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Abstract

The river water pumping station at SSAB in Borlänge is a critical part of the fac-
tory since it supplies the whole factory with cooling water. The problem with
the river water pumping station is that the pressure in the pipes is very depen-
dent on the large water consumers in the factory. The large consumers causes
large variations in pressure and water level when they suddenly turns on and off.
The second problem in the river water pumping station is that it can not pump
enough water to the consumers during the warmer periods of the year. The aim
of this thesis is to improve the control system in the river water pumping sta-
tion by first creating a model of the system which then can be used to test a new
controller. The model is verified against measurements from the real process.

The results show that the developed model captures the general behavior of the
system. Further analysis of the system show that a smaller pump could be the
cause of the problem in the control system. In the development of the new con-
troller the smaller pump was then removed and replaced with a larger pump.
The new and old controller perform similarly when it comes to pressure and flow
rate however the new controller is slightly better when taking the control signal
into account because it does not make any large sudden changes.
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1
Introduction

The purpose of this chapter is to give an introduction to the master thesis and
how the river water pumping station works.

1.1 Background

SSAB in Borlänge manufactures hot rolled and cold rolled high strength steel of
slabs from mostly Luleå and also sometimes from Oxelösund. The river water
pumping station at SSAB in Borlänge supplies the whole factory with cooling wa-
ter which makes it an important and critical part of the factory. The problem
with the river water pumping station is that the water pressure in the pipes is
very dependent on the large water consumers in the factory. When a large con-
sumer instantaneously turns on, the water pressure in the pipes leading to the
consumers suddenly drops which causes the pumps to accelerate. Additionally,
very large consumption of water can lead to the hatch between the reservoir and
river not opening fast enough, there is then a risk that the water level in the reser-
voir sinks too low. The opposite happens when a large water consumer suddenly
turns off. The pressure in the pipes leading to the consumers becomes too high,
the pumps slow down which leads to the water level in the reservoir raising too
fast and becomes too high. In other words the problem is that there are too large
variations in pressure and the water level. There is also a problem that the river
water pumping station can not pump enough water to the consumers during the
warmer periods of the year.
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2 1 Introduction

1.2 Problem Formulation

The purpose of the thesis is to make a model of the water pumping station in
order to develop a better way to control the system. The questions this thesis
aims to answer are the following:

• What is it in the current control system that causes the control problems?

• How do the dynamics in the system affect the choice of control structure
and is there a better way to control this system?

• How should the natural nonlinearities in the system be handled?

1.3 Delimitations

In this project it is necessary to limit what is seen as a large water consumer
since there are a lot of consumers in reality and it would take too much time to
model all of them. In this thesis all of the consumers that use less water than
300m3/h are considered small and will not be part of the modeled system even
though they are part of the real system. Only regular operation modes are treated
in the development of the model and the controller. In other words, all special
cases that are important in reality in case there is a breakdown are not part of the
model or considered in the development of the controller.

1.4 Related Work

Pressure control in water distribution networks is a widely researched area due to
its importance in both industry and water supply to households [12]. Much of the
work concerning pressure control in water distribution networks is focused on
different control strategies to reduce water loss and leakage in water distribution
networks [4, 10, 14]. Most of them use pressure control valves that control the
pressure in a certain part of the network. There are several different types of
controllers that can be used to control the pressure in water distribution networks
and in [8] many of them are introduced and compared.

Another interesting aspect in pressure control systems is the efficiency concern-
ing the control of the pumps because pumps are responsible for a large amount
of the electricity consumption in the world [15]. In [5] it has been shown that
the most cost effective and efficient way to control the pressure in a pipe is with
a pump that has a variable speed drive. It is proved in [16] that the most effi-
cient way to control parallel pump systems is with the same control signal to all
pumps, if the pumps are of the same size and more than one is turned on. There
have also been a few studies on how to optimize the work schedule for the pumps,
i.e. when to turn them on and off. In [11] an optimal method based on the pumps
individual efficiency is developed, in [17, 20] genetic algorithms are used and in
[19] adaptive and gradient-based algorithms are used.



