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The human-in-the-loop: an evaluation of pathologists’ interaction with artificial
intelligence in clinical practice

Aims: One of the major drivers of the adoption of
digital pathology in clinical practice is the possibility
of introducing digital image analysis (DIA) to assist
with diagnostic tasks. This offers potential increases
in accuracy, reproducibility, and efficiency. Whereas
stand-alone DIA has great potential benefit for
research, little is known about the effect of DIA assis-
tance in clinical use. The aim of this study was to
investigate the clinical use characteristics of a DIA
application for Ki67 proliferation assessment. Specifi-
cally, the human-in-the-loop interplay between DIA
and pathologists was studied.
Methods and results: We retrospectively investigated
breast cancer Ki67 areas assessed with human-in-
the-loop DIA and compared them with visual and
automatic approaches. The results, expressed as

standard deviation of the error in the Ki67 index,
showed that visual estimation (‘eyeballing’) (14.9
percentage points) performed significantly worse
(P < 0.05) than DIA alone (7.2 percentage points)
and DIA with human-in-the-loop corrections (6.9
percentage points). At the overall level, no improve-
ment resulting from the addition of human-in-the-
loop corrections to the automatic DIA results could
be seen. For individual cases, however, human-in-
the-loop corrections could address major DIA errors
in terms of poor thresholding of faint staining and
incorrect tumour–stroma separation.
Conclusion: The findings indicate that the primary
value of human-in-the-loop corrections is to address
major weaknesses of a DIA application, rather than
fine-tuning the DIA quantifications.

Keywords: artificial intelligence, breast cancer, computational pathology, digital image analysis (DIA), digital
pathology, human-in-the-loop, Ki67, machine learning

Introduction

As more pathology departments implement digital
review, artificial intelligence (AI) systems for digital

image analysis (DIA) will also become more common-
place.1–4 It is important to recognize accurate quan-
tification, facilitated through AI for prognostic and
predictive scoring, as a diagnostic companion to
pathologists. A popular candidate for AI use is Ki67
scoring in breast cancer (BC), for which studies have
shown that DIA is equal to or better than manual
scoring by pathologists.5–9 There is, however,
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relatively little evidence to show how these algo-
rithms perform in a clinical setting. It is known that
DIA can fail because of, for instance, poor slide qual-
ity,8,10 which could be a recurring challenge in the
clinic. Moreover, AI systems are known to regress in
performance when applied to data from sources that
are not represented in the training data, because of
so-called domain shift.11

Recent studies have investigated human-in-the-loop
(HITL) AI systems, in which pathologists interact
with DIA systems, and have shown that an HITL
approach can yield a performance improvement.12–15

In order to reach the full potential of the HITL
approach, a deeper understanding of how these sys-
tems should be designed is needed.13,16

In this study, we evaluated an existing HITL AI sys-
tem in clinical use. The pathology department in
Link€oping, Sweden was an early adopter of digital
pathology,17 and has, since 2015, used DIA applied to
Ki67 for immunohistochemistry (IHC)-based intrinsic
subtyping of luminal HER2-negative BCs; there have
been >1600 such cases to date. The role of Ki67 in
BC as a prognostic and predictive factor is debated,
but it has been proven to correlate with a poor prog-
nosis in primary BC, and is included in the St Gallen
surrogate IHC classification for intrinsic subtypes.18–22

Ki67 is included in the Swedish guidelines for BC
pathology, with a floating cut-off that removes the
local bias component caused by differences in staining
intensity and interpretation consensus.23

To explore the effect that an AI system, with or
without HITL interaction, has on diagnostic accuracy,
we performed a retrospective study based on Ki67
DIA applied to hotspot areas on whole slide images of
invasive BC by pathologists at the laboratory at
Link€oping University Hospital.

Materials and methods

Ethical approval was given by the Regional Ethical
Review Board, in Link€oping (Approval no. 2017/
276-31).

S A M P L E S A N D I M A G E D A T A

A total of 200 analysed areas, containing 200 tumour
cells each, in Ki67-stained slides from different BC
cases, produced by the Department of Clinical Pathol-
ogy, Link€oping, Sweden, were extracted from two time
periods, starting in May 2015 and February 2017.
One hundred and eighty-four of these cases were pri-
mary invasive BCs, and the remaining 16 cases were

local metastases or recurrences, distant metastases, or
only suspected BC. Both the patient data and data on
the reviewing pathologists were anonymised at the
time of the extraction. The extracted areas corre-
sponded to two different versions (denoted V1 and V2;
same user interface) of the underlying nuclear detec-
tion algorithm, V1 from May 2015 and V2 from Febru-
ary 2017. From each time period, 100 consecutive BC
cases were selected by the use of search tools in the
pathology picture archiving and communication sys-
tem (PACS) (Sectra AB, Link€oping, Sweden) based on
the combination of the local SNOMED code ‘breast can-
cer’ and existing 200-cell Ki67 annotations. Relevant
clinical metadata were also extracted.
The Ki67 index in the annotations was checked for

consistency with the value in the signed pathology
report. With the local cut-off level of 41% positive
cells in the hotspot, the Ki67 index was low in 140
specimens (71%). With a cut-off of 20%, the Ki67
index was low in 64 specimens (33%). Twenty-two
cases were reported as HER2-positive (11%). Notting-
ham grading had been performed on 147 of the
cases; 19 were grade 1, 78 were grade 2, and 50
were grade 3.

