
Master of Science Thesis in Electrical Engineering
Department of Electrical Engineering, Linköping University, 2021

Learning-based Motion
Planning and Control of a
UGV With Unknown and
Changing Dynamics

Åke Johansson & Joel Wikner

Master of Science Thesis in Electrical Engineering

Learning-based Motion Planning and Control of a UGV With Unknown and
Changing Dynamics

Åke Johansson & Joel Wikner

LiTH-ISY-EX--21/5399--SE

Supervisor: Kristoffer Bergman
Saab Dynamics AB

Anja Hellander
isy, Linköpings universitet

Examiner: Daniel Axehill
isy, Linköpings universitet

Division of Automatic Control
Department of Electrical Engineering

Linköping University
SE-581 83 Linköping, Sweden

Copyright © 2021 Åke Johansson & Joel Wikner

Abstract

Research about unmanned ground vehicles (ugvs) has received an increased
amount of attention in recent years, partly due to the many applications of ugvs
in areas where it is inconvenient or impossible to have human operators, such
as in mines or urban search and rescue. Two closely linked problems that arise
when developing such vehicles are motion planning and control of the ugv.

This thesis explores these subjects for a ugv with an unknown, and possibly
time-variant, dynamical model. A framework is developed that includes three
components: a machine learning algorithm to estimate the unknown dynamical
model of the ugv, a motion planner that plans a feasible path for the vehicle and
a controller making the ugv follow the planned path.

The motion planner used in the framework is a lattice-based planner based
on input sampling. It uses a dynamical model of the ugv together with motion
primitives, defined as a sequence of states and control signals, which are concate-
nated online in order to plan a feasible path between states. Furthermore, the
controller that makes the vehicle follow this path is a model predictive control
(mpc) controller, capable of taking the time-varying dynamics of the ugv into ac-
count as well as imposing constraints on the states and control signals. Since the
dynamical model is unknown, the machine learning algorithm Bayesian linear
regression (blr) is used to continuously estimate the model parameters online
during a run. The parameter estimates are then used by the mpc controller and
the motion planner in order to improve the performance of the ugv.

The performance of the proposed motion planning and control framework is
evaluated by conducting a series of experiments in a simulation study. Two dif-
ferent simulation environments, containing obstacles, are used in the framework
to simulate the ugv, where the performance measures considered are the devia-
tion from the planned path, the average velocity of the ugv and the time to plan
the path. The simulations are either performed with a time-invariant model, or a
model where the parameters change during the run.

The results show that the performance is improved when combining the mo-
tion planner and the mpc controller with the estimated model parameters from
the blr algorithm. With an improved model, the vehicle is capable of maintain-
ing a higher average velocity, meaning that the plan can be executed faster. Fur-
thermore, it can also track the path more precisely compared to when using a less
accurate model, which is crucial in an environment with many obstacles. Finally,
the use of the blr algorithm to continuously estimate the model parameters al-
lows the vehicle to adapt to changes in its model. This makes it possible for the
ugv to stay operational in cases of, e.g., actuator malfunctions.

iii

Acknowledgments

First of all, we would like to thank our supervisors, Kristoffer Bergman and Anja
Hellander. We greatly appreciate all the time you have spent on helping us dur-
ing our thesis, ranging from our discussions regarding the technical details, to the
countless times you have read and given feedback on our report. A big thanks to
our examiner, Daniel Axehill, for your help during the thesis.

We would also like to thank Torbjörn Crona for letting us do our thesis at at
Saab Dynamics, and allowing us to freely choose the directions of the thesis.

Furthermore, we are grateful to our “Saab-fadder” Signe Dahlin for making
us feel at home at Saab and for checking in on us to see how we were doing, as
well as to all the employees at GN&C at Saab for lighting up our lunch breaks.
We also like to thank our master’s thesis colleagues at Saab for our lunches and
walks together.

Finally, a huge thanks to our friends and families for your everlasting and
unconditional support throughout the years.

Linköping, June 2021
Åke Johansson & Joel Wikner

v

Contents

Notation ix

1 Introduction 1
1.1 Background . 1
1.2 Problem formulation . 2
1.3 Related work . 3
1.4 Outline . 4
1.5 Individual contributions . 4

2 Theory 5
2.1 Dynamical model . 5
2.2 Bayesian linear regression . 5

2.2.1 Linear regression . 6
2.2.2 Bayesian point of view . 6
2.2.3 Prior and posterior distributions 7
2.2.4 Resulting posterior distribution 9
2.2.5 Weighted Bayesian linear regression 11

2.3 Model predictive control . 11
2.3.1 Prediction model . 12
2.3.2 Formulating the control problem 12

2.4 Motion planning . 13
2.4.1 Problem formulation . 13
2.4.2 Solving the motion planning problem 14

3 System description 19
3.1 Dynamical model of the Rover . 19
3.2 Simulation . 20

3.2.1 Known model simulation 20
3.2.2 Unknown model simulation 20

3.3 System overview . 21

4 Learning-based control and planning 25
4.1 Bayesian linear regression . 25

vii

viii Contents

4.1.1 The importance of the prior 25
4.1.2 Obtaining the data . 27
4.1.3 Sending the parameter estimates 27

4.2 Model predictive controller . 28
4.3 Motion planner . 29

4.3.1 State space discretisation . 29
4.3.2 Motion primitives generation 29
4.3.3 Computing the path . 30
4.3.4 Making the plan dynamically feasible 32
4.3.5 Complete plan . 32

5 Results 35
5.1 Learning-based MPC performance 35

5.1.1 Known model simulation 36
5.1.2 Unknown model simulation 47

5.2 Motion planner performance . 57
5.2.1 Inaccurate prior . 57
5.2.2 Accurate prior . 57

6 Discussion 61
6.1 Implementation methods . 61
6.2 Results . 62

6.2.1 MPC performance . 62
6.2.2 Motion planner performance 64

7 Conclusions and future work 67
7.1 Answers to the problem formulation 67
7.2 Future work . 69

Bibliography 71

Notation

Mathematical notation

Notation Meaning

x State vector sequence
u Control signal sequence
X Explanatory variables
z Response variable
β Regression parameters
σ2 Variance of a Normal distribution
D Measured data
N Prediction horizon in mpc problem
M Number of data points

p(y|x) Probability distribution of y given x
N (x|µ, σ2) Normal distribution of x with mean µ and variance σ2

IG(x|a0, b0) Inverse Gamma distribution of x with shape a0 and
scale b0

T (x|µ, σ2, ν) Student’s t-distribution of x with ν being the degrees
of freedom

n0 Number of effective data points attributed to the prior
X Permissible state values
U Permissible control signal values
K Number of motion primitives used in the planned

path
m Motion primitive – defined as a sequence of states and

control signals
L Length of a motion primitive
h(x) Heuristic

ix

x Notation

Abbreviations

Abbreviation Meaning

blr Bayesian linear regression
gp Gaussian process
ipopt Interior point optimiser
lqr Linear-quadratic regulator
mpc Model predictive control
nig Normal inverse Gamma
ocp Optimal control problem
ros Robot Operating System
ugv Unmanned ground vehicle
wblr Weighted Bayesian linear regression

1
Introduction

The goal of this thesis is to develop a motion planning and control framework for
an unmanned ground vehicle (ugv) with a partially unknown and time-variant
dynamical model of the system. In order to increase the controller performance,
the model is estimated online and then used by the motion planner and the con-
troller. This thesis is conducted at Saab Dynamics AB in Linköping.

1.1 Background

The use of ugvs has surged in the last years, partly due to the large number of
applications [30]. For example, ugvs can be used for mapping of large areas,
searching terrain that could be hostile to humans and for transportation of goods
[11], [15]. When developing the control architecture for such vehicles, there are
generally three main components to consider [17]:

• The overall mission planner, giving the vehicle directions on what to do and
where to go.

• The motion planner, computing a feasible path for the vehicle in order to
move to the position provided by the mission planner.

• The controller, making sure that the vehicle follows the path given by the
motion planner.

In this thesis, focus lies on the last two components, the motion planner and
the controller, as well as an essential aspect of these: the dynamical model of the
system, i.e. the differential equations describing the evolution of the states of the
system. Since a large part of modern planning and control depends on known, ac-
curate mathematical models describing the system dynamics, precise knowledge

1

2 1 Introduction

of the models can greatly improve the overall system performance when used
correctly [12].

In some applications, the dynamical model of the system can be partially or
completely unknown. Another possible case is that the model might change dur-
ing a run, due to unforeseen events such as actuator or battery malfunctions. In
such cases, machine learning algorithms can be used for identification of the dy-
namical model of the system. Recent results in machine learning have provided
many effective methods for learning the dynamics of the system online, result-
ing in high-performance control. However, there exist some concerns in spite of
the promising result, as these methods usually do not guarantee stability of the
system [5]. This has resulted in multiple methods where classical control is com-
bined with learning-based methods to improve performance while still taking
safety into account [12]. One such method that has been studied lately is combin-
ing learning-based methods with a model predictive control (mpc) controller.
mpc is a powerful control methodology which optimises the control input at

the current timestep, while also taking future steps into consideration, thus gen-
erating an optimal control sequence that satisfies a set of constraints. In order to
accomplish this, a dynamical model of the system is used, and as a consequence
the performance of thempc controller is inherently linked to how well the model
captures the true dynamics of the system [28]. Difficulties in modelling and esti-
mating the system dynamics can limit the performance and usability of the mpc
controller, paving the way for alternative methods for system identification [19].
Relating this task to machine learning, it is possible to use learning-based meth-
ods, exploiting system data to improve the dynamical model, while still taking
safety constraints into consideration by using mpc as in [9] and [6].

The mpc controller is commonly used to follow, or track, a reference, e.g. the
middle of the lane on a road. However, in certain environments there are no
obvious references, for example in a parking lot or a mine. These environments
are commonly referred to as unstructured environments, and within these, a refer-
ence path has to be synthesised in some way. This is where another area related
to automatic control is helpful: motion planning. In recent years, sampling-based
motion planning using differential constraints has been an important area of re-
search due to interest in technologies such as self-driving cars [2]. The goal for
such motion planners is to compute feasible paths with respect to the dynamical
model of the system that is supposed to follow them, and to avoid collision with
obstacles. The dynamical model of the system is used during the planning to for-
ward simulate the system for certain control inputs [16]. Here, in similarity to the
mpc controller, the dynamical model of the system is crucial in order to achieve
good performance, which further motivates the use of learning-based methods to
improve the dynamical model of the system.

1.2 Problem formulation

The objective of this thesis is to develop a motion planning and control frame-
work for a ugv that has unknown and time-varying system dynamics, using

1.3 Related work 3

learning-based methods to estimate and continuously improve the dynamical
model of the system. The system considered in this thesis is a tracked ugv, called
Rover, which has a partially unknown dynamical model, the nominal model, that
is to be estimated and improved. The improved model will be used both within
an mpc controller and a motion planner.

When choosing an approach, practical details such as computational time,
simplicity and performance need to be taken into account. For example, the con-
troller needs to send control signals at a sufficiently high rate to be able to react to
and suppress disturbances, while the memory typically is limited on a ugv plat-
form. Hence, a fine balance between complexity and performance is required.

The questions to be answered are:

• What methods can be used to identify the unknown dynamics of the sys-
tem?

• Can the estimated model be used in sampling-based motion planning al-
gorithms, and will it improve performance compared to using the nominal
model?

• How does the performance of an mpc controller based on an estimated
model compare to the performance of an mpc controller based on the nom-
inal model?

• Can a machine learning algorithm be used to detect a dynamic change in
the system model while the system is running, and adapt the model to this
change?

1.3 Related work

The research that considers the problem of learning the model dynamics is con-
centrated on two different approaches using either a robust or a stochastic model
of the system dynamics. According to [12], the robust approaches typically re-
quire a hard a priori bound to cover all uncertainty, while stochastic methods
take the distributional information on the system uncertainty into account. Since
covering all uncertainties with an a priori bound can be conservative in practice,
this thesis focuses on the stochastic models instead.

The stochastic methods use either a parametric or a nonparametric model. The
parametric models are used to find a set of parameter values that is consistent
with the observed data to describe the system dynamics. Nonparametric ap-
proaches on the other hand, try to contain the function describing the system
dynamics within bounds by forming a function estimate based on possibly noisy
observations [12].

A commonly used approach for learning-based control is to use Gaussian pro-
cess (gp) regression, which is a nonparametric approach, as in [26]. Another
approach is to use the parametric method Bayesian linear regression (blr) com-
bined with anmpc to control a system [18]. A tutorial-like example is [13], where

4 1 Introduction

the method is applied to the calibration of a sonic nozzle. In [18], a weighted ver-
sion of the blr algorithm was implemented to model certain unknown parts of
the system dynamics, in order to control a skid-steered ground vehicle tracking
a given path.

