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If it’s time to go, remember what you’re leaving. Remember the best.





Abstract

Airborne angle-only geolocalization is the localization of objects on ground level
from airborne vehicles (AV) using bearing measurements, namely azimuth and
elevation. This thesis aims to introduce elevation data of the terrain to the air-
borne angle-only geolocalization problem and to demonstrate that it could be
applicable for localization of jammers. Jammers are often used for deliberate
interference with malicious intent which could interfere with the positioning sys-
tem of a vehicle. It is important to locate the jammers to either avoid them or to
remove them.

Three localization methods, i.e the nonlinear least squares (NLS), the extended
Kalman filter (EKF) and the unscented Kalman filter (UKF), are implemented
and tested on simulated data. The methods are also compared to the theoretical
lower bound, the Cramér-Rao Lower Bound (CRLB), to see if there is an efficient
estimator. The simulated data are different scenarios where the number of AVs,
the relative flight path of the AVs and the knowledge of the terrain can differ.
Using the knowledge of the terrain elevation, the methods give more consistent
localization than without it. Without elevation data, the localization relies on
good geometry of the problem, i.e. the relative flight path of the AVs, while the
geometry is not as critical when elevation data is available. However, the eleva-
tion data does not always improve the localization for certain geometries.

There is no method that is clearly better than the others when elevation data
is used. The methods’ performances are very similar and they all converge to the
CRLB but that could also be an advantage. This makes the usage of elevation
data not restricted to a certain method and it leaves more up to the implementer
which method they prefer.
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Notation

Some terminology

Word Meaning

Target The targets in this thesis refer to objects that generate
or emit signals. It could, for example, be an object that
emits a radio frequency, such as a jammer, that can be
used as an interference for GNSS.

Receiver The receivers are the devices that receive and interpret
the signals as well as estimate the direction to the tar-
gets. Their position and orientation are known. In this
thesis they are AVs of some kind.

xi



xii Notation

Abbreviations

Abbreviation Meaning

2D Two dimensions
3D Three dimensions
AV Airborne Vehicle/Aerial Vehicle

CRLB Cramér–Rao Lower Bound
DOA Direction Of Arrival
EKF Extended Kalman Filter
FIM The Fisher Information Matrix
KF Kalman Filter

GNSS Global Navigation Satellite System
NLS Nonlinear Least Squares

NWLS Nonlinear Weighted Least Squares
RMSE Root Mean Square Error
SAR Search And Rescue
UAV Unmanned Aerial Vehicle
UKF Unscented Kalman Filter
UT Unscented Transform

WGN White Gaussian Noise

Mathematical notations

Notation Meaning

x̂ Estimated value of x.
µx Mean value of x.

N (x; µ, σ2) The normal distribution associated with x has mean µ
and standard deviation σ .

R Real numbers.
R

+ Positive real numbers.
∂
∂x

Partial derivative with aspect to x.
tr(A) The trace of a matrix A.
E[x] The expected value of x.

cov(x) The covariance of x.
||x||2 The Euclidean norm (two-norm) of x.



Notation xiii

Variables

Variable Meaning

α Azimuth angle
ε Elevation angle
φ Roll angle
θ Pitch angle
ψ Yaw angle
e Measurement error
q Orientation of the receiver

R(q) Rotation matrix
w Process noise
x Position of target in the static global coordinate system
xr Position of target relative to the receiver
y Position of the receiver
z Measurements





1
Introduction

Jammers are devices that intentionally interfere with wireless communication,
such as GNSS1, often with malicious intent. Interference can lead to, for exam-
ple, inaccurate positioning, which makes it important to locate the jammers to
either avoid them or to remove them. There could also be unintentional inter-
ference, which could result in a similar problem, and the same type of solution
could be applied.

This thesis focuses on locating jammers from airborne vehicles (AV) which can
measure the bearing to a static ground level jammer. By only using the measured
directions to the jammer, this becomes an angle-only localization problem and
this thesis also introduces the usage of elevation data of the terrain to see if the
geolocalization can be improved.

The methods presented are not only applicable to locate jammers, they are pre-
sented in such way that any kind of airborne angle-only geolocalization problem
could use the same solutions. One such problem where these solutions could
be applicable is the search and rescue (SAR) problem, where it is usual to use
airborne vehicles (AV) to locate people. Although, it is not too common to use
bearing measurements in SAR yet, some investigation has been made to see how
SAR can be improved by it (see for example Fei et al. (2020)). To evaluate the
methods, a simulation system is built and the results are compared to a theoreti-
cal lower bound using Cramér-Rao Lower Bound (CRLB).

1Global Navigation Satellite System.
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2 1 Introduction

1.1 Background

This report is a part of the graduation work for a M.Sc. in applied physics and
electrical engineering with specialization in control and information systems at
Linköping University. The report is made possible with the cooperation of Saab
Aeronautics that expressed interest in investigating the localization of jammers
using AVs.

For clarity, the targets refer to the devices which we want to locate and they emit
a signal. The receivers are the airborne devices, either unmanned aerial vehicle
(UAV), helicopters or airplanes, that receive the targets’ signal. The signal could
be any kind of signal that the receivers can read, such as a radio frequency (RF)
or a Wi-Fi connection request.

1.2 Problem Formulation

The main aim with this thesis is to locate a stationary ground target using air-
borne receiver(s) with bearing measurements to the target. The bearing is mea-
sured by the azimuth angle and elevation angle, illustrated in Figure 1.1. The
receivers fly over a preplanned path towards their primary goal. A primary goal
might be to arrive at a certain location or finish a mission. During this flight, the
receivers pick-up a jamming signal. Luckily, the receivers are equipped with, for
example, antenna arrays or other equipment which can measure the bearing to-
wards the jammer. Therefore, the receivers secondary goal is now to locate the
target, which it will hopefully do at the same time as its primary mission. The
localization is made in real-time, where the estimation of the jammer’s position
should become better for each new sample update. Using this information, the
receivers could change path to avoid the jamming or save its position for later
use.

(a) Azimuth angle, α. (b) Elevation angle, ε.

Figure 1.1: The directions available for the AV.
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There are many ways this angle-only geolocalization problem can be solved, but
is there a general method that works for different scenarios and if so how good
are those methods? Furthermore, if there is available elevation data of the terrain,
could the estimations become better? This thesis aims to answer these questions.
The specific assumptions for the localization are summarized below.

Goal: Locate a target on the ground
Assumptions:

1. The receivers are airborne.

2. The position and orientation of the receivers are known.

3. Target is assumed to be on ground level and is stationary.

4. The receivers can move in 3D.

5. Estimation of the position of the target should be made in real-time with
updates for every new sample.

6. A target can be modelled as a point.

7. A target generates at most a single measurement per time step.

8. The receivers fly over a preplanned path.

9. Elevation data will be available for some scenarios.

1.3 Direction of Arrival

The direction of arrival2 (DOA) consists of two measurements, the azimuth angle
and the elevation angle. These two signals are measured with some additive error
included. Let their true angles be described by α3 and ε4, then the measured
DOA can be formulated as

z =
[
α
ε

]
+ disturbance (1.1)

As the angle measurements have some disturbance, the possible position can be
within a certain range. An illustration of this range is shown in Figure 1.2.

2Also known as bearing.
3Azimuth.
4Elevation.
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(a) Possible range of the azimuth
angle.

(b) Possible range of the
elevation angle.

Figure 1.2: The possible position of the target from different perspectives.

With two receivers, it is now possible to estimate the position of the target. To
introduce this visually, it is easier to focus on the 2D version of the problem first.
Figure 1.3 is taken in one snapshot. The two receivers measure the bearing with
some uncertainty. Their measurements can be seen as "beams" that cross each
other where the target is most likely located.

Figure 1.3: Illustration of the possible position of a target (green) in 2D with
measurements from two receivers.

This can then be expanded to 3D. Using the same type of argument as above, then
it is highly likely that the intersected "bubble", between the two "beams" from the
receivers, holds the target. An illustration of this can be seen in Figure 1.4.



1.4 Terrain Data 5

Figure 1.4: Illustration of the possible position of a target (green) in 3D with
measurements from two receivers.