2
Description of the System

In this chapter, the river water pumping station is described.

2.1 General Description of the System

In Figure 2.1 a simplified overview of the river water pumping station is pre-
sented, which shows how the water flows through the river water pumping sta-
tion.

Overflow

Overflow

To Dalälven

4 Pumps (4-5 bar)2 Pumps (6 bar)Diesel Pump

Flow

Inlet Hatch 15mm GrateWreck GrateRiver Water
(weir) Disc Filter

Pump Well

Pipe
Pipe

Pipe

To consumers

Pipe

To Consumers

Pipe

To Consumers

Overflow

Overflow Hatch

Overflow

Pump well

Pipe

Figure 2.1: An overview of how the water flows through the river water
pumping station.

The water from the river is directed into the pump station through an inlet port
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4 2 Description of the System

from the weir. The water is cleaned from larger materials in a wreck grate before
the inlet. The water level in the weir is measured after the wreck gate.

There is an inlet hatch, placed in the inlet port after the wreck gate that controls
the water flow into the pump station. The inlet hatch is a hydraulic hatch and it
is controlled by the water level in the pump well such that there is a continuous
overflow to an outlet tunnel. The inlet hatch can maximally open 2.5 m but SSAB
is only allowed to take a certain amount of water from the river, because of this
the opening of the hatch is limited in the control system and can only open
1.465 m. There is also a limit in the system such that the inlet hatch cannot
close more than 0.17 m to make sure that there always is a flow of water to the
pumping station.

The hatch has 50 fixed positions and there are 50 mm between each position and
these positions correspond to a change in flow of 450-750 m3/h. The hatch opens
and closes depending on the water level in the pump well and the overflow to
the outlet tunnel. The hydraulic components that control the inlet hatch are a
hydraulic pump, oil cooler, warmer, valves for control and corresponding guards.
All of the automatic hydraulics are controlled by the central PLC

After the inlet hatch, the water is directed in to the pump station and through a
second grate with a column width of 15 mm. The purpose of this grate is once
again to clear the water from materials. If there are any larger problems, such
that the water cannot flow through the grate the water can be led directly to the
pump well.

The water is then led to four disc filters after the second grate. The disc filters
have a filtering degree of 100 µm and the smaller particles are separated from
the water in these disc filters. The disc filters are frequency controlled and rotate
continuously with an adjustable velocity and in normal operation all of the disc
filters are used. The water level through the disc filters and the up stream dis-
tribution conduit, are controlled by the stationary overshoot over the disc filters,
the height of the overshoot and the fall of pressure. The level before the disc
filters is mostly controlled by the pressure drop through the filter and after that
the overshoot. An overflow hatch will open and let water into the pump well if
the water level before the disc filters is high and if the water level is really there
will be an overflow over an edge.

The water is directed to the pump well after it has passed through the disc filters
and the water level in there is controlled by the inlet hatch, as said before, by
measuring the water level.

There are six pumps in the pump station, four of them are for a larger distribution
system and two are for a smaller. All of these pumps take water from the pump
well. The pressure in the large distribution system should be between 4 and 5 bar
and the pressure in the smaller system should be around 6 bar. The pumps are
pressure and variable-speed controlled to keep the pressure constant in the two
systems.



2.2 Current Control System 5

There is also a diesel pump that starts if there is a power failure to provide the
factory with emergency cooling water. The diesel pump starts when the pressure
in the 5 bar system is less than 4 bar or if the pressure is less than 5 bar in the 6
bar system. The back-up system first prioritizes the 6 bar system and then the 5
bar system. The diesel pump has an autonomous control system with a separate
control cabin and in addition, it also has its own battery powered starter motor,
cooling system and pressure sensor.