In order to generate such a path for a system to follow, a motion planner is of-
ten used. An example of a sampling-based motion planner is the so-called lattice-
based motion planning algorithm [3]. This method uses motion primitives to span
a graph of possible paths by forward simulating the system given control inputs.
This motion planner can advantageously be combined with learning-based meth-
ods for system identification in order to improve the result of the forward sim-
ulation. When a graph exists, graph-searching methods are employed in order
to concatenate motion primitives during online planning to find collision-free
and dynamically feasible paths for the system. One approach can be seen in [7],
where an algorithm called hybrid A* is used.

1.4 Outline

Chapter 2 of this thesis is intended to introduce the relevant theory and back-
ground for the work. The system dynamics and the mpc controller will be inves-
tigated, along with the Bayesian linear regression algorithm as well as the motion
planning. Chapter 3 gives an overall description of the whole implemented sys-
tem, together with the simulators used. Chapter 4 covers the implementation of
the learning-based planning and control subsystems, while Chapter 5 presents
the obtained results. The discussion regarding the methods and the results is
seen in Chapter 6, while the conclusions and future work are presented in Chap-
ter 7.

1.5 Individual contributions

Joel has developed thempc controller and implemented the known model simula-
tion, while Åke has developed the blr algorithm and implemented the unknown
model simulation. Both have worked on the lattice-based motion planner.

This chapter, the performance evaluations in Chapter 5, the analysis of the
results in Chapter 6 and the conclusion in Chapter 7 were written by both authors.
The writing of the theory in Chapter 2 and the implementation details in Chapter
3 and Chapter 4 was divided between the authors according to their respective
responsibilities.

2
Theory

This chapter gives an overview of the theory used in this thesis. First, a general
dynamical model of a system is presented, followed by a closer look at a method
to improve the model of the dynamics using a learning-based algorithm. After
that, the model predictive controller is covered. Finally, the theory behind the
motion planner is described.

2.1 Dynamical model

A dynamical model of a system can generally be expressed as:

ẋ = fc(x, u, β) (2.1)

where x is the state of the system, u is the control signals sent to the actuators
and β is a set of model parameters, that could be unknown or time-varying. The
function fc(x, u, β) is the continuous system function, describing the dynamical
model of the system. Typical state variables of a system are the position in the
plane, the heading, the velocity and the angular velocity (turn rate). In order to
estimate model parameters that are unknown, methods described in Section 2.2
can be used.

2.2 Bayesian linear regression

This section covers the theory behind the Bayesian linear regression, which is a
machine learning algorithm that can be used to identify and improve the system
model. First, the standard approach within regression analysis when dealing
with linear functions, namely linear regression, is described. This is followed by
a detailed description of blr and how the method can be applied.

5

6 2 Theory

2.2.1 Linear regression

Linear regression is a method used to model a linear relationship between a
response variable and one or more explanatory variables [21]. The goal of the
method is to find the so-called regression parameters, β = [β0, β1, ..., βd], that best
fit a linear function to the available data, given a model of the form:

z = β0 +
d∑
i=1

βiXi + ε, (2.2)

where z is the response variable, or simply the output, X = [X1, X2, ..., Xd] is a
vector containing the explanatory variables, also called the input vector, and ε
is an unobserved random variable. If ε ∼ N (0, σ2), i.e. a normally distributed
random variable with mean zero and variance σ2, then the problem is a so-called
Normal linear regression problem [21].

Furthermore, linear regression can be slightly manipulated to also model non-
linearities by replacing the input vector, X, with a non-linear function of these
inputs. The non-linear function is often referred to as a basis function, noted φ(X).
The model then becomes:

z = β0 +
d∑
i=1

βiφi(X) + ε. (2.3)

Note that the model is still linear in the regression parameters.

2.2.2 Bayesian point of view

As mentioned in Section 2.2.1, the goal of linear regression is to find the values
of the regression parameters that best fit a linear function to the available data.
Linear regression methods such as maximum likelihood estimation compute nu-
merical values for these parameters. However, such methods do not account for
any uncertainty in the parameter estimation. This is where Bayesian linear re-
gression is useful, since it does exactly this. The outcome of a Bayesian linear re-
gression is a probability distribution of the regression parameters and the model
uncertainty, therefore including any uncertainties that are present.

In mathematical terms, this means that blr estimates the distribution
p(β, σ2|D), i.e. how the regression parameters, β, and the model uncertainty, σ2,
are distributed, given a set of data, D, that contains the observed response vari-
ables and explanatory variables. This can be used in an algorithm to make predic-
tions on the output, z, given a new input vector, X, and previously observed data,
D, i.e. to estimate the distribution p(z|X,D). The algorithm assigns a probability
distribution to z, making it possible to assess the uncertainty in the model. If a
numerical value is required, z can simply be estimated as the expected value of
its probability distribution.

Assuming that the random variable ε is normally distributed as in Section
2.2.1, the distribution of the output can be written as [21]:

p(z|X, β, σ2) = N (z|βTX, σ2). (2.4)

2.2 Bayesian linear regression 7

In order to find the predictive distribution for the output given a new input
and previously observed data, the marginalisation rule for probabilities,
p(x) =

∫
p(x, y)dy, can be applied. This gives:

p(z|X,D) =
∫
p(z, β|X,D) dβ. (2.5)

The term inside the integral can be expanded using the product rule,
P (A, B) = P (A|B)P (B), which gives:

p(z|X,D) =
∫
p(z|X, β,D)p(β|X,D) dβ, (2.6)

where the term p(z|X, β,D) can be simplified to p(z|X, β) since the output does
not depend on previous data D, and the term p(β|X,D) is the distribution of the
parameters, which can also be simplified to p(β|D) since the parameter distribu-
tion is independent of the current input, X. The simplified expression for the
distribution of the output from (2.6) can then be written as:

p(z|X,D) =
∫
p(z|X, β)p(β|D) dβ. (2.7)

Using Bayes’ theorem, P (A|B) = P (B|A)P (A)
P (B) , to expand the second term in the

integral in (2.7) results in the expression:

p(β|D) =
p(D|β)p(β)

p(D)
. (2.8)

The term p(D|β) in the numerator can be rewritten using the likelihood func-
tion as [21]:

p(D|β) = L(β|D). (2.9)

where the likelihood function, L(β|D), is the probability of obtaining a sample of
the data, given a set of regression parameters, β.

Since the model outputs are assumed to be independent, identically distributed
input-output pairs, the likelihood of a parameter vector, β, is the product of the
individual probabilities:

L(β|D) =
M∏
i=1

p(zi |Xi , β) =
M∏
i=1

N (zi |βTφ(Xi), σ
2), (2.10)

where M is the number of data points.

2.2.3 Prior and posterior distributions

The second term in the numerator in (2.8), p(β), describes the probability distri-
bution of the parameters. This term is referred to as the prior and is an estimation

8 2 Theory

of the parameter distribution before obtaining a new observation. The interpre-
tation of the prior is that it is used as a way to bring already known knowledge
about the system into the problem solution [21]. Hence, a good strategy to find
a suitable prior is to use previous information about the system, e.g. previously
conducted experiments [13].

The term on the left-hand side of (2.8), p(β|D), is called the posterior and con-
tains an updated belief about the parameter distribution based on the informa-
tion that has been acquired from the data points used in the regression. The pos-
terior is equal to the product of the likelihood-function and the prior, normalised
by a normalisation constant, p(D). This normalisation constant is sometimes re-
ferred to as the marginal likelihood or the model evidence and can be expressed
as:

p(D) =
∫
p(D|β)p(β) dβ. (2.11)

This integral is generally analytically intractable, and is also often difficult
to compute numerically [33], meaning the posterior distribution is in general
not possible to compute. However, for some priors it is possible to compute the
posterior distribution using conjugate priors. A conjugate prior is a certain prior
distribution resulting in a posterior distribution of the same family as the prior
distribution – e.g. if the conjugate prior is normally distributed, the posterior
will also be normally distributed, albeit with different distribution parameters
such as the variance [33]. By using conjugate priors, the marginal likelihood does
not need to be computed, and instead distribution parameters are assigned new
values according to distribution-specific update schemes, such as the one seen in
Section 2.2.4.

Different priors are used in different situations, and in the case of a Normal
linear regression problem with unknown noise variance as in (2.2) and the likeli-
hood specified in (2.10), the conjugate prior is distributed according to a Normal
inverse Gamma (nig) distribution [21], defined as:

p(β, σ2) = NIG(β, σ2|β0,V0, a0, b0). (2.12)

This distribution is actually two distributions combined, the Normal distri-
bution and the inverse Gamma distribution, which can be written as individual
distributions:

p(σ2) = IG(σ2|a0, b0),

p(β|σ2) = N (β|β0, σ
2V0),

(2.13)

where β0 is a prior vector containing the expected values of the regression param-
eters, while V0 is the prior covariance matrix. The two prior parameters a0 and
b0 are the shape and scale parameters of the inverse Gamma distribution respec-
tively. To clarify, in total the prior consists of the expected values of the regression
parameters, β0, the covariance matrix, V0, and the shape and scale parameters of
the inverse Gamma distribution, a0 and b0.

2.2 Bayesian linear regression 9

2.2.4 Resulting posterior distribution

Using the prior in (2.13), the posterior will benig distributed (since the conjugate
prior also is nig distributed), but with new parameters. For M observed data
points, the posterior distribution can be written as:

p(β, σ2|D) = NIG(β, σ2|βM ,VM , aM , bM)

= N (β|βM , σ2VM)IG(σ2|aM , bM),
(2.14)

where the parameters are updated according the following scheme [21]:

VM = (V −1
0 + X̃T X̃)−1,

βM = VM (V −1
0 β0 + X̃T z),

aM = a0 +
M
2
,

bM =
1
2

(βT0 V
−1
0 β0 + zT z − βTMV

−1
M βM)

(2.15)

where VM is the posterior covariance matrix for the regression parameters, βM
the posterior mean of the regression parameters and aM and bM the two poste-
rior parameters for the inverse Gamma distribution. The matrix X̃ consists of
the newly observed input vectors, while the vector z contains the corresponding
outputs.

The posterior marginal distribution, given a dataset, for the variables in the
joint distribution in (2.14) can be computed using the marginalisation rule. This
gives the posterior marginal for the variance, σ2, and the posterior marginal for
the regression parameters, β, which are given by the following distributions [21]:

p(β|D) = T (β|βM ,
bM
aM

VM , 2aM),

p(σ2|D) = IG(σ2|aM , bM),
(2.16)

where T is the Student’s t-distribution. Both of these distributions use parame-
ters from the update scheme in (2.15).

When the posterior is computed, it is used as prior for the next iteration of
(2.15) in the blr algorithm, using new data. Thus, the algorithm can be used with
continuous streaming data, e.g. from sensors on a system, typically computing
the new posterior each time new data is observed. Figure 2.1 shows how the
distribution of the parameters changes as new data points are added.

10 2 Theory

Figure 2.1: This figure illustrates what happens when adding new data
points to the regression algorithm. The response variable z and the ex-
planatory variable X, are sampled randomly from a linear function of form
z = a1X + a0 with added normally distributed noise, ε. The regression pa-
rameters are a0 and a1. The left-hand column shows the probability distribu-
tion of the regression parameters – yellow indicates a high probability while
dark blue represents a low probability. The middle column shows the func-
tion without noise and the drawn samples. Finally, the right-hand column
also shows the upper and lower bound one standard deviation away from
the mean for a given X.

2.3 Model predictive control 11

2.2.5 Weighted Bayesian linear regression

For some applications, it is desirable to be able to determine if the model parame-
ters dynamically have changed online during a run, and in that case also identify
the new parameters. A problem with the current prior/posterior configuration
and update scheme is that the blr algorithm uses all the available previous data –
which will be outdated if a dynamic change of the model parameters happens. If
this is the case, it would be desirable to forget the previous data and instead use
more recent data, obtained after the dynamic change, that better reflect the new
model parameters. One solution to this problem is the use of weighted Bayesian
linear regression (wblr), an extension to the update scheme in (2.15) as follows
[18]:

V0∗ =
n0 + 1
n0

VM ,

β0∗ = βM ,

a0∗ =
n0

n0 + 1
aM ,

b0∗ =
n0

n0 + 1
bM ,

(2.17)

where n0 is a user-defined value that determines the number of effective data
points that are being attributed to the prior. Essentially, n0 allows the algorithm
to “forget” previous data points, solving the issue with too much old information
in the prior [18]. The variables (·)0∗ denotes the prior for the next iteration of the
algorithm.

