
Master of Science Thesis in Electrical Engineering
Department of Electrical Engineering, Linköping University, 2021

Information Fusion of
Data-Driven Engine Fault
Classification from Multiple
Algorithms

Ninos Baravdish

Master of Science Thesis in Electrical Engineering

Information Fusion of Data-Driven Engine Fault Classification from Multiple
Algorithms

Ninos Baravdish

LiTH-ISY-EX--21/5402--SE

Supervisor: Max Johansson
isy, Linköpings universitet

Examiner: Daniel Jung
isy, Linköpings universitet

Division of Vehicle Systems
Department of Electrical Engineering

Linköping University
SE-581 83 Linköping, Sweden

Copyright © 2021 Ninos Baravdish

Sammanfattning

I takt med att bilindustrin ständigt gör tekniska framsteg ställs allt högre krav på
säkerhet, miljövänlighet och hållbarhet. Moderna fordon är på väg mot alltmer
komplexa system, både när det kommer till hårdvara och mjukvara, vilket gör
det viktigt att detektera fel i någon av komponenterna. Övervakning av motorns
tillstånd har traditionellt gjorts med hjälp av expertkunskaper och modellbase-
rade metoder, där härledda modeller av systemets nominella tillstånd används
för att detektera eventuella avvikelser. På grund av systemets ökade komplexitet
möter detta tillvägagångssätt dock begränsingar vad gäller tid och kunskap för
att beskriva motorns tillstånd. Ett alternativ är därför datadrivna metoder som
istället baseras på historiska data uppmätt från olika arbetspunkter som används
för att dra slutsatser om motorns nuvarande tillstånd.

I den här studien presenteras ett föreslaget diagnosramverk som består av ett sys-
tematiskt tillvägagångssätt för felklassificering av kända och okända fel samt en
felstorleksuppskattning. Grunden för detta ligger i att använda principalkompo-
nentanalys för att hitta felvektorn för varje felklass och avkoppla ett fel i taget,
vilket skapar olika underrum. En viktig del i det här arbetet har varit att undersö-
ka effektiviteten i att ta hänsyn till flera klassificerare vid beslutsfattandet ur ett
prestandaperspektiv. Aggregering av flera klassificerare görs genom att lösa ett
kvadratiskt optimeringsproblem. För att utvärdera prestandan har en jämförelse
gjorts med en random forest klassificerare.

Utvärdering med utmanande testdata visar lovande resultat där algorithmen för-
håller sig väl prestandamässigt med random forest klassificerare.

iii

Abstract

As the automotive industry constantly makes technological progress, higher de-
mands are placed on safety, environmentally friendly and durability. Modern
vehicles are headed towards increasingly complex system, in terms of both hard-
ware and software making it important to detect faults in any of the components.
Monitoring the engine’s health has traditionally been done using expert knowl-
edge and model-based techniques, where derived models of the system’s nominal
state are used to detect any deviations. However, due to increased complexity of
the system this approach faces limitations regarding time and knowledge to de-
scribe the engine’s states. An alternative approach is therefore data-driven meth-
ods which instead are based on historical data measured from different operating
points that are used to draw conclusion about engine’s present state.

In this thesis a proposed diagnostic framework is presented, consisting of a sys-
tematically approach for fault classification of known and unknown faults along
with a fault size estimation. The basis for this lies in using principal component
analysis to find the fault vector for each fault class and decouple one fault at
the time, thus creating different subspaces. Importantly, this work investigates
the efficiency of taking multiple classifiers into account in the decision making
from a performance perspective. Aggregating multiple classifiers is done solving
a quadratic optimization problem. To evaluate the performance, a comparison
with a random forest classifier has been made.

Evaluation with challenging test data show promising results where the algo-
rithm relates well to the performance of random forest classifier.

v

Acknowledgments

I would like to thank my supervisor Max Johansson for all support and guidance
in this work. I would also like to thank my examiner Daniel Jung who with
continuous feedback and support played a major roll in the completion of this
project.

Last but not least I would like to thank my family for being by my side all the
way with lots of support and encouragement.

Linköping, June 2021
Ninos Emanuel Baravdish

vii

Contents

Notation xi

1 Introduction 1
1.1 Motivation . 2

1.1.1 Data analysis . 2
1.1.2 Weigh Fault Hypotheses . 2
1.1.3 Fault Diagnosis System . 3

1.2 Aim and Purpose . 3
1.3 Research questions . 3
1.4 Delimitations . 4

2 Theory 5
2.1 Multiple Classifier System . 5

2.1.1 Static Selection . 7
2.1.2 Dynamic Selection . 7

2.2 Fault Diagnosis . 8
2.2.1 Fault Diagnosis - Important Concepts 9

2.3 Principal Component Analysis . 9
2.4 K-Nearest Neighbor . 11
2.5 Support Vector Machines . 13
2.6 Error Correcting Output Codes . 16

3 Method 19
3.1 Decoupling of fault using PCA . 19
3.2 Data Processing by Reshaping . 24
3.3 Classifier Selection . 25
3.4 Information Fusion . 27

3.4.1 Local Classifier Weigthing by Quadratic Programming - Multi-
Class Classifier . 27

3.4.2 Local Classifier Weigthing by Quadratic Programming - Bi-
nary Classifier . 29

3.5 Fault Size Estimation . 31
3.6 Complete Diagnostic Framework 31

ix

x Contents

3.6.1 Preparation . 32
3.6.2 Classification . 33
3.6.3 Evaluation . 33

4 Results 35
4.1 Data Collection . 35
4.2 Preprocessing . 38
4.3 Training Classifiers . 40

4.3.1 Binary Classifiers . 40
4.3.2 Multi-Class Classifiers . 42

4.4 Data Classification . 43
4.4.1 Binary Classifiers . 44
4.4.2 Multi-Class Classifiers . 48
4.4.3 Comparing with Random Forest 51
4.4.4 Fault Size Estimation . 53

4.5 Preprocessing Data by Reshape . 54
4.5.1 Binary Classifiers - Prediction 54
4.5.2 Multi-Class Classifiers - Prediction 55

5 Discussion 57
5.1 Results . 57
5.2 Methodology . 59

6 Conclusion 61
6.1 Future Work . 62

Bibliography 63

Notation

Mathematical Notation

Notation Meaning

Ω A set {ω1, ..., ωL} of L class labels
C A set {c1, ..., cM } of M base classifiers
X An r × c rectangular matrix, where it is assumed that

r � c. X represents residual data, where each row
represents an observation and each column represents
a residual

xq A test sample with an unknown class label

Abbrevations

Abbrevation Meaning

mcs Multiple Classifier System
poc Pool of Classifiers
eoc Ensemble of Classifiers
occ One-Class Classifier
mcc Multi-Class Classifier
svd Singular Value Decomposition
pca Principal Component Analysis
svm Support Vector Machine
knn K-Nearest Neighbor
ecoc Error Correcting Output Codes
mse Mean Squared Error

xi

1
Introduction

Autonomous vehicles have advanced significantly over the past years and along
with it they have become more complex than ever before. However, they also re-
quire higher demand on safety and reliability while on the roads. It is therefore
crucial for the driver to be alerted when there is a fault in one of the compo-
nents, since it might lead to reduced functionality in the vehicle or in the worst
case a non-functional component. A result of any of these cases might lead to
expensive reparation costs or a danger to the driver and passengers or even the
surroundings. This is where diagnostics systems in autonomous vehicles comes
in to reduce and prevent such events.

In today’s combustion engines it is possible to measure relevant quantities in
different components with the help of sensors, in order to monitor the engine’s
health. Thanks to the access to large amount of data, machine learning and data-
driven classification have become increasingly useful and important. With resid-
uals that are based on measured data from different fault sensors, it is possible
to determine when an alarm has been detected and then draw conclusions about
the engine’s health. However, the residuals could be strongly correlated since
they are based on the same sensor signals. This means that the information from
all residuals cannot simply be added up, since they could partly give the same
information if they are correlated.

The purpose of this thesis is to present a diagnosis system for an internal com-
bustion engine (ICE) that combines multiple fault classification algorithms and
performs an information fusion. The procedure is intended to carefully classify
residual data that is correlated between different class labels. In Chapter 1, the
studied problem is described along with the aim and purpose. Chapter 2 presents
the theoretical background to the methodology in Chapter 3 but also a brief intro-
duction about the studied area. Proceeding with Chapter 3, the proposed method

1

2 1 Introduction

is described in detail and evaluation of it from experimental results are followed
by Chapter 4. Lastly, a discussion regarding the experimental results and the
methodology are found in Chapter 5 and a final conclusion about the work in
Chapter 4.

1.1 Motivation

This section describes the studied problems in this thesis from a general point of
view, but also some of the related research topics.

1.1.1 Data analysis

Working with data-driven methods requires a lot of data, and since the models
often are general it is beneficial to have good training data that represents the
classes over relevant scenarios. However, an important consideration is whether
all data really is good and for that matter necessary.

When dealing with fault diagnostics for an ICE, the work of [15] explains that one
complicated aspect is the coupling between intake and exhaust flow through the
turbine and compressor. The implication of this is that fault in any component
is not isolated, but rather has the risk of affecting the performance of other com-
ponents and thus affecting the sensor outputs elsewhere in the engine. Residual
data generated from the same sensor output in the engine may lead to correlated
predictors, which are then used to train classifiers.

One question that arises from this is whether each new data set brings new rel-
evant information to the table, but also how the much relevant information the
predictors have whitin the data set. From an economic and time perspective, it
would be desirable to reduce the dimension on the data to lower the complexity
and to get rid of unnecessary sensors that does not contribute to new information.

1.1.2 Weigh Fault Hypotheses

There are numerous methods to take multiple machine learning models into con-
sideration in the decision making when predicting new data [3], [21], [24]. How-
ever, not all application areas share the same effectiveness on all methods and
therefore there is a need to choose an appropriate one that fits the data. Taking
advantage of multiple classifiers in pattern recognition tasks have nowadays lead
to constructing a complete framework which includes different stages, such as
classifier generation, classifier selection and integration. Along with these comes
even more possibilities to adapt a custom made multiple classifier system, never-
theless only the imagination and development of technology sets limits to what
is possible.

In traditional model-based fault diagnostics, decoupling of a fault is achieved

1.2 Aim and Purpose 3

when the fault is not sensitive to a certain test quantity. Hence, a similar approach
inspired by such idea is yet a mystery to investigate when working with data-
driven approaches. Weighing fault hypotheses from different classifiers trained
on separately cases where one fault is decoupled from the rest opens many inter-
esting possibilities. One of which is determining how important each classifier is
and how much contribution it brings in the decision making.

1.1.3 Fault Diagnosis System

Along with the automotive industry development comes increasingly complexity,
especially in the software part in the vehicle. Looking at the fault diagnostics
aspect, it is headed towards being fueled by measured data from various sensors.
This opens up new possibilities which allows to make more accurate predictions
on for instance where a fault originates from based on data.

Some of the key components when constructing a functional diagnostic frame-
work that relies on generated data requires robustness and reliability. Especially
in an environment where it is meant to be used by a mechanic at a workshop,
since troubleshooting the engine is common and necessary. Identifying the cause
of an error message would not only save time, but also potentially save money for
the car owner.

1.2 Aim and Purpose

The purpose of this thesis is to develop a diagnostic system for an ICE, that com-
bines information from multiple fault classifiers. Using residual data to train
different fault patterns, the goal is to extract sufficient information from multiple
fault classifiers in order to draw a final diagnosis statement about the engine’s
state. It is desirable to minimize the use of data while maintaining the same diag-
nostic performance. The basis for this, which is a prerequisite, is to analyse the
residual data and see what diversity and similarity there is amongst the residuals,
but also between data sets from different faults in the engine.

1.3 Research questions

To sort out the problems describes in Section 1.1, a division has been made, in a
divide-and-conquer fashion, according to each question at issue; analyse the data,
fault hypothesis weighing and information fusion. Thus, the following research
questions are formulated:

1. Analysing the residual data with fault vectors, i.e. the line along which data
from a fault with different fault magnitudes lies within. To interpret how
properties such as the angles between fault vectors or residuals affect the

4 1 Introduction

classification performance. Furthermore, to investigate the possibility and
how easy it is to decouple and isolate a fault with fault vectors along with
minimizing the redundant of information.

2. How to weigh all fault hypotheses from different fault classifiers, and in-
vestigate how much relevant and new information classifier i contributes
given that classifier j has stated its fault hypothesis.

