether.
We also showed probability heatmaps of normal cases and a case
where the model’s output was problematic. Audio recordings were
transcribed and analysed inductively for salient insights on the
interaction experience.

We analysed the relationship between condition and time taken
through a mixed effects model in R. Time taken per section was the
dependent variable, condition and session (first or second) were
fixed effects. Images were treated as random intercepts, subjects-
condition as random slope. P-values were obtained by the likelihood
ratio test using the anova function in R, comparing the full model
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to a null model with the fixed effect of condition removed. We did
not perform statistical inference on quality outcomes.

Half of the time-measurements from one participant were ex-
cluded due to severe network issues during one of the four blocks.
We excluded two images (four sections) from the analysis alto-
gether since they contained tumour deposits and not lymph nodes,
a scenario not covered in the instructions.

4.4 Findings
We report quantitative measurements in terms of quality and ef-
ficiency. Next, findings from interviews are related to RAVS key
features and grouped by four identified themes: Transparency and
trust, Workflow and control, Algorithms in the loop and Towards
clinical use.

4.4.1 Quality and efficiency. The mean sensitivity in the manual
condition was 95.2% compared to 99% in the assisted condition.
Specificity was 99.9% in both conditions. In the assisted condition,
two participants missed one positive section. Most positives were
detectable in the first suggested region. For the 35 positive sections,
31 were identified as tumour in the first region, two in the second,
one in the third and finally one in the fifth. Results are presented in
Figure 5. We also evaluated the model in an autonomous condition
using a pre-determined threshold. All participants outperformed the
model in terms of specificity in both manual and assisted conditions.
In terms of sensitivity, one junior pathologist scored below the
model in the manual condition.

In terms of efficiency, using RAVS is significantly faster (p < 0.05)
than manual review, corresponding to only needing 35% of manual
reviewing time. When using a sensitivity showing eight instead of
four regions, the mean time was on average increased with a factor
1.75, corresponding to the second pass adding 80% of the time of
the first pass.

In summary, RAVS enabled participants to utilise the AI’s pre-
dictions to work faster with maintained quality, even though the
predictive accuracy of the model was below pathologist levels.

4.4.2 Transparency and trust. By always showing regions, par-
ticipants were by repeated exposure able to explicate patterns in
regions by correlating them to the phenomena detected as well as
point to some problematic positives. They also formed an opinion
on the trustworthiness of the model by utilising the order in which
regions were presented. For example, they commonly mentioned
the order of positives: “True tumour is always in the first region” (P1)
and explicated characteristics of normal regions: “Typical false posi-
tives are germinal centers and histiocytes. They can look a little weird.
Novice pathologists usually react to these as well. It feels reasonable
if it must select something in a normal that it goes with the germinal
centers” (P2). Some participants formed new strategies based on
these learned characteristics, exploiting them for speed: “Whenever
it was showing me detections only in germinal centers in the overview,
I would just step through it really quickly. Click-click-click. I wish
there were an option to accept it as negative straight away.” (P4)

However, they struggled with determining what would indicate
a risk for an individual lymph node section and what could indicate
that the model had some global flaw. They sought to understand
potential risks but lacked certainty in identifying a malfunction:

assisted
manual
autonom-v1

Condi�on

0.0% 1.0% 2.0% 3.0% 4.0%0.5% 1.5% 2.5% 3.5%
False posi�ve rate

70%

80%

90%

100%

75%

85%

95%

True posi�ve rate

as
si
st
ed

m
an
ua
l

Condi�on

0

2

4

6

8

10

12

14

16

18

20

22
Time per sec�on (seconds)

Figure 5: Quality and efficiency results. The left part shows
the true and false positive rates of six participants under
manual (orange diamonds) and assisted (blue circles) con-
ditions. The figure also includes the result of the model at
a pre-defined threshold (green cross) and the effect of vary-
ing the discrimination threshold (green line). Three partic-
ipants achieved a perfect score in both conditions. To the
right, the average review time per section in seconds are
shown for manual and assisted conditions. Error bars indi-
cate 95% confidence intervals.

“You are sometimes surprised when it points out areas where there can
be nothing, like fat, or some dirt on the glass. Then one thinks, if this
was in real use, I would worry. It feels like it is looking at the wrong
things.” (P2). “It is picking thick slices, those could look like artifacts
and a tumour could be hiding, I don’t know if that’s a risk or not” (P1).
As participants correctly concluded, these situations could indicate
that the model was failing, or it could just be a consequence of
the section being fully normal. Without further information, users
were on their own to decide whether to fall back to manual review
or risk missing a positive.