Assigning a large value to n0 means that a larger number of data points is
used, resulting in a smaller difference between (·)M and (·)0∗ , leading to more
smooth estimates of the model parameters [18]. When instead a small value of n0
is used, fewer data points are included in the prior, resulting in less smooth pa-
rameter estimates but allowing them to change quicker [18]. The update scheme
in (2.15) is always used, and if the algorithm starts with fewer than n0 data points
attributed to the prior, the posterior of the current data point will be the prior for
the next data point, as mentioned in Section 2.2.4. When the number of data
points attributed to the prior reaches or exceeds n0, the next prior will be com-
puted using the equations in (2.17). The parameter n0 makes it possible to tune
how fast the system adapts to new conditions in a computationally cheap man-
ner. In gp regression on the other hand, new data points have two options, either
to displace an already existing data point, or to increase the size of the model –
which will increase the computational time, making it less flexible as more data
points are added [18].

2.3 Model predictive control

In model predictive control, the control input to a system is computed by repeat-
edly solving an optimal control problem (ocp) over a finite time horizon. In order

12 2 Theory

to solve this problem, thempc controller uses a dynamical model of the system, a
prediction model, while imposing constraints on the states and the control signals,
as mentioned in Chapter 1.

2.3.1 Prediction model

The prediction model is what the controller needs in order to take future timesteps
into account when computing an optimal control sequence. The model presented
in (2.1) is discretised with timestep length ∆t and used in the mpc formulation.
It is generally written on the form [25]:

xj+1 = f (xj , uj , βj) (2.18)

where the sub-index j is the current timestep. The variable xj is the vector con-
taining the current states and uj is the current input vector. The discrete function
f (xj , uj , βj) can be either linear or non-linear [25]. If the optimal control problem
for the mpc controller is non-convex, which is the case when using a non-linear
prediction model, the solution cannot be guaranteed to be globally optimal us-
ing standard non-linear programming [22]. Instead, locally optimal solutions are
computed, which may affect the performance of the controller adversely.

If the model parameters, β, are unknown, they can for example be estimated
as regression parameters using the blr algorithm described in Section 2.2.

2.3.2 Formulating the control problem

One crucial aspect of thempc is the cost function, here denoted JN , which should
be minimised by the controller, given a set of constraints on x and u. For thempc
controller, JN usually consists of N terms, where N is the so-called prediction hori-
zon. The minimisation of the cost function is generally not analytically tractable,
meaning that the mpc problem needs to be solved numerically by an optimiser
[25]. By minimising the cost function JN over the control signal, an optimal con-
trol sequence is generated for the N next samples. The mpc problem can be
formulated as:

minimise
{uk }N−1

k=0

JN =
N−1∑
k=0

`(xk , uk) + `N (xN , uN) (2.19a)

subject to xk+1 = f (xk , uk , βk), k = 0, . . . , N − 1 (2.19b)

xk ∈ X , k = 1, . . . , N − 1, (2.19c)

x0 = x̂, (2.19d)

uk ∈ U , k = 0, . . . , N − 1 (2.19e)

where `(xk , uk) is the stage cost, `N (xk , uk) the terminal cost, X represents the
closed set of permissible state values, x̂ is a measurement, or estimate, of the
state at timestep j, and U is a compact set of permissible control signals [26].

2.4 Motion planning 13

The result from solving (2.19) is an optimal control sequence denoted {u?k }
N−1
k=0 .

The first value in this sequence, u?0, is sent as input to the system at the current
timestep, after which a time update is performed [8]. The algorithm can be sum-
marised as:

1. Measure or estimate the state, x̂, at timestep j.

2. Compute the optimal control sequence, {u?k }
N−1
k=0 , by solving the optimisa-

tion problem in (2.19).

3. Send the first element, u?0, of the control sequence as input to the system.

4. Time update, j := j + 1.

5. Return to step 1.

A possible cost function in (2.19) is of the quadratic type, for example:

JN =
N−1∑
k=0

||xref
k − xk ||

2
Q + ||uref

k − uk ||
2
R (2.20)

where Q and R are positive, semi-definite weighting matrices, defining the penal-
ties for the errors, and the notation used is ||x||2A = xTAx, where A is a positive,
semi-definite weighting matrix. Furthermore, xref

k is the state reference while uref
k

is the control signal reference which are desired to be followed.
The cost function is used in the mpc problem formulation to achieve a desir-

able behaviour, while the prediction model is used to plan ahead using future
states to ensure that the desired behaviour is realised. This further motivates
the use of the methods in Section 2.2, aimed at improving the prediction model
based on observed data, in order to further enhance the mpc controller.

2.4 Motion planning

In order to steer the system from a starting position to a desired position, a fea-
sible path between the two states, with respect to the surroundings of the Rover
and the dynamical model of the system, must be generated. This is done by a
motion planner, computing the generated path, which is then used as a reference
by the controller.

2.4.1 Problem formulation

The motion planning problem can be formulated as: given an input consisting
of an initial vehicle state, xs, a goal state xg , and information about the sur-
roundings, compute a sequence of vehicle states x0, x1, ..., xD and a control se-
quence, u0, u1, . . . , uD−1, such that x0 = xs, xD = xg and xi+1 = f (xi , ui , βi) for all
i = 0, . . . , D −1. Here, f (xi , ui , βi) is the function describing the dynamical model
of the system, i.e. the prediction model in (2.18). The sequence of states and con-
trol signals must be feasible with respect to the vehicle’s kinematic constraints,

14 2 Theory

constraints on the actuators, and obstacles that must be avoided by the vehicle.
In general, it is also of interest to compute a path where some performance mea-
sure, such as the distance travelled, is minimised [7].

2.4.2 Solving the motion planning problem

A commonly used approach to solve these types of motion planning problems
is to apply sampling-based motion planners [16]. These types of planning al-
gorithms construct a directed graph with vertices and edges while simultane-
ously employing graph-searching algorithms in order to find an optimal solu-
tion to the motion planning problem. One method making use of this technique
is the lattice-based motion planner. In a lattice-based motion planner, the con-
trol inputs are reduced to a discrete set [24], and a sequence of such inputs will
cause the system to move, generating a sequence of states. The state and con-
trol signal sequence is often referred to as a motion primitive, which is defined
as: m = {(xk , uk)}L−1

k=0 ∈ X × U , where L is the pre-defined length of the state and
control sequence, X is the set of feasible vehicle states and U is the set of feasible
control signals.

Generating the motion primitives

The motion primitives are sequences of control signals and states that are opti-
mised for some performance measure and are used to build a graph, where ver-
tices represent states of the system – such as its position and heading – while the
edges correspond to feasible motions, that transition the system between states.
The sequence of control inputs and states that results in a motion primitive is
generated by solving a discrete optimal control problem [3]. The ocp has the
following form:

minimise
{xk }L−1

k=0,{uk }
L−1
k=0

JL (2.21a)

subject to xk+1 = f (xk , uk , βk), k = 0, . . . , L − 1, (2.21b)

x0 = xi , xL = xf , (2.21c)

xk ∈ X , k = 1, . . . , L − 1, (2.21d)

uk ∈ U , k = 0, . . . , L − 1 (2.21e)

where xk is the current state of the vehicle and uk is the current control signal. JL
is the cost function, specifying the performance measure for optimality of the mo-
tion primitives. An example of a general cost function can be seen in (2.20). The
solution to (2.21) is a motion primitive containing a control and state sequence
that – given a cost function – is optimal for bringing the system from xi to xf .
This cost function could for example be chosen in order to maximise the velocity
or to keep the control signals as small as possible. Equation (2.21b) ensures that
the optimiser uses the correct dynamical model of the system in order to forward
simulate it.

2.4 Motion planning 15

When generating the motion primitives, the combination of initial and final
states is selected in a finite number of ways. The motion primitives that move
the system from the initial state to the final state are then computed. The re-
quirements on xf vary, for example could only the final heading of the system
be specified, or the final velocity, e.g. in the case of a stop primitive – taking the
system to a state with zero velocity. See more in Section 4.3.

For a position invariant system, it is only necessary to compute motion prim-
itives with an initial state in the origin (i.e. the position variables are 0). These
motion primitives can then be translated to all other positions in the search-space
and reused. In addition, if the system is also rotational invariant, it is possible
to exploit the rotational symmetries of the system. This means that it suffices
to compute motion primitives from a few (or a single) initial headings, and then
rotate the motion primitives to all other initial headings [3].

In conclusion, a motion primitive is generated by following the steps below:

1. Choose the combination of states, xi and xf , that should be connected.

2. Solve the ocp in (2.21), thus generating an optimal control and state se-
quence, i.e. the motion primitive.

Planning

When applying the control sequence from a single motion primitive to the sys-
tem, it will reach a new state. The goal is to apply motion primitives in an order
such that the system moves from its initial state to the final state, while avoiding
obstacles. In order to generate this sequence of motion primitives, knowledge
about the surroundings of the system is required. This knowledge can for exam-
ple be represented as an occupancy grid, which discretises the environment into
an evenly-space field of grid elements, each of which indicates if an obstacle is
present in that grid element or not [27]. The problem of finding the optimal order
of motion primitives can be defined as an ocp:

minimise
{mk }K−1

k=0 ,K
JK =

K−1∑
k=0

Lm(mk) (2.22a)

subject to xk+1 = f (xk ,mk , βk), k = 0, . . . , K − 1, (2.22b)

x0 = xs, xK = xg , (2.22c)

mk ∈ P (xk), k = 0, . . . , K − 1, (2.22d)

g(xk ,mk , β) < Xobst, k = 0, . . . , K − 1 (2.22e)

where mk is the motion primitive applied in timestep k, Lm(mk) is the stage cost
of a motion primitive, while f (xk ,mk , βk) returns the resulting state when the
control sequence in a motion primitive is applied from the current state. P (xk) is
the set of motion primitives that are valid from the current state, xk . The function
g(xk ,mk , βk) returns the sequence of resulting states, {x}L−1

k=0, when applying the
control sequence in a motion primitive from the current state. Since the path

16 2 Theory

needs to avoid any obstacles, a collision check is done in (2.22e), making sure
that no infeasible paths are generated, with states present in Xobst, which is the
set containing all the non-admissible states. Finally, JK is the cost function. If the
model parameters, β, used in both (2.21) and (2.22), are unknown, they can be
estimated using the methods in section 2.2. Solving the ocp in (2.22) results in a
sequence of motion primitives of length K .

Graph traversal

An optimal way of moving the system between two states that are not directly
connected in the graph, i.e. the solution to (2.22), can be found by employing
graph-searching algorithms. There is no shortage of algorithms capable of han-
dling this task [31]. One of the more popular, called A*, was first developed by
three Americans in the 1960’s as a way to, e.g., find the shortest path between
two cities, rendering it a good option for solving the motion planning problem
[10].

In order to be able to solve the lattice based motion planning problem using
graph-search methods, the search-space is discretised. This is generally done us-
ing a grid with a pre-defined fidelity for the A* algorithm [4]. The algorithm also
needs some measurement when deciding optimality. In this case, the A* algo-
rithm uses an estimate of the objective function value, called Jest . This estimate
is calculated as: Jest = Jcome + h(xk), where Jcome is the cost to reach the current
state from the initial state, often called the cost-to-come. This cost-to-come is the
sum of the stage costs of the motion primitives applied from the initial state to
the current state. See more in Section 4.3.3. The function h(xk) – sometimes de-
noted h(xk , xg) – is a heuristic used to estimate the cost to go from the current state
to the final state, and is often referred to as the cost-to-go. If the algorithm uses
the distance of the motion primitive as the stage cost, an example of an, albeit
very simple, heuristic is the Euclidean distance between the current and the final
node. Two important conditions to consider when choosing an heuristic function,
h(xk), is to make sure it has the two following properties [14]:

• Admissibility: h(xk) ≤ h∗(xk),

• Consistency: h(xk) ≤ k(xk , xk+1) + h(xk+1),

where h∗(xk) is the optimal cost-to-go from the current state, xk , to the final state,
xg . The function k(xk , xk+1) is used to describe the cost of the edge going from
xk to xk+1, using the specified cost function. The condition on the heuristic to
be admissible means that it must never over-estimate the cost-to-go, while the
condition on the heuristic to be consistent means that the cost-to-go from one
state must be smaller than or equal to the sum of the cost-to-go from the state of
its child vertex and the edge cost of travelling between the two states. If both of
these conditions are met, the optimality guarantees are maintained [3].

The A* algorithm returns a sequence of vertices and edges, containing states
and control signals respectively, that is used to form a path from the initial state
to the final state.

2.4 Motion planning 17

An extension to the A* algorithm is the so-called hybrid A* algorithm. The
difference between these two algorithms is the discretisation of the search-space,
more specifically how the states relate to each other in the resulting grid elements.
The standard A* algorithm only allows states to end up in the middle of the grid
element, while the hybrid A* allows states to end up at any continuous point
within a grid element. For a graphic clarification, see Figure 2.2.