I H C

No additional staining procedure was performed for
the study. All BC specimens had been processed with
the established in-house clinical procedures, including
the NordiQC external quality programme. Fixation
times were semicontrolled within the range of 72 h.
The routine protocol consisted of cutting one 4-µm-
thick section from each formalin-fixed paraffin-
embedded tumour specimen, and then mounting the
section on a precoated slide for IHC analysis with
anti-Ki67 rabbit monoclonal antibody (MIB1 30-9;
Ventana/Roche, Tuscon, AZ, USA) by use of the
Intellipath autostainer (Biocare Medical, Concord, CA,
USA). Diaminobenzidine was used as a chromogen
substrate for all specimens. All sections were counter-
stained with haematoxylin.

D I G I T A L I S A T I O N A N D D I A

No additional scanning was performed for the study.
All slides were originally scanned in routine clinical
practice with either Aperio Scanscope AT Turbo scan-
ners (Leica Biosystems, Buffalo Grove, IL, USA) or the
Hamamatsu NanoZoomer XR (Hamamatsu, Photon-
ics, Hamamatsu City, Japan), with application of the
920 scanning resolution mode (⁓0.5 µm/pixel, JPEG
Q70-80) in a single focus plane automatically
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identified by the scanner. Quality control was per-
formed manually.
The workstations for the original diagnostic work

were equipped with an 8-megapixel colour-calibrated
screen (Radiforce RX850; Eizo Corporation, Hakusan,
Japan). All pathologists responsible for the cases
included in this study had, at the time, >6 months of
experience with the digital pathology system. At the
time of the original diagnostic review, the patholo-
gists did not know that the cases would be retrospec-
tively investigated.
The nuclear detection algorithm used in the system

was based on machine learning, with pixel annota-
tions in V124 and a larger number of point annota-
tions in V2.25 The cell detection F1 scores were 0.79
for V1 and 0.83 for V2, as determined from an image
dataset described by Molin et al.26 The computer-
aided tool was fully integrated in the viewer.
The Ki67 tool uses an HITL workflow in four steps

(Figure 1). (1) The pathologist selects the area for
analysis by placing a circle with a fixed radius on a
hotspot. (2) The tool processes the area, detecting
positive and negative cells. (3) The pathologist is pre-
sented with the result as an interactive visualisation,
whereby it is possible to add or remove cells and
change the positivity of cells, with corresponding
updating of the Ki67 index. (4) When finished, the
pathologist marks the result as verified.

G R O U N D T R U T H

The ground truth was established independently by
a panel of three experienced breast pathologists
(A.B., S.G., and R.W.), who manually marked every
positive and negative cell in each area by using a
web-based tool custom-built for this study. The
image was interpreted without access to the full
whole slide image or the corresponding haema-
toxylin and eosin-stained slide. An initial session
established a joint view on cell categorisation by use
of a separate training set. The median Ki67 indexes
from the three panellists were used as the ground
truth; one pathologist had previously been involved
in the original HITL scoring. Fleiss’ j and standard
deviation were calculated to enable the quality of
the ground truth to be judged.

S C O R I N G M E T H O D S

The study evaluated the difference in accuracy
between three different scoring methods: eyeballing,
automatic scoring, and HITL scoring.

Eyeballing
Eyeballing was performed by three pathologists
(A.B., S.G., and R.W.) before the ground truth
elicitation. Eyeballing was performed by estimating
the percentage, without decimals (e.g. 17%), of
Ki67-positive tumour cells by visual assessment of
the digital image, avoiding actual counting. A sin-
gle digit was preferred over brackets because
the use of brackets would introduce additional
variability and therefore create an unfair advantage
for the other scoring methods. A non-enforced tim-
ing guideline of 20 s for each area estimate was
used.

Automatic scoring
The automatic scoring value is the output provided
by the nuclear detection algorithm, retrieved from the
pathology PACS, corresponding to the situation that
would exist if the pathologist directly accepted the
Ki67 index without modification after the processing
step in Figure 1.

HTIL scoring
The HITL scoring corresponds to the Ki67 index from
the clinical review, retrieved from the pathology
PACS, corresponding to the output of step 4 in Fig-
ure 1. The pathologist could either correct the algo-
rithmic result or leave it unchanged.