Incremental sensitivity, going through the case in multiple
passes with increasing sensitivity, built trust for sceptics: “I am a bit
suspicious, like, how can I be sure if I don’t look at everything. In the
beginning I answered yes, but later I was like - no - this is good enough.
I changed my mind faster than I thought I would by going through it
a few times.” (P5). Others used it as a precaution “I answered Yes,
against my gut feeling, just to be confident” (P3). However, having the
second pass forced upon them was perceived as a nuisance to those
who had already placed high trust in the system: “Going through
280 regions was boring, having to do it again, then it’s even more
boring than manual review” (P1). Only one participant explicitly
mentioned using it for the purpose we had intended - to be sure of
all-negative cases: “I answered yes sometimes. If I had already found
some nodes with cancer, it does not matter for the treatment of the
patient if I find one more, then I answered no.” (P6).

4.4.3 Workflow and control. All participants preferred using the
tool over manual review, but the reasons varied. The junior pathol-
ogists experienced a reduced effort: “It wasn’t as demanding. I could
focus my energy and use it for smarter things. It was more fun” (P5).
Senior pathologists preferred only the section navigation and count-
ing aids “It will make my work faster. But I don’t need the regions, it
doesn’t need to identify cancer. That it can give me the lymph nodes,
so I don’t have to navigate, that’s enough for me.” (P6).
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They explicitly mentioned viewing the lymph node in overview
first with retained manual control as essential. Counting was
also helpful, with some even identifying manual counting as a risk
to patient safety. They also expressed a preference for having the
tool only when they opened it, giving them the option when to use
it at all.

4.4.4 Algorithms in the loop. In order to facilitate discussions on
automation issues, we showed participants a number of rejected pro-
totypes. When shown an alternative prototype that highlighted the
most positive regions by a colour-coded border, to our surprise, most
expressed a preference for that alternative. When explicitly asked
if this could lead to confirmation bias or risk of over-exploitation,
most cited their work ethic and the vigilance required by their pro-
fession as natural barriers to such behaviours; “If I find positives,
the patient receives chemotherapy, and if I do not they are considered
done. Finding these cancers are really important. I don’t think any
pathologist would do that [over-reliance] just to get a longer lunch.”
(P4).

While many deemed that it would save time to not always show
regions by removing some clear negatives, most also suggested
that they or their environments would not be ready for such high-
automation measures; “It is tempting, but I don’t think we are ready
for that. It needs to show one or two [suggested regions] just to make
me feel confident.” (P3).

We did not receive a clear indication of whether the interface
could cause out of the loop issues, such as novice pathologists never
learning the more efficient strategies of seniors. Some thought it
could cause such issues, some thought it would not, and others said
it would not matter since becoming dependant on their tools is part
of the profession.

4.4.5 Toward clinical use. We asked participants whether they be-
lieved RAVS could become part of their everyday workflow. All
participants suggested that personal experiences of RAVS in an
experimental setting could not, on its own, convince them that the
system was ready for clinical adoption. In addition to retrospective
clinical studies and the required regulatory approvals, pathologists
would want to perform local validation studies before any adop-
tion. For example: “You would need a large clinical study and local
validations, but having done that, I would feel confident using such a
system. Especially for these monotonous tasks like looking for lymph
node metastases, that you know, many pathologists find boring.” (P2).
Additionally, any AI-system specialised for one specific task risk
being unusable due to the fact that pathologists often need to iden-
tify other rare phenomena if they appear. The fact that sections
were always viewed in overview first and that four regions were
always presented made most participants confident that this would
not be a barrier for RAVS when applied to colorectal lymph nodes.
However, some participants still expressed some doubts: “I am less
worried about missing accidental findings after the experiment, but I
still just think it is scary to start to lean on the algorithm so much.”
(P5).

5 EVALUATION: LEARNING FROM USE
We wanted to know if usage logging of individual region decisions
could help further improve model performance when learning

from use, leading to an increased capability over time. In the short
term, an increased capability might motivate using a lower sen-
sitivity setting with RAVS and thus shorter review times. In the
long term, it might mean redesigning the human-AI interaction
altogether.

5.1 Data and Method
We used the 14 cases from the user study with the consensus labels
as new training data, combined with the previous AIDA-LNCO [22]
training data in a 10:90 ratio. As a test set, we randomly sampled
seven cases from the AIDA-LNCO2 [23] dataset that had not been
part of the user study. We then retrained the model using the same
method and architecture as the previous model. One pathologist
provided ground truth for the new test set. We then scored both
the retrained model and the original model on the new test set.

5.2 Results
On the test set, the retrained model achieved a 99.9% AUC and
perfect sensitivity at a 0.6% false-positive rate, which was an im-
provement over the original that achieved a 98.8%AUC and required
a 10% false-positive rate for perfect sensitivity. Note that the quality
is still at a sub-pathologist level. The relative improvement shows
that improvement by learning as a side-effect of regular use was
feasible in our experimental setting.