18 2 Theory

0 1 2 3 4 5

0

1

2

3

4

5

0 1 2 3 4

x [m]

0

1

2

3

4

y
 [
m

]

Hybrid A* path

Figure 2.2: The discretisation of the search space for regular A* versus hy-
brid A*. Top: The A* algorithm only ends up in the centre of the grid ele-
ments. Bottom: The hybrid A* algorithm can end up anywhere within a grid
element.

3
System description

This chapter gives a description of how the Rover is modelled in this thesis and
the simulators used to evaluate the performance of the system used to control the
Rover. Lastly, an overview of this system is provided.

3.1 Dynamical model of the Rover

The dynamical model of the Rover used in this thesis is based on a differential
drive model. The model consists of two parts, where the first one represents the
dynamical model of the position and heading of the Rover [18], defined as:

ẋ = vcosθ

ẏ = vsinθ

θ̇ = ω

(3.1)

where x and y represent the 2-dimensional position of the Rover, θ is its heading,
v is the absolute velocity and ω the angular velocity of the Rover.

The second part of the model instead represents the dynamical model of the
absolute and angular velocities of the Rover [18], i.e. the actuator dynamics. It is
defined as:

v̇ = vcmdwv1 + vwv2 + ηv

ω̇ = ωcmdwω1 + ωwω2 + ηω
(3.2)

where vcmd is the commanded absolute velocity and ωcmd is the commanded
angular velocity, sent to the actuators of the Rover. Hence, the combination of

19

20 3 System description

(3.1) and (3.2) can be discretised and compactly written as f (x, u, β), where x is
the state vector defined as x = [x, y, θ, v, ω]T , u is the control signal defined as
u = [vcmd, ωcmd]T , representing the commanded speed and turn rate. Finally, the
model parameters are defined as β = [wv1 , w

v
2 , w

ω
1 , w

ω
2]T . As mentioned in Section

2.1, these model parameters are in this model of the Rover unknown, and in some
cases also time-varying. The variables ηv and ηω represent the model uncertain-
ties, and are defined as zero-mean normally distributed random variables with
variances σ2

v and σ2
ω, respectively. Since the model parameters are unknown,

(3.2) can be seen as a Normal linear regression problem, defined in (2.2). The
model parameters, or regression parameters, can therefore be estimated using
the methods discussed in Section 2.2.

The model is used both in the proposed motion planning and control frame-
work, described in Chapter 4, but also for simulating the system. This is further
described in the next section.

3.2 Simulation

In order to facilitate the development of the framework as well as the perfor-
mance evaluation of the system, simulations are used instead of hardware. Two
different types of simulators using different models of the Rover are used in this
thesis, which are described in this section.

3.2.1 Known model simulation

The first type of simulator is implemented in Python, built upon the known
model of the Rover specified in (3.1) and (3.2). These equations are used together
with a forward Euler method [25] in order to simulate the motion of the Rover.
The true model parameters that are used within this simulator are user-defined
and modifiable in order to easier verify, e.g., the parameter estimation under
ideal conditions using the blr algorithm described in Section 2.2. The model un-
certainties, ηv and ηω described in Section 3.1, have the user-defined variances σ2

v
and σ2

ω, respectively. Furthermore, no time-critical aspect has to be considered
since the simulator waits until receiving the control signals in each iteration of
the simulation.

3.2.2 Unknown model simulation

The second type of simulator is built upon an unknown model of the Rover
in the simulation program Gazebo [23]. This unknown model is defined by a
Gazebo plug-in called gazebo_ros_diff_drive used to simulate a differen-
tially steered vehicle. As this model is unknown, it is a good intermediate step
between an exact simulation, in which the model and the true model parameters
are known, and an actual physical Rover (hardware), for which the true model
is unknown and has to be approximated in the motion planner and in the mpc
controller. A visualisation of the simulation in Gazebo can be seen in Figure 3.1.

3.3 System overview 21

Beyond the fact that this simulator is based upon an unknown model, there
is also a time-critical aspect to take into account. This is because the simulation
of the Rover is run separately from the control algorithm, using Robot Operating
System (ros) communication to send control signals to the Rover, as it would be
done in a physical implementation. Overall communication specified in Figure
3.2 is handled using ros.

Figure 3.1: The simulation environment in Gazebo. The model of the Rover
is seen in the test environment that contains obstacles.

3.3 System overview

The simulators need to be able to communicate, i.e. to send and receive data,
with the other components of the system, called subsystems. This section gives
an overview of the subsystems, and how they cooperate and interact with one
another.

The complete data flow during a run of the system is shown in Figure 3.2. The
input to the system is a desired goal state, that can either be user-defined or com-
puted by a higher-level planner, as well as information about the surrounding
environment, in the form of an occupancy grid. The goal state and the occupancy
grid are sent to the motion planner, which generates motion primitives before
computing a feasible path to the goal state, as seen in Section 2.4. The path con-
sists of a sequence of states and control signals and is sent to the mpc controller
that, at each time step, computes an optimal control signal, as described in Sec-
tion 2.3, that is sent to the actuators of the Rover.

The applied control signals will cause the rover to move towards the goal
state. During the movement, the parameter estimation subsystem collects the
relevant data and uses it to compute new estimates of the model parameters,

22 3 System description

β, as described in Section 2.2. These estimates are sent to the motion planner,
resulting in the next plan from the planner being improved, as well as to thempc
controller, leading to an improved path following for the Rover. More detailed
descriptions of these subsystems are seen in Chapter 4.

3.3 System overview 23

Figure 3.2: Flow chart of the communication between subsystems during a
run.

4
Learning-based control and planning

This chapter presents the implementation details for the learning-based motion
planning and control framework developed in this thesis. It consists of a sub-
system that estimates the model parameters, as well as an mpc controller and a
motion planner.

4.1 Bayesian linear regression

This section covers how the blr algorithm that is used to estimate the model
parameters is implemented. When exploiting data from the system in order to
identify and improve the model parameters, the blr algorithm is applied to the
dynamical model of the Rover in (3.2). The goal is to identify the four unknown
parameters, wω1 , w

ω
2 , w

v
1 and wv2 called regression parameters, which are denoted

β in Section 2.2, starting from the prior and then continuously update the pa-
rameter estimates based on new data. The blr algorithm computes the posterior
distributions of these parameters, together with the distribution of the model un-
certainty parameters, σ2

v and σ2
ω from (2.13). The update from prior to posterior

when new data is received is done using the update scheme given in (2.15).

4.1.1 The importance of the prior

When using blr to estimate unknown model parameters, the initial guess on the
parameter distributions – i.e. the prior – is highly important. For example, two
blrs over the same set of data using two numerically different priors can yield
two numerically different results [20], which can be observed when using two
numerically different priors in the update scheme in (2.15).

The initial prior guess used in the blr algorithm is nig distributed and con-
sists of multiple variables:

25

26 4 Learning-based control and planning

• The expected values of the model parameters, βω0 and βv0 .

• The covariance matrices, V ω
0 and V v

0 .

• The inverse gamma parameters, aω0 , bω0 , av0 and bv0 .

This selection of prior guesses is also used to initialise the model parameters in
the mpc controller and the motion planner. The prior guess can be either inaccu-
rate or accurate with respect to the true model parameters used by the simulators.
In the case of unknown model simulation, discussed in Section 3.2.2, the model
used in blr is most likely not the same as the actual model used by the Gazebo
plug-in. Hence, the term accurate model parameters denotes the parameters that
best fit the data, estimated using the blr algorithm, for the unknown model sim-
ulation. The impact of using accurate or inaccurate priors is covered in Chapter
5.

In order to obtain the best possible prior guess for an unknown model sim-
ulation, a number of initial identification simulations were conducted. These
simulations were performed with the purpose of exciting the system as intelli-
gently as possible, meaning that the reference path for the Rover had turns in
both positive and negative directions in order to give the system a varying angu-
lar velocity. During the first experiment, the prior was chosen based on intuition
of the system, but during the subsequent experiments, the last posterior from the
previous run was used as the initial prior in the current run. This was repeated
until convergence, i.e. until the difference between the prior and the posterior
was smaller than a reasonable threshold. The last obtained posterior was then
used as prior for the blr algorithm, as well as the initial model parameter guess
in the mpc controller and the motion planner.

The values assigned to the prior expected values of the model parameters,
β0 vary depending of the type of prior used. If an accurate prior is used, the
expected values are sufficiently close to the true model parameters, found during
the identification simulations. When instead an inaccurate prior is used, βv0 and
βω0 are assigned values that are not close to the true model parameters. The values
of the prior covariance matrices and the values of the prior IG parameters, used
to generate the results in Chapter 5, are always the same, defined as:

V ω
0 =

[
100 0

0 100

]
V v

0 =
[
100 0

0 100

]
aω0 = 3.1

bω0 = 1.5

av0 = 2.1

bv0 = 0.5

(4.1)

4.1 Bayesian linear regression 27

4.1.2 Obtaining the data

In order to update a prior into a posterior, the blr algorithm needs to obtain a set
of data points. One data point consists of three numerical values, two explana-
tory variables and one response variable, originating from one of the dynamical
equations in (3.2). The input to the blr algorithm is one or multiple data points,
while its output is the estimates of the model parameter distributions.

When estimating the model parameters for the dynamical model of the abso-
lute velocity of the Rover, i.e. wv1 , wv2 and σ2

v , the variables of interest are: v̇, vcmd

and v, while the variables ω̇, ωcmd and ω are of interest when estimating the
model parameters for the dynamical model of the angular velocity of the Rover,
i.e. wω1 , wω2 and σ2

ω. The state variables v and ω are obtained from the simulation
of the system, or from a state estimator (such as an extended Kalman filter) in
case of a physical Rover. The command variables vcmd and ωcmd are obtained
from the output of the mpc controller. The last two variables, v̇ and ω̇, are not
given explicitly in the case of an unknown model simulation, which means that
they need to be estimated. This is achieved using the Euler forward method.

Once the relevant variables for either the absolute velocity or the angular ve-
locity are computed, they are sent as input to the blr algorithm, converting the
prior into a posterior that contains the updated information about the distribu-
tion of the regression parameters.

4.1.3 Sending the parameter estimates

When the probability distributions of the regression parameters have been com-
puted, the blr algorithm performs a check to determine if the expected value
of each parameter should be transmitted to the mpc controller and the motion
planner. Deciding upon whether or not to send the parameter estimates, the blr
algorithm needs to balance the risk of sending inaccurate parameter estimates
versus making the other subsystems use older parameter estimates, that may be
outdated. Since outlier data points could affect the estimates, the new parame-
ter estimates after adding the outlier point to the regression might have changed
too much, resulting in worse performance from the subsystems receiving the es-
timates. On the other hand, it is not desirable that those subsystems use older
parameter estimates that might become more and more inaccurate.

Managing this task involves computing how much the model uncertainty and
the expected values of the parameter estimates have changed. If the expected val-
ues have changed more than a pre-defined percentage, there is a risk that outlier
data have effected the estimates too much. If that was to happen, the uncertainty
in the system would also increase. Therefore, in order to send the parameters, the
expected values of the parameter estimates are not allowed to change more than
q percent from their respective values that were last sent, while the same is true
for the system uncertainty. However, it is possible that the parameters do change
quickly even in the absence of outliers. Therefore, the blr algorithm will send
the parameter estimates regardless if the parameters have changed more than q
percent or not, when niter algorithm iterations have passed since the last time

28 4 Learning-based control and planning

the parameter estimates were sent. The parameters q and niter allow the receiv-
ing algorithms to use recent parameter estimates, while also reducing the risk of
sending inaccurate model parameter estimates, caused by outlier data. The pa-
rameter values used in this thesis are: q = 20 % and niter = 10. The same concept
is also used in thewblr algorithm.

4.2 Model predictive controller

This section describes in detail how the mpc controller is implemented.
The formulation for the mpc controller used to generate control sequences to

the system is defined as:

minimise
{uk }N−1

k=0

JN

subject to xk+1 = f (xk , uk , βk), k = 0, . . . , N − 1

x0 = xinit

vcmd
k ∈ [vcmd

min , v
cmd
max], k = 0, . . . , N − 1

ωcmd
k ∈ [ωcmd

min , ω
cmd
max], k = 0, . . . , N − 1

(4.2)

where the dynamical model f (xk , uk , βk), states x, control inputs u and model
parameters β are defined as in Section 3.1, and f (xk , uk , βk) is discretised using
Runge-Kutta approximation of the fourth order (RK4) [32] with timestep length
∆t. Furthermore, (·)cmd

min and (·)cmd
max are the lower and upper bounds respectively

for the control signals, (·)cmd
k in (3.2) and xinit is the measured current state of

the Rover. The cost function, JN (k), used in the mpc is defined as:

JN =
N∑
k=0

||θref,k − θk ||γθ + ||xref,k − xk ||γx + ||yref,k − yk ||γy+

||ω̇cmd
k ||γcmd

ω̇
+ ||v̇cmd

k ||γcmd
v̇
− ||vk ||γv

(4.3)

with the same notation as in (2.20) but where the notations v̇cmd
k and ω̇cmd

k are
the 1-step difference for each of the variables e.g.:

v̇cmd
k =

vcmd
k − vcmd

k−1
∆t

. (4.4)

This measure is used to make the control signals smoother. In addition, (·)ref
is the reference for the states x and control inputs u, computed by the motion
planner. The parameters γ(.) are tuned to achieve the desired system behaviour,
and can be seen in Table 4.1, together with other mpc specific parameters. The
ocp in (4.2) is computed using the interior point optimiser (ipopt) solver [29] in
the optimisation software CasADi [1].