3. How to construct a multiple classifier fusion algorithm for fault diagnosis.
To combine and weigh fault hypotheses from multiple fault classifiers and
form a final diagnosis statement about the engine’s health.

1.4 Delimitations

To focus the study on the research questions stated above, the following delimita-
tions were set:

• The given residual data comes from a previous work [15], where the amount
of residuals are limited.

• The measurements has been collected from predetermined components in
the engine, where each injected fault has limited span of fault size.

• The given residual data is assumed to be labelled after each corresponding
fault type and fault size.

2
Theory

In this chapter, the fundamental concepts of the thesis are presented. Firstly,
terms regarding the area for understanding how multiple data-driven approaches
can be combined are presented, followed by a brief overview of some relevant
terms regarding fault diagnosis and lastly the underlying mathematical defini-
tions for this thesis.

2.1 Multiple Classifier System

Multiple classifier system (mcs) has become increasingly useful and popular in
machine learning and pattern recognition over the past decades [6], [20], [28].
The reason for this is because it has shown to outperform single classifiers over
various applications. By combining multiple classifiers that are diverse 1, rather
than having one strong single classifier, has its advantage in obtaining higher
classification accuracies. An illustration of amcs can be seen in Figure 2.1 below.

1Diversity (or complementary) between classifiers refers to classifiers recognize different patterns,
thus making independent classification errors

5

6 2 Theory

Combiner

Figure 2.1: An illustration of how a mcs is conducted. X represents the data
that covers the entire feature space where X1, ...,XN are subsets,
C = {c1, ..., cN } is the set of base learners and lastly a combiner that evaluates
the outputs from the base learners and fuses the received information to
form a final decision.

In [6] it is explained that a mcs is composed by three stages: (1) Generation,
(2) Selection and (3) Fusion. In the generation stage, a pool (or a set) of classi-
fiers are trained such that they are diverse and have good accuracy2. It is also
explained in the mentioned article that there are several different ways to gener-
ate trained classifiers. The more diversity and representation of the training data
that these classifiers can capture, the better results in fused prediction will be
achieved. The top three strategies mentioned are:

1. Different feature sets.

2. Different training sets.

3. Different classifier models.

Where it is stated that the first listed is more likely to generate a successful combi-
nation of classifiers. However, the article also refers to [26] which describes that
a combination of strategies can be used together. For instance, to train classifiers
with different feature sets and training data.

The selection stage attempts to choose a single classifier or an ensemble of classi-
fiers (eoc) from the generated pool that is/are most competent. Lastly, the fusion
stage is based on aggregating the decision outputs to give a final decision of the
system.

2A rather vaguely measure, but since the accuracy differ for different applications it is up to the
user to decide.

2.1 Multiple Classifier System 7

The articles [18] and [30] explains that there are generally two different approaches
of combining multiple classifiers: classifier fusion and classifier selection. Classifier
fusion is based on that all classifiers are trained over the entire feature space and
their outputs are combined to achieve a form of group consensus. On the other
hand, classifier selection assumes that each classifier is an expert in a subset of the
feature space where it attempts to predict which of all single classifiers is most
likely to conclude the correct diagnosis statement. In this project, the classifier
selection is studied further.

The classifier selection stage can either be done in a static or dynamic way, which
are explained below.

2.1.1 Static Selection

In this method, an ensemble of the most competent classifiers, C′ , is selected al-
ready during the training phase. The selection is based on certain criteria that
is estimated in the validation data set. Essentially, the most competent classi-
fiers are fixed after the selection. An illustration of the procedure can be seen in
Figure 2.2 below.

Static Selection

Pool of classifiers Ensemble of classifiers

Validation Test data

Information fusion
Diagnosis statement

Figure 2.2: Classifier selection in a static manner.

2.1.2 Dynamic Selection

In this type of approach, it is assumed that the structure of the classifier ensem-
ble, C′ , varies for each new incoming test sample. It is also assumed that each
respective base classifier in C is locally competent in its own area. To define this
region space, k-nearest neighbour is a common method [6]. Likewise in static selec-
tion, the most competent classifiers shall be determined, either a single classifier
or an eoc.

8 2 Theory

Dynamic Selection

Pool of classifiers Ensemble of classifiers

Validation

Test data

Information fusion
Diagnosis statement

Figure 2.3: Classifier selection in a dynamic manner.

2.2 Fault Diagnosis

Considering a process, the general concept of a diagnosis system is to generate
a diagnosis based on the knowledge of observed variables, in order to decide
whether there is fault or not and to explicitly identify where it originates from. In
the case where the diagnosis is based on models that tries to describe a technical
system, e.g. an ICE, it is refered as model-based diagnosis.

Fault diagnosis has nowadays becoming more commonly used in industrial sys-
tems. It is about monitoring the system’s state and detecting occurring faults
by comparing model predictions of the systems nominal behaviour with mea-
sured sensor data on the monitored system. There are generally two different ap-
proaches for fault diagnosis: model-based and data-driven fault diagnosis. The
basic principle in model-based fault diagnosis is to describe the system’s nominal
behaviour with a mathematical model. Any inconsistencies with the model pre-
dictions and sensor data is captured by residuals (the error between them) and
detect a fault in the system [15], [19]. Figure 2.4 shows a generally view of how it
works.

System

Model

+
−

Figure 2.4: Illustration of model-based fault diagnosis. Here, f (t), u(t), y(t),
ŷ(t), r(t) denotes the fault signal, actuator signal, output from the system,
the modeled prediction and residual respectively at given time t during the
measurement.

2.3 Principal Component Analysis 9

Data-driven fault diagnosis on the other hand constructs models that relies on
training data from different operating points and fault scenarios from the system.
This, in order to capture how a set of input generates an output, where the output
could for instance be the corresponding class label for the input data.

2.2.1 Fault Diagnosis - Important Concepts

Working with fault diagnosis there are some key concepts that are useful when
investigating how different faults interact. The following definitions comes from
[15].
Definition 2.1 (Fault sensitivity). A residual rk is said to be sensitive to a fault
fi if fi , 0 implies that rk , 0. On the contrary, if there is a residual rk that is not
sensitive to fault fi , then it is said to be decoupled in that specific residual.

Definition 2.2 (Fault isolation). A fault fi is isolable from another fault fj
(fj , fi) if there is a residual rk that is sensitive to fi but not fj .

Example 2.3: Illustrating basic terms in fault diagnosis
Assume an arbitrary technical system measuring residuals r1, r2 and r3 from
known variables, along with injected faults f1, f2 and f3. Further, assume a de-
cision structure can be constructed according to

NF f1 f2 f3
r1 0 X 0 X
r2 0 0 X X

where X(i, j) denotes that a fault i is sensitive to residual j and NF denotes the
no-fault case. In this example, this would mean that r1 is sensitive to f1 and f3,
while r2 is sensitive to f2 and f3. Followed by Definition 2.1, f2 is decoupled
from r1, f1 is decoupled from r2 while f3 cannot be decoupled in any residual.
Furthermore, by Definition 2.2 above these residuals are not sufficient to isolate
all faults from each other. Since both r1 and r2 are sensitive to f3 it is not possible
to isolate f1 and f2 from f3.

2.3 Principal Component Analysis

One method that has received tremendous attention regarding feature selection
and dimension reduction is Principle Component Analysis (pca). pca preprocess
the data before performing Singular Value Decomposition (svd) in order to achieve
a coordinate system that is determined by principle components which are or-
thogonal to each other and have strongest correlation with the measurements.
With this, it is possible to go from a high-dimensional data set to a lower dimen-
sion that still explains the majority of the variance (often usual to explain 95% of
the original data or choose a fixed number of components to use) [4].

10 2 Theory

Consider a large data set X ∈ Rp×q

X =

x1 x2 . . . xq

 (2.1)

Where column xc ∈ Rp represents the measurements from residual q, and p � q.
First step is to compute the mean row for all rows in X and then create a mean
matrix with (2.2)

x̄j =
1
p

p∑
i=1

Xi,j (2.2)

X̄ =

1
...
1

 [x̄1 . . . x̄j
]

(2.3)

The second step is to center the data in (2.1) with the mean in (2.3)

B = X − X̄ (2.4)

The third step is to compute the covariance matrix of B in (2.4)

CBB =
1

1 − p
Bᵀ · B =

E[B1 ·B1] E[B1 ·B2] . . . E[B1 ·Bp]
E[B2 ·B1] E[B2 ·B2] . . . E[B2 ·Bp]

...
...

. . .
...

E[Bp ·B1] E[Bp ·B2] . . . E[Bp ·Bp]

 (2.5)

Where E[.] is the expected value of the scalar product of the two matrices. The
covariance matrix measures how two matrices are related. For instance, if the co-
variance between two variables is positive, they move in the same direction and
vice versa if negative [14].

Now, with the covariance matrix in (2.5), the fourth step is to compute the lead-
ing eigenvectors, which are related to the principle components of X. Let v1 be
the largest eigenvector to (2.5) that corresponds to the largest eigenvalue, λ1. To
get the first principle component u1, vᵀ1 CBBv1 is computed, and repeats this for
the other principle components. By using the property of Eigenvalue Decomposi-
tion, it is possible to split the CBB matrix (p × p) into a multiplication according
to

CBB = VDV−1 =

=

v1 v2 . . . vp

λ1 0 . . . 0
0 λ2 . . . 0
...

...
. . .

...
0 0 . . . λp

v1 v2 . . . vp

−1

(2.6)

2.4 K-Nearest Neighbor 11

This leads to

CBB · V = V · D (2.7)

Where V is the eigenvectors, and D is the eigenvalues of CBB [4]. A visualization
of how it works is shown in Figure 2.5 below.

-2 -1 0 1 2 3 4 5 6 7 8

x1

-2

-1

0

1

2

3

4

5

6

7

8

x2

(a) Arbitrary data (matrix X).

-5 -4 -3 -2 -1 0 1 2 3 4 5

x1

-4

-3

-2

-1

0

1

2

3

4

5

x2

Centered data

(b) Centered data (matrix B).

-4 -3 -2 -1 0 1 2 3 4

x1

-4

-3

-2

-1

0

1

2

3

x2

(c) Eigenvectors of covariance matrix to X.

-5 -4 -3 -2 -1 0 1 2 3 4 5

Principal Component 1

-4

-3

-2

-1

0

1

2

3

4

5

P
rin

ci
pa

l C
om

po
ne

nt
 2

(d) Data transformed to the new basis.

Figure 2.5: Illustration of how pca works.

One thing to mention is that pca allows the vectors in V creating the directions
to be orthogonal to each other.

2.4 K-Nearest Neighbor

The K-nearest neighbor algorithm (knn), has grown in the field of machine learn-
ing and pattern recognition due to its simplicity and effectiveness [1]. It works
on the basis of two parameters:

12 2 Theory

• K - the number of nearest neighbors to a query sample, where K ∈ N, K > 0.

• A distance metric - typically the euclidean distance is used.

Considering a data set of three classes with two numerical features, the goal is to
classify which class label that new data belongs to by calculating the distance to
the K nearest neighbors. Figure 2.6 below illustrates a case where new data from
an unknown class is to be classified. With knn, K = 5 nearest neighbors has been
calculated to the new point.

-6 -4 -2 0 2 4 6

x1

-4

-2

0

2

4

6

8

x2

Class 1
Class 2
Class 3
New point
Nearest neighbor

Figure 2.6: Data from three known classes and the objective is to classify
which of these the new data point belongs to. The encircled data points
show the five nearest neighbors.

Since three out of five nearest neighbors belonged to class 2 (red data), the algo-
rithm would suggest that the new point belongs to class 2 (the red data). In this
work, the euclidean distance metric has been used and follows the formula

dist(x, y) =
√

(x1 − y1)2 + (x2 − y2)2 + . . . + (xN − yN)2

=
n∑
i=1

(xi − yi)2 (2.8)

where x and y are two continuous vectors of both length n. Notice that equation
(2.8) also can be used for higher dimensions. Other well-known distance metrics
are: Mahalanobis distance, Minkowski distance and City block distance to mention a
few.

2.5 Support Vector Machines 13

The parameter K however is more intended to be tuned, unlike the distance mea-
sure, since its value is better suited for different applications where the data set
might differ. In this thesis, the focus does not lie in finding an optimal value, but
rather one that generates sufficient good results through trial and error.