6 DISCUSSION
Through RAVS, we have shown that consideration of well-known
HCI principles and AI-aware features allowed domain experts to
work faster with maintained quality, despite the AI model perform-
ing below expert-levels. Our system demonstrates that conceptual-
ising an automation-control balance along a single dimension is not
always adequate. Rather, multiple features combine into an over-
all user experience with nuances and complex interconnections.
We believe that an appropriate designerly mindset for creating
successful human-AI interaction entails placing less emphasis on
isolated visualisations. Instead, we call for more work that explore
efficient collaboration strategies that consider and describe human,
algorithmic, and most importantly, human-AI ensemble factors.

We designed RAVS so that the effective strategy to exploit AI pre-
dictions is so easy to use it cannot be missed. However, manual con-
trol is always available. To confidently use the assistance, the user
needs to develop enough trust in the system. Recent developments
around explainable AI have placed emphasis on the intrinsic work-
ings of models, as well as employing human explanatory strategies
such as counterfactuals and similar examples. Our work suggests
that effects that arise from repeated exposure over time, coupled
with a variable level of control, could also be an effective source
to building trust, albeit progressively. For instance, the AI-assistant
presented by Steiner et al. visualised potentially positive regions
above a certain prediction threshold. They observed improved ef-
ficiency for target-present cases, but only minor improvements
occurred on target-absent cases [33]. Based on the experiences in
our work, we argue that not showing any regions for normal cases
could be the cause of that non-improvement. Without being faced
with normal regions, the users would not be able to explicitly learn
about AI imperfections in target-absent cases, and thus distrusting
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the result in those cases, reverting to manual methods. Our feature
of Always present regionswas designed to facilitate fast reviews
of target-absent cases, but whether it is the main cause for the
efficiency improvement achieved is difficult to say. Adding some
validity to this speculation, Gu et al. [16] independently makes sim-
ilar recommendations on always presenting regions for negative
cases, based on formative evaluations of a comparable tool.

One shortcoming of our RAVS system was that it provided only
limited support for users to distinguish malfunctions. Although
this seemed to have little effect in our experimental condition, in
clinical use we might observe less benefit of automatic support due
to this ambiguity. Our feature of Hide underlying probabilities
was identified as a possible barrier for becoming confident in identi-
fying error characteristics. Providing the relative probabilities could
be a solution that would still employ repeated exposure to build
trust and model understanding. However, it is unclear whether
such a change would create other issues, such as confirmation
bias, overreliance on the strong positives or causing users to spend
too much time worrying about the specific probability assigned.
Interestingly, in the case where users noted that the model had
placed suggested regions “where there can be nothing”, prediction
heatmaps revealed problems, with the model assigning positive
values on almost all grey pixels. These images lacked tumours, and
whether a true tumour would have yielded higher relative values
remains unknown.

Collecting training datasets and building trust with users are
all daunting tasks to do upfront, especially if the targeted scenario
leaves humans out of some decisions. An assistive model in the
loop of human decision making might move this effort from an
upfront task to being iteratively achieved in use. Our RAVS system
demonstrates that a relatively low-effort ML model coupled with a
user interface can be the source of workflow changes that in turn
allow collecting large amounts of relevant training data that would
be hard to achieve otherwise.

We applied RAVS to searching for cancer in colorectal lymph
nodes. Besides being a prime candidate to work for lymph nodes
from other organs (such as breast) and for other pathology applica-
tions, it could also have uses in other domains with high-resolution
zoomable images such as scanning aerial photographs. The seven
human-AI interaction features presented will probably not be appli-
cable to all human-AI interaction designs. However, we do believe
they can be generative for designers, allowing them to frame their
own challenges in new ways.

Limitations of our study include the small number of patholo-
gists and the imbalance of positive to negative sections stemming
from our decision to focus on a clinically representative dataset.
The focus on creating a system that would improve either efficiency
or quality also prevented us from considering features in isolation
and assessing their individual effects. There are also algorithmic
challenges in learning from use. In our experiment, we used the con-
sensus labels of the six pathologists to label training data. In a real
setting, there would typically only be one pathologist diagnosing a
case, leading to higher label noise.

7 CONCLUSION
We presented Rapid Assisted Visual Search, a system that assists
pathologists in making fast high-quality decision by exploiting
information from an imperfect AI model. We provided rationale for
designers, identifying how HCI principles combine with seven AI
features to give an overall user experience. Our evaluations show
that our system is fast, accurate, helpful and can learn from use.
The datasets used are available for extending our work.
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