4.3 Motion planner 29

Parameter values for thempc controller
Parameter Known model Unknown model

γθ 15 40
γx 20 35
γy 20 35
γcmd
ω̇ 0.5 3
γcmd
v̇ 0.5 5
γv 15 5
vcmd

min 0 0
vcmd

max 2.1 2.1
ωcmd

min -2 -2
ωcmd

max 2 2
vmax 2.1 2.1
N 100 35
∆t 0.1 0.2

Table 4.1: Parameter values used in the mpc controller for the two simula-
tors, using a known and an unknown model, respectively.

4.3 Motion planner

In this section, the details regarding how the motion planner is implemented are
presented. This includes a description of the state space discretisation, how the
motion primitives are computed and how the graph search is performed.

4.3.1 State space discretisation

The hybrid A* algorithm, discussed in Section 2.4.2, needs to be able to check if
states are considered as equal. This is done by assigning a state-dependent ID
to each state. By discretising the state space into a 5D-grid, one dimension for
each state variable, x, y, θ, v and ω, with a pre-defined fidelity, a state is assigned
an ID depending on the value of its state variables. Two states containing state
variables that belong to the same grid element (with respect to the fidelity, i.e.
contained in the grid element) will have identical IDs, and therefore considered
as equal by the hybrid A* algorithm. The fidelity used is 0.8 m for x and y, π6 rad
for θ, 0.5 m/s for v and finally 0.5 rad/s for ω.

4.3.2 Motion primitives generation

As mentioned in Section 2.4.2, each motion primitive is generated by solving
the ocp defined in (2.21), using CasADi [1]. The output is an optimal state and
control signal sequence that connects two different Rover states.

The states that are to be connected to the origin mainly consists of constraints
on the heading, but also on the velocity and the angular velocity. The constraints
on the heading specifies that the Rover must initially have heading θ0 = 0 as well

30 4 Learning-based control and planning

as final heading θf ∈ {π2 ,
π
4 , 0,−

π
4 ,−

π
2 }. The initial and final angular velocity, ω0

and ωf , are always constrained to be 0, so that the Rover does not have any initial
turning speed when creating the next vertex in the planning process. In general,
one ocp is solved for each constraint on θf . There is also a constraint on the final
velocity, vf = vmax, causing the Rover to always hold the maximum velocity at
the end of a motion primitive. In order to reduce the complexity of the motion
planning problem, no motion primitive taking the Rover to a halt is computed,
as this is instead handled by the mpc controller. The other state variables, x and
y, are left as free variables to be optimised. Finally, there are constraints on the
two control signals, vcmd and ωcmd, which are (·)cmd

min and (·)cmd
max , the same that

are used in (4.2).
A special case is when θf = 0, for which two ocps need to be solved, one

for the initial condition on the Rover’s velocity, v0 = 0, and one for v0 = vmax.
The reason is that the Rover always starts a run with zero velocity, and a motion
primitive instead constructed to start with the velocity v0 = vmax will cause the
forward simulation to be less accurate.

In order to make the planning more versatile, so-called parallel movement prim-
itives – moving the Rover a certain length orthogonal to its initial heading before
ending up with the same initial heading – are added by solving four ocps. The
constraints used are θ0 = θf = 0, v0 = vf = vmax, ω0 = ωf = 0 and a specific
constraint on the final position along the y-axis, yf = dlat, meaning that the state
variable y is no longer a free variable. The constant dlat is a parameter specifying
the distance of the parallel movement, with dlat ∈ {−1,−0.5, 0.5, 1}.

When simulating the Rover using (3.1) and (3.2) in the ocp solver, i.e. (2.21b),
the Euler discretisation forward method is used. This method is numerically
less accurate than e.g. a RK4. However, when comparing computational speed
with the numerical variation for the two methods, it was decided that the Euler
method is the better option.

The cost function used in the ocp minimises the difference in the angular

velocity control signals, i.e.
ωcmd
k −ωcmd

k−1
∆t , and also maximises the velocity of the

Rover. It is defined as:

JL =
L∑
k=0

||ω̇cmd
k ||γcmd

ω̇
− ||vk ||γv (4.5)

with the same notation as in (2.20) and (4.4). This cost function ensures that a
high velocity is maintained, while also generating a smooth path for the Rover to
follow. The generated motion primitives can be seen in Figure 4.1.

4.3.3 Computing the path

Once the motion primitives are constructed, the motion planner uses them in
order to solve the motion planning problem in (2.22), generating a path. The
graph is simultaneously constructed and searched, where the motion primitives
are edges that connect vertices in the graph. The vertices, n, contain a state with
an ID, a parent vertex, a cost-to-come, an estimate of the final cost and the motion

4.3 Motion planner 31

Figure 4.1: A graphical representation of the generated motion primitives.
Each colour represents a motion primitive.

primitive that was used to move the Rover from the state in the parent vertex to
the state in the current vertex, called its motion. The method to assign an ID to
a state is described in Section 4.3.1. The cost-to-come, Jcome, of a vertex is the
stage cost of the motion associated with the vertex, added to the cost-to-come of
its parent vertex. The estimated final cost of the vertex, Jest , is calculated as the
sum of the cost-to-go and the cost-to-come of the same vertex.

When a vertex is expanded in the hybrid A* algorithm, each valid motion
primitive is simulated by applying its corresponding control signal sequence.
While computing the resulting state path, the algorithm simultaneously checks
for collisions with obstacles. The collision check is conducted by checking if the
state corresponding to the vertex and an obstacle both are contained within a
grid element of a pre-defined occupancy grid, which is described in Section 2.4.2.
The quantity that the hybrid A* algorithm uses to determine optimality is cho-
sen as the length of the path. For a motion primitive, its stage cost is defined as
its resulting path length, while the heuristic is defined as the Euclidean distance
between the current state and the goal state.

The graph-search algorithm used in this thesis as the base for the hybrid A*
algorithm, is inspired by the A* algorithm tailored for lattice-based motion plan-
ning used in [3]. The input to the hybrid A* algorithm is the initial state, xs,
the goal state, xg , and the occupancy grid containing the obstacles, Xobst , while
the output is a sequence of states and control signals that forms a feasible path
from xs to xg . In order for this path to be feasible with respect to the Rover, the
model parameter estimates, β, are sent from the blr algorithm. The hybrid A*
algorithm, inspired by [3], is seen in Algorithm 1.

32 4 Learning-based control and planning

There are two sets used in the hybrid A* algorithm, the closed set, νclosed , to
keep track of the visited vertices and the open set,νopen, to gather the vertices left
for exploration. The vertices in the open set are sorted according to Jest , meaning
that the vertex containing the most promising state is always selected for expan-
sion [3].

Since this thesis does not focus on resolution optimal paths, the hybrid A* al-
gorithm is timed out after a specified time period. If a feasible, sub-optimal path
has been generated during this time, but it is not yet guaranteed to be resolution
optimal, this path is used when the algorithm times out.

4.3.4 Making the plan dynamically feasible

Since some of the system parameters are unknown and estimated online using
blr, their estimates will most likely change during the course of the run – unless
the initial guess is sufficiently close to the true values of the model parameters. In
addition, the dynamical model of the Rover might change during runs if for exam-
ple something on the Rover breaks. This means that executing the plans based
on the initial parameter estimates may not lead to a feasible path. To counter
this problem, it is possible to use one of three different approaches. One of the
approaches is that the function, f (x,m, β), that calculates the next state when
generating the planned path is updated with the new model parameters. The sec-
ond approach is to recalculate the ocps and optimise the motion primitives with
respect to the new model parameters to re-plan the path. And thirdly, it is possi-
ble to combine the two approaches. The third option is chosen, since the hybrid
A* algorithm was shown to have problems finding a feasible path when using a
different set of model parameters in (2.22b) compared to the function computing
the motion primitives in (2.21b).

The blr algorithm is responsible for sending the latest parameter estimates to
the mpc controller and the motion planner, so the motion planner only needs to
use the parameter estimates it currently is assigned. For more information about
sending the parameters, see Section 4.1.3.

4.3.5 Complete plan

Once the plan that consists of a sequence of states, xs, x1, ..., xg , and a sequence
of control signals, u0, u1, . . . , uD−1, has been generated, it is sent as a reference
to the mpc controller. The mpc controller will then repeatedly compute control
inputs to the system, which ensure that the reference path is followed to the best
of its ability.

4.3 Motion planner 33

Algorithm 1: The hybrid A* graph-search algorithm

1 Initialisation: ns.x← xs, xs.id ← id(xs),
2 xg .id ← id(xg), νopen ← ns, νclosed ← ∅
3 while νopen , ∅ do
4 nk ← νopen.pop()
5 νclosed .push(nk)
6 if nk .x.id = xg .id then
7 return back_track(nk)
8 end
9 for eachm ∈ P (nk .x) do
10 xnext ← f (nk .x,m, β)
11 xnext .id = id(xnext)
12 if any nj .x.id = xnext .id, nj ∈ νclosed then
13 continue
14 else if g(nk .x,m, β) ∈ Xobst then
15 continue
16 else
17 Jcome ← nk .Jcome + Lm(m)
18 Jest ← Jcome + h(xnext , xg)
19 if not any nj .x.id = xnext .id, nj ∈ νopen then
20 nnext .x← xnext
21 nnext .Jcome ← Jcome
22 nnext .Jest ← Jest
23 nnext .parent ← nk
24 nnext .motion← m
25 νopen.push(nnext)
26 else if any nj .x.id = xnext .id and Jcome < nj .Jcome, nj ∈ νopen

then
27 νopen.update_cost(nj , Jcome, Jest)
28 νopen.update_parent(nj , nk)
29 νopen.update_motion(nj ,m)
30 end
31 end
32 end
33 end

5
Results

This chapter contains the results from the simulations, both for the known model
simulation, where the true model parameters are user-defined, and the unknown
model simulation, where the true model is unknown. Results are obtained from
scenarios which consist of the Rover navigating an area with obstacles, using the
mpc controller and the motion planner, either with the estimated model or the
nominal one.

5.1 Learning-based MPC performance

When evaluating the performance of the learning-basedmpc controller, two mea-
sures are chosen for benchmarking: the average velocity throughout the run, and
the deviated area between the planned path and the actual path the Rover trav-
elled, i.e. the integral of the absolute reference error in position.

Since thempc controller is supposed to keep the velocity of the Rover as high
as possible, the performance is considered to be better the higher the average
velocity. Furthermore, the Rover also needs to follow its given path, especially in
an environment with a lot of obstacles, which is why smaller deviations from this
planned path indicate better performance. However, it is more difficult to follow
a path when driving at a higher velocity. Therefore, both of these measures are
taken into consideration when comparing different controllers.

The scenarios are split into two sets, one set that evaluates the mpc using the
known model simulation, and one using the unknown model simulation. Each of
these sets is then further divided into subsets, treating the case of an inaccurate
prior, an accurate prior, and a model with a dynamic change during the run (ini-
tially using an accurate prior). The definitions of an accurate and an inaccurate
model prior are presented in Section 4.1.1.

Each of these subsets is evaluated both with and without the blr algorithm. In

35

36 5 Results

addition, the dynamic change model is also evaluated using thewblr algorithm.
See Figure 5.1 for a graphic clarification.

Figure 5.1: Structure of tests for mpc performance evaluation.

5.1.1 Known model simulation

This section presents the results of the known model simulation. Table 5.1 sum-
marises the benchmark results for the known model simulation.

Inaccurate prior without BLR

Figure 5.2 illustrates how the mpc performs without the blr algorithm, with
an inaccurate prior. Observe that there is a collision with an obstacle, but as
neither this simulator, nor the mpc controller, take collisions into consideration,

5.1 Learning-based MPC performance 37

Table 5.1: Summary of the benchmark results for the mpc using the known
model simulation.

mpc benchmark values

Test type Average velocity [m/s] Area deviated [m2]
Inaccurate prior

No blr 2.074 9.540
blr 2.040 3.640

Accurate prior
No blr 2.034 3.439
blr 2.038 3.272

Dynamic change
No blr 1.531 20.859
blr 1.522 19.887
wblr 2.030 10.954

the Rover continues on the path. Table 5.2 shows the true model parameters used
in the simulation, and the inaccurately guessed prior.