2.5 Support Vector Machines

Support Vector Machine (svm) is a powerful machine learning model, which can
be used to perform linear or non-linear classification, regression but also outlier
detection [10]. The fundamental objective of the svm algorithm is to find a hy-
perplane that separates data points from different classes, which has the largest
margins between them (may sometimes be refered to maximum margin classifiers
in the literature) [1].

svm is perhaps easiest to understand by an example. Consider a two-class clas-
sification problem (binary problem) where training data for respective class is
available and comprises a class label for each observation

Observations =

x1,1 x1,2
...

...
xn,1 xn,2

 , Class labels =

y1
...
yn

-3 -2 -1 0 1 2 3 4 5 6 7

x1

-6

-4

-2

0

2

4

6

8

x2

Class 1 (+1)
Class 2 (-1)

Figure 2.7: An example of two-class problem which belongs to the easier
classification setup for svm since the classes can be linearly separated.

where yi ∈ {−1,+1} which distinguish the two classes for each observation xi .

14 2 Theory

Essentially, the svm algorithm classifies new data by creating a classifier h(xi)
that assigns +1 if xi ∈ S+1 and −1 if xi ∈ S−1, where S∗ refers to the set of data
belonging to class y = ∗. Although, one important aspect of how the algorithm
defines the separable hyperplane depends on whether the data can be separated
linearly or non-linearly. Lets assume the former, which may look like a problem
illustrated in Figure 2.7 above.

Let S+1 and S−1 be the sets of data points belonging to the classes on each side of
the hyperplane. Then, a hyperplane can be expressed as g(x) = wᵀx + b, where w
is the normal vector and b is a constant bias term. This, of course leads to infinite
many examples, therefore some constraints are necessary to find an optimal so-
lution. This could be achieved by first creating two parallel hyperplanes, one for
S+1 and one for S−1, where their distance to the hyperplane is maximized. The
region between the hyperplane for S∗ and the separable hyperplane for the two
classes is called margin and together they form a street, see Figure 2.8 below.

-1 0 1 2 3 4 5

x1

-2

-1

0

1

2

3

4

5

6

7

x2

Class 1 (+1)
Class 2 (-1)
Support Vectors

g(x)=-1w

g(x)=+1

g(x)=0 margin

Figure 2.8: An illustration of how the svm hyperplane separates the two
classes linearly. The dividing (solid) line between the two classes is char-
acterized as g(x) = 0, while the dotted lines g(x) = ±1. The encircled data
points closest to the hyperplane are called support vectors. They have high
importance to the data sets since they mark the decision boundaries.

The value of g(x) depends on the magnitude of w, since the distance between
the two dotted hyperplanes is 2/ ‖w‖. Thus, the objective is to minimize this
distance while still maintaining the data points from each class separated and to
ensure that no data points are present in the margins between the hypeplanes.

2.5 Support Vector Machines 15

The following optimzation problem can be formulated

min
w,b

1
2
‖w‖2

s.t. yi(w
ᵀx + b) ≥ 1, i = 1, . . . , n (2.9)

This is based on maximizing the minimum margin, i.e. the perpendicular dis-
tance from a point xj in the training set. Now, (2.9) is an example of a quadratic
programming problem that aims to minimizing a quadratic function subject to a
set of linearly inequality constraints [1]. Solving this optimization problem leads
to a classifier function

h(x) = sign(w∗
ᵀ
x − b∗) (2.10)

where w∗ and b∗ are the solution to the optimization problem in (2.9).

However, this approach tends to be sensitive for overfitting the decision bound-
aries since the constraints are strict. In order to loosen up the these conditions
and allowing some training examples in S+1 and S−1 to appear in the margins,
Lagrange multipliers are introduced along with slack variables [1].

It is not always as simple to divide two classes linearly, which might be the case
for many applications nowadays. Figure 2.9a shows an example where the two
classes cannot be separated with a linear line, but requires a non-linear decision
boundary. Fortunately, there is a way to solve this. It is based on mapping the
data to a higher dimension, where it there can be separated linearly. This map-
ping, achieved with a kernel function, can be done differently, but one which has
grown popular is radial-basis function (RBF) which has the following expression

K(xi , xj) = exp

−
∥∥∥xi − xj∥∥∥2

2σ2

 (2.11)

where σ is the width of the kernel and is a design parameter that influences
how much of the training examples should be encapsulated around the decision
boundary. Essentially, RBF is appropriate to use as kernel function when the
data is non-linear. Figure 2.9b illustrates how a mapping with RBF is performed
in order to create a decision boundary between the two classes.

16 2 Theory

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

x1

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

x2

Class 1 (+1)
Class 2 (-1)

(a) This is a typical example where a linear
decision boundary is insufficient to divide
the two classes. Therefore a non-linear
boundary is required.

-2

-1.5

-1

-0.5

0

0.5

1

z

2

x2

0 32

x1

1-2 0-1-2-3

Class 1 (+1)
Class 2 (-1)
Hyperplane

(b) Plot that shows how the 2D data ele-
vates to 3D with RBF and a hyperplane can
separate the classes by then projecting back
to 2D. This plot has been generated with
[2].

2.6 Error Correcting Output Codes

Error correcting output codes (ecoc) is a framework that decomposes a multi-
class problem into a several binary problems, where each learner solves a sub-
problem that uses a different class labelling [27]. The fundamental structure of
the framework is to create a codeword for each class. The codewords are then
arranged in a coding matrix, where the rows represent classes and the columns
represent the learners (classifiers) [7], [23].

In this manner, an encoding matrix is obtained where each binary problem splits
the classes into three possible partitions: +1, −1 or 0, which implies that the
class is regarded as positive (target class), negative or zero (meaning the class is
not considered in the current binary problem). When the algorithm attempts to
predict an arbitrary test data, a decoding is made. Each data point in the test
set generates a code that is compared to the base codewords for each class in the
coding matrix. By using the Hamming distance metric the test data is assigned to
the class with the closest codeword [16], [27].

Working with ecoc, there are different approaches when designing the coding
matrix. Two common methods are one-vs-one (OVO) and one-vs-all (OVA). The
former aims at constructing a coding matrix where a pair of classes are available
and the rest ignored, see Table 2.1. The number of binary learners in this case is
K(K − 1)/2, where K is the number of classes.

2.6 Error Correcting Output Codes 17

Table 2.1: Decomposition of multi-class problem according to OVO.

Learner 1 Learner 1 Learner 3
Class 1 1 1 0
Class 2 -1 0 1
Class 3 0 -1 -1

On the other hand, OVA lets each binary learner assign one class as positive and
the remaining as negative, thus taking all others into consideration when solving
each binary problem, see Table 2.2. The number of binary learners in this case is
K .

Table 2.2: Decomposition of multi-class problem according to OVA.

Learner 1 Learner 1 Learner 3
Class 1 1 -1 -1
Class 2 -1 1 -1
Class 3 -1 -1 1

The decomposed binary classification problems can be solved with various ma-
chine learning algorithms. In this work svm is chosen to be studied further.

3
Method

An interesting aspect of working with model-based fault diagnostics is how differ-
ent faults relate to each other. Common methods to analyse their dependencies
are by fault isolation and decoupling. These methods are highly dependent on
explicitly and accurate derived models that tries to describe the system in differ-
ent operation points, and the idea behind these is to identify any deviations from
the nominal case in order to identify a fault. This can be time-consuming and for
large, complex systems it can even be infeasible.

Working with data-driven fault diagnostics, one instead turns to rely heavenly on
available training data that represents the system working on various operating
points. Assuming training data is at disposal from different fault scenarios, the
methodology in this chapter attempts to investigate the possibility to decouple
a fault in a data-driven fashion and then try to classify new data to draw a final
diagnosis. Lastly, a complete diagnostic framework is presented on how it could
be handled systematically along with a proposed method to estimate the fault
size of a diagnosed fault.

3.1 Decoupling of fault using PCA

In model-based diagnosis, the isolability of faults is studied by decoupling faults
in different residuals. In this thesis however, a different fault-decoupling ap-
proach is investigated. Rather than working with models, a data-driven method
is used which is described here.

Consider a set of four classes and each class has its own feature vectors, where
the data points are spread out over the feature space ∈ R

3, see Figure 3.1. Let
Xi =

[
x1, x2, x3

]
, X ∈ Rn×3, be the feature space for Class i, i = 1, . . . , 4.

19

20 3 Method

10

x1

0-10
10

-5

x2

5

0

0

x3

-10-5

5

10
Class 1
Class 2
Class 3
Class 4

Figure 3.1: An illustration of how data from different classes look like. Data
from Class 1, 2, 3 represents coming from different faults, while Class 4 is
supposed to represent the NF-case (No Fault) which is centered at the origin
with no specific direction.

By performing pca, it is possible to find the fault vector1 for each class. Essentially,
crucial information can be extracted from the fault vector, such as how much per-
centage it solely explains of the total variance in the data, but also its orientation.
The former can be thought as a measurement to the data itself on how important
it is in comparison to the other principal components. The greater percentage
the fault vector can explain, the more data will be tighter projected around the
origin to its subspace, see Figure 3.2. The latter is a measurement to compare the
angle between the fault vector and the base-features to study how easy it is to
isolate and decouple a feature, additionally to compare the angle between fault
vectors from different classes. Therefore, the cosine similarity (3.1) is a simple yet
effective method to conduct these comparisons [13].

cos(θi,j) =
Fi · Fj

‖Fi‖2
∥∥∥Fj

∥∥∥
2

=

∑n
m=1 Fi,mFj,m√∑n

m=1 F
2
i,m

√∑n
m=1 F

2
j,m

(3.1)

One prerequisite to use (3.1) is that the two vectors have equal length and are
non-zero. Two special cases are of interest to investigate 2

1A fault vector Fi is the line along which data from class i lies on. A geometric interpretation is
the direction (from the origin) in which data is headed.

2Note, these expressions also applies when comparing the fault vector to the base-features, i.e. the
residuals.

3.1 Decoupling of fault using PCA 21

• If Fi ⊥ Fj =⇒ cos(θi,j) = 0
This implies that the two vectors are (ideally) unrelated.

• If Fi ‖ Fj =⇒ cos(θi,j) = 1
In this case, the vectors have maximum relation. This would mean that the
subspaces to Fi and Fj are parallel, meaning that no uniquely information
can be found in one of the subspaces but not in the other.

One thing to point out from this similarity measure is that the angle determines
how easy it is to isolate a fault from another, but also to tell if a residual is decou-
pled from a specific fault. Decoupling a residual would for instance reduce the
dimension on the residual data, i.e. work as a feature selection, thus be beneficial
from a time perspective.

F3

-2

-1.5

-1

-2

-0.5

0

F2

0.5

1

1.5

2

Subspace to fault vector F
1

2

F1

0 1
0

-12 -2

Figure 3.2: A visualization of pca performed on Class 1, where the subspace
that is spanned by the principal components F2 and F3 is illustrated. This
plot has been generated with [2].

The next step is to decouple one class at the time by projecting all data onto its
corresponding subspace, thus resulting in a subspace for each class where the
class data is decoupled. An illustration of how it might look like can be seen in
Figure 3.3.

22 3 Method

-10 -5 0 5 10 15

F2

-8

-6

-4

-2

0

2

4

6

8

10

F
3

Subspace of Class 1

Class 1
Class 2
Class 3
Class 4

Figure 3.3: The subspace of Class 1 is shown, where all data from Figure 3.1
has been projected onto. The blue data points belonging to Class 1 gets pro-
jected around the origin. Notable, the data from Class 4 (the NF-case) also
gets projected around the origin, which is common to all subspaces.

At this point, a classification procedure is needed to both identify which class new
data comes from and to determine if it comes from an unknown class. Although,
one thing to bear in mind is that the classification procedure may vary depending
on what extent one wants to take it, or how much training data that is available
for that matter. One way, that follows a simple strategy, to determine where new
data originates from is to train a binary classifier for each subspace which sepa-
rates the decoupled class from the rest, i.e. OVA technique (see Figure 3.4 below).
In this manner, each subspace would give an output of how likely that new data
belongs to the decoupled class and if no subspace provides a sufficiently high
confidence it is deemed as an unknown class. Furthermore, another way to anal-
yse how much new information that can be found between different subspaces,
in contrast to measuring the angle between each fault vector, is to analyse the
correlation of the binary outputs produced by these classifiers.