1.4 Terrain Data

In some scenarios, the elevation of the terrain is available. For one receiver, when
the two angles are combined, then the position could be estimated to be within a
certain area by projecting it down on a plane, see Figure 1.5. If x = (x1, x2, x3)T

is the static position of the target, where x1 and x2 are the lateral position and x3
is the height, then with the available terrain data the height can be said to be a
function of x1 and x2, or rather x3(x1, x2).

Figure 1.5: Illustration of the target’s possible position within a certain range
(green) when combining with bearing measurements and terrain data.
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1.5 Limitations

Some relevant questions that are not considered in this thesis are for example
path planning, detection of targets and cancellation of the methods when the tar-
gets are out of reach. The path planning is very relevant for either searching a
certain area completely or following a target to not lose track of it. Path plan-
ning will not be used as the localization will be seen as a secondary task and the
receivers primary goal is to get to a certain place instead of searching a certain
area. Furthermore, the initialization and the cancellation are not considered, i.
e., the localization system does not decide when the targets are within readable
distance. It is assumed that another system activates the localization when the
targets are detected and then cancel the system when the targets are out of range.

1.6 Related Problems

There are a lot of related problems to the airborne angle-only localization prob-
lem. Here, a short summary of jammers is presented as well as a short discussion
of existing angle-only localization and tracking techniques. Lastly, there are a
few words about SAR as it is a similar problem.

1.6.1 Jammers

In systems with wireless communication there is always a threat of interference,
which could be intentional or unintentional. Commonly, when the interference
is deliberate and has malicious intent, the devices are known as jammers. There
are many different kinds of jammers for different purposes. In Xu et al. (2005), a
few different jammer models are tested, such as a constant jammer, a deceptive
jammer, a random jammer and a reactive jammer. The different kinds of jammers
have different types of signals and therefore many of them may require different
solutions to the detection, localization and tracking problems.

For a single target, there are a lot of scenarios that have been investigated. There
are cases where there is only one airborne receiver that tracks a target (Ristic and
Arulampalam, 2003), as well as when there is a fleet of UAVs that track a target
(Bhamidipati and Gao, 2019; Koohifar et al., 2017). Other cases have used an
array of static receivers and a static jammer (Joo and Sin, 2018) or a jammer in a
moving car (Mitch et al., 2012).

With multiple targets, new problems arise. One problem is the data associa-
tion problem which stems from the difficulty of separating the different measure-
ments from each other. As the measurements from the different targets could
get merged, the problem is to separate these measurements and connect them to
the right target. It becomes even more difficult if the number of targets are un-
known. This depends, however, often how close together the targets are. Some
begin by estimating the number of jammers by a non-linear Gaussian-Mixture
Probability Hypothesis Density (GM-PHD) filter (Bhamidipati and Gao, 2019) or
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by Multiple Signal Classification (MUSIC) (Oispuu and Schikora, 2011; Schmidt,
1986). Then the localization can be done with a multiple methods, for example;
power difference of arrival (PDOA) (Nyström, 2017), time difference of arrival
(TDOA) (Bhatti et al., 2012; Nyström, 2017; Wang et al., 2010), maximum likeli-
hood (ML) (Oispuu and Schikora, 2011), extended Kalman filter (EKF) (Oispuu
and Schikora, 2011) and Graph-SLAM (Bhamidipati and Gao, 2019). The basis
of many of these algorithms are explained in Bar-Shalom and Li (1993) and/or
Gustafsson (2018).

1.6.2 Angle-Only Localization and Tracking

Angle-only tracking is very similar to the problem at hand and it has been inves-
tigate multiple times. The difference between tracking and localization is how
the target’s position is used over a time period. Tracking uses an adaptive esti-
mation of the target’s position, while localization does not. For angle-only track-
ing, different filtering techniques have been investigated and some solutions can
be found in Aidala and Hammel (1983); Datta Gupta et al. (2015); Erlandsson
(2007); Mehrjouyan and Alfi (2019); Ristic and Arulampalam (2003).

Other bearing-only problems are in principle the same type of problems as the lo-
calization of jammers with bearing-only measurements. In Erlandsson (2007) the
author investigates filters for tracking an airborne target for collision avoidance
and in Ristic and Arulampalam (2003) a general angle-only tracking problem is
investigated. As it is possible to attach a jammer on to a UAV or a vehicle, the
problem becomes the same for localization and tracking, but the solution could
be used for different purposes.

For general angle-only localization problems, the methods could be implemented
using either a batch of measurements or updating for every new sample. For ex-
ample, Vaghefi et al. (2010) solves the same kind of general angle-only localiza-
tion problem as this thesis but with different batch-wise least squares algorithms.

1.6.3 Search and Rescue

Another related problem is SAR, which is very similar to localization of jammers.
In both problems the aim is to find a static target, often from an AV. The differ-
ence between SAR problems and interference problems is that finding the inter-
ference might be a secondary task, while, for SAR problems, finding and rescuing
people is its highest priority. This can affect how the search is made, as the search
mission might improve by, for example, path planning and area search planning.

1.7 Thesis Outline

This thesis is organized as follows. Firstly, some theoretical background is given
in Chapter 2 where the mathematical formulation and its issues are presented to
be able to understand the problem at hand. Secondly, the methods solving the
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problem is presented in Chapter 3 and how to evaluate those methods in Chap-
ter 4. Chapter 4 is divided into three parts where the first part discusses how the
methods can be evaluated against a theoretical lower bound. There is also a dis-
cussion of when the lower bound exists and about parameter observability when
elevation data is available. To see some results, a simple simulation system is
implemented with more information in Section 4.2 where also the simulation sce-
narios are presented. The result of these simulation scenarios is then presented
in Section 4.3. Lastly, there is an additional discussion and a conclusion in Chap-
ter 5 and Chapter 6.



2
Theoretical Background

This chapter explores the mathematical formulation of the problem and explains
the notation used throughout the thesis. As this is not the first time that bearing
measurements have been used, some background information about their issues
is talked about and how they can be avoided.

2.1 Mathematical Formulation

The problem can be described as finding the geographic position of the target
from the azimuth angle, α ∈ [−π, π), and the elevation angle, ε ∈ [0, π/2), which
the receiver measures in some way. Let the position of the target relative to the
receiver be xr with the nonstationary Cartesian coordinate system in Figure 2.1.
If the relative target position is xr = (xr1 , xr2 , xr3 )T , then the bearing can be seen
as a function of the position, which can be derived geometrically as:(

α(xr )
ε(xr )

)
=

 arctan2(xr2 , xr1 )

arctan2(−xr3 ,
√
x2
r1 + x2

r2 )

 (2.1)

The function "arctan2" is here an extended version of arctan where it is defined
in all four quadrants, −π ≤ arctan2( · ) ≤ π. This type of coordinate system is
moving, as the receiver is assumed to be in flight. It should be noted that the
target cannot be in the near proximity of the elevation angle π/2 because then
the azimuth angle would be difficult to determine. This could be solved by using
quaternions. However, if the elevation angle converges to π/2 then it is fairly cer-
tain that the target’s position is directly below the receiver if the azimuth angle is
difficult to determine. Therefore, one extra restriction is added where the target
cannot be in the near proximity of the elevation angle π/2.

9
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(a) From above. (b) From the side.

Figure 2.1: The mobile Cartesian coordinate system with its origin in the
receiver.

By deciding on a global and static coordinate system, it is easier to relate every
sample disregarding that there are multiple receivers. Let y = (y1, y2, y3)T be the
coordinates and q = (φ, θ, ψ)T be the roll, pitch and the yaw angle for an AV as
well as let x = (x1, x2, x3)T be the coordinates for the target in a global coordinate
system. The setup of this global coordinate system is illustrated in Figure 2.2 for
some global static coordinate system.

Figure 2.2: The relation between the global coordinate system and the AV as
well as the target.

An illustration of the orientation of the AV, namely the yaw, pitch and roll angles,
can be found in Figure 2.3. As the orientation of the AV influences the bearing,
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let the rotation matrices for the roll, pitch and yaw angles be defined as (2.2). It
is using the Euler angle representation to describe the rotation of the receivers
coordinate system with respect to the stationary coordinate system.