Table 5.2: Parameters used in known model simulation for evaluate with an
initial inaccurate prior.

Model parameter values
Parameter type wv1 wv2 wω1 wω2

True parameters in simulation 3 -3 2.1 -3.8
Inaccurate prior guess 5 -5 1 -8

Inaccurate prior with BLR

Figure 5.3 shows how well thempc follows the planned path when used together
with blr. Expected values of the model parameters [wv1 , w

v
2] and [wω1 , w

ω
2] can be

seen in Figure 5.4 and 5.5 together with their standard deviations.

38 5 Results

Figure 5.2: Reference following using an inaccurate prior. The red line is
the reference path from the motion planner, and the blue line is the path
executed by applying the mpc controller.

Figure 5.3: Reference following using an inaccurate prior in the mpc, to-
gether with blr. The red line is the reference path from the motion planner,
and the blue line is the path executed by applying the mpc controller.

5.1 Learning-based MPC performance 39

Figure 5.4: Velocity model parameters compared to true simulation param-
eters, when using an inaccurate prior with BLR. The intervals show the stan-
dard deviation of the parameter estimates.

Figure 5.5: Angular velocity model parameters compared to true simulation
parameters, when using an inaccurate prior with BLR. The intervals show
the standard deviation of the parameter estimates.

40 5 Results

Accurate prior without BLR

Figure 5.6 illustrates how the mpc performs without the blr algorithm. The
prior is the same as the true model parameters used in the simulator, which are
specified in Table 5.2.

Figure 5.6: Reference following using an accurate prior in the mpc. The red
line is the reference path from the motion planner, and the blue line is the
path executed by applying the mpc controller.

Accurate prior with BLR

Figure 5.7 illustrates how the mpc performs in combination with the blr algo-
rithm. Expected values of the model parameters [wv1 , w

v
2] and [wω1 , w

ω
2] can be

seen in Figure 5.8 and 5.9 together with their standard deviations.

Dynamic change – without BLR

In the simulation, a dynamic change occurs 10 seconds into the run, by scaling
the angular velocity control input by a factor 0.4, corresponding to a malfunction
in the Rover’s actuators, making the vehicle under-steered. The prior is the same
as the true model parameters used in simulation, specified in Table 5.2. The
resulting reference following can be seen in Figure 5.10, where the blue diamond
represents the location of the dynamic change.

5.1 Learning-based MPC performance 41

Figure 5.7: Reference following using an accurate prior in thempc, together
with blr. The red line is the reference path from the motion planner, and
the blue line is the path executed by applying the mpc controller.

Figure 5.8: Velocity model parameters compared to true simulation parame-
ters, when using an accurate prior with BLR. The intervals show the standard
deviation of the parameter estimates.

42 5 Results

Figure 5.9: Angular velocity model parameters compared to true simulation
parameters, when using an accurate prior with BLR. The intervals show the
standard deviation of the parameter estimates.

Figure 5.10: Reference following during a dynamic change without blr. The
red line is the reference path from the motion planner, and the blue line is the
path executed by applying the mpc controller. The blue diamond indicates
where the dynamic change occurs

5.1 Learning-based MPC performance 43

Dynamic change – with BLR

The result from using the blr algorithm to compensate for the dynamic change
can be seen in Figure 5.11, where the blue diamond again indicates where the
dynamic change occurs.

Figure 5.12 and 5.13 show the expected values of the model parameters, to-
gether with their standard deviations. Furthermore, the initial true parameters
used in simulation are shown as a dashed line. Finally, Figure 5.14 illustrates
the expected variance of the angular velocity model, together with its standard
deviation.

Figure 5.11: Reference following during a dynamic change with blr. The
red line is the reference path from the motion planner, and the blue line is the
path executed by applying the mpc controller. The blue diamond indicates
where the dynamic change occurs.

Dynamic change – using wBLR

The result of using thewblr algorithm in combination with thempc, with n0 = 2,
which corresponds to 2 effective data points being attributed to the prior, can be
seen in Figure 5.15, where the blue diamond indicates where the dynamic change
occurs.

Figure 5.16 and 5.17 show the expected values of the model parameters and
their standard deviation, and Figure 5.18 shows the expected value of the model
variance, where the blue area signifies the estimated standard deviation of the
model variance.

44 5 Results

Figure 5.12: Velocity model parameters compared to true simulation param-
eters, during a dynamic change with blr. The intervals show the standard
deviation of the parameter estimates.

Figure 5.13: Angular velocity model parameters compared to true simula-
tion parameters, during a dynamic change with blr. The intervals show the
standard deviation of the parameter estimates.

5.1 Learning-based MPC performance 45

Figure 5.14: Expected variance of the angular velocity model, during a dy-
namic change with blr. The blue area shows the standard deviation of the
estimated variance. The vertical line indicates where the dynamic change
occurs.

Figure 5.15: Reference following during a dynamic change with wblr. The
red line is the reference path from the motion planner, and the blue line is the
path executed by applying the mpc controller. The blue diamond indicates
where the dynamic change occurs

46 5 Results

Figure 5.16: Velocity model parameters compared to true simulation param-
eters, during a dynamic change withwblr. The intervals show the standard
deviation of the parameter estimates.

Figure 5.17: Angular velocity model parameters compared to true simula-
tion parameters, during a dynamic change with wblr. The intervals show
the standard deviation of the parameter estimates.

5.1 Learning-based MPC performance 47

Figure 5.18: Expected variance of the angular velocity model, during a dy-
namic change withwblr. The blue area shows the standard deviation of the
estimated variance. The vertical line indicates where the dynamic change
occurs.

5.1.2 Unknown model simulation

The performance measurements for each test for the unknown model simulation
are summarised in Table 5.3. The benchmark values for each measurement are
the mean of the measurement values from five test runs.

Table 5.3: Summary of the benchmark results for the mpc using the un-
known model simulation.

mpc benchmark values

Test type Average velocity [m/s] Area deviated [m2]
Inaccurate prior

No blr 1.83 5.12
blr 1.93 1.60

Accurate prior
No blr 1.93 1.60
blr 1.92 1.59

Dynamic change
No blr N/A N/A
blr 1.65 3.26
wblr 1.57 1.70

48 5 Results

Inaccurate prior without use of BLR

This section shows the results for the mpc controller using an inaccurate prior
without the use of the blr algorithm. The model parameter values are seen in
Table 5.4. The path the Rover travelled is seen together with the planned path
in Figure 5.19. Since no blr algorithm is used, the model parameters remain
constant during the run.

Table 5.4: Parameters used in unknown model simulation for test with an
initial inaccurate prior.

Model parameter values
Parameter type wv1 wv2 wω1 wω2

True parameters estimated by blr 4 -4 2.0 -3.6
Inaccurate prior guess 2 -2 10 -10

Figure 5.19: The path of the Rover when the mpc uses an inaccurate prior
and the blr algorithm is disabled.

Inaccurate prior when using BLR

This section shows the results for the mpc controller using an inaccurate prior
while also using the blr algorithm to further improve the model. The path the
Rover travelled is seen together with the planned path in Figure 5.20. The param-
eters used in the mpc controller for the velocity and the angular velocity models
are seen in Figure 5.21 and Figure 5.22, together with their respective standard
deviations.

5.1 Learning-based MPC performance 49

Figure 5.20: The path of the Rover when the mpc uses an inaccurate prior
with the blr algorithm enabled.

Figure 5.21: Evolution of the velocity model parameters when using an in-
accurate prior together with the blr algorithm. The intervals show the stan-
dard deviation of the parameter estimates.

50 5 Results

Figure 5.22: Evolution of the angular velocity model parameters when using
an inaccurate prior together with the blr algorithm. The intervals show the
standard deviation of the parameter estimates.

Accurate prior without use of BLR

This section shows the results for thempc controller using an accurate prior with-
out use of the blr algorithm. The path the Rover travelled is seen together with
the planned path in Figure 5.23. Since no blr algorithm is used, the model pa-
rameters remain constant during the run.

Accurate prior when using BLR

This section shows the results for thempc controller using an accurate prior while
also using the blr algorithm to further improve the model. The path the Rover
travelled is seen on top of the planned path in Figure 5.24. The parameters used
in thempc controller for the velocity and the angular velocity models are seen in
Figure 5.25 and Figure 5.26, together with their respective standard deviations.

Dynamic change without BLR

When investigating the performance of thempc controller when a dynamic change
occurs, the model parameters that the controller uses initially accurately repre-
sent the model of the Rover before the dynamic change.

When not using the blr algorithm, the Rover crashes into one of the obstacles
due to inability to follow the planned path when the dynamical model of the
Rover changes during a run, hence why the average velocity and the area deviated
is marked as N/A in Table 5.3.

5.1 Learning-based MPC performance 51

Figure 5.23: The path of the Rover when thempc uses an accurate prior and
the blr algorithm is disabled.

Figure 5.24: The path of the Rover when thempc uses an accurate prior with
the blr algorithm enabled.

52 5 Results

Figure 5.25: Evolution of the velocity model parameters when using an accu-
rate prior together with the blr algorithm. The intervals show the standard
deviation of the parameter estimates.

Figure 5.26: Evolution of the angular velocity model parameters when using
an accurate prior together with the blr algorithm. The intervals show the
standard deviation of the parameter estimates.

5.1 Learning-based MPC performance 53

The path the Rover travelled is seen together with the planned path in Fig-
ure 5.27. Since no blr algorithm is used, the model parameters remain constant
throughout the run.

Figure 5.27: The path of the Rover when a dynamic change occurs mid-run.
The mpc uses an accurate prior with the blr algorithm disabled.

Dynamic change using BLR

In this section, the blr algorithm is used to improve the estimates of the model
parameters, both before and after the dynamic change.

The path the Rover travelled is seen together with the planned path in Fig-
ure 5.28. The parameters used in the mpc controller for the velocity and the
angular velocity models are seen in Figure 5.29 and Figure 5.30, together with
their respective standard deviations.

Dynamic change using wBLR

In this section, the wblr algorithm is used to improve the estimate of the model
parameters, both before and after the dynamic change. The parameter n0 was
chosen as 50.

The path the Rover travelled is seen together with the planned path in Fig-
ure 5.31. The parameters used in the mpc controller for the velocity and the
angular velocity models are seen in Figure 5.32 and Figure 5.33, together with
their respective standard deviations.

54 5 Results

Figure 5.28: The path of the Rover when a dynamic change occurs mid-run.
The mpc uses an accurate prior with the blr algorithm enabled.

Figure 5.29: The evolution of the velocity parameters for a dynamic change
when using the blr algorithm. The intervals show the standard deviation of
the parameter estimates.

5.1 Learning-based MPC performance 55

Figure 5.30: The evolution of the angular velocity parameters for a dynamic
change when using the blr algorithm. The intervals show the standard de-
viation of the parameter estimates.

Figure 5.31: The path of the Rover when a dynamic change occurs mid-run.
The mpc uses an accurate prior with thewblr algorithm enabled.

56 5 Results

Figure 5.32: The evolution of the velocity parameters for a dynamic change
when using the wblr algorithm. The intervals show the standard deviation
of the parameter estimates.

Figure 5.33: The evolution of the angular velocity parameters for a dynamic
change when using the wblr algorithm. The intervals show the standard
deviation of the parameter estimates.

5.2 Motion planner performance 57

5.2 Motion planner performance

This section presents the results regarding the performance of the motion plan-
ner. A desirable quality of the motion planner is that it computes a feasible path
in the shortest time possible. Therefore, the measures used are the time the plan-
ner takes to find the first state that corresponds to the goal state (possibly a sub-
optimal path), the time until the algorithm terminates, meaning that the vertex
containing the goal state is popped from the open list (resolution optimal), and
how well the mpc is capable of making the Rover follow the planned path. The
last measure is composed of the same measures used to benchmark the mpc con-
troller in Section 5.1, namely the average velocity of the Rover and the area the
actual travelled path deviates from the planned path.

The tests are performed with an mpc controller, in combination with the blr
algorithm, initialised with accurate model parameters generated from the blr
algorithm in the unknown model simulation (Gazebo). The dynamical models
in the ocp generating the motion primitives and in the hybrid A* algorithm use
either an accurate prior, computed by the blr algorithm, or an inaccurate prior,
which both can be seen in Table 5.4. To give fair comparison between the accurate
and the inaccurate prior, the path is always planned between the same states.
Simulations are performed five times for the inaccurate and accurate prior, and
the performance measures are taken as the average over these runs. The values
of these measures are summarised in Table 5.5.

Table 5.5: Summary of the benchmark results for the motion planner.