2.2 Current Control System

The system is currently controlled by two separate controllers, one controller
controls the pressure in the pipes and the second controller controls the water
level in the pump well

2.2.1 Pressure Control in the Pipes

The pressure in the pipes is controlled with a PID-controller that controls four
pumps, three large pumps and one smaller and all of these work in parallel with
each other. The input to the PID-controller is the difference in pressure between
the set point (SP) and the process value (PV) in the pipes and the manipulated
value (MV) from the controller is a value between 0-100 %. The output from
the PID-controller is rescaled to rpm which is used as the input to the pumps.
One of the larger pumps is always on, if the pressure drops the smaller pump is
turned on first then the other large pumps if necessary. If the pressure increases
too much and all of the pumps are on, the small pump will turn off first, then the
larger pumps where the one that was turned on last will turn off first and so on.

2.2.2 Level Control in the Pump Well

The water level in the pump well is controlled by opening and lowering the hatch
in the inlet channel. The hatch opens one step (50 mm) if the water level is lower
than 112.65 meters above sea level and closes one step (50 mm) if the water level
is above 112.72 meters above sea level. Once the inlet hatch has changed position
there will be a pause of 30 seconds before feedback and no new control will be
applied within the next 8 minutes.

2.3 Model Structure

The flow through the river water pumping station during normal operation is
through the grates, inlet hatch, filters, then down to the pump well and after that
to the consumers through the pumps and pipes. As said before, only large con-
sumers will be considered in the model and there are only two large consumers
both of which are using the 4-5 bar system. Considering all of this, the river wa-
ter pumping station can be modeled as in Figure 2.2 where the inlet hatch can
be seen as a valve, the inlet channel can be seen as a tank, the filters as an orifice
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followed by a tank and finally the pump well which can also be seen as a tank.
The consumers can be seen as valves at the end of the pipes. The theory for all of
the modeled parts is described later in Chapter 3.

Pumps 4-5 bar

Consumer

Consumer

Inlet Channel

Filter
Filter Tank

Pump Well
Inlet Hatch

To  Dalälven

River

Figure 2.2: Model of the river water pumping station.

2.4 Dimensions and Measurements

In order to be able to model the system is it necessary to know the dimensions of
the inlet channel, pump well, pipes etc. The inlet channel, pump well and filter
tanks all have a cuboid form. It is also necessary to know what kind of sensors
there are and where they are placed. Table 2.1 shows the dimensions of the tanks
and inlet hatch. Figure 2.3 gives an overview of the location of the sensors, the
type of sensor and if the sensor is connected to a controller, the figure also shows
the dimensions of the pipes.

Table 2.1: Dimensions of the different parts of the river water pumping sta-
tion.

Dimensions

Inlet channel Bottom area: 76.779m2

Filter tank Bottom area: 23.6925m2

Pump well Bottom area: 192.825m2

Inlet hatch Width: 2m
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River

Inlet Channel

Inlet Hatch

4 Filters

Pump Well

4 Pumps

Wreck Grate

15mm Grate

LI

LITI

2 LI

4 LI

To Dalälven

2 LI

LI

LIC

PIC

PI

River Water
Pumping Station
110.635 m.a.s.l

Pipe 67m
diam 0.7m

Pipe 103m
diam 0.6m

Pipe 42m
diam 0.15m

Pipe 126m
diam 0.4m

Pipe 33m
diam 0.3m

Pipe 22m
diam 0.25m

Pipe 162m
diam 0.3m

Consumer
119.556
m.a.s.l

Pipe 72m
diam 1m

Pipe 67m
diam 0.7m

Pipe 753m
diam 0.6m

Pipe 101m
diam 0.7m

Pipe 60m
diam 1m

Pipe 141m
diam 0.8m

Pipe 5m
diam 0.7m

Pipe 97m
diam 0.8m

Pipe 685m
diam 0.7m

Pipe 215m
diam 0.3m

Consumer
116.758
m.a.s.l

Figure 2.3: Dimensions of the pipes, the location of the sensors and type of
sensor in the river water pumping station.





3
Model

In this chapter, the theory that is used to model the system is introduced and
the method to validate the model is described. The model was implemented in
MATLAB Simulink.