Figure 2.3: The yaw (ψ), pitch (φ), and roll (θ) angles.

Rx(φ) =

1 0 0
0 cos(φ) sin(φ)
0 − sin(φ) cos(φ)

 (2.2a)

Ry(θ) =

cos(θ) 0 − sin(θ)
0 1 0

sin(θ) 0 cos(θ)

 (2.2b)

Rz(ψ) =

 cos(ψ) sin(ψ) 0
− sin(ψ) cos(ψ) 0

0 0 1

 (2.2c)

These individual rotation matrices can then be combined into one (c=cos and
s=sin for simplicity):

R(q) = Rx(φ)Ry(θ)Rz(ψ)

=
[

c(θ)c(ψ) c(θ)s(ψ) −s(θ)
s(θ)s(φ)c(ψ)−c(φ)s(ψ) s(θ)s(φ)s(ψ)+c(φ)c(ψ) c(θ)s(φ)
s(θ)c(φ)c(ψ)+s(φ)s(ψ) s(θ)c(φ)s(ψ)−s(φ)c(ψ) c(θ)c(φ)

]
(2.3)

Then the function of the angles in the moving coordinate system in (2.1) can be
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written in a global coordinate system as(
α(R(q)[x − y])
ε(R(q)[x − y])

)
(2.4)

for some static global coordinate system. It should be noted that the target is
static, which makes x a fixed point, while the AV has a motion with moving coor-
dinates y(t) and orientation q(t).

The measurements are affected by additive noise e(t), hence the angle measure-
ments are written as

z(t) =
(
α(R(q(t))[x − y(t)])
ε(R(q(t))[x − y(t)])

)
+ e(t) (2.5)

which is a nonlinear model where x should be estimated from the measured an-
gles z(t), the receiver position y(t) and the orientation q(t). The measurement
error is assumed to be white Gaussian noise (WGN). Further information about
WGN can be found in, for example, Olofsson (2011) or other books containing
signal theory.

2.2 Notation

As the methods will be implemented in discrete time, let T be the sampling time
and k be the k-th sample where k = 0, 1, 2, ..., N −1. Then a time changing variable,
for example q(t), will be sampled as

q(tk) = q(kT ) = q[k] = qk

Sometimes an estimated quantity will be given the index k|m, e.g., x̂k|m. The
indexation k|m should be interpreted as at time k given all the measurements up
to, and including, time m.

2.2.1 Measurement Function

The measurement function is given by

h(x, k) := h
(
R(qk)(x − yk)

)
(2.6)

where k denotes when the known signals, yk and qk , are measured. Both yk and qk
are assumed to be known signals and they can be seen as a control signal/input.
The definition in (2.6) can be used for both single and multiple receivers. If there
are more than one receiver, the angle measurements are simply stacked as a col-
umn vector. For example, in case of two receivers the measurements are first the
angles for receiver 1 and then the angles for receiver 2 which is shown in (2.7).

zk =


α1
k (x)
ε1
k (x)
α2
k (x)
ε2
k (x)

 + ek = h(x, k) + ek (2.7)
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It should also be noted that the target’s position, x, is calculated in 3D if there is
no available elevation data and in 2D (lateral position) if elevation data is avail-
able. This stems from the knowledge of the terrain, which makes it unnecessary
to calculate the height as it is already known for a certain lateral position.

In this project, the Jacobian is written as J(x, k) = ∇xh(x, k) and the Hessian as
H(x, k) = ∇2

xh(x, k). An approximation method for the Jacobian and Hessian is
presented in Appendix A.1.

2.3 Issues with Angle-Only Measurements

The calculation of the bearing for radio frequencies has been developed over a
long time, with one of the earliest works in 1943 using antenna arrays (Schelkunoff,
1943). Nowadays the antenna arrays might be distributed in several locations, on
AVs or on cars, see for example Fei et al. (2020); Nyström (2017); Oispuu and
Schikora (2011). There are also other methods of calculating the bearing, for ex-
ample with an IR-sensor or radar, which subsequently can be used for localization
or tracking (Schmidt, 1986). The main problems with angle-only measurements
for static targets are

• Observability

• Reflected Signals

which will be discussed here after.

2.3.1 Observability

It was early understood that the receiver had to maneuver more than the target
or have complementary measurements in order to have observability. This is eas-
ily illustrated by different paths of a moving target, as in Figure 2.4, where it is
shown that different parallel paths can give rise to the same measurements in
the receiver. In Fogel and Gavish (1988), they have derived the conditions for
observability of the targets with N th-order dynamic using angle measurements.
The target’s dynamic is its movement and they have concluded that the receivers
have to make maneuvers with higher order dynamic than the target’s for the tar-
get to be observable. Therefore, some movement from the receiver is needed to
find stationary targets.
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Figure 2.4: A 2D example of an unobservable moving target and a static
receiver. There are two target paths that could give the same measurements
and therefore make the target unobservable. (• - target and ◦ - receiver)

Another 2D example of a not fully observable target can be seen in Figure 2.5
where two targets are aligned and static right in front of the AV. Both of the
targets give the same measurements for a receiver moving towards them. For the
targets to become distinguishable, the AV has to make a maneuver or have more
information.

Figure 2.5: A 2D example of unobservable targets for a moving receiver. (• -
target and ◦ - receiver)

The definition of observability, according to Bar-Shalom and Li (1993), can be
seen in Definition 2.1. For the system to be observable, the initial state (position
of the target) should be uniquely recovered from the measurements. Therefore, it
is very important for the system to be observable to obtain the estimation of the
position, which is the goal.

Definition 2.1 (Observability). A continuous time system is completely observ-
able if its initial state can be fully and uniquely recovered from its output, ob-
served over a finite time interval, and the knowledge of the output.
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2.3.2 Reflected Signals

In an area of mountains, for example, the original signal might bounce against the
terrain before it goes towards the receiver. The reflected signal gives a lot more
uncertainty than only a sensor measurement error. Therefore, the uncertainty of
angle-only measurements can be greater depending on the terrain.





3
Localization Methods

There are numerous different localization methods that can be used for this prob-
lem. However, the ones used in this thesis are the nonlinear least squares (NLS),
the extended Kalman filter (EKF) and the unscented Kalman filter (UKF). The
most straight forward method is the nonlinear least squares (NLS). It optimizes
a cost function and the argument, that gives the optimal solution, is the estimate.
However, as it is difficult to calculate analytically, a numerical method is used.
The algorithm used is a recursive nonlinear weighted least squares (NWLS) and
it is chosen because it is a simple way to locate the target with short computation
time. The next filter, the EKF, is chosen as it can handle the nonlinearity and it
has a long history with different applications which makes it a well-tried filter.
The UKF is chosen as a complement to the EKF and the NWLS as the UKF does
not need any approximations of the derivatives, which both NWLS and EKF need.

All of these algorithms require an initial approximation of the position as well as
an initial estimation of its covariance. The initialization problem and a method
to handle it are presented in Section 3.3.

3.1 Nonlinear Weighted Least Squares

By seeing the position of the target as a parameter, then it is possible to estimate
it by using nonlinear least squares (NLS). The NLS estimate is given by

x̂ = arg min
x
V (x) (3.1)

where V (x) is the cost function and x is the position of the target (Gustafsson,
2018). Let ek(x) = zk − h(x, k) and

eN (x) = (eT1 (x), eT2 (x), eT3 (x), ..., eTN (x))T

17
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be the error from the measured angles for sample time 1 to N . Then the cost
function is given by

VN (x) =
1
2

N∑
k=1

eTk (x)ek(x) =
1
2

eTN (x)eN (x) (3.2)

This optimization might not be a simple task to solve as there could be multiple lo-
cal optimums and/or the computing time might be large. A numerical optimiza-
tion method might be preferred to make the optimization recursive. The nonlin-
ear weighted least square is one such algorithm and one version of it is presented
in Algorithm 1. It is based on the recursive linear weighted least squares (WLS)
from Gustafsson (2018, pp. 510), but it uses the approximation h(x, k) ≈ J(x, k)x.