Motion planner benchmark values
Performance measure Inaccurate prior Accurate prior

Time to first complete path [s] 22.90 6.49
Time to optimal path [s] 24.58 8.80
Average velocity [m/s] 1.92 1.94

Area deviated [m2] 2.82 1.73

5.2.1 Inaccurate prior

The resulting planned path when an inaccurate prior was used can be seen in
Figure 5.34, while the path the Rover drove is seen in Figure 5.35.

5.2.2 Accurate prior

Since the motion planner does not re-plan the path online, the way the blr algo-
rithm’s parameter estimates are used is by saving the latest computed estimates
for each run, then using said values when planning the next path. The resulting
planned path is seen in Figure 5.36, while the path the Rover travelled can be
seen in Figure 5.37.

58 5 Results

Figure 5.34: The planned path when using inaccurate model parameters.
The colours indicate where a motion primitive starts and ends.

Figure 5.35: How the Rover managed to follow the planned path when an
inaccurate prior was used to generate the path.

5.2 Motion planner performance 59

Figure 5.36: The planned path when using accurate model parameters. The
colours indicate where a motion primitive starts and ends.

Figure 5.37: How the Rover managed to follow the planned path when an
accurate prior was used to generate the path.

6
Discussion

In this chapter, the choice of implementation methods from Chapter 3 and Chap-
ter 4, as well as the results from Chapter 5 are discussed.

6.1 Implementation methods

This section covers the choice of implementation methods. The reasoning behind
choosing the methods from Chapter 3 and Chapter 4 are covered, as well as how
these methods affect the results presented in Chapter 5.

The model of the Rover was chosen because of its simplicity: it is a vehicle
in the 2D-plane, it is linear in the velocity and the angular velocity and it has
the ability to rotate without translating, just like a real Rover. The fact that the
model is partly linear means that simpler methods for both control and machine
learning are available, and less computational power is required, meaning that
control signals from the mpc controller can be computed faster and sent at a
higher rate to the lower-level controllers, often increasing the performance of the
system as it can react more rapidly to disturbances.

To estimate the model parameters, a blr algorithm is used. This is due to its
low computational complexity, even for large amounts of data. Another benefit
is that the blr algorithm is more intuitive when it comes to weighing the data
compared to e.g. Gaussian process regression, meaning that the importance on
the regression for each data point can explicitly be taken into account by using a
parameter as in thewblr algorithm seen in Section 2.2.5.

When choosing a controller for the Rover, one that uses a dynamical model
of the system to compute the control signals is needed in order to exploit the
machine learning algorithm. For example, an lqr regulator can be used in com-
bination with the blr algorithm, requiring only a solution to the Riccati equation
to be computed. However, the ability to impose constraints on control signals

61

62 6 Discussion

or using a non-linear model, which is more realistic in an actual physical appli-
cation where control signals often are saturated and non-linear models are used,
is not possible for the lqr algorithm. Therefore, the mpc controller was chosen,
for which constraints on both the control signals and the states can be imposed,
while also the model is allowed to be non-linear.

The usage of motion primitives in the motion planning algorithm is motivated
by the fact that it is a well-used method to take the dynamical model of the system
into consideration during planning. Since the resulting problem is in the form of
a standard graph search problem, there exist algorithms, e.g. A*, that are able to
compute resolution optimal solutions based on the library of motion primitives.
Since the system might be time-variant, an input sampling based motion planner
together with the hybrid A* algorithm is chosen as it allows the system to re-plan
using updated estimates of the model parameters without having to re-discretise
the search space and recompute the motion primitives.

6.2 Results

In this section the obtained results seen in Chapter 5 are discussed. The discus-
sion covers the quality of the results and how the results can be interpreted.

6.2.1 MPC performance

By using the results in Section 5.1, this section analyses how well the mpc con-
troller, paired with the blr algorithm, performs during the simulations. The
analysis starts with the inaccurate prior, followed by the accurate prior and fi-
nally the simulation with a dynamic change is examined.

Inaccurate priors

When the mpc controller uses the model with inaccurate model parameters, it is
of interest to compare how it performs when receiving updated model parameter
estimates from the blr algorithm, with the performance when only using the
initial, inaccurate prior.

Starting without using the blr algorithm, Figure 5.2 shows the path that
the Rover travelled (blue) compared to the planned path (red) when using the
known model simulation, while Figure 5.19 shows the reference following, but
for the unknown model simulated using Gazebo. As no blr algorithm was used
to update the model parameter estimates, the numerical parameter values do not
change during the run, resulting in poor reference tracking.

How the Rover managed to follow the planned path when instead using the
blr algorithm can be seen in Figure 5.3 for the known model simulation, and
Figure 5.20 for the unknown model simulation. Here, the parameter estimates
do change which can be seen in Figure 5.4 and Figure 5.5 for the known model
simulation. The figures show both the estimated parameters as well as the true
parameters – since the model is known – and it can be seen that the blr algorithm
identifies the true parameters after only a few data points. When simulating an

6.2 Results 63

unknown model, the true model parameters are unknown, but the evolution of
the parameter estimates can be seen in Figure 5.21 and Figure 5.22, as well as
the instances when they are sent to the mpc controller and the motion planner.
These parameter estimates seem to converge towards values that more accurately
describe the model of the Rover, since the path following from the mpc is im-
proved with the evolution of the model parameter estimates.

The benchmark values for this test can be seen in Table 5.1 for the known
model simulation and Table 5.3 for the unknown model simulation. When com-
paring the results from these two tables, there is a clear improvement in path
following for both the known model simulation and the unknown model simula-
tion when using the blr algorithm, while the average velocity stays roughly the
same in the two cases. This indicates that thempc controller does perform better
when paired with a blr algorithm.

Accurate priors

When using already (sufficiently) accurate model parameters, the difference in
performance between using the blr algorithm or not is, unsurprisingly, almost
non-existent. Since the initial parameter estimates lie close enough to true pa-
rameter values, there is little room for any improvement.

This is supported by looking at Table 5.1 and Table 5.3 as the average velocity
and area deviated with and without blr is nearly identical for both known model
simulation and unknown. The reference tracking of the Rover when using the
known model simulation can be seen in Figure 5.6 when the blr algorithm is
disabled and Figure 5.7 when this algorithm is enabled. When instead using the
unknown model simulation, the Rover’s path compared to the planned path can
be seen in Figure 5.23 when not using the blr algorithm, and in Figure 5.24 when
using blr. The path following seems to be identical whether or not blr is used,
regardless of what kind of simulation that is being used.

What these results indicate, is that the usage of a blr algorithm will not im-
pact the performance negatively in the case of accurate priors. This means that
a blr algorithm can be executed in the background, collecting data, computing
and sending the parameter estimates to the mpc controller at any time, without
disturbing the system or decreasing its performance noticeably.

Dynamic change model

This is, in many cases, the most interesting scenario for the application of a blr
algorithm to aid the mpc controller. What happens during this test is that the
true model parameters of the system change during the run, i.e. the dynamic
change mentioned in Section 5.1.1.

When the blr algorithm is disabled during the run, it can be seen in Fig-
ure 5.10 that the Rover collides with an obstacle and continues on the path as
there is no collision check for the known model simulation. When instead using
the unknown model simulation, Figure 5.27 shows that the Rover in a similar
fashion collides with one of the obstacles. In this simulation, however, collision

64 6 Discussion

checks are enabled, causing the Rover to crash, ending up upside-down with no
connection between its tracks and the ground, rendering it unable to complete
the run. Since the Rover does not complete the run, the average velocity and the
deviation from the planned path can not be calculated, which is why no data is
available for this case in Table 5.3.

When instead using the blr algorithm to estimate the updated model param-
eters, the Rover is able to reach the goal, completing the run without crashing –
which itself is a great improvement – as seen in Figure 5.28 for unknown model
simulation. It does however still collide with obstacles for known model simula-
tion, as seen in Figure 5.11. When comparing these figures to Figure 5.15 (known
model simulation) and Figure 5.31 (unknown model simulation) that show the
result from using the wblr algorithm to estimate the model parameters sent to
the mpc controller, it can be seen that the wblr algorithm enables the mpc to
perform even better than the regular blr algorithm. This is supported by the
benchmark values in Table 5.1 and Table 5.3, where the area deviated has clearly
decreased using wblr, while the average velocity is roughly the same in the two
for the unknown model simulation. There is however a difference in velocity
for the known model simulation, as can be seen in Table 5.1, where using wblr
results in a higher average velocity.

Another interesting aspect is to compare the parameter evolution for blr,
seen in Figure 5.12 and Figure 5.13 for known model simulation, and the pa-
rameter development for wblr seen in Figure 5.16 and Figure 5.17. The param-
eter adaptation is seen to be much faster for wblr, while it also is much more
uncertain as the standard deviation for the model parameters is larger. This is
quite reasonable, aswblr cannot rely as much on "older" data as ordinary blr to
compute the model parameters.

In the case of the unknown model simulation, the wblr algorithm behaves
in similar ways. The model parameters estimates adapt quicker when using the
wblr algorithm, but the uncertainty in the parameters is higher than the param-
eter uncertainty the blr algorithm computes. This can be seen for the angular
velocity parameters when comparing Figure 5.30 with Figure 5.33.

6.2.2 Motion planner performance

This section covers the performance of the motion planner with and without the
blr algorithm, using the results from Section 5.2.

From the results in Table 5.5, it is possible to compare the benchmark values
for the model using inaccurate parameters with the one using accurate parame-
ters. Studying the planning times seen in Table 5.5, it is clear that in this case,
the use of the accurate model parameters computed by the blr algorithm gives a
much faster planning time than when using inaccurate model parameters, which
of course is desirable. Both the time to find any feasible path to the goal state
and the optimal path is faster for the planner using the accurate model. However,
there are no guarantees that one model would give a lower planning time than
another, as this depends on, e.g., the initial and final states, the fidelity and the
heuristic used.

6.2 Results 65

When studying Table 5.5 and comparing the planned path in Figure 5.34, that
is generated from the motion primitives using inaccurate priors, with the planned
path in Figure 5.36, generated with motion primitives using an accurate prior, it
is clear that the motion primitives generated using the accurate model parame-
ters allow for better system performance.

Considering how the Rover managed to follow the two paths in Figure 5.35
(inaccurate prior) and Figure 5.37 (accurate prior), the accurate model seems to
generate a path that is easier for the system to follow, which can be confirmed
examining the values for the deviated area in Table 5.5.

The average velocity that the Rover manages to keep is slightly higher when
following the path generated using the accurate prior, than when following the
path generated using the inaccurate prior. It is therefore possible to conclude that
the over-all performance does benefit from an updated set of model parameters
in the motion planner.

The case where the system experiences a change of its dynamics during the
run has not been considered for the motion planner. The reason is that the motion
planner would not benefit from updated model parameter estimates during exe-
cution of a plan, since it does not re-plan the path during a run. This is discussed
further in Section 7.2.

7
Conclusions and future work

In this thesis, the control of a ugv with a partially unknown and time-variant
dynamical model, using learning-based motion planning and control, has been
studied. The purpose of this chapter is to summarise these studies and the results
gathered, as well as answering the questions in the problem formulation.

The model parameters in the unknown model of the Rover are estimated us-
ing the machine learning algorithm blr, while the motion planner uses motion
primitives in combination with a hybrid A* algorithm to plan a path. The per-
formance is evaluated by using either accurate or inaccurate priors in the blr
algorithm, the mpc controller and the motion planner, together with either a
time-invariant or a time-variant dynamical model of the Rover. The blr algo-
rithm was either enabled, meaning it sends the estimated model parameters to
the mpc and the motion planner, or disabled, meaning that the mpc controller
and the motion planner use the initial prior throughout the simulation. The an-
swers to the questions posed in Chapter 1 are given in Section 7.1.

7.1 Answers to the problem formulation

What methods can be used to identify the unknown dynamics of the system?

When conducting the literature study during the early stages of the thesis,
two methods for improving the dynamical model of the Rover were investigated.
The first, and also the seemingly most commonly used method, is the gp regres-
sion method, where the function describing the dynamics of the Rover are esti-
mated. The advantage of this method is that a large amount of papers has already
exploited it, describing the necessary theory and how it could be implemented.
One of the disadvantages is that the models using gp regression tend to scale
badly with the amount of data points, requiring more computational power. This
method is also a nonparametric method, and since the dynamical equations in

67

68 7 Conclusions and future work

(3.2) are assumed, it makes sense to instead investigate and use the parametric
Bayesian linear regression method.

Since the blr method is parametric, all the required information needed to
model the dynamics is contained in the parameters, which are estimated. This
simplifies the procedure of providing the mpc controller and motion planner
with the parameter estimates, since they use the estimates as model parameters.
Furthermore, the computational power scales linearly with the number of data
points for the blr algorithm, since the number of operations are always the same,
regardless of the number of data points already used by the algorithm – but the
sizes of the matrices may vary depending on how many data points are added at
once. A drawback of this method is the lack of available papers on the subject,
but the few that exist treat the topic in an explanatory manner.