In [25], the authors suggested a method to calculate a correlation matrix based on
the binary classifiers output. Assume each binary classifier produces an outcome
∈ {−1,+1}, where +1 indicates that the query sample is classified as the target
class (in this example the decoupled fault) and −1 means that the query sample
is an outlier, i.e. belongs to any of the counterexamples to the decoupled fault.
Let Oi and Oj denote the outcome from classifiers i and j, respectively. Then, the

3.1 Decoupling of fault using PCA 23

correlation between two classifiers is computed as

Ai,j =
1
n

∣∣∣∣∣∣ ∑
∀ xq ∈XT e

Oi(xq) ·Oj (xq)

∣∣∣∣∣∣ (3.2)

where XT e is the test data and n is the number of observations in XT e (note the
scalar product between the outputs in (3.2)). With this measurement, the gener-
ated matrix A would point out how well two classifiers relate. For instance, if the
outputs for all samples in XT e coincide, e.g. produces only +1 or −1, then their
correlation is one. On the other side, if they always disagree the correlation is
zero [25].

-10 -5 0 5 10

F2

-8

-6

-4

-2

0

2

4

6

8

10

F
3

Subspace of Class 1

Class 1
Class 2
Class 3
Class 4
Support vector
Decision boundary

Figure 3.4: Illustration of a binary decomposition with OVA technique. This
is an example of a binary svmwith a RBF kernel function that aims at captur-
ing the property of the decoupled class (blue data) while taking counterex-
amples from the other classes into account when determnining the decision
boundary.

Figure 3.5 below is another example of how classification on a subspace could be
performed. It is based on decomposing the multi-class problem with one-class
classifier (occ) instead, that aims at capture the unique property of a class with
no counterexamples at disposal.

24 3 Method

-10 -5 0 5 10

F2

-8

-6

-4

-2

0

2

4

6

8

10

F
3

Subspace of Class 1

Class 1
Class 2
Class 3
Class 4
Support vector
Decision boundary

Figure 3.5: This classification is based on training one-class support vector
machines (OCSVM) models for each class on a local subspace, with RBF as
kernel function.

Another way to construct this classification problem would be to train a multi-
class classifier (mcc) for each subspace that tries to distinguish all the classes
apart. Nevertheless, there are many different methods to use, but in this study
the aim is to investigate how an information fusion with these classifiers could be
performed. This example is intended to show to how decoupling of a fault class
could be handled but also the classification possibilities that comes along with it.

3.2 Data Processing by Reshaping

One useful benefit when working with time-series data, such as measured signals
from sensors, is the possibility to take multiple observations when training mod-
els into consideration. Assuming a residual data X consist of c columns where
each one represents a residual ri of length n

X =

r1 . . . rc

 (3.3)

Then a partitioning of each residual can be made by dividing it into N batches,
where each batch gets inserted as a new column in X yielding Xnew. Figure 3.6
illustrates how it is carried through.

3.3 Classifier Selection 25

Figure 3.6: Illustration of how an arbitrary residual i in the residual data
reshapes, where B indicates a batch of data in ri .

The generated Xnew gets stretched into N · c columns, while the number of rows
n shrinks to be adjusted accordingly. One thing to keep in mind when working
with such preprocess technique is how the data varies over time, whether there
are consistent trends or has the characteristics of a random walk.

3.3 Classifier Selection

A classifier selection from a pool of classifiers can be seen as a filtering process,
where the goal is to eliminate non-competent classifiers to the new test data. The
classifier selection method used in this thesis is named Threshold-Based neighbor-
hood pruning, proposed by [17]. Although the authors based this method on a
set of occ, it has shown promising results when using for binary and multi-class
problems. Especially in a multi-class problem, there is a need for decomposition
in order to reduce the complexity, but also the classification performance. The
full algorithm is shown in Algorithm 1 below. The idea behind this selection
process is that noisy data or outliers from an arbitrary class should not have a
strong influence on the local (competence) region to the test data. This type of
dynamic classifier selection is based on measuring the distance from known data
to test data with knn. With a threshold parameter J , a filtering is made where
classes that does not occur above it are considered as non-competent to the local
region to the test data. Likewise in the mentioned article, the parameter is set to
J = 0.1, i.e. classes occurring less than 10% are eliminated from the next step in
the process. Another parameter required in the algorithm is the number nearest
neighbor K , which is set to 3 ·N , where N is the number of base learners.

There are numerous alternatives when it comes to different measurement tech-
niques, however the euclidean distance is used as default in this study. Other
algorithms using knn that have gotten established are mentioned in [3]. More-
over, there are other types of measurement options rather than solely looking at
distance when it comes to selecting competent classifiers to the test data. For

26 3 Method

Algorithm 1 Threshold-Based neighborhood pruning
Input: Pool of Classifiers (poc), Partitioned Data (PD), Test Data (TeD), K , J
Output: Local Classifiers (LC), Occurrences & Proportion of each fault class
(OoF)

1: for each training partition pti ∈ P D do
2: XT r ← pti (residual data)
3: YT r ← pti (fault class)
4: end for
5: Counter ← 0
6: for each sample t ∈ T eD do
7: Compute K nearest neighbors to XT r . e.g. with euclidean distance
8: for each k ∈ K do
9: Determine the class label to the k:th neighbor

10: Counter ← occurrence of class label from k
11: end for
12: end for
13: for each class label ωj do
14: OoF.occurrences← total occurrences of ωj from Counter
15: OoF.proportion← the proportion nearest neighbor ωj has to T eD
16: if OoF.proportion of class label ωj ≥ J then
17: Add classifier for ωj from P oC to LC . Threshold pruning
18: end if
19: end for

3.4 Information Fusion 27

instance, the Kullback-Leibler divergence is another way of measuring the compe-
tence of a set of classifiers described in [29], [6].

3.4 Information Fusion

Aggregating decision outputs from multiple classifies can be done in various
ways. In this study however, the method used is limited to the one proposed
in article [5], along with some modifications to adjust it for this type of problem.
The proposed method by the authors performs a combination of classifier fusion
and classifier selection, which makes it a hybrid approach. Rather than using dy-
namic classifier selection by local accuracy (DCS-LA) proposed by [30] to choose
the (single) most local competent classifier, the authors instead used a similar ap-
proach to determine the best weights for the most competent classifiers to fuse
decision outputs.

In the following section, firstly the method is described when using mcc and
secondly for the case when using binary classifiers.

3.4.1 Local Classifier Weigthing by Quadratic Programming -
Multi-Class Classifier

To begin with, the authors in [5] defines some mathematical terms. Assume Ψ =
{Ψ1, . . . ,ΨL} is a set of L locally expert classifiers3 and Ω = {ω1, . . . , ωM } is a set
of M class labels. Each classifier Ψ i outputs a hypothesis vector

ψ i(xq) =
[
ψi,1(xq), . . . , ψi,M (xq)

]ᵀ
(3.4)

where ψi,j (xq) denotes the support from classifier i to class label j. Importantly,
depending on type of classifier4, this support can be interpret as an estimate of
posterior probability p(ωj |xq). It follows that

ψi,j (xq) ∈ [0, 1] and
M∑
j=1

ψi,j (xq) = 1

With this, the aim is to compute weights for each classifier, thus enabling to com-
bine the classifier outputs in order to label a query sample xq. It can be written

3Locally expert classifier refers to being close to the region of test data, implying that the classifier
can contribute in the decision making.

4Not all classification algorithms share the same type of output. For instance classifiers based on
svm offers a sign on the prediction score that determines if a query sample can be explained by a class
or not.

28 3 Method

as

α(xq) =
[
α1, . . . αL

]ᵀ
, where

αi ≥ 0 and
L∑
i=1

αi = 1 (3.5)

Finally, once the weights have been established the final support for each class
label can be computed as the weighted sum of the hypothesis for each classifier
in Ψ

p(ωj |xq) =
L∑
i=1

αiψi,j (xq), j = 1, . . . , M (3.6)

and the query is assigned to the class labelωj that generates the highest estimated
posterior probability

xq ∈ ωm, p(ωm|xq) = max
j=1,...,M

{p(ωj |xq)}

As mentioned, this type of problem requires the classifiers to produce a proba-
bility regarding how likely that a new sample belongs to a certain class. Using
svm as base learners, it is possible to map the produced scores with a sigmoid
function [22], which produces estimates of posterior probability.

Determining the weights

The weight estimation is based on minimizing the (local) classification error, which
defines the classifier accuracy. The local regions to xq are defined by calculating
the K-nearest neighbors (as in DCS-LA).

Let t(xk) =
[
t1, . . . , tM

]ᵀ
be a class index vector, which jth component is 1 and all

other 0, if the k:th nearest neighbor xk comes from class ωj . For instance, if xk
comes from ω2, then t(xk) =

[
0, 1, 0, . . . , 0

]ᵀ
.

The weight estimation problem can then be formulated as

min
α(xq)

K∑
k=1

∥∥∥∥∥∥∥t(xk) −
L∑
i=1

αiψ i(xk)

∥∥∥∥∥∥∥
2

s.t. αi ≥ 0 and
L∑
i=1

αi = 1 (3.7)

Using the constraints on α in (3.5), the error corresponding to a neighbor xk can
then be written as

ε(xk) =

∥∥∥∥∥∥∥
L∑
i=1

αi
[
ψ i(xk) − t(xk)

]∥∥∥∥∥∥∥ (3.8)

3.4 Information Fusion 29

Equation (3.8) can be rewritten as α(xq)ᵀA(k)α(xq), where

A(k) =
(
A

(k)
i,j

)
i,j=1,...,L

=
[
ψ i(xk) − t(xk)

] [
ψj (xk) − t(xk)

]
(3.9)

Note that there is a dot product between the vectors in (3.9). Now, by letting
A =

∑K
k=1 A(k), a weight estimation problem can be written as

min
α(xq)

α(xq)
ᵀAα(xq)

s.t. αi ≥ 0 and
L∑
i=1

αi = 1 (3.10)

The expression in (3.10) is a quadratic problem. Since A is a symmetric positive
semi-definite matrix the objective function is convex, which means that a global
minimum exist [5].

The authors in [5] also expands the objective function with a term regarding the
confidence of the classifiers decision. This additional term is aimed to guide the
classifiers in the decision making whether they agree on the label belonging to xq.
Assuming classifier Ψ i assigns xq to class ωj , then the corresponding confidence
of the classifier is estimated as

βi =
NT P

NT P + NFP
(3.11)

where NT P (true positive) is the number of nearest neighbors correctly classified
as ωj and NFP (false positive) is the number of nearest neighbors wrongly classi-
fied as ωj . The expression in (3.11) here is a shortened version of the one in [5].
Adding this measurement to (3.10) yields

min
α(xq)

α(xq)
ᵀAα(xq) − γβᵀα(xq)

s.t. αi ≥ 0 and
L∑
i=1

αi = 1 (3.12)

where β =
[
β1, . . . , βL

]ᵀ
and γ is a regularization parameter which regulates the

tradeoff between local classification accuracy and classifier confidence.

To solve the optimization problem (3.12), CVX is used, a package for specifying
and solving convex programs [11], [12].

3.4.2 Local Classifier Weigthing by Quadratic Programming -
Binary Classifier

A binary classifier, unlike mcc, can only produce an output of two classes where
it in certain sense comes down to true or false statement. The binary classifiers

30 3 Method

in this study follows the construction according to Section 3.1, where the svm
algorithm and OVA technique is used. Now, this type of binary problem might
differ from the typical ones, since each binary classifier is trained on its own
decoupled fault as target class while the other class consists of data from the
remaining faults. Therefore, some adjustments are required.

The hypothesis vector in (3.4) becomes instead

ψ i(xq) =
[
ψi,T (xq), ψi,O(xq)

]ᵀ
(3.13)

where indices T and O correspond to target respective outlier class. Mapping the
decision outputs with sigmoid function as mentioned above, these outputs repre-
sents posterior probabilities. Essentially, ψi,O(xq) is the probability that the query
sample belongs to any of the other faults in the current subspace. Therefore, as
a simplification it is assumed that the probability is equally distributed over all
the other fault classes. It follows that the probability a query sample belongs to

any of these classes is
ψi,O(xq)
M−1 . With this the hypothesis vector in (3.13) can now

have the same appearance as (3.4).

Determining the weights is done similarly and (3.10) can be formulated as in the
case for mcc. However, the expansion of the objective function using confidence
measure with equation (3.11) is not appropriate to use in this setup. A different
approach for evaluating classifiers performance and taking it into account in the
objective function is needed, in hope it will boost the decision making.