S T A T I S T I C S

The statistical accuracy was calculated at three
levels of detail: Ki67 status, Ki67 index, and indi-
vidual cells. The Ki67 status refers to the binary
assessment of being below or above the predeter-
mined cut-off value (41%), as compared with
ground truth. For the Ki67 index level, the accu-
racy is measured as the percentage point difference
from the ground truth index value. The cell level
compares the positivity for each individual cell with
ground truth.
The statistical analysis was performed with PANDAS

(0.25.2), SCIPY (1.3.1), and STATSMODELS (0.10.1). Sta-
tistical testing for the overall accuracy comparison
was performed on the variability error on the Ki67
index in the V2 period by the use of Levene’s test
with Holm correction. Estimates of other variables
are also reported, but no hypothesis testing was
performed. The statistical testing plan was derived a
priori from a smaller pilot dataset extracted in a
similar manner without any cases overlapping with
the cases included in the final study.
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Results

For the ground truth assessments, Fleiss’ j between
raters showed the Ki67 status-level variability to be
0.87. The estimated standard error of the ground
truth Ki67 index was 2.9.
In the study, eight pathologists in total used the

system, six in each period and four in both. The
duration of tool use was measured from the start of
processing of an area until the area had been marked
as verified (steps 2–4 in Figure 1). The median dura-
tions were 113 s [interquartile range (IQR) 79–176]
in V1 and 73 s (IQR 47–122) in V2.

A C C U R A C Y O F S C O R I N G M E T H O D S

Ki67 status agreement, Ki67 index error and cell-
level error are shown in Table 1. Automatic scoring
improved the accuracy with both algorithm versions.
The Ki67 index error for eyeballing (14.9) was signif-
icantly larger (P < 0.05) than those for automatic
scoring (7.2) and HITL scoring (6.9), on comparison
of the results in the V2 period. In general, HITL cor-
rections did not result in an overall improvement in
the Ki67 index as compared with automatic scoring.
The overall correlation patterns for the different scor-
ing methods are shown in Figure 2.

The HITL and automatic methods had lower vari-
ability, as shown in Figure 3, whereas they showed a
slight statistical bias in that the observations clus-
tered on the lower half, and the mean error deviated
from zero as opposed to eyeballing. To further investi-
gate possible clinical impacts of Ki67 status, discor-
dances were mapped as status error. The
performance of the algorithm dropped in the clinical
environment; this was a domain shift, as reflected by
an F1 score for V2 of 0.68 as compared with the for-
merly reported 0.83.25

H I T L

The effect of the pathologists’ corrections, with regard
to improving or worsening the automatic result in
terms of Ki67 index error, is shown in Figure 4. A
large number of cases had an error difference close to
zero, showing that the corrections had little effect. In
V1, corrections worsened the Ki67 index by, on aver-
age, �3.1 percentage points, and in V2 the correc-
tions caused an improvement of, on average, 0.9
percentage points. This small effect does not mean
that few corrections were made. Areas with an index
error difference below 5 had, on average, 33 correc-
tions. There was a slight difference in the number of
corrections close to the cut-off; within 10 percentage

Select area Process Correct Verify

1 2 3 4

Modify cell positivityAdd/remove cells

Figure 1. The Ki67 tool uses a human-in-the-loop workflow in four steps. (1) Pathologist selects an area. (2) Algorithmic processing. (3)

Pathologist corrects cell status by adding/removing cells and/or modifying cell positivity (optional). (4) Pathologist verifies the result.
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points of the cut-off, the users performed, on average,
37.6 (�5.5) corrections as compared with 42.1
(�4.5) outside.
The annotations of all 200 cases, before and after

corrections, were also visually inspected by one
pathologist (A.B.). Some causes of suboptimal
results were then found, and are shown in Fig-
ure 5. There were examples of user error in V1, as
shown in Figure 5A. For many cases in which
HITL caused deterioration, however, there was no
obvious explanation other than the challenges of
the diagnostic task as such. The visual inspection
also revealed issues when the DIA system had
failed and had been corrected by HITL. Root causes

included overlapping positive nuclei, as shown in
Figure 5B–E, misidentification of tumour and stroma
morphology, staining quality, or a combination of
different factors.