Algorithm 1 Nonlinear Weighted Least Squares
Initialized with x̂0 and P0.
Measurement update:

Pk =
(
P −1
k−1 + JT (x̂k−1, k)R−1J(x̂k−1, k)

)−1

x̂k = x̂k−1 + PkJ
T (x̂k−1, k)R−1(zk − h(x̂k−1, k))

3.2 Kalman Filters

The Kalman filter (KF) has been used for many different purposes and also for lo-
calization and tracking. The KF updates the statistics recursively of a stochastic
process to estimate the state. For linear Gaussian systems, the KF is the best possi-
ble state estimator. This means that the variance of the estimate is the minimum
variance that can be achieved for a linear system. However, as this problem is
nonlinear, the Kalman filter cannot be applied as it is. (Bar-Shalom and Li, 1993;
Gustafsson, 2018)

A general system can be written as (3.3), where w and e are the process noise and
the measurement noise, respectively. The variable x is the states to be estimated
and z is the measurements. f ( · ) and h( · ) are in general nonlinear functions. In
this thesis, x is the position of the target and z is the measured angles, α and
ε. As the position of the target is static, it is easy to conclude that f (xk , k) = xk .
The function h(xk , k) is defined the same as in (2.7), and it is nonlinear. Further-
more, the measurement noise and process noise are assumed to be WGN with
covariance matrices R and Q(= 0) respectively.

xk+1 = f (xk , k) + wk
zk = h(xk , k) + ek

(3.3)
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To make the KF applicable to a nonlinear problem, there are a few different ex-
tensions that can be applied:

• Extended Kalman Filter (EKF): The Kalman filter can be expanded by using
a Taylor expansion of the nonlinear function and linearize around the latest
estimate. The EKF can handle the nonlinearity in the measurements and it
has been used and tried for decades as well as it has low complexity.

• Unscented Kalman Filter (UKF): This filter utilizes the unscented transform
for more accurate mapping from the state to the measurement using sigma
points. It is a relatively new filter, presented in Julier et al. (1995), still it is
widely used and it does not require derivations.

3.2.1 Extended Kalman Filter

The algorithm for the extended Kalman filter is stated in Algorithm 2. The func-
tion tr( · ) stands for the function trace, which is a sum of the diagonal elements.

Algorithm 2 Extended Kalman Filter (Gustafsson, 2018)
Initialized with x̂1|0 and P1|0.
Measurement Update:

Sk = R + J(x̂k|k−1, k)Pk|k−1J
T (x̂k|k−1, k)

+
1
2

[
tr
(
Hi(x̂k|k−1, k)Pk|k−1Hj (x̂k|k−1, k)Pk|k−1

)]
i,j

(3.4a)

Kk = Pk|k−1J
T (x̂k|k−1, k)S−1

k (3.4b)

νk = zk − h(x̂k|k−1, k) −
[1
2

tr(Hi(x̂k|k−1, k)Pk|k−1)
]
i

(3.4c)

x̂k|k = x̂k|k−1 + Kkνk (3.4d)

Pk|k = Pk|k−1 − KkSkKTk (3.4e)

Time Update:

x̂k+1|k = x̂k|k (3.4f)

Pk+1|k = Pk|k + Q (3.4g)

It should be noted that the EKF is a minimal mean square error (MMSE) estimator
given that the earlier estimate x̂k|k−1 and the current measurement zk are Gaus-
sian random variables, according to Bar-Shalom and Li (1993) and Wan and Van
Der Merwe (2000). However, the estimated measurement only uses an approxi-
mation of the distribution, which would not make this optimal. Furthermore, as
this approximation is made only in one point, using the earlier estimate, then the
mapping of the nonlinear function might not be as precise. An illustration of this
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Figure 3.1: An illustration of the real vs the approximated Gaussian of the
measurement for the EKF. Blue-The best approximated Gaussian, Red-The
actual Gaussian after using the nonlinear function, •-The mean.

can be seen in Figure 3.1, where the approximated distribution does not necessar-
ily look like the actual distribution. These imprecise approximations stem from
its series expansion, which could introduce unmodeled errors. Although the EKF
has its flaws, it is a useful filter since it is easy to work with. The initial estimation
does not have to be perfect and neither does its initial covariance.

More details and information about the EKF can be found in, for example, Bar-
Shalom and Li (1993), Gustafsson (2018) or Miller and Minkler (1993).

3.2.2 Unscented Kalman Filter

As the EKF only approximates the measurement using one point, another idea is
to use many points by utilizing the unscented transform (UT). The UT uses the
mapping of several sigma points in the belief that the approximation becomes
better. In contrary to Figure 3.1, that describes the mapping of a distribution in
the EKF, by adding sigma points the UT can be illustrated as Figure 3.2.

In the UT, the sigma points X of a variable x are calculated as (3.5), where
µx is the mean of x, nx is the dimension of x, λ is a composite scaling parameter
and P is the covariance matrix of x. The index i in (

√
(nx + λ)P )i is the square

root of the ith column of the matrix (nx + λ)P . The square root can be calculated
using singular value decomposition.

X0 = µx, (3.5a)

X i = µx + (
√

(nx + λ)P )i , i = 1, ..., nx, (3.5b)

X i = µx − (
√

(nx + λ)P )i−nx , i = nx + 1, ..., 2nx. (3.5c)

The algorithm for the UKF is shown in Algorithm 3, where the UT is applied to
an augmented state xa = [xT , wT , eT ]T that includes the position of the target,
the process noise and the measurement noise. The weights for the algorithm are
calculated as in (3.6) with their design parameters presented in Table 3.1. In other
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Figure 3.2: An illustration of the real vs the approximated Gaussian of the
measurement for the UKF. The lines are the mapping of sigma points. Blue-
The best approximated Gaussian, Red-The actual Gaussian after using the
nonlinear function,•-The mean.

Table 3.1: Design parameters for the unscented transform in the UKF. Cho-
sen as in Wan and Van Der Merwe (2000) for Gaussian distributions.

Parameter Description Value

a Controls the spread of the sigma points. 10−3

b Incorporates prior knowledge of the distribu-
tion.

2

κ Secondary scaling parameter. 0
λ Scaling Parameter, λ = a2(na + κ) − na. 10−6na − na

UT literature, the parameters a and b are often written as α and β, however, they
have been chosen this way to not confuse the reader with the azimuth angle. It
should be noted that Z ik|k−1 and ẑk|k−1 have been moved from the time update to
the measurement update because the position and orientation of the receivers are
known signals and they should be used with the current sample’s measurements.

W
(m)
0 =

λ
na + λ

, (3.6a)

W
(c)
0 =

λ
na + λ

+ (1 − a2 + b), (3.6b)

W
(m)
i = W

(c)
i =

1
2(na + λ)

, i = 1, ..., 2na. (3.6c)

Although, the UKF uses a lot of summations, the algorithm can be implemented
with only matrix multiplications. There are more details of the UT and the UKF
in Julier and Uhlmann (1997); Julier et al. (1995) and Wan and Van Der Merwe
(2000).
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Algorithm 3 Unscented Kalman Filter (Julier and Uhlmann, 1997)
Initialized with x̂0 and P0.
Initialization:

x̂a0|0 =
[
x̂T0 0 0

]T
(3.7a)

P a0|0 =

P0 0 0
0 Q 0
0 0 R

 (3.7b)

Calculate Sigma Points:

X ak|k =
[
x̂ak|k x̂ak|k ±

√
(na + λ)P ak|k

]
Time Update:

X x,ik|k−1 = X x,ik−1|k−1 + Xw,i (3.7c)

x̂k|k−1 =
2na∑
i=0

W
(m)
i X

x,i
k|k−1 (3.7d)

Pk|k−1 =
2na∑
i=0

W
(c)
i (X x,ik|k−1 − x̂k|k−1)(X x,ik|k−1 − x̂k|k−1)T (3.7e)

Measurements Update:

Z ik|k−1 = h(X x,ik|k−1, k) + X e,i (3.7f)

ẑk|k−1 =
2na∑
i=0

W
(m)
i Z

i
k|k−1 (3.7g)

Sk =
2na∑
i=0

W
(c)
i (Z ik|k−1 − ẑk|k−1)(Z ik|k−1 − ẑk|k−1)T (3.7h)

Kk =
( 2na∑
i=0

W
(c)
i (X x,ik|k−1 − x̂k|k−1)(Z ik|k−1 − ẑk|k−1)T

)
S−1
k (3.7i)

x̂k|k = x̂k|k−1 + Kk(zk − ẑk|k−1) (3.7j)

Pk|k = Pk|k−1 − KkSkKTk (3.7k)

where xa = [xT , wT , eT ]T is the augmented state, X a = [(X x)T , (Xw)T , (X e)T ]T is
the sigma points of the augmented state, λ is a scaling parameter, na = dim(xa)
and Wi is the weights, calculated as (3.6).
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3.3 Initial Estimate and its Covariance

All methods require an initial estimate x̂0 and initial covariance P0. In tracking, it
is commonly calculated from the first sample or from the first couple of samples.
Here, the initial estimate is calculated from the first sample.