One measure is the mean-squared error (mse). It measures the average squared
difference between two vectors, or in other words the average error. In order to
adapt it in this problem, let the difference be calculated by the query sample and
every support vector that belongs to classifier i

XSV =

s.v1 s.v2 . . . s.vn

ᵀ

, Xq =

xq xq . . . xq

ᵀ

MSEi =
1
n

n∑
j=1

(Xq,j − XSV ,j)
2 (3.14)

where n is amount of support vectors in classifier i. A large value on msei would
point out that the query sample xq deviates much to the averaged support vector
belonging to classifier i, while a small value would indicate that xq is on average
close to the decision boundary. Repeating this for each classifier, the optimization
problem in (3.10) can be expanded to

min
α(xq)

α(xq)
ᵀAα(xq) + γηᵀα(xq)

s.t. αi ≥ 0 and
L∑
i=1

αi = 1 (3.15)

3.5 Fault Size Estimation 31

where η =
[
MSE1, . . . , MSEL

]ᵀ
and γ again being a regularization parameter.

The optimization problem (3.15) may aswell be solved with CVX as mentioned
previously.

3.5 Fault Size Estimation

In a scenario where test data has been classified as one of the known fault classes
available in the training data, it could be of interest to estimate the corresponding
fault size since it could point out the severity. This would for instance assist an
operator when deciding the level of urgency if a component needs to be repaired
or replaced.

One way to do this is to make use that the residuals values increases or decreases
for different fault sizes. Assuming they change linearly5, the mse could be used
as a measurement to determine the deviation from an ideal nominal case. Let
mse be calculated for data from each fault size with the origin as reference term.
Then a mapping could be made, i.e. for each fault size corresponding to fault i
there exist msei , which allows for a linear model to be fitted. Using a method
such as least squares the slope of the line that best fits the data points, which
passes through the origin for natural reasons, could be calculated.

Consider a linear model on the form yFS = κx. The least squares solution lies in
finding the κ that minimizes

∑
i

(κxi − yFS,i)2 (3.16)

where xi is the mse for an arbitrary fault size and yFS,i is the corresponding fault
size estimation.

3.6 Complete Diagnostic Framework

The complete diagnostic framework is presented in this section and can be di-
vided into three parts: preparation, classification and evaluation. An overview of
the framework can be seen in Figure 3.7.

5In Chapter 4, expression (4.2) explains that sensor faults changes linearly for different fault sizes,
thus it is considered as an appropriate assumption that the residuals also does.

32 3 Method

No Yes

Can be explained by
any of the existing
fault classes in the

training data?

YesNo Consistent with fault-
free case (NF)?

No fault in the
system

Add to training data

Unknown fault Perform information
fusion

Diagnosed fault

Figure 3.7: Presentation of how a complete diagnostic framework could look
like, which is what this study strive. This procedure covers the three most
important parts in fault diagnostics; identifying a fault-free system (prevent-
ing false detecting), identifying unknown data (might be a new fault class or
a new realization of an existing fault class) and lastly to draw a final diagno-
sis statement.

3.6.1 Preparation

In order to create a robust diagnostic framework, a good preparation is neces-
sary. Firstly, it consist of preprocessing by partitioning the available residual
data into two parts; training and validation. Secondly, with the training subset
pca is performed which will generate the fault vector and the transformation
matrix that projects data onto the fault in question’s subspace. Essentially, the
transformation matrix is used to project training data, validation data and any
new incoming test data onto each subspace. Thirdly, classifiers are trained in
each subspace. To identify whether new incoming test data is recognized by any
of the existing training examples, binary svm are trained where the target class is
the decoupled fault and the other class is data from the other faults. Furthermore,
amcc for each subspace is also trained in order to perform an information fusion
if necessary. To ensure that the classifiers meet satisfied degree of performance,
they are validated.

3.6 Complete Diagnostic Framework 33

3.6.2 Classification

In the classification stage is where test data is loaded and the proposed diagnostic
framework is tested. The procedure follows according to Figure 3.7. The first
thing to check is whether the test data is consistent with fault-free case, since if
it is true then there is no need to diagnose a fault hypothesis. However, if the
statement is false then the next step is to determine if it comes from an unknown
fault. It is not until the diagnostic framework is confident that the test data must
come from any of the existing fault types that an information fusion is performed.
Once a fault has been diagnosed, a fault size estimation is done to determine the
severity of the fault.

3.6.3 Evaluation

The evaluation stage involves investigating the classification from two aspects.
Firstly, it is used to study properties of the data sets, such as the cosine similar-
ity between fault vectors. It is meant to investigate how much similarity there
is between different faults, in order to tell how difficult it is to carry through
the method and what results to expect. Secondly, to compare the diagnostic
framework with a standard classification algorithm retrieved from state-of-the-
art, namely a Random Forest classifier [9].

4
Results

The diagnostic framework is tested and evaluated by using experimental data
collected from an engine test bench at Linköping University, Division of Vehicle
Systems at the Department of Electrical Engineering. The engine is a commer-
cial, turbo charged, four cylinder, ICE from Volvo Cars. A schematic view of the
engine can be seen in Figure 4.1, where y denote sensor measurements and u
denote actuator signals.

4.1 Data Collection

This Master’s thesis is based on residual data from previous work where the data
has been generated with neural network [15]. Measured data has been collected
from various operating points along with different (single) faults and fault magni-
tudes. The residual data has been generated by calculating the difference between
measured values and predicted values according to

r = y − ŷ =

r1 . . . r9

 (4.1)

Notable, the residual data consist of nine residuals brought from the mentioned
article. In Table 4.1 a list of the fault classes are presented, where each fault class
represents a specific area in the engine and the fault-free class is the nominal
system operation.

35

36 4 Results

Figure 4.1: Schematic of the model of the air flow through the model. This
figure is used with permission from [8].

Table 4.1: The considered fault cases that are studied in this master thesis.

Fault Class Description
NF Fault-free
fpim Fault in sensor measuring pressure in intake manifold
fpic Fault in sensor measuring pressure after compressor
fwaf Fault in sensor measuring air mass flow after air filter
fiml Leakage after throttle
facl Leakage after compressor
fbcl Leakage before compressor
faf Clogging in air filter

The sensor faults listed in Table 4.1 are injected by multiplying the measured
variable zi in each sensor yi by a factor θ such that the output is given as

yi = (1 + θ) · zi (4.2)

where θ = 0 corresponds to the nominal case. The leakage faults are presented
with a unit of length, e.g. 4mm, which corresponds to a leakage with hole diam-
eter of 4mm. In Table 4.2 a list of the available training data with different fault
sizes used to train classifiers is presented.

4.1 Data Collection 37

Table 4.2: The fault classes and known magnitudes that are represented in
the training data.

Fault Class Fault magnitudes
NF -
fpim −20%, −15%, −10%, −5%, +5%, +10%, +15%
fpic −20%, −15%, −10%, −5%, +5%, +10%, +15%
fwaf −20%, −15%, −10%, −5%, +5%, +10%, +15%, +20%
fiml 4mm, 6mm and two unknown fault sizes

To get a feeling on what impact the fault size has on the residuals, Figure 4.2 be-
low shows how the deviation of residual three, i.e. r3, changes from the nominal
case when changing the fault size.

Figure 4.2: Plot that shows the intercooler pressure from NF and fpic when
incrementing the fault size −5% → −20%. This indicates that smaller fault
sizes are closer to the nominal case which makes them more difficult to dis-
tinguish. In general, this applies for all the listed fault classes in Table 4.2.

38 4 Results

4.2 Preprocessing

The first thing done in the proposed method is to preprocess the data. It starts
by gathering residual data from all fault classes with all available fault sizes in
matrices, yielding Xf pim,Xf pic,Xf waf ,Xf iml and XNF . Then a holdout partition,
using Matlab’s in-built function cvpartition, is performed dividing the matrices
into two randomized parts, one for training and the other for validation (70 +
30)%. With the training part, pca is applied which finds the fault vectors (see
Table 4.3) and the projection matrix to the corresponding subspace.

Table 4.3: The fault vectors with corresponding explained total variance
they captures. Higher percentage implies that more data moves in the same
direction which as an indirect result will project that data tighter around the
origin on its subspace.

Fault vector Explained total variance [%]
F1,f pim 63.1663
F1,f pic 77.8520
F1,f waf 72.4052
F1,f iml 68.5249

With cosine similarity (3.1), the angle between the data in fault vector’s direction
and the base residuals for fault i can be calculated to investigate which residuals
that are easy or hard to decouple, see Table 4.4 below.

4.2 Preprocessing 39

Table 4.4: The angle between the fault vectors with each base-residual.
Keeping in mind that angles close to 0◦ means that a specific residual is hard
to decouple from the fault and vice versa for angles close to 90◦.

F1,f pim Degree (◦)
r1 125.3720
r2 10.2984
r3 118.2919
r4 11.5473
r5 71.9173
r6 110.1596
r7 119.7562
r8 86.0252
r9 10.8213

F1,f pic Degree (◦)
r1 13.8245
r2 72.4880
r3 13.2903
r4 87.6615
r5 13.8030
r6 84.1023
r7 13.8818
r8 78.8286
r9 82.0951

F1,f waf Degree (◦)
r1 93.5687
r2 82.1781
r3 96.1623
r4 83.2090
r5 88.9098
r6 8.5798
r7 89.9640
r8 8.3030
r9 84.5586

F1,f iml Degree (◦)
r1 106.2326
r2 46.0083
r3 92.5118
r4 45.0289
r5 81.9025
r6 99.3001
r7 99.0921
r8 84.5021
r9 45.2873

From Table 4.4 it can be stated that the ability to decouple a residual rk is dif-
ferent for each fault Fi . For F1,f iml it seems that there are not any small angles,
unlike the other faults, which indicates that no residual points closely in the di-
rection of the fault vector. Furthermore, comparing the angle between different
fault vectors gives a measure on similarity inbetween different fault classes, see
Table 4.5.

Table 4.5: Angles between the different fault vectors.

F1,f pim F1,f pic F1,f waf F1,f iml
F1,f pim - 91.7837◦ 92.1831◦ 8.8465◦

F1,f pic - 87.2201◦ 86.9872◦

F1,f waf - 87.7706◦

F1,f iml -

According to Table 4.5, the most similar faults are fpim and fiml since their angle
is rather small, while the others are almost orthogonal to each other.

Moving on with the procedure, the training and validation data is projected onto
each subspace with the transformation matrix. Figure 4.3 shows the projected

40 4 Results

training data on respective subspace where the three first direction vectors (F2, F3
and F4) makes up a subset of the entire subspace.

-0.2

-0.15

-0.5

-0.1

-0.05

0

F
4

0.05

0.6

0.1

Projected data on subspace: fpim

0

0.15

0.4

F2

0.2

F3

0.5 0
-0.2

1 -0.4

fpim
fpic
fwaf
fiml
NF

(a) Subspace to fault vector corresponding
to fpim.

-0.2
0.6

-0.15

-0.5

-0.1

-0.05

0.4

Projected data on subspace: fpic

0

F
4

0.05

0.1

0 0.2

0.15

F3F2

0
0.5 -0.2

-0.41

fpim
fpic
fwaf
fiml
NF

(b) Subspace to fault vector corresponding
to fpic.

-0.15

-0.1

-0.05

-0.5

0

0.05

0.1

F
4

0.15

0.2

0

Projected data on subspace: fwaf

F2

0.40.5 0.2

F3

0-0.21 -0.4

fpim
fpic
fwaf
fiml
NF

(c) Subspace to fault vector corresponding
to fwaf .

-0.2

-0.15

-0.1

-0.05

-0.5

0

0.05

F
4

0.1

0.15

Projected data on subspace: fiml

0 0.4

F2

0.2

F3

0.5 0
-0.21 -0.4

fpim
fpic
fwaf
fiml
NF

(d) Subspace to fault vector corresponding
to fiml .

Figure 4.3: Illustration of projected data onto subspaces. Notice that the
decoupled fault class in each subspace is concentrated at the origin, which is
desirable.

4.3 Training Classifiers

Next up, training of classifiers is made, followed by validation. Section 4.3.1 and
4.3.2 below presents binary and multi-classifiers respectively.

4.3.1 Binary Classifiers

The binary classifiers are trained according to an OVA strategy, where the target
class is the decoupled fault and the other class consist of data from the rest faults.

4.3 Training Classifiers 41

The algorithm used is svm with RBF as kernel function. Other settings used in
the algorithm are; standardizing the data, kernel scale parameter such that the
software finds an appropriate value automatically and lastly using a 5% training
outlier rate. The validation of these binary classifiers can be summarized in the
following plots in Figure 4.4 below.