3.1 Tank

Figure 3.1 shows a tank with a flow in, qin, and out qout and the volume of fluid
in the tank at time t is h(t)A. The rate at which the volume of fluid in the tank
changes depends on the flow rate in and out of the tank and this can be described
by:

d
dt
Ah(t) = qin(t) − qout(t) (3.1)

3.2 Orifice

A model of an orifice can be derived from the Bernoulli Equation (3.2), where it
is assumed that there is no difference in elevation.

p1 +
1
2
ρv2

1 = p2 +
1
2
ρv2

2 (3.2)

In (3.2), ρ is the density of the fluid,p1 and v1 is the pressure and velocity of the
fluid before the orifice and p2 and v2 is the pressure and velocity of the fluid after

9



10 3 Model

Figure 3.1: A model of a tank with a flow in and out.

the orifice. Figure 3.2 illustrates the flow of a liquid through an orifice and where
the measuring points p1, v1, p2 and v2 are.

Figure 3.2: A pipe with an orifice in it.

The flow rate in and out of the orifice must be the same according to the continuity
equation which means that q = A1v1 = A2v2. Replacing the velocities with flow
rate divided by the area and solving for q gives the following equation:

q = A2

√√
2

1 −
(
A1
A2

)2

√
p1 − p2

ρ
(3.3)

The A2

√
2

1−
(
A1
A2

)2 term is usually replaced with kv . The orifice and valve are mod-

eled the same way except that for a valve the area changes and kv then depends
on how open the valve is. Equation 3.3 then becomes the following equation:

q = kv

√
p1 − p2

ρ
(3.4)
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3.3 Flow Over an Edge

A model for flow over an edge can also be derived from the Bernoulli equation
written on the form as in (3.5), where z0 is the highest level of the water above
the edge, z is any point of the water above the edge, v is the velocity at point z
and v0 is the velocity at point z0, Figure 3.3 shows water flow over an edge. [6]

(
z0g +

v2
0

2

)
−
(
zg +

v2

2

)
= 0 =⇒ v =

√
2g

√
z0g +

v2
0

2g
− z (3.5)

Figure 3.3: A figure of the flow over an edge.

This equation is based on the assumptions that v0 is uniform and parallel, the
streamlines are horizontal above the edge and that the flow is frictionless. If the
width of the edge is b and the height of a cross-sectional flow area is dz, the
volumetric flow rate through this cross-sectional flow area can then be written as
in the following equation: [6]

dQ = bvdz (3.6)

Substituting v in (3.6) with (3.5) gives:

dQ = b
√

2g

√(
z0g +

v2
0

2g
− z

)
dz (3.7)

The b in (3.7) is constant which makes it possible to integrate the equation. This
results in:



12 3 Model

Q = −2
3
b
√

2g
(
z0g +

v2
0

2g
− z

)3/2
+ c (3.8)

The constant c can be calculated when z = 0 which also leads to Q = 0. Given
c and that the approach velocity v0 can be neglected [6], the flow rate for when
z = z0 is then given by the following equation:

Q =
2
3
b
√

2g(z0)3/2 (3.9)

The flow rate Q, in practice, is given by (3.10), where Cd is the dimensionless
discharge coefficient [6].

Q =
2
3
Cdb

√
2g(z0)3/2 (3.10)

3.4 Fluid Mechanics

Fluid mechanics is the part of mechanics that describes the movements of fluids,
where fluids are gases or liquids.

The equations that describe the movement of a fluid is given by two physical laws,
the first is the law of the indestructibility of mass, which gives the continuity equa-
tion. The second law is Newton’s second law, f orce = mass · acceleration, which
gives the equations of motion.