The Gauss-Newton algorithm for nonlinear problems, presented in Algorithm 4,
iterates the same sample until it finds a position that minimize the cost function
from (3.2) or until certain conditions are met. The Gauss-Newton method for the
NLS algorithm uses a few different parameters to terminate the search for new
estimates. These parameters are described in Table 3.2.

Algorithm 4 Nonlinear Least Squares: Gauss-Newton (Gustafsson, 2018)

1. Set i = 0 and use a first approximation of x̂(0) as input.

2. Set ai := 1.

3. Calculate:

x̂(i+1) = x̂(i) + ai
[
JT (x̂(i))R−1J(x̂(i))

]−1
JT (x̂(i))R−1(z − h(x̂(i)))

4. If V (x̂(i+1)) > V (x̂(i)): Set ai := ai /2 and repeat from step 3.

5. If the change in cost, the change in the estimate or the size of the gradient is
sufficiently small or if number of max iterations is reached: Terminate.

6. Set i := i + 1 and repeat from step 2.

The difficulty with the Gauss-Newton algorithm is its initialization. For a good
initial estimate, the algorithm could converge very fast. However, if the initial
estimate is bad then the algorithm can converge slowly, diverge or find a local
minimum. (Constales et al., 2017)

For the initialization of the Gauss-Newton algorithm, there is an ad-hoc solution
for this problem which is used only for this thesis. Assuming that the receiver
has a range r where it can detect the target, it can take a few initial values from
the circle created by that radius. If the points on the radius converge to the same
point, while disregarding the diverging points, it becomes a good guess for an
initial estimation.

The asymptotic covariance of a least-square estimate is given by (3.8a) (Huang
et al., 2010), however, as it is a very optimistic estimation using only one sample
instead of many, a larger covariance might be better. In this project, (3.8b) is used
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instead.

P0 = (JT (x̂)R−1J(x̂))−1, (3.8a)

P0 = 106I. (3.8b)

Table 3.2: The parameters for the Gauss-Newton NLS algorithm.

Parameter Description Value Value (w.
terrain data
available)

∆V Discontinue the al-
gorithm when the
change of cost is suffi-
cient small enough.

<1e-3 <1e-3

||∆x̂||2 Discontinue the al-
gorithm when the
change in estimate
is sufficiently small
enough.

<5m <5m

||JT (x̂i+1)e(x̂i+1)−
JT (x̂i)e(x̂i)||2

Discontinue the algo-
rithm when the size
of the gradient is suffi-
ciently small enough.

<1e-2 <1e-4

max_iter Max iterations be-
fore stopping the
algorithm

10 10

3.4 Terrain Data Integration

For a certain lateral position it is possible to map the corresponding height from
the terrain data, i.e. the height of a lateral position can be looked up. As the
target’s position is on ground level, this knowledge gives us the opportunity to
disregard estimating the target’s third dimension and instead focus on its lateral
position. However, it cannot be disregarded altogether. The measurement func-
tion, h(x, k), needs to have all three dimensions of the target to work properly,
which is essential for all methods as well for the calculations of the Jacobian and
the Hessian.

The target’s height can be seen as a function of the lateral position, x3(x1, x2), and
the target’s position in three dimensions could be written as x = [x1, x2, x3(x1, x2)]T

for one sample. As the methods only calculates the lateral position, it influences
the Jacobian and the Hessian as well. The derivatives are calculated only for two
dimensions, instead of the usual three. All of this is illustrated in Figure 1.5 from
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Section 1.4 as the terrain data acts like a plane which the bearing measurements
projects down upon.





4
Experimental Evaluation

There are mainly two ways to evaluate the methods in Chapter 3; either by testing
them on real data or by testing them on simulated data. By first simulating the
problem, the solutions can be verified to work in a controlled environment before
testing them on real data. As there is neither time nor resources to collect real
data for this thesis, a simulation system is a great tool to evaluate the different
methods.

This chapter is organized as follows. Section 4.1 describes how the methods can
be evaluated empirically with simulations using Monte Carlo runs and how it
can be compared to an analytical lower bound. It also discusses when there is
parameter observability while using elevation data. How these simulations and
simulation scenarios are implemented is shown in Section 4.2 with its simulated
result presented in Section 4.3.

4.1 Performance Metrics

This section presents how the methods in Chapter 3 can be evaluated empiri-
cally with Monte Carlo simulations using the root mean square error (RMSE) and
how it can be compared to the analytical lower bound, Cramér-Rao lower bound
(CRLB). There is also an analysis of the analytical solution when elevation data is
available, to see what assumptions or conditions have to be met for the target to
be observable.

4.1.1 Performance Measures

When evaluating the performance of different filters, it could be advantageous to
use a scalar measurement. One such measurement is the RMSE. It can be seen as

27
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the standard deviation of the length of the estimated error. (Gustafsson, 2000)

One way to estimate the RMSE analytically is to use Monte Carlo simulations
(runs). The Monte Carlo method makes many independent realizations/simulations
to build up statistics. Let M be the number of independent realizations of the
measurement zk and j denote the jth realization. Then the measurement at time

k for the jth simulation can be written as z(j)
k . From z

(j)
k , different estimates of the

position, x̂(j)
t , are made using the methods in Chapter 3 and they are compared

to the true position, x0
k , using the RMSE in (4.1). The superior index 0 signifies

the true value and the subindex 2 represents the Euclidean norm.

RMSE[k] =
( 1
M

M∑
j=1

||x̂(j)
k − x

0
k ||

2
2

)1/2
(4.1)

Note that the RMSE is time dependent. As the position of the target is not mov-
ing, it is also interesting to look at the whole data sequence as well. This gives
an indication of how well the algorithm perform over an extended period of time.
To make the RMSE for the whole sequence unbiased1, the summation of the se-
quence is placed inside of the square, as in (4.2) (Gustafsson, 2000).

RMSE =
(1
k

k∑
i=1

1
M

M∑
j=1

||x̂(j)
k − x

0
k ||

2
2

)1/2
(4.2)

4.1.2 Cramér-Rao Lower Bound

Another interesting way to investigate the performance of the filters is to use the
Cramér-Rao Lower Bound (CRLB). It is a theoretical lower bound for the covari-
ance of an estimate. The closer the estimate’s covariance is to the CRLB, the better
the estimator. If the estimate’s covariance reached the CRLB the estimator is said
to be efficient Bar-Shalom and Li (1993). The CRLB for an unbiased estimator of
the target’s position x can be formulated as

E
[
(x̂ − x0)(x̂ − x0)T

]
= cov(x̂) ≥ I−1(x0) (4.3)

where x0 is the true value of x and I is the Fisher information matrix (FIM) (Bar-
Shalom and Li, 1993; Gustafsson, 2018). The time index is dropped for simplicity.
The FIM is defined as

I (x) , E
[(
∇x ln p(z|x)

)(
∇x ln p(z|x)

)T ]
(4.4)

where p(z|x) is the likelihood function (LF) which serves as a measure of how
likely some observation z is, given a value of x (Bar-Shalom and Li, 1993; Gustafs-
son, 2018). The LF is calculated using the distribution of the measurement error

1Unbiased means that E[x̂] = x0 where x0 is the true value of x.
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as in (4.5).

p(z|x) = pe(z − h(x, u)) = N (e(x); 0, R) (4.5)

Using the Jacobian and that the error is Gaussian distributed, the FIM can be
calculated as (4.6).

ln pe(e(x)) = −1
2

ln((2π)N |R|) − 1
2

(eT (x)R−1e(x)) (4.6a)

∇x ln pe(e(x)) = JT (x)R−1e(x) (4.6b)

I (x) = E
[
J(x)T R−1e(x)(JT (x)R−1e(x))T

]
= JT (x)R−1J(x) (4.6c)

For a static target without process noise, the information is assumed to be addi-
tive. The information is bound to increase monotonically with more information
given. As it is assumed that two measurements are independent, then the cur-
rent information can be calculated as the sum of the previous information and
the added information. This is easily understood by considering the recursive
CRLB formula of Algorithm 5.