Discussion

This is one of very few studies that have evaluated
how an HITL AI system is used in clinical practice.
Our results, at all three levels analysed, are in sup-

port of the safe use of DIA. Agreement for Ki67 status
was good, both in automatic and in assisted modes
(automatic j 0.84 and HITL j 0.76). This is on a par

Table 1. Three levels of accuracy for each method as compared with ground truth; eyeballing, automatic, and human-in-
the-loop, with algorithm versions (V1 and V2) separated

Status agreement Ki67 index error Cell-level error

V1 V2
V1 V2

V1 V2
Cohen’s j Cohen’s j Variability (SD) Bias (mean) Variability (SD) Bias (mean) F1 score F1 score

Eyeballing 0.66 0.62 14.6 0.56 14.9 0.76 NA NA

Automatic 0.73 0.84 8.4 �8.2 7.2 �6.0 0.66 0.68

Human-in-the-loop 0.66 0.76 9.1 �11.2 6.9 �5.4 0.68 0.68

SD, Standard deviation.

0 10 20 30 40 50 60 70 80 90 100

Groundtruth Ki-67 Index

K
i-6

7 
In

de
x

0

10

20

30

40

50

60

70

80

90

100

Eyeballing
Automatic
Human-in-the-loop

Scoring method

Figure 2. Overall correlation between the ground truth Ki67 index and the Ki67 index determined with each investigated scoring method.

Note that there were three eyeballing sessions per area, but only one session per area for automatic and HITL, respectively.
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with the Ki67 agreement previously found in the
Swedish setting (j 0.77).27 With regard to the Ki67
index, which was the second level of evaluation, HITL
and automatic DIA were significantly more accurate,
with lower deviation of the standard error.
With respect to potential error sources in DIA use,

our results are in line with those of Kwon et al.8 The

following causes of discordance between visual assess-
ment and DIA regarding the Ki67 index in BC were
identified: (i) tumour heterogeneity; (ii) visual assess-
ment error; (iii) misidentification of tumour cells; (iv)
poor immunostaining or slide quality; and (v) estima-
tion of non-tumour cells. Additionally, we propose
that the fourth category should also include
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digitisation quality, and that a sixth category should
be introduced: user handling error.
A main question is whether the HITL intervention

of the pathologists is justified in comparison with
automatic AI in the analysis of Ki67 in routine BC
diagnostics. Our findings are not as categorical as
those of recently published studies of AI assistance
within pathology, which have indicated either
improvement or failure.13,28,29 Our results reveal
individual cases in which poor DIA results can be

remedied by pathologist HITL intervention, but
human adjustments can also worsen the results.
Justifying pathologist interaction is also dependent

on the time spent on performing the HITL task. In
our study, the time spent was substantially improved
in V2, being 40 s lower. The improvement can partly
be attributed to the higher accuracy of the nuclear
detection algorithm, resulting in fewer corrections,
but other causes cannot be excluded. The diagnostic
review in pathology is a complex mixture of

Automatic Human-in-the-loop Automatic Human-in-the-loop

Automatic Human-in-the-loop Automatic Human-in-the-loop

Automatic Human-in-the-loop

A B

C D

E

Figure 5. Manual inspection of the analysed areas (A–E) before and after correction revealed causes of suboptimal results. A, The pathologist

has changed falsely detected positive nuclei into negative nuclei (arrow). It looks as though the intention must have been to remove these

detections rather than modifying the positivity. B, The digital image analysis (DIA) system has failed to detect overlapping positive cells, and

the user has correctly added the missing detections (arrow). C, The DIA system has poor performance when separating tumour from non-

tumour cells. Here, the pathologist has removed excessive detections (arrow). D, Poor staining quality causes the DIA system to mark nuclei

as positive even though the staining in this case is unspecific. The pathologist has correctly changed many nuclei from positive to negative

(arrow). E, An out-of-focus artefact causes the algorithm to detect nuclei even though there are no nuclei at all. These have been removed

by the pathologist (arrow).
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quantitative and qualitative measures, making it
challenging to evaluate results in terms of added
value in the diagnostic process. One weakness of this
study is that we did not investigate the pathologists’
experience regarding the usage and perceived benefit
of the tool. One clear indication is, however, that the
tool is frequently and consistently used among breast
pathologists in everyday practice in Link€oping.
Even though our study shows that, for these 200

cases, the pathologist could have been removed from
the loop and time could have been saved without sub-
stantially worsening the results, it is uncertain whether
this result is generalisable. The HITL approach provides
an important safety mechanism for detecting and cor-
recting algorithmic errors that may occur. Retaining
human oversight of analysis outputs is often a recom-
mendation for quality control and safety in digital
image analysis9,30 Key issues for successful implemen-
tation of AI assistance in clinical routine will be to
determine where the limited time of pathologists is best
used and to identify the value added by AI in the diag-
nostic process, focusing on the resulting benefit for
patient care in terms of accurate quantification (as
facilitated through AI for predictive scoring).

Summary

We have shown that DIA applied in real-world clini-
cal routine, both in automated and in HITL settings,
contributes to more accurate scoring of Ki67 in
patients with BC. The main finding is that the pri-
mary value of HITL correction is to detect major
weaknesses of the DIA algorithm rather than fine-
tuning by analysing individual cells.
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