Many flow processes are of a steady state type of flow which means that hydro-
dynamic properties such as velocity and pressure drop are independent of time,
except at perhaps process start-up or shut-down. Unsteady flow is when hydro-
dynamic properties changes with time. The flow in this case is unsteady because
the flow in the pipe is constantly disturbed by the pumps and by valves suddenly
opening and closing, this results in sudden changes in pressure and velocity. This
type of flow is called transient flow. [13]

3.4.1 Equation of Motion

To derive the equation of motion for transient flow in a pipe the small control vol-
ume in Figure 3.4 is considered [21]. The area of the cross section in the control
volume is A, the pressure is p, the diameter is D, the velocity is V, the shear stress
is τ0, the density is ρ, the gravity is g, the inclination of the pipe is α and dx is
the length of the control volume. The hydraulic grade line, H, also called head is
a measurement of pressure above the reference point. The shear stress acts along
the pipe wall and is a friction that counter-acts the fluids motion. The pressure,
velocity and head depends on distance, x, and time, t.
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H

Hydraulic grade line

Reference point

Figure 3.4: Control volume for transient flow in pipe to help derive the equa-
tion of motion.

The forces acting on the control volume in the x-direction are the normal pressure
forces on the transverse surfaces, the shear force, the gravitational force and the
pressure along the pipe wall [21], see Figure 3.4, the equations are shown in the
following equation:

Normal pressure force: pA −
(
pA +

δpA

δx
dx

)
Pressure force along pipe wall:

(
p +

δp

δx
dx
2

)δA
δx
dx

Shear force: − τ0πDdx

Gravity force: − ρg
(
A +

δA
δx

dx
2

)
dxsinα

(3.11)

Newton’s second law and the equations in (3.11) result in:

ρAdx
dV
dt

=

pA −
(
pA +

δpA

δx
dx

)
+

(
p +

δp

δx
dx
2

)
δA
δx
dx − τ0πDdx − ρg

(
A +

δA
δx

dx
2

)
dxsinα

(3.12)

The expression in (3.12) are simplified to (3.13), where all dx2 can be neglected
because dx is very small, which means that dx2 is close to zero.

δp

δx
Adx + τ0πDdx + ρgAdxsinα + ρAdx

dV
dt

= 0 (3.13)

The shear stress, τ0, is calculated from the Darcy-Weisbach equation, see (3.14),
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where L is the length of the pipe and f is the dimensionless friction factor called
Darcy friction factor. The Darcy-Weisbach equation is an empirical equation that
relates the pressure loss that comes from friction along a pipe of a certain length
where an incompressible fluid flows with an average velocity [21].

∆p =
ρf L

D
V 2

2
(3.14)

The force-balance in steady flow and the force from shear stress gives the follow-
ing equation:

∆p
πD2

4
= τ0πDL (3.15)

The ∆p in (3.15) is exchanged with the Darcy-Weisbach equation in (3.14) and
gives (3.16), where the absolute value of the velocity in the equation is there to
ensure that the stress direction is always opposite to the velocity direction.

τ0 =
ρf V |V |

8
(3.16)

The τ0 in (3.13) is replaced with the expression on the left-hand-side in (3.16)
which results in (3.17) and this equation is the general form of the equation of
motion.

δp

δx
Adx +

ρf V |V |
8

πDdx + ρgAdxsinα + ρAdx
dV
dt

=
/
dV
dt

= V
δV
δx

+
δV
δt

/
=

1
ρ

δp

δx
+
f V |V |

2D
+ gsinα + V

δV
δx

+
δV
δt

= 0

(3.17)

In most cases the term V δV
δx in (3.17) is small compared to the other terms and the

velocity V can be replaced with the flow rate Q = A ∗ V , the equation of motion
can then be expressed as in:

A
ρ

δp

δx
+
f Q|Q|
2AD

+
δQ
δt

+ Agsinα = 0 (3.18)

3.4.2 Continuity Equation

To derive the continuity equation for transient flow in a pipe the small control
volume in Figure 3.5 is considered. The u in the control volume is the velocity of
the pipe wall at point x, everything else A, V, ρ, dx, α, H is the same as before.
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The control volume in Figure 3.5 is considered to be fixed relative to the pipe and
only move and stretch if the surface on the inside of the pipe moves and stretches.
This gives a total derivative with respect to the axial motion of the pipe which is
D ′
Dt = u δ

δx + δ
δx and the time rate that the length dx of the control volume changes

is D ′
Dt dx = δu

δx dx.[21]

Hydraulic grade line

Reference point

Figure 3.5: Control volume for transient flow in pipe to help derive the con-
tinuity equation.