Algorithm 5 Recursive Cramér-Rao Lower Bound
Initialized with I0 = 0.
Measurement update:

Ik = Ik−1 + JT (x0
k , k)R−1J(x0

k , k)

P CRLB
k = I−1

k

It is quite easy to compare the localization methods to the theoretical lower bound.
The connection from CRLB to RMSE is as (4.7).

RMSE[k] ≥
√

tr(P CRLB
k ) (4.7)

4.1.3 Observability with Elevation Data

As the CRLB utilizes the inverse of the FIM, it is assumed that the inverse of
I (x) = J(x)R−1JT (x) exists. The inverse is needed in order to gain parameter ob-
servability or, with other words, the ability to observe the target. If the FIM is
singular, e.g., if some eigenvalues are zero, then the inverse and hence the CRLB
does not exist. If the inverse does not exist, then the matrix has infinite eigenval-
ues which makes the lower bound nonexistent.

For one receiver and no available terrain data the object would become partially
unobservable. This stems from that there are two measurements (azimuth and
elevation) and the position is in 3D. With this, the algorithms need to set three
variables from two equations and this would not correspond to a unique solution
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for the first sample. However, using elevation data, the height can be seen as a
function of the 2D position, x3(x1, x2), and a unique solution should be found,
thus making it observable with existing inverse of the FIM. However, depending
on the angles, azimuth and elevation, there might be unobservable points even
while using the elevation data.

The calculation of the inverse of the FIM might become a bit more tricky with
available elevation data. If you know the lateral position, you can easily calculate
the height. However, even if mapping the lateral position to the height is possible,
it might become a problem to calculate its derivative as the function is unknown
(can a map have a corresponding function describing its terrain?). In practice, it
is likely that the terrain data is a summarized as a grid. This grid can be seen as
a surface which could be approximated with a function. Still, this function could
be as difficult to describe completely as the true terrain.

Let us examine the information I (x) = JT (x)R−1J(x) and J(x) = ∇xh(x) with el-
evation data for one receiver. For simplicity, the time index k is dropped, which
could be seen as a special case with k = 1. For shorter expressions, the position of
the target is in the receiver’s moving coordinate system, xr . As the function of the
terrain is unknown, let it be approximated as a plane as in (4.8) with A, B, C ∈ R.

xr3(xr1 , xr2 ) = Axr1 + Bxr2 + C (4.8)

This means that xr3 now instead is a function. The relation between the angles
and xr can be seen in (4.9).

h(xr ) =
(
α(xr )
ε(xr )

)
=

 arctan2(xr2 , xr1 )

arctan2(−(Axr1 + Bxr2 + C),
√
x2
r1 + x2

r2 )

 (4.9)

The derivatives of the angles are stated in (4.10) and the calculations for them
can be found in Appendix A.2.

∂α
∂xr1

=
−xr2

x2
r1 + x2

r2

(4.10a)

∂α
∂xr2

=
xr1

x2
r1 + x2

r2

(4.10b)

∂ε
∂xr1

= (x2
r1 + x2

r2 )−1/2 Bxr1xr2 + Cxr1 − Ax
2
r2

x2
r1 + x2

r2 + (Axr1 + Bxr2 + C)2
(4.10c)

∂ε
∂xr2

= (x2
r1 + x2

r2 )−1/2 Axr1xr2 + Cxr2 − Bx
2
r1

x2
r1 + x2

r2 + (Axr1 + Bxr2 + C)2
(4.10d)

The Jacobian is defined as (4.11) and it is, in this simple case, a square matrix.
For invertible matrices J(x) and R then [JT (x)R−1J(x)]−1 = J−1(x)RJ−T (x) must be
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true.

J(xr ) =
∂
∂xr

h(xr ) =

 ∂α
∂xr1

∂α
∂xr2

∂ε
∂xr1

∂ε
∂xr2

 (4.11)

The Jacobian is invertible if and only if it has full rank. Therefore, let us take a
look at its determinant and when it is equal to zero:

0 =
∂α
∂xr1

∂ε
∂xr2

− ∂α
∂xr2

∂ε
∂xr1

=⇒
0 = −xr2(Axr1xr2 + Cxr2 − Bx

2
r1 ) − xr1(Bxr1xr2 + Cxr1 − Ax

2
r2 )

= �����−Axr1x
2
r2 − Cx

2
r2 +

����Bx2
r1xr2 −����Bx2

r1xr2 − Cx
2
r1 +

��
��Axr1x

2
r2

= −C(x2
r1 + x2

r2 )

Thus, for the Jacobian to have full rank then 0 , −C(x2
r1 + x2

r2 ). There are two
cases where the inverse of the Jacobian does not exist; C = 0 and xr1 = xr2 = 0.
The singularity from xr1 = xr2 = 0 stems from the origin of the problem itself.
When the elevation angle is π/2, then the object is right below the receiver and
the azimuth angle can take any value without changing this fact. As the azimuth
can take on any value, it makes the object unobservable. However, from this fact,
an operator/pilot can come to the conclusion that the target is directly below but
with unknown statistical accuracy.

It should be noted that the orientation of the receiver is important as xr is the
relative position of the target. If the receiver makes a maneuver, its coordinate
system rotates and then this singularity might not be directly below the receiver.
This only becomes a problem when the receiver faces the target with its belly.

It is also problematic when C = 0 which means that at least a constant height
difference has to exist for the Jacobian to exist. As it is assumed that the target is
on the ground and that the receiver is an AV, the assumption that there is at least
a constant height difference C is reasonable. If the target has the same height
as the receiver but is also on the ground, then those facts are contradicting each
other. If this occurs in a mountainous area, then an operator/pilot could make
the assumption that the target is on a mountain.
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4.2 Implementation and Simulation Specifications

This section presents the parameters and their values for a simple simulation
system as well as illustrate the different simulation scenarios.

4.2.1 Simulations

To evaluate the methods, a simple simulation system is implemented in MATLAB.
The general parameters for the simulation and their value are stated in Table 4.1.
Every scenario is simulated with 1000 Monte Carlo runs to gain somewhat accu-
rate statistics. The measurement covariance, in all receivers, is given by

R =
[
σ2
e 0

0 σ2
e

]
(4.12)

where, following the discussion of Gustafsson (2018, p. 404), σe ∈ [5◦, 10◦] is
assumed. Therefore, some investigation will be done on both 5◦and 10◦to see
how the methods behave for the different extremes of the standard deviation.
The movement of the receivers is based on uniform motion, where the receivers
continue forwards with a constant velocity.

Table 4.1: Parameters for simulation.

Parameter Description Value Unit
T Sample time 0.1 s
M Number of simulations 1000 -
σe Standard deviation of measure-

ment noise
5 or 10 ◦

∆ Offset for approximation of the
Jacobian and Hessian

50 m

4.2.2 Elevation Data

The terrain data available is an elevation data grid with grid size 50m×50m from
Elevation data, grid 50+ © Lantmäteriet (Lantmäteriet). It is based on the national
elevation model and it has an average fault of 1m. However, this can be much
higher for hilly terrain. The data is collected and maintained with laser data
as well as use measurement of changes in aerial images. The national elevation
model is based on an one meter grid which is interpolated with a bilinear method
a couple of times until it reaches a 50 meter grid. For this project, it is assumed
that the height is correct for flatter areas.