(a) Subspace to fault vector corresponding
to fpim.

(b) Subspace to fault vector corresponding
to fpic.

(c) Subspace to fault vector corresponding
to fwaf .

(d) Subspace to fault vector corresponding
to fiml .

Figure 4.4: Validation of binary classifiers.

The overall performance of these classifiers from validation data seems rather
promising. The main goal with these classifiers which is meant to be strived
for is that each classifier should be able to identify when data comes from the
decoupled fault class and when it comes from another. All plots above show good
performance of distinguishing the fault classes. However, looking at the cases
when validation data from the decoupled fault is tested, there is no significant
confidence in the classification for the target class. One thing to notice is that
fiml , see Figure 4.4d, even fails to recognize the majority of validation data from
its own class. This can be due to many reasons, overlapping data and overfitting
are two possible reasons for this, but an important aspect however is that neither
classifier reacts to data from another fault class.

42 4 Results

4.3.2 Multi-Class Classifiers

The mcc’s are trained according to an OVO strategy using ecoc with svm as
learners which uses the same settings as for the binary classifiers. The validation
for these classifiers are summarized in confusion matrices in Figure 4.5 below.

(a) Subspace to fault vector corresponding
to fpim.

(b) Subspace to fault vector corresponding
to fpic.

(c) Subspace to fault vector corresponding
to fwaf .

(d) Subspace to fault vector corresponding
to fiml .

Figure 4.5: Validation of mcc’s shown in confusion matrices. The matrix to
the left of a subplot shows the amount of predicted observations to each fault
class in comparison to the actual true fault class. The columns to the right
displays the percentage of correctly and incorrectly classified observations
for each true fault class.

The performance of these mcc’s shows that each one is capable of identifying
data from respective fault class. Although, they are not sufficiently strong to
isolate the fault classes from each other completely. Amongst all classes, one
that stands out is validation data coming from NF. As seen in Figure 4.5, all
classifiers struggles in identifying validation data from NF, where most of the
classifiers instead suggests fwaf as the most likely prediction. One conclusion to

4.4 Data Classification 43

be drawn from this is that fwaf has some overlapping data with NF, this also can
be seen in Figure 4.4c above.

An interesting aspect from these validations is that all classifiers are able to sep-
arate the decoupled fault class, i.e. the fault in question where its corresponding
fault vector have been used to project data to its subspace, from NF which unlike
in Section 3.1 is considered to be difficult to do. One important conclusion that
can be stated from this is that the generated residual data from such complex
system is not perfect. Some possible reasons for this is due to non-linearity in the
system and deviations in model predictions.

Another thing worth mentioning is the interpretation of a scenario where new
data is to be classified and all classifiers agrees that it belongs to respective de-
coupled fault class. In such case, the new data would be considered belonging
to NF. This would be an alternative solution to identify fault-free data when the
classifiers struggles to do so solely.

4.4 Data Classification

The data classification is performed as mentioned in Section 3.6.2. Using the de-
scribed classifier selection (see Algorithm 1) when aggregating decision outputs
from multiple classifiers, the number nearest neighbors K searched is set to 12
for all cases. The considered test data used to evaluate the proposed framework
are:

• {fpim,−5%, fpim,+5%, fpic,−5%, fwaf ,−5%, fiml,4mm} as known fault classes.

• {facl,4mm, fbcl,4mm, faf ,th15} as unknown fault classes.

The motivation for these decisions of test data is because they fall under the cat-
egory small fault sizes and are therefore harder to classify than larger fault sizes.
Sections 4.4.1 and 4.4.2 below present the diagnostic framework using binary
and mcc’s respective.

44 4 Results

4.4.1 Binary Classifiers

The classification performance of the binary classifiers is first evaluated sepa-
rately and then by fusing multiple classifiers.

(a) Test data fpim,−5%. (b) Test data fpic,−5%.

(c) Test data fwaf ,−5%. (d) Test data fiml,4mm.

Figure 4.6: Test data classified separately with binary classifiers.

In Figure 4.6 it can be seen that the binary classifiers excellently rejects data not
belonging to the target class. However, it can also be stated that they struggle
to clearly distinguish when data actually belongs to the target fault, except for
fpic’s binary classifier in Figure 4.6b. Besides, Figure 4.6d even shows that the
binary classifier for fiml is not capable to single handedly classify the majority of
sampels, thus one conclusion to be drawn from this is that there is a need to take
more than one classifier in consideration in the decision making.

Fusing binary classifiers

Performing the multiple classifier weighting described in Section 3.4.2 requires
to choose the parameters K and γ . This was done by fixing one while varying

4.4 Data Classification 45

the other. Figure 4.7 below shows how the classifier accuracy for predicting fpim
varies for different parameter values, when test data fpim,+5% is used.

0 5 10 15 20 25 30

Number of nearest neighbors, K

69

69.5

70

70.5

71

71.5

72

P
re

di
ct

io
n

ac
cu

ra
cy

 o
f f

pi
m

Test data: fpim
+5%

(a)

0 2 4 6 8 10 12 14 16 18 20

Regularization parameter value, .

65

66

67

68

69

70

71

P
re

di
ct

io
n

ac
cu

ra
cy

 o
f f

pi
m

Test data: fpim
+5%

(b)

Figure 4.7: Classifier accuracy plotted against different K and γ values. In
4.7a γ = 1 and in 4.7b K = 9.

From Figure 4.7 it can be seen that there seems to exist some optimal values in
terms of maximizing the classification accuracy. An excessive value of one pa-
rameter tends to decrease the performance. Therefore these parameters play an
important roll and the values must be well-balanced. Although these values per-
haps should be adjusted for each test data, as a simplification they were chosen
as K = 9 and γ = 1, which is based on the figure above but also from experience
with other test data. Figure 4.8 shows the results of using these parameters and
weighting the decisions. It truly shows the strength and advantage combined
multiple classifiers have over a single classifier.

46 4 Results

(a) Test data fpim,−5%. (b) Test data fwaf ,−5%.

(c) Test data fiml,4mm.

Figure 4.8: Plots showing results when using the proposed diagnostic frame-
work for the binary classifiers. Test data for fpic,−5% is not showed since it
was singely passed through the selection phase.

4.4 Data Classification 47

Unknown fault classes

Lastly, classification of the unknown fault classes is presented in Figure 4.9 below.

(a) Test data facl,4mm. (b) Test data fbcl,4mm.

(c) Test data faf ,th15.

Figure 4.9: Plots of classification performance for the unknown fault classes.

In Figure 4.9 it can be stated that the binary classifiers agrees the three unknown
fault classes does not belong to fpim, fpic or fiml . Although, they recognizes about
40%− 45% of the samples to fwaf . Looking at the angles between the fault vector
from the known faults and respective unknown fault class, see Table 4.6, it can
be seen that F1,f waf differs greatly from the rest since the fault vectors are not
far from being parallel. Hence, this indicates that they are hard to isolate from
fwaf and is the reason why its binary classifier recognized samples from these
unknown faults.

48 4 Results

Table 4.6: Angle between the fault vectors. The gray marked row is meant
to highlight that F1,f waf differs from the rest.

F1,f acl F1,f bcl F1,f af
F1,f pim 89.4845◦ 93.5328◦ 84.6897◦

F1,f pic 83.2676◦ 85.5862◦ 86.8894◦

F1,f waf 5.5024◦ 3.3753◦ 7.8651◦

F1,f iml 84.8511◦ 89.1239◦ 80.2939◦

4.4.2 Multi-Class Classifiers

Likewise the binary classifiers, the classification performance is first evaluated
separately and then by fusing multiple classifiers. Tables 4.7-4.10 below presents
the classification done separately.

Table 4.7: Classification performance for each mcc when classifying test
data fpim,−5%.

Subspace
Fault class

NF fpim fpic fwaf fiml

fpim 2.75% 58.82% 4.41% 32.45% 1.58%
fpic 3.58% 64.14% 8.49% 23.045% 0.75%
fwaf 0.92% 61.56% 3.49% 33.69% 0.33%
fiml 1.91% 59.32% 2.91% 33.19% 2.66%

Table 4.8: Classification performance for each mcc when classifying test
data fpic,−5%.

Subspace
Fault class

NF fpim fpic fwaf fiml

fpim 0.25% 2.25% 88.85% 7.57% 1.08%
fpic 0.33% 5.82% 82.61% 8.40% 2.83%
fwaf 0.25% 1.33% 87.69% 8.32% 2.41%
fiml 0.17% 3.16% 87.60% 8.15% 0.915%

4.4 Data Classification 49

Table 4.9: Classification performance for each mcc when classifying test
data fwaf ,−5%.

Subspace
Fault class

NF fpim fpic fwaf fiml

fpim 1.83% 9.23% 4.32% 81.38% 3.24%
fpic 2.66% 9.98% 10.72% 72.15% 4.49%
fwaf 1.50% 9.23% 2.49% 84.04% 2.74%
fiml 0.75% 12.47% 3.91% 79.05% 3.83%

Table 4.10: Classification performance for each mcc when classifying test
data fiml,4mm.

Subspace
Fault class

NF fpim fpic fwaf fiml

fpim 0.25% 12.73% 3.08% 24.38% 59.57%
fpic 1.08% 12.90% 6.74% 15.89% 63.39%
fwaf 0.50% 11.31% 2.08% 24.04% 62.06%
fiml 0.92% 9.57% 2.25% 27.62% 59.65%

Fusing multi-class classifiers

Again, the parameters in the optimization problem are found similarly as for the
binary classifiers.

2 4 6 8 10 12 14 16 18 20 22

Number of nearest neighbors, K

62.96

62.98

63

63.02

63.04

63.06

63.08

63.1

63.12

63.14

63.16

P
re

di
ct

io
n

ac
cu

ra
cy

 o
f f

pi
m

 [%
]

Test data: fpim
+5%

(a)

0 1 2 3 4 5 6 7 8 9 10

Regularization parameter value, .

59

59.5

60

60.5

61

61.5

62

62.5

63

63.5

P
re

di
ct

io
n

ac
cu

ra
cy

 o
f f

pi
m

 [%
]

Test data: fpim
+5%

(b)

Figure 4.10: Classifier accuracy plotted against different K and γ values. In
4.10a γ = 1 and in 4.10b K = 9.

Figure 4.10 it can be seen that even for the mcc the parameters follow a similar
pattern as for the binary classifiers and that they should be chosen carefully. By

50 4 Results

looking at the plots and with experience from testing other test data, the param-
eters are set to K = 9 and γ = 1 when fusing multiple classifiers, see Figure 4.11
below.

(a) Test data fpim,−5%. (b) Test data fwaf ,−5%.

(c) Test data fiml,4mm.

Figure 4.11: Plots showing results when using the proposed diagnostic
framework for the mcc’s. Test data for fpic,−5% is not showed since it was
singely passed through the selection phase.

The results from Figure 4.11 shows promising performance. Comparing with the
classifications in Tables 4.7-4.10 the accuracy does not seem to increase as much
as the binary case, but there is a clear agreement amongst them.

One important part of the proposed diagnostic framework which is yet to be
evaluated is the possibility to identify if new test data comes from the fault-free
case. Since the boundary between data from a small fault size and data from fault-
free scenario could be hard to distinguish, it is extremely important to identify
any of these in order to improve the life quality of the engine and prevent a fault
from increasing over time. One suggested way to test this is to classify with the
mcc’s. Either all classifiers agrees that NF is the most likely case or all classifiers
suggest that the data belongs to their decoupled fault class. Table 4.11 below
shows the result when test data from NF is used.

4.4 Data Classification 51

Table 4.11: Classification performance for each mcc when classifying test
data NF.

Subspace
Fault class

NF fpim fpic fwaf fiml

fpim 67.94% 5.66% 1.42% 22.40% 2.58%
fpic 72.19% 4.50% 3.75% 17.32% 2.25%
fwaf 59.78% 3.91% 0.83% 33.22% 2.25%
fiml 63.78% 14.82% 2.50% 14.65% 4.25%

Table 4.11 shows that themcc’s are fully capable of classifying data belonging to
the NF case where there is a clear agreement.