Can the estimated model be used in sampling-based motion planning algorithms,
and will it improve performance compared to using the nominal model?

Since no other papers treating this subject can be found, this thesis have po-
tentially made some new contributions to this field as it is indeed possible to use
estimated models online in a sampling based motion planner. The motion prim-
itives computed with more accurate parameters allow the planner to generate a
path that is better adapted to the dynamical model of the Rover. This means
that the mpc is capable of making the Rover follow the path more accurately –
resulting in an increased performance of the system.

How does the performance of an mpc controller based on an estimated model com-
pare to the performance of an mpc controller based on the nominal model?

In Chapter 6, it is shown that the performance of the mpc controller is im-
proved when simultaneously running the blr algorithm to provide new parame-
ter estimates. The main improvements are seen when using an inaccurate prior
or when a dynamic change of the model parameters is introduced during a simu-
lation. However, the blr algorithm does not improve thempc performance when
the controller initially uses an accurate prior, but it does not decrease the perfor-
mance either. This means that the algorithm can run in the background without
affecting performance until, e.g., a change of the model parameters happens, in
which case the blr algorithm computes new parameter estimates, sending them
to the mpc controller.

Can a machine learning algorithm be used to detect a dynamic change in the system
model while the system is running, and adapt the model to this change?

The blr algorithm constantly computes new estimates of the system dynam-
ics model parameters, adding the latest data point each iteration. When the new
estimates are sent to the mpc controller and the motion planner, their respective
models will adapt, leading to a better performance when encountering a dynamic
change. In order to better estimate the new model parameters, the wblr algo-
rithm should be used. In this case, the n0 parameter can be used to tune how
fast the system is adapted to the new conditions. If it is desired to also detect
when a dynamic change happens, a detection algorithm that uses, e.g., the model
variance estimates and the model parameter estimates could be developed.

7.2 Future work 69

7.2 Future work

The results support that the blr algorithm can indeed improve the control per-
formance of a system such as the Rover’s. However, this is so far more of a proof-
of-concept, since nothing is yet implemented on physical hardware. This section
presents some of the possible future work within this area, and gives some possi-
ble directions the work in this thesis can take if it was to be continued.

At the beginning of this thesis, the plan was to implement a system that could
be used on actual hardware in the form of a physical Rover, without too much
modification. However, this thesis is limited to software simulation of the system,
but it would be interesting to perform some real-world experiments to verify that
the methods work on hardware too, with data from real sensors.

Another interesting idea is to investigate how the methods in this thesis work
on other systems that are time-variant, i.e. with a dynamical model that changes
over time. One intriguing example could be a rocket, where the mass decreases
over time due to the consumption of fuel and the aerodynamic properties change
with the composition of the air surrounding the rocket.

There is no method presented in this thesis to safely detect, and much less
guarantee, that a dynamic change of the model parameters has happened. As
such, it would be of interest to explore algorithms that can use data such as es-
timated model variance and model parameter variance to determine if a change
has happened, and in that case evaluate if the new parameters should be used
in the system. This is especially interesting if the machine learning algorithm is
expected to be used on a system which is time-variant.

Finally, in order to further benefit from the parameter estimates that the blr
algorithm computes, the implementation of an overall mission planner would
be interesting to investigate. As of now, the motion planner only re-plans using
new parameter estimates when it is given a new goal. With a mission planner, it
becomes possible to temporarily stop the Rover and then re-plan the path to the
current goal using the latest (and most likely more accurate) parameter estimates.
In addition, it is possible to plan a new path during a run by planning a new
path to the goal state from a new state further ahead on the reference, called the
staging state. The staging state must be selected such that the planner is able
to update the path before reaching this state. The new path then replaces the
original path between the staging state and the goal state, thus making it possible
to compute an improved reference path online, while still executing the mission
without interruption.

Bibliography

[1] Joel A E Andersson, Joris Gillis, Greg Horn, James B Rawlings, and Moritz
Diehl. CasADi – A software framework for nonlinear optimization and op-
timal control. Mathematical Programming Computation, In Press, 2018.

[2] Kristoffer Bergman. On motion planning using numerical optimal control,
volume 1843. Linköping University Electronic Press, 2019.

[3] Kristoffer Bergman. Exploiting Direct Optimal Control for Motion Planning
in Unstructured Environments. PhD thesis, Linköping University Electronic
Press, 2021.

[4] Kristoffer Bergman, Oskar Ljungqvist, and Daniel Axehill. Improved opti-
mization of motion primitives for motion planning in state lattices. In 2019
IEEE Intelligent Vehicles Symposium (IV), pages 2307–2314. IEEE, 2019.

[5] Felix Berkenkamp and Angela P Schoellig. Learning-based robust control:
Guaranteeing stability while improving performance. In IEEE/RSJ Proceed-
ings of International Conference on Intelligent Robots and Systems (IROS),
2014.

[6] Vishnu R Desaraju, Alexander Spitzer, and Nathan Michael. Experience-
driven predictive control with robust constraint satisfaction under time-
varying state uncertainty. In Robotics: Science and Systems, 2017.

[7] Dmitri Dolgov, Sebastian Thrun, Michael Montemerlo, and James Diebel.
Path planning for autonomous vehicles in unknown semi-structured envi-
ronments. The international journal of robotics research, 29(5):485–501,
2010.

[8] Martin Enqvist et al. Industriell reglerteknik. Kurskompendium.
Linköping: Reglerteknik, Institutionen för systemteknik, 2014.

[9] Guilherme AA Gonçalves and Martin Guay. Robust discrete-time set-based
adaptive predictive control for nonlinear systems. Journal of Process Con-
trol, 39:111–122, 2016.

71

72 Bibliography

[10] Peter E Hart, Nils J Nilsson, and Bertram Raphael. A formal basis for the
heuristic determination of minimum cost paths. IEEE transactions on Sys-
tems Science and Cybernetics, 4(2):100–107, 1968.

[11] Donald M Hassler, Cary Zeitlin, Robert F Wimmer-Schweingruber, Bent
Ehresmann, Scot Rafkin, Jennifer L Eigenbrode, David E Brinza, Gerald Wei-
gle, Stephan Böttcher, Eckart Böhm, et al. Mars’ surface radiation environ-
ment measured with the mars science laboratory’s curiosity rover. science,
343(6169), 2014.

[12] Lukas Hewing, Kim P Wabersich, Marcel Menner, and Melanie N Zeilinger.
Learning-based model predictive control: Toward safe learning in control.
Annual Review of Control, Robotics, and Autonomous Systems, 3:269–296,
2020.

[13] Katy Klauenberg, Gerd Wübbeler, Bodo Mickan, Peter Harris, and Clemens
Elster. A tutorial on bayesian normal linear regression. Metrologia, 52(6):
878, 2015.

[14] Richard E Korf and Michael Reid. Complexity analysis of admissible heuris-
tic search. In AAAI/IAAI, pages 305–310, 1998.

[15] Volvo Lastvagnar. Veras första uppdrag. https://www.
volvotrucks.se/sv-se/news/press-releases/2019/jun/
pressrelease-190613.html, 2019. Accessed: 2021-05-17.

[16] Steven M LaValle. Planning algorithms. Cambridge university press, 2006.

[17] Magnus Minnema Lindhé. Communication-aware motion planning for mo-
bile robots. PhD thesis, PhD Dissertation, KTH, Stockholm, 2012.

[18] Christopher D McKinnon and Angela P Schoellig. Learn fast, forget slow:
Safe predictive learning control for systems with unknown and changing
dynamics performing repetitive tasks. IEEE Robotics and Automation Let-
ters, 4(2):2180–2187, 2019.

[19] Manfred Morari and Jay H Lee. Model predictive control: past, present and
future. Computers & Chemical Engineering, 23(4-5):667–682, 1999.

[20] Satoshi Morita, Peter F Thall, and Peter Müller. Evaluating the impact of
prior assumptions in bayesian biostatistics. Statistics in biosciences, 2(1):
1–17, 2010.

[21] Kevin P Murphy. Machine learning: a probabilistic perspective. MIT press,
2012.

[22] Jorge Nocedal and Stephen Wright. Numerical optimization. Springer Sci-
ence & Business Media, 2006.

[23] Open Source Robotic Foundation (OSRF). Gazebo. http://gazebosim.
org/, 2002–2021.

https://www.volvotrucks.se/sv-se/news/press-releases/2019/jun/pressrelease-190613.html
https://www.volvotrucks.se/sv-se/news/press-releases/2019/jun/pressrelease-190613.html
https://www.volvotrucks.se/sv-se/news/press-releases/2019/jun/pressrelease-190613.html
http://gazebosim.org/
http://gazebosim.org/

Bibliography 73

[24] Mihail Pivtoraiko, Ross A Knepper, and Alonzo Kelly. Differentially con-
strained mobile robot motion planning in state lattices. Journal of Field
Robotics, 26(3):308–333, 2009.

[25] James Blake Rawlings, David Q Mayne, and Moritz Diehl. Model predictive
control: theory, computation, and design, volume 2. Nob Hill Publishing
Madison, WI, 2017.

[26] Roushan Rezvani Arany. Gaussian process model predictive control for au-
tonomous driving in safety-critical scenarios, 2019.

[27] Marwan Salem. Building an efficient occupancy grid map based on lidar
data fusion for autonomous driving applications, 2019.

[28] Sergey Vichik and Francesco Borrelli. Solving linear and quadratic pro-
grams with an analog circuit. Computers & Chemical Engineering, 70:160–
171, 2014.

[29] Andreas Wächter and Lorenz T Biegler. On the implementation of an
interior-point filter line-search algorithm for large-scale nonlinear program-
ming. Mathematical programming, 106(1):25–57, 2006.

[30] Linus Wiik and Jennie Bäcklin. Collaborative exploration of unknown ter-
rain utilizing real-time kinematic positioning. Master’s thesis, Linköping
University, Automatic Control, 2020.

[31] Wikipedia contributors. Graph traversal — Wikipedia, the free encyclope-
dia, 2020. URL https://en.wikipedia.org/w/index.php?title=
Graph_traversal&oldid=997453401. [Online; accessed 17-March-
2021].

[32] Wikipedia contributors. Runge–kutta methods — Wikipedia, the free en-
cyclopedia, 2021. URL https://en.wikipedia.org/w/index.php?
title=Runge%E2%80%93Kutta_methods&oldid=1021130819. [On-
line; accessed 18-May-2021].

[33] G Alastair Young, Thomas A Severini, George Albert Young, RL Smith,
Robert Leslie Smith, et al. Essentials of statistical inference, volume 16.
Cambridge University Press, 2005.

https://en.wikipedia.org/w/index.php?title=Graph_traversal&oldid=997453401
https://en.wikipedia.org/w/index.php?title=Graph_traversal&oldid=997453401
https://en.wikipedia.org/w/index.php?title=Runge%E2%80%93Kutta_methods&oldid=1021130819
https://en.wikipedia.org/w/index.php?title=Runge%E2%80%93Kutta_methods&oldid=1021130819

	Abstract
	Acknowledgments
	Contents
	Notation
	1 Introduction
	1.1 Background
	1.2 Problem formulation
	1.3 Related work
	1.4 Outline
	1.5 Individual contributions

	2 Theory
	2.1 Dynamical model
	2.2 Bayesian linear regression
	2.2.1 Linear regression
	2.2.2 Bayesian point of view
	2.2.3 Prior and posterior distributions
	2.2.4 Resulting posterior distribution
	2.2.5 Weighted Bayesian linear regression

	2.3 Model predictive control
	2.3.1 Prediction model
	2.3.2 Formulating the control problem

	2.4 Motion planning
	2.4.1 Problem formulation
	2.4.2 Solving the motion planning problem

	3 System description
	3.1 Dynamical model of the Rover
	3.2 Simulation
	3.2.1 Known model simulation
	3.2.2 Unknown model simulation

	3.3 System overview

	4 Learning-based control and planning
	4.1 Bayesian linear regression
	4.1.1 The importance of the prior
	4.1.2 Obtaining the data
	4.1.3 Sending the parameter estimates

	4.2 Model predictive controller
	4.3 Motion planner
	4.3.1 State space discretisation
	4.3.2 Motion primitives generation
	4.3.3 Computing the path
	4.3.4 Making the plan dynamically feasible
	4.3.5 Complete plan

	5 Results
	5.1 Learning-based MPC performance
	5.1.1 Known model simulation
	5.1.2 Unknown model simulation

	5.2 Motion planner performance
	5.2.1 Inaccurate prior
	5.2.2 Accurate prior

	6 Discussion
	6.1 Implementation methods
	6.2 Results
	6.2.1 MPC performance
	6.2.2 Motion planner performance

	7 Conclusions and future work
	7.1 Answers to the problem formulation
	7.2 Future work

	Bibliography