4.2.3 Scenarios

There are two flight paths that will be investigated in this thesis. The different
paths have been chosen to get two geometrically different problems. Let the first
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(a) 2D view of the path from
above.

(b) 3D view of the path where the height
data is colored. The light/yellow parts are

higher up than the lower blue parts.
Elevation data, grid 50+ © Lantmäteriet

Figure 4.1: The parallel flight path.

flight path be called parallel, see Figure 4.1. There are two AVs that fly 100 meters
apart in parallel and the paths are straight. The target is a few kilometers away
and the terrain is mostly flat. The receivers’ initial positions and velocities can be
found in Table 4.2.

Table 4.2: Parameters for the parallel flight path.

Parameter Description Value Unit
x Target position (3.2, 3.2, 0.154)T km
y(1) Receiver 1 initial position (0.2, 0.2, 1)T km
y(2) Receiver 2 initial position (0.3, 0.2, 1)T km
v Velocity of the receivers 200 m/s

The other flight path that will be investigated is illustrated in Figure 4.2 and it is
called crossed. This name stems from the direction of the individual flight paths
of the receivers. Their flight paths are straight but perpendicular to each other.
The starting psoitions and velocities are found in Table 4.3.
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(a) 2D view of the path from
above.

(b) 3D view of the path where the height
data is colored. The light/yellow parts are

higher up than the lower blue parts.
Elevation data, grid 50+ © Lantmäteriet

Figure 4.2: The crossed flight path.

Table 4.3: Parameters for the crossed flight path.

Parameter Description Value Unit
x Target position (2.2, 2.2, 0.172)T km
y(1) Receiver 1 initial position (1.1, 0.2, 1)T km
y(2) Receiver 2 initial position (0.1, 2.95, 1.1)T km
v Velocity of the receivers 200 m/s

The scenarios are chosen in this way as it is hypothesized that the parallel flight
path gives less information than the crossed flight path. As the two receivers in
parallel receive almost the same measurements, then it is assumed that the in-
formation gained by the extra receiver is small. For the crossed, however, there
could be more gain as each sample could give more information.

There are five scenarios that will be investigated. The summary of what each sce-
nario includes can be found in Table 4.4. The difference between each scenario
can be the number of receivers, the flight path or if elevation data is available.
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Table 4.4: Summary of the different scenarios.

Scenario Targets Receivers Flight path Elevation data

1 1 2 Parallel Not available
2 1 2 Parallel Available
3 1 1 (only R1) Parallel Available
4 1 2 Crossed Not available
5 1 2 Crossed Available

The different scenarios were chosen as they all have different information, even
if the flight path is the same. For example, scenario 2 has more information than
scenario 1 as elevation data is available. However, comparing these two scenar-
ios might be unfair, due to the difference in available information. Therefore
another scenario was added. In scenario 3, one receiver is removed to decrease
the amount of information extracted.
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4.3 Results

This chapter is divided into two parts where the first part presents the results for
the parallel flight path and the second part presents the results for the crossed
flight path. The evaluation method is the same as presented in Section 4.1, where
the estimated standard deviation of the target’s position plays a heavy part. It is
calculated by the RMSE and it is compared to the CRLB. The CRLB is the theoreti-
cal lower bound that the RMSE can achieve. Therefore, if the RMSE is close to the
CRLB, it is difficult to get any better results, and hence the estimator performs
well in the specific problem.

The RMSE and CRLB are calculated only for the lateral position, even if some sce-
narios also estimate the height of the target. It is because it is easier to compare
the different scenarios and their values if they compare the same parameters.

4.3.1 Parallel Flight Path

The RMSE of the target’s position for scenario 1-3 can be found in Figure 4.3. The
standard deviation of the measurement error is σe = 10◦ for all scenarios. In Fig-
ure 4.3a, the RMSE for scenario 1 is shown. It takes ' 12 seconds for the methods
to flatten their curves and the majority of the time the EKF is clearly lower than
either NLS and UKF. There is no method that is close to the CRLB for an extended
period of time.

Scenario 2 is given by adding the elevation data and the RMSE curves are found
in Figure 4.3b. The knowledge of the terrain lowers the RMSE towards the CRLB
and all of the methods have similar curves. From ≈ 15 seconds, it seems like
all methods are approximately the same as the CRLB. Removing one receiver for
scenario 3, the RMSE is given by Figure 4.3c. The graph for scenario 3 is similar
to scenario 2, however, it is not as steep in the first 10 seconds.

In roughly the first second of Figure 4.3c the methods are below the CRLB, which
is quite surprising. Still, this could be explained by the initialization. As the ini-
tialization use the assumption that the receiver can detect a target within a certain
range, the localization could be slightly better in the beginning.

To see which method perform better over time, let us look at the RMSE for the
whole data sequence, which is shown in Table 4.5. In scenario 1, the EKF has
much lower RMSE than the others. While for scenario 2 and 3, the NLS perform
slightly better than both the EKF and the UKF. All methods converge, sooner or
later, to the CRLB except for the NLS and UKF in scenario 1. Furthermore, the
convergence is slower for EKF in scenario 1.

For σe = 5◦ and σe = 10◦, the methods give similar graphs respectively for every
scenario. One example is scenario 1, which is shown in Figure 4.4. All methods
have similar appearance for both σe and the curves of the methods have compa-
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(a) Scenario 1: Two receivers and no
available elevation data.

(b) Scenario 2: Two receivers and
available elevation data.

(c) Scenario 3: One receiver and
available elevation data.

Figure 4.3: The estimated standard deviation of the target’s position com-
pared to the CRLB for the parallel flight path. σe = 10◦.
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Table 4.5: Comparison between the RMSE and CRLB for the whole sequence
for different standard deviations of the measurement error (parallel flight
path).

Scenario σe
RMSE [m]
(NLS)

RMSE [m]
(EKF)

RMSE [m]
(UKF)

CRLB [m]

1 5◦ 950 756 925 155
1 10◦ 1126 939 1105 310
2 5◦ 176 177 183 148
2 10◦ 346 349 362 297
3 5◦ 229 238 243 213
3 10◦ 449 459 469 427

rable shape. However, for smaller deviation, the methods converge faster with a
steeper curve. For lower σe, the CRLB becomes lower as well.

(a) σe = 5◦. (b) σe = 10◦.

Figure 4.4: The estimated standard deviation compared to the CRLB for sce-
nario 1 (parallel flight path).

4.3.2 Crossed Flight Path

The RMSE of the target’s position for scenario 4 and 5 can be found in Figure 4.5.
The standard deviation of the measurement error is σe = 10◦. Both scenarios give
very similar graphs even though scenario 5 have more information as it has access
to elevation data. The main difference between the scenarios is the first couple of
seconds where both are distinguishable from the CRLB. With scenario 4 there are
more uncertainty during that time, but it converges fast towards the lower bound.
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(a) Scenario 4: Two receivers and no
available elevation data.

(b) Scenario 5: Two receivers and
available elevation data.

Figure 4.5: The estimated standard deviation of the target’s position com-
pared to the CRLB for the crossed flight path. σe = 10◦.

Table 4.6: Comparison between the RMSE and CRLB for the whole sequence
for different standard deviations of the measurement error (crossed flight
path).

Scenario σe
RMSE [m]
(NLS)

RMSE [m]
(EKF)

RMSE [m]
(UKF)

CRLB [m]

4 5◦ 46 110 71 36
4 10◦ 102 153 132 72
5 5◦ 57 45 57 36
5 10◦ 99 84 99 72

The information gained by the knowledge of the terrain seems to be small, as
the all the methods converge quickly to the CRLB, which is the same for both sce-
narios. The main difference between the scenarios is the first couple of seconds
where the RMSE is much higher for scenario 4. This can also be seen in in Ta-
ble 4.6, where the majority of the methods are better for scenario 5 than scenario
4, while also being quite near the CRLB. For scenario 4, the NLS perform better
than the other methods, however, for scenario 5 the EKF perform better.
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Discussion

Looking at the simulation results it is fairly obvious that the relative flight paths
of the receivers are very important. For different relative flight paths the re-
ceivers will generate measurements with different information content, which
subsequently means that the estimation performance will differ. For the parallel
flight path in scenario 1, all of the methods converge slowly or not at all to the
CRLB, while for the corresponding scenario for the crossed flight path, scenario
4, the methods converge fast. As the two flight paths are two different problems,
their numerical value is difficult to compare. However, their appearance and how
quickly the converge tell us that the receivers’ relative path is important for the
results.