4.4.3 Comparing with Random Forest

Training was done with random forest classifier on data from all fault classes,
which yielded amcc. Settings used were default for classification with TreeBagger
function in Matlab (available in the Statistics and Machine Learning toolbox) with
100 bagged trees. Validation can be seen in Figure 4.12. As noticed, the overall
validation performance is good for all fault classes and the accuracy on NF is
most of the times higher than the ones in Figure 4.5. Evaluation of the test data
can be found in Table 4.12. It can be seen that the random forest classifier is able
to make confident predictions for challenging test data.

Figure 4.12: Validation of Random Forest classifier.

52 4 Results

Table 4.12: Classification performance of test data on random forest classi-
fier.

Test data
Fault class

NF fpim fpic fwaf fiml

fpim,−5% 3.41% 64.73% 1.75% 28.54% 1.58%
fpic,−5% 0.92% 3.16% 88.44% 3.91% 3.58%
fwaf ,−5% 3.16% 9.89% 1.75% 76.56% 8.65%
fiml,4mm 1.91% 8.65% 0.75% 20.80% 67.89%

To summarize the performances of the different classifiers, the accuracies are pre-
sented in Table 4.13 below.

Table 4.13: Summary of accuracies for the different classifiers with the men-
tioned test data (Binary and mcc refers to the proposed classifiers when an
information fusion is performed). The highlighted cells indicate the type of
classifier yielding highest accuracy for predicting the test data in question.

Test data
Classifier

Binary mcc R.F

fpim,−5% 70.38% 59.82% 64.73%
fwaf ,−5% 81.13% 85.87% 76.56%
fiml,4mm 53.33% 63.06% 67.89%

A conclusion to be drawn from this is that a random forest classifier is more
robust than any of the singly classifiers mentioned previously. However, using
the proposed framework and combining the classifiers results in performances
which relates well to random forest classifier. Some fault classes receives higher
accuracy while others tend to be more difficult to classify when comparing to
the state-of-art. Using the proposed framework have of course the possibility to
identify if data comes from an unknown fault while a random forest classifier
is limited to always produce a prediction of any known fault class. Although,
making comparisons from a time perspective there is no doubt that random forest
classifiers are preferable (at least in this study). Therefore, it would be considered
a strong classifier to begin any analysis with, which delivers fast execution time
and high classification performance.

4.4 Data Classification 53

4.4.4 Fault Size Estimation

Modeling a linear function that estimates fault size based on mse for a given
residual data set naturally yields better fitted line when data from several fault
sizes is available. To set a reference, consider Figure 4.13 where all fault sizes for
fwaf have been included. Worth mentioning is that this has been done for the
remaining fault classes and the results show similar performance.

0 1 2 3 4 5 6 7 8

MSE #10-4

0

5

10

15

20

F
au

lt
si

ze
 [%

]

f
waf

 - MSE with positive fault sizes

MSE for fault sizes
Fitted linear line

(a)

0 1 2 3 4 5 6 7 8 9 10

MSE #10-4

-20

-15

-10

-5

0
F

au
lt

si
ze

 [%
]

f
waf

 - MSE with negative fault sizes

MSE for fault sizes
Fitted linear line

(b)

Figure 4.13: Fault size plotted againstmse for fault fwaf , where Figure 4.13a
shows for positive fault sizes and Figure 4.13b for negative fault sizes. The
yellow line is the linear model fitted to the generated data points.

As shown in Figure 4.13, both directions of the fitted line seems to follow a linear
pattern. One thing to keep in mind using this type of estimation withmse is that
the estimation of fault sizes, at least for the sensor faults, should be consistent
on both sides of which sign the fault size belongs to, i.e. it would be unexpected
that an estimation on new data suggests +5% and −20% severity. A suggested
approach would be to look at both sides, positive and negative fault sizes, and
verify that an estimation lies within reasonable limits.

Evaluating the method on leakage fault fiml , where two data set comes from un-
known fault sizes yields following result in Figure 4.14 below.

54 4 Results

-2 0 2 4 6 8 10 12 14

MSE #10-4

-1

0

1

2

3

4

5

6

7

8

9

F
au

lt
si

ze
 [m

m
]

f
iml

 - MSE with all known fault sizes and estimating unknown fault sizes

MSE for fault sizes
Fitted linear line
Unknown 1
Unknown 2

Figure 4.14: Fault size plotted against mse for fiml where the two unknown
data sets are estimated.

According to this fitted linear line, Unknown 1 and Unknown 2 have an approxi-
mate hole diameter of 1.5 mm and 6.7 mm respective. Unlike sensor faults, fiml
has only positive fault sizes, which leads to relying on a single estimation. Verify-
ing whether these estimations are reasonable can be done comparing correspond-
ing data to the existing ones with known fault sizes.

4.5 Preprocessing Data by Reshape

In this section, evaluation is made likewise previously sections but this time
while preprocessing the data as described in Section 3.2 in Chapter 3. Reshap-
ing is done with data from each fault size separately along with partitioning into
training and validation, to finally assemble all training and validation data cor-
responding to fault i. The same parameters K and γ are used. The number of
batches to divide each residual in were set to 10, which reshapes the residual
data to 90 columns.

4.5.1 Binary Classifiers - Prediction

Figure 4.15 below shows the results using the proposed framework with the bi-
nary classifiers.

4.5 Preprocessing Data by Reshape 55

(a) Test data fpim,−5%. (b) Test data fwaf ,−5%.

(c) Test data fiml,4mm.

Figure 4.15: Plots showing results when using the proposed diagnostic
framework for the binary classifiers. Test data for fpic,−5% is not showed
since it was singely passed through the selection phase.

Evaluating test data on these classifiers yields significantly higher accuracy and
there is overall a higher confidence in the decision making. Already in the val-
idation major differences in performance can be seen, where there are clearer
separations in prediction of target class and outliers, in comparison to previously
validation plots. However, this have shown to come with a downside, where the
setback lies in classifying data from unknown fault classes. Preprocessing the
residual data by reshaping as in this manner has shows making it more difficult
to identify unknown data from fault classes with the binary classifiers.

4.5.2 Multi-Class Classifiers - Prediction

Figure 4.16 below shows the results using the proposed framework with the
mcc’s.

56 4 Results

(a) Test data fpim,−5%. (b) Test data fwaf ,−5%.

(c) Test data fiml,4mm.

Figure 4.16: Plots showing results when using the proposed diagnostic
framework for the mcc’s. Test data for fpic,−5% is not showed since it was
singely passed through the selection phase.

Likewise the binary classifiers, the classification performance for the mcc’s in-
creases for test data known to belong to any of the existing fault classes in the
training data.

5
Discussion

This chapter discusses the proposed method and the experimental results pre-
sented in Chapter 4.

5.1 Results

The results in Chapter 4 show promising performance where there is a clear dif-
ference when comparing the decisions made by a single classifier and multiple
classifiers fused together. One thing to bear in mind is that the tested fault scenar-
ios have been with the smallest fault sizes available, making it the most difficult
yet interesting case. Larger fault sizes has been tested and shown to be classified
correctly with higher accuracy.

The validation for the binary classifiers in Figure 4.4, shows that in each subspace
there is an expert classifier which is capable of identifying its target class, the
decoupled fault class, and reject data from other fault classes. However, based on
the proportion of samples that are correctly classified as the target class it is not
always a clear separation. It would be desirable to achieve a higher confidence
in the classification of the target class in each subspace, but working with such
data where a fault class has different realizations due to different fault sizes it
comes with a price. It has been evaluated with occ’s (as in Section 3.1) that data
from the fault classes has a strong overlapping, i.e. that an occ for a certain
fault can explain and capture data from another fault with a high classification
rate. An occ aims at capturing the unique properties of the target class with no
counterexamples, unlike binary classifiers which aims at minimizing the error
between the other class, making occ far more flexible. Although, in this type
of problem there is a need to distinguish the classes apart. Hence, there are two

57

58 5 Discussion

aspects of constructing this kind of set of binary classifiers. Either one makes
the classifiers good at just classifying the target class or one focuses on making
the classifiers good at rejecting outliers to the target class. This would refer to
the effects of overfitting. In this study, the latter has shown that an aggregation
yields a higher accuracy in the decision making than a single classifier.

The validation for themcc’s in Figure 4.5 shows that some fault classes are easier
to classify than other, e.g. fpic can clearly be distinguished from other classes
even at a small fault size while fiml struggles do so. In all subspaces, fpic is
easiest to distinguish and the for the others it varies. One interesting thing to
acknowledge is the relationship between fpim and fiml throughout the validation
but also the test data. The classifiers are able to separate data from these classes
even though the angular difference between their fault vectors is small. Looking
at the performance of themcc’s for the test data, it can be seen that each classifier
is capable at predicting the test data as the most likely fault class. If a simple
majority vote among them based on assigning the fault class with highest score,
it would result in a clear agreement.

Comparing the results from random forest classifier with the ones received from
the proposed diagnostic framework show how well the performance is compared
to a reference. The mcc’s relates well to the reference (see Table 4.12) where
they are slightly better or worse in predicting accurately depending on test data.
The downside of course with combining mcc’s as done in this study over a more
simpler classifier as random forest is the time complexity. Not only increases the
time it takes to train the svmmodels significantly, but also the knn search leads
to increased time consumption (both in the classifier selection stage and in the
fusing stage). The binary classifiers faces similar time complexity problem.

Reshaping the residual data has shown to be an interesting preprocess technique.
Its advantages can be summarized in increased accuracy of classifying test data
from known fault classes and reduced time consumption from training the classi-
fiers to weighting the decision outputs. However, it comes with a setback where
the binary classifiers struggles to identify that data comes from an unknown fault
class. Using this technique in the proposed diagnostic framework would only be
appropriate when the test data is confident to belong to any of the known fault
classes in the training data. Another thing to point out regarding the use of this
is whether it is consistent for all drive cycles or needs to be adjusted according to
every new measurement. Since the engine operates at different operating points
throughout the measurements, it could lead to imbalance between the different
batches. This has not been studied in this thesis and would be required to tell if
this technique could be applied in general cases.

The proposed fault size estimation usingmse as a measure of how much residual
data deviates from the origin has shown to be simple yet effective solution. The
linear approximation between different fault sizes gets more precise when taking
several data sets into account, i.e. more realizations of a fault improves the esti-
mation on new data. The fault size estimations on the two unknown fault sizes
from fiml , see Figure 4.14, are reasonable since it is known that data from

5.2 Methodology 59

Unknown 1 have been injected with smaller severity than Unknown 2 during the
measurements of the data. Another verification is that the excitements of residu-
als in Unknown 2 resembles the ones in fiml,6mm, while Unknown 1 has the lowest
of all available fiml data.

5.2 Methodology

Decoupling a fault class using pca has shown to be a simple yet effective method.
It allows to measure the similarity between data sets with their fault vector (and
angles between subspaces), which does not come with further complexity. Al-
though, working with pca there are some crucial properties in the data that
affects this method, such as how strong correlation there is between features
and how well-distributed variance there is. For instance, if a data set has large
variance it would lead to reduced total explained variance in the first principle
component. Hence, projecting the data onto the subspace corresponding to its
fault vector would get more spread out and the idea regarding decoupling a fault
would not work as preferred.

The classifier selection algorithm worked smoothly and were able to locate the
most competent (known) classes to the test data for any fault size in the training
data. The threshold parameter J and K were shown to be suitable values for the
task. A larger K-value would only be beneficial for test data belonging to small
fault sizes since they are most difficult to distinguish (especially for overlapping
data) and the cost of it would increase the time consumption. One interesting
aspect with this selection method that could be of interest for further study is to
instead of searching for a fix number of neighbors, to search for nearest neighbors
with a radius from each test sample. It would for instance open up the possibility
to identify unknown fault classes in cases where the search does not find any
neighbors.

Taking multiple classifier into consideration in the decision making truly has the
potential to improve the classifications. Solving the optimization problems for
binary and mcc’s as presented in Section 3.4 works on certain conditions in or-
der to achieve high quality decisions. One of which is that the local competent
classifiers should be accurate and diverse. Having a set of classifiers that make
independent errors is desirable since it would improve the classification perfor-
mance, as seen with the binary classifiers. Furthermore, an important thing to
keep in mind with the used aggregation method is that the objective function
highly relies on the class index vector t(xk). Since the quadratic term has greater
impact on finding the optimal weights it is therefore beneficial to reduce overlap-
ping data in order for t(xk) to find correct true class more frequently.