Nonetheless, the geometry of the problem is not as important if elevation data
is available. Both scenario 2 and 5, which use two receivers and elevation data,
converge fairly quickly to the CRLB. This could stem from that it is possible to lo-
cate the target using only one receiver when elevation data is available. Therefore,
it can be said that the relative flight path is important to get good localization but
it is not as critical when elevation data is available.

The measurement noise is also important for better results. With smaller σe, the
methods perform better. Therefore, if the measurement error could be minimal,
then the results would improve, independent of the method used.

The available elevation data is, in this case, restricted to Sweden and there are
a few areas that are not covered and/or have missing data. For algorithms de-
pending on the elevation data, this could be critical for the localization. If the
data is not available, then the algorithms would cease to function properly. This
could also be a problem for flying over new areas not covered in the data, for
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example in a foreign country. It should also be noted that having too much data
could also be problematic. A big data base needs a lot of memory space, which
could be restricted for AVs.

The improvement of the methods between scenario 1 and 2, when the terrain
data is added, is great. With elevation data, the RMSE can converge quicker to-
wards the CRLB. This highlights the difficulty to determine the position using
similar measurements. Conceptually, this could be explained with Figure 1.4
from Section 1.3, where "beams" from two receivers cross each other and they
point out where the most likely position is within a volume. For two receivers
which receive similar measurements, these "beams" overlap more volume than
for receivers that receive very different measurements. Then when the elevation
data is added, it restricts not only the possible height but also the lateral position.

Comparing scenario 2 and 3, the result is fairly similar in appearance to each
other even if there is one receiver less in scenario 3. This could be interpreted as
the extra receiver does not add much information when the AVs fly in parallel.
However, looking at the RMSE for the whole data sequence, there is a significant
difference in value between the two scenarios where scenario 2 is a lot less than
scenario 3. The CRLB for scenario 3 is also much higher than scenario 2, which
means that a lot could be gained by an extra receiver although the receivers get
similar measurements.

Continuing with the RMSE for the whole sequence, there are not many meters
that differ between the CRLB for scenario 1 and 2. Although, scenario 2 has el-
evation data, the CRLB for scenario 1 is only 13m higher than scenario 2. This
could be compared to the CRLB for scenario 3 which is a lot higher than for ei-
ther scenario 1 and 2. This implies that the information gained by knowing the
environment is less than adding an extra receiver for this specific problem with
this terrain data set, covariance and number of receivers.

Although it might be possible to have good results without elevation data, the
RMSE for the parallel flight path shows a different story. All methods perform
better in scenario 3 (one receiver, elevation data) compared to scenario 1 (two
receivers). Therefore, the geometry of the problem is important to get good lo-
calization with two receivers while it is not as important when elevation data is
available.

For more than one receiver, there is another problem that arises. For an update of
the target’s position in real-time, then the receivers have to communicate. How-
ever, the line of communication could be restricted. There might be a limit of
how much information can be sent between two receivers and other communica-
tion might be more important than locating a jammer. Therefore, the user has to
consider whether it is more reasonable to use two receivers that need to commu-
nicate or to use one receiver that use more memory space.
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The individual methods give very similar results when elevation data is in use, in-
dependently of the scenario. There is not a clear advantage to chose one method
over the others. The only advantage that exists when all methods perform simi-
larly, is the computation time. The NLS has less computation time viewing at the
calculations needed for every update. This, however, would not be noticeable for
the user as all methods are fairly quick.

When there is no elevation data, the performance of the methods are different
from each other. Here, the EKF stands out for scenario 1. It is the only method
that converges to the CRLB and its RMSE is also lower than the other methods
the majority of the time. Yet, for scenario 4 the EKF is the method that has the
worst performance. Still, it converges quickly towards the CRLB following the
NLS and the UKF. Here, the user has to do a trade-off to see what method is more
advantageous to use for certain situations. It could either be 1.) having a method
that always converges to CRLB, although it might be slow, or 2.) a method that
only converges to CRLB sometimes, but when it does converge, it is better.
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Conclusion

In summary, this thesis has introduced elevation data to the airborne angle-only
geolocalization problem using three localization methods, the nonlinear least
squares (NLS), the extended Kalman filter (EKF) and the unscented Kalman filter
(UKF). These methods have been implemented with and without elevation data,
and they have been compared to the Cramér-Rao Lower Bound (CRLB) to see if
there are some advantages to use elevation data. There have also been a discus-
sion of the observability when elevation data is in use.

With elevation data it can be said that the localization gives more consistent re-
sults independently of the method used or the geometry of the problem. All
methods converge fairly quickly to the CRLB when elevation data is available for
the tried geometries in this thesis. However, for more than one receiver it might
be unnecessary to use elevation data. If the measurements have enough infor-
mation embedded then it does not matter if elevation data is added because the
localization is almost as good with it as without it.

For multiple receivers, there is a need for a communication channel between the
receivers. Thus, if there are multiple receivers available that can communicate
while flying differently from each other, there is no need to add elevation data.
Yet, if the receivers receive similar measurements to each other, the localization
can significantly improve with elevation data. It is also noteworthy that the lo-
calization still works for one receiver when elevation data is accessible as it can
eliminate the disadvantages of communication and planning of the relative flight
path.

There is no method that is clearly better than the others when elevation data
is available. The methods’ performances are very similar but that could also be
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an advantage. This makes the usage of elevation data not restricted to a certain
method and it leaves more up to the implementer which method they prefer.

6.1 Future Work

For future work, it would be interesting to see how well the methods perform
in real-life as this thesis only tried the scenarios with simulations. However, for
real-life scenarios there might be different data available. For example, instead
of azimuth and elevation there might only be azimuth measurements available or
azimuth and RSS1. All these different combinations might be interesting to inves-
tigate with elevation data. Furthermore, the terrain could be different depending
on location, which makes it engaging to see how well these methods perform for
mountainous terrain. This is particularly interesting for, for example, search and
rescue (SAR) for mountain rescue.

An immediate continuation of this thesis is to add movement to the target and
make it a tracking problem. It is not unthinkable to put a jammer in, for exam-
ple, a car. This problem could also include elevation data, to see if there is any
improvement to the tracking with or without elevation data.

Another addition is to add more targets and to estimate the bearing measure-
ments. For example, radio frequencies, which many jammers use, can interfere
with each other and the bearing measurements is often calculated with antenna
arrays. Thus, if the radio frequencies are modelled (or used in reality), it could be
interesting to see how well the methods perform when the association problem
arise and how the solutions presented in this thesis could be combined to a larger
problem that is more similar to real life.

1Received Signal Strength.
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A
Derivatives

This chapter explains which numerical approximations are used for the Jacobian
and Hessian as well as calculates the derivatives of azimuth and elevation in the
receivers own coordinate system.

A.1 Numerical Approximation

A numerical approximation of the Jacobian and Hessian can be preferred if they
are difficult to calculate by hand or if they are too complex which requires much
computer code, memory or computational time. Using a forward difference of ∆,
the Jacobian and Hessian can be approximated as (A.1), where the sub-indices i, j
of ∆ is the difference applied to a certain dimension. (Gustafsson, 2018)

∂h(x)
∂xi

≈h(x + ∆i) − h(x)
∆

(A.1a)

∂2h(x)
∂xi∂xj

≈ 1
∆2

(
h(x + ∆i + ∆j ) − h(x + ∆i) − h(x + ∆j ) + h(x)

)
(A.1b)

These approximations will be used for the Jacobian and Hessian used in the meth-
ods.

A.2 Azimuth and Elevation

Here are the calculations of the derivatives of the Azimuth and Elevation angles
in the relative coordinate system. They are used in Section 4.1.3 to see where
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there is observability.
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