Regarding the aggregation method from a time perspective, some of the things
affecting it is the chosen K-value and the number of classifiers which decisions
outputs are to be weighted. For the binary classifiers, changing K solely from
3 to 21 increases the consumed time with approximately 150 seconds, while for
the mcc’s it increases by 950 seconds. An increased number of local classifiers

60 5 Discussion

on the other hand enlarges the A matrix but also the dimension on α, β and η,
leading to increased time when solving the objective function for each sample in
the test data. Nevertheless, aiming for a fast functional system requires to find a
sufficient low K-value and only the necessary competent classifiers.

6
Conclusion

This chapter contains a summarization of the purpose and research questions
along with a brief section regarding future study.

In this work, a novel method inspired from model-based fault diagnostics has
been integrated in a mcs which is part of a systematical diagnostic framework.
By decoupling data using pca generated from residuals that detects any incon-
sistencies with the fault-free case, decision outputs from trained classifiers are
weighted to form a final diagnosis statement. For each decoupled fault there ex-
ist a subspace where data from the other fault classes are projected onto. The
idea itself of decoupling faults in separate subspaces has proven to be one way to
achieve diversity between different classifiers, something which is sought for in
a mcs. Two types of classifiers have been used to recognize patterns from the dif-
ferent fault classes in these subspaces: binary and mcc’s. The former’s primary
objective is to identify data from unknown fault classes but has shown to be a
promising alternative for decision making when fusing decisions from multiple
binary classifiers. The latter aims at classifying known fault classes and impor-
tantly to also identifying if data belongs to the fault-free case.

To tell how well the classification performance is for both mentioned types, a com-
parison has been made with a random forest classifier. Results indicate that the
proposed diagnostic framework relates well compared to state-of-the-art, where
challenging test data has been evaluated. How easy it is to distinguish two classes
apart can be concluded to depend on how the angle between fault vectors relates,
where a small angle suggest it is more difficult. The smallest angle amongst the
known faults in the training data was found to be between fpim and fiml , but sepa-
rating data from respective fault showed to work without any problem. Detecting
unknown fault classes, i.e. facl , fbcl and faf , on the other hand were especially dif-
ficult to distinguish from fwaf , since the angles their fault vector and fwaf ’s are

61

62 6 Conclusion

small. One conclusion that can be drawn when it comes to detecting unknown
fault classes is that comparing the angle between different fault vectors could tell
how easy it is, but does not necessarily mean that a small angle suggest that the
data originates from the same sensor. This could instead be an indirect cause of
correlated residuals. Another analysis that can be drawn from the fault vectors
is the angle between base-residuals. It suggests how relevant a residual is to the
fault in question, which points out which residuals that could be removed while
minimizing the loss of information.

Taking multiple observations into account when training the classifiers can be
done in multiple ways. The presented method has shown to increase the clas-
sification performance of known fault classes while identifying unknown faults
gets more difficult. However, it is not claimed to work for measured data from
different drive cycles or in other applications.

6.1 Future Work

This work has shown to be an interesting topic when working with fault diag-
nostics for an internal combustion engine. Not all aspects has been covered or
analysed and therefore some relevant future work can be studied further.

Firstly, a feature selection of the most informative residuals for each fault class
would be interesting to use in the proposed diagnostic framework. This could for
instance be done using random forest or alternatively with a correlation analysis.
This would show if a dimension reduction is possible and still maintain robust
classification performance.

Secondly, to further develop the reshaping method. An interesting approach
would be to make it independent on the current drive cycle. Rather than gen-
erating batches by dividing residuals after different time sequences, to instead
generate batches from random observations and try to capture different operat-
ing points in such manner.

Thirdly, to evaluate this framework on other drive cycles, another set of available
training data and other applications.

Bibliography

[1] Christopher M Bishop. Pattern recognition and machine learning. springer,
2006.

[2] Vladimir Bondarenko. drawla - draw toolbox for linear algebra. https:
//www.mathworks.com/matlabcentral/fileexchange/23608-d
rawla-draw-toolbox-for-linear-algebra, May 2021.

[3] Alceu S Britto Jr, Robert Sabourin, and Luiz ES Oliveira. Dynamic selection
of classifiers—a comprehensive review. Pattern recognition, 47(11):3665–
3680, 2014.

[4] Steven Brunton and J. Kutz. Data-Driven Science and Engineering: Machine
Learning, Dynamical Systems, and Control. Cambridge University Press, 01
2019. ISBN 9781108422093. doi: 10.1017/9781108380690.

[5] Hakan Cevikalp and Robi Polikar. Local classifier weighting by quadratic
programming. IEEE transactions on neural networks, 19(10):1832–1838,
2008.

[6] Rafael MO Cruz, Robert Sabourin, and George DC Cavalcanti. Dynamic
classifier selection: Recent advances and perspectives. Information Fusion,
41:195–216, 2018.

[7] Thomas G. Dietterich and Ghulum Bakiri. Solving multiclass learning prob-
lems via error-correcting output codes. Journal of Arti
cial Intelligence Research 2, 2:263–286, 1995.

[8] Lars Eriksson, Simon Frei, Christopher Onder, and Lino Guzzella. Control
and optimization of turbocharged spark ignited engines. IFAC Proceedings
Volumes, 35(1):283–288, 2002.

[9] Jerome Friedman, Trevor Hastie, Robert Tibshirani, et al. The elements of
statistical learning, volume 1. Springer series in statistics New York, 2001.

[10] Aurélien Géron. Hands-On Machine Learning with Scikit-Learn and Ten-
sorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. "
O’Reilly Media, Inc.", 2017.

63

https://www.mathworks.com/matlabcentral/fileexchange/23608-drawla-draw-toolbox-for-linear-algebra
https://www.mathworks.com/matlabcentral/fileexchange/23608-drawla-draw-toolbox-for-linear-algebra
https://www.mathworks.com/matlabcentral/fileexchange/23608-drawla-draw-toolbox-for-linear-algebra

64 Bibliography

[11] Michael Grant and Stephen Boyd. Graph implementations for nonsmooth
convex programs. In V. Blondel, S. Boyd, and H. Kimura, editors, Re-
cent Advances in Learning and Control, Lecture Notes in Control and In-
formation Sciences, pages 95–110. Springer-Verlag Limited, 2008. http:
//stanford.edu/~boyd/graph_dcp.html.

[12] Michael Grant and Stephen Boyd. CVX: Matlab software for disciplined
convex programming, version 2.1. http://cvxr.com/cvx, March 2014.

[13] Jiawei Han, Micheline Kamber, and Jian Pei. Data mining concepts and tech-
niques third edition. The Morgan Kaufmann Series in Data Management
Systems, 5(4):83–124, 2011.

[14] Anshul Jindal. Dimensionality reduction using pca on multivariate time-
series data. https://medium.com/@ansjin/dimensionality-red
uction-using-pca-on-multivariate-timeseries-data-b5cc0
7238dc4, 2019. Online; accessed 22-January-2021.

[15] Daniel Jung. Residual generation using physically-based grey-box re-
current neural networks for engine fault diagnosis. arXiv preprint
arXiv:2008.04644, 2020.

[16] Bartosz Krawczyk, Michał Woźniak, and Francisco Herrera. On the useful-
ness of one-class classifier ensembles for decomposition of multi-class prob-
lems. Pattern Recognition, 48(12):3969–3982, 2015.

[17] Bartosz Krawczyk, Mikel Galar, Michał Woźniak, Humberto Bustince, and
Francisco Herrera. Dynamic ensemble selection for multi-class classification
with one-class classifiers. Pattern Recognition, 83:34–51, 2018.

[18] Ludmila I Kuncheva, James C Bezdek, and Robert PW Duin. Decision tem-
plates for multiple classifier fusion: an experimental comparison. Pattern
recognition, 34(2):299–314, 2001.

[19] Andreas Lundgren and Daniel Jung. Data-driven open set fault classifica-
tion and fault size estimation using quantitative fault diagnosis analysis.
arXiv preprint arXiv:2009.04756, 2020.

[20] Aizhong Mi, Lei Wang, and Junyan Qi. A multiple classifier fusion algorithm
using weighted decision templates. Scientific Programming, 2016, 2016.

[21] Gang Niu, Tian Han, Bo-Suk Yang, and Andy Chit Chiow Tan. Multi-agent
decision fusion for motor fault diagnosis. Mechanical Systems and Signal
Processing, 21(3):1285–1299, 2007.

[22] John Platt et al. Probabilistic outputs for support vector machines and com-
parisons to regularized likelihood methods. Advances in large margin clas-
sifiers, 10(3):61–74, 1999.

http://stanford.edu/~boyd/graph_dcp.html
http://stanford.edu/~boyd/graph_dcp.html
http://cvxr.com/cvx
https://medium.com/@ansjin/dimensionality-reduction-using-pca-on-multivariate-timeseries-data-b5cc07238dc4
https://medium.com/@ansjin/dimensionality-reduction-using-pca-on-multivariate-timeseries-data-b5cc07238dc4
https://medium.com/@ansjin/dimensionality-reduction-using-pca-on-multivariate-timeseries-data-b5cc07238dc4

Bibliography 65

[23] Oriol Pujol, Petia Radeva, and Jordi Vitria. Discriminant ecoc: A heuris-
tic method for application dependent design of error correcting output
codes. IEEE Transactions on Pattern Analysis and Machine Intelligence, 28
(6):1007–1012, 2006.

[24] Romesh Ranawana and Vasile Palade. Multi-classifier systems: Review and
a roadmap for developers. International Journal of Hybrid Intelligent Sys-
tems, 3(1):35–61, 2006.

[25] Anderson Rocha and Siome Klein Goldenstein. Multiclass from binary: Ex-
panding one-versus-all, one-versus-one and ecoc-based approaches. IEEE
Transactions on Neural Networks and Learning Systems, 25(2):289–302,
2013.

[26] Lior Rokach. Decision forest: Twenty years of research. Information Fusion,
27:111–125, 2016.

[27] Terry Windeatt and Reza Ghaderi. Coding and decoding strategies for multi-
class learning problems. Information Fusion, 4(1):11–21, 2003.

[28] Tomasz Woloszynski and Marek Kurzynski. A probabilistic model of clas-
sifier competence for dynamic ensemble selection. Pattern Recognition, 44
(10-11):2656–2668, 2011.

[29] Tomasz Woloszynski, Marek Kurzynski, Pawel Podsiadlo, and Gwidon W
Stachowiak. A measure of competence based on random classification for
dynamic ensemble selection. Information Fusion, 13(3):207–213, 2012.

[30] Kevin Woods, W. Philip Kegelmeyer, and Kevin Bowyer. Combination of
multiple classifiers using local accuracy estimates. IEEE transactions on pat-
tern analysis and machine intelligence, 19(4):405–410, 1997.

	Sammanfattning
	Abstract
	Acknowledgments
	Contents
	Notation
	1 Introduction
	1.1 Motivation
	1.1.1 Data analysis
	1.1.2 Weigh Fault Hypotheses
	1.1.3 Fault Diagnosis System

	1.2 Aim and Purpose
	1.3 Research questions
	1.4 Delimitations

	2 Theory
	2.1 Multiple Classifier System
	2.1.1 Static Selection
	2.1.2 Dynamic Selection

	2.2 Fault Diagnosis
	2.2.1 Fault Diagnosis - Important Concepts

	2.3 Principal Component Analysis
	2.4 K-Nearest Neighbor
	2.5 Support Vector Machines
	2.6 Error Correcting Output Codes

	3 Method
	3.1 Decoupling of fault using PCA
	3.2 Data Processing by Reshaping
	3.3 Classifier Selection
	3.4 Information Fusion
	3.4.1 Local Classifier Weigthing by Quadratic Programming - Multi-Class Classifier
	3.4.2 Local Classifier Weigthing by Quadratic Programming - Binary Classifier

	3.5 Fault Size Estimation
	3.6 Complete Diagnostic Framework
	3.6.1 Preparation
	3.6.2 Classification
	3.6.3 Evaluation

	4 Results
	4.1 Data Collection
	4.2 Preprocessing
	4.3 Training Classifiers
	4.3.1 Binary Classifiers
	4.3.2 Multi-Class Classifiers

	4.4 Data Classification
	4.4.1 Binary Classifiers
	4.4.2 Multi-Class Classifiers
	4.4.3 Comparing with Random Forest
	4.4.4 Fault Size Estimation

	4.5 Preprocessing Data by Reshape
	4.5.1 Binary Classifiers - Prediction
	4.5.2 Multi-Class Classifiers - Prediction

	5 Discussion
	5.1 Results
	5.2 Methodology

	6 Conclusion
	6.1 Future Work

	Bibliography