The continuity equation comes, as said before, from the indestructibility of mass
which means that the rate of mass in- and outflow is equal to the rate of collected
mass within the control volume [21], which results in the following equation:

ρA(V − u) −
(
ρA(V − u) +

δρA(V − u)
δx

dx

)
=
D ′

Dt
(ρAdx)

=⇒
/
D ′

Dt
dx =

δu
δx
dx,

D ′

Dt
= u

δ
δx

+
δ
δt

/
=⇒

= V
δρA

δx
+ ρA

δV
δx

+
δρA

δt
= 0

(3.19)

The total derivative with respect to motion of a mass particle is given by D
Dt =

V δ
δx + δ

δt . Equation 3.19 can then be rewritten to (3.20) which holds for converg-
ing, diverging or flexible tubes as well as for cylindrical pipes.

1
ρA

D
Dt

(ρA) +
δV
δx

=
1
A
DA
Dt

+
1
ρ

Dρ

Dt
+
δV
δx

= 0 (3.20)
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The bulk modulus of elasticity of fluids is a constant, K, that describes how resis-
tant the fluid is of compression and the definition of the bulk modulus gives the
following equation:

1
ρ

Dρ

Dt
=

1
K

Dp

Dt
(3.21)

Substituting 1
ρ
Dρ
Dt in (3.20) with the expression in (3.21) gives:

1
A
DA
Dt

+
1
K

Dp

Dt
+
δV
δx

=
/
if area change is
caused by stress

/
=
Dp

Dt

(
K
A
DA
Dp

+ 1
)

+ K
δV
δx

= 0 (3.22)

The velocity, a, for the propagating pressure wave in transient flow in a pipe is
given by (3.23) [21].

a2 =
K/ρ

1 + (K/A)(DA/Dp)
(3.23)

The expression in (3.23) can be put into (3.22) which gives the following equation:

Dp

Dt
+ ρa2 δV

δx
= 0 (3.24)

The velocity can once again be replaced with the flow rate Q = AV and Dp
Dt =

V δp
δx + δp

δt the term V δp
δx is in most cases small compared to the other terms and

this gives the continuity equation as in the following equation:

δp

δt
+
ρa2

A
δQ
δx

= 0 (3.25)

3.4.3 Method of Characteristics

The method of characteristics is a way to covert the non-linear partial differential
equations into ordinary differential equations. Equation 3.25 is multiplied with
an unknown multiplier λ and added with (3.18), which gives (3.26). [21]

λ

(
A
ρ

δp

δt
+ a2 δQ

δx

)
+
A
ρ

δp

δx
+
f Q|Q|
2AD

+
δQ
δt

+ Agsinα =

λ
A
ρ

(
δp

δt
+

1
λ

δp

δx

)
+

(
δQ
δt

+ λa2 δQ
δx

)
+
f Q|Q|
2AD

+ Agsinα = 0
(3.26)
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The total derivative of p and Q are given by the following equation:

 dQ
dt = δQ

δt + δQ
δx

dx
dt

dp
dt = δp

δt + δp
δx

dx
dt

(3.27)

The multiplier λ can then be defined as in the following equation:

1
λ

=
dx
dt

= λa2 ⇐⇒ λ = ±1
a

(3.28)

Equation 3.26, (3.27) and (3.28) give two sets of ordinary differential equations,
(3.29b), which is valid when dx

dt = a is satisfied and (3.30b), which is valid when
dx
dt = −a is satisfied. In the x-t plane, dxdt = ±a are two straight lines with slopes
±a and they are called characteristic lines.


dQ
dt

+
A
aρ

dp

dt
+
f Q|Q|
2AD

+ Agsinα = 0 (3.29a)

dx
dt

= a (3.29b)


dQ
dt
− A
aρ

dp

dt
+
f Q|Q|
2AD

+ Agsinα = 0 (3.30a)

dx
dt

= −a (3.30b)

3.4.4 Finite Difference

Finite differences method is used to be able to solve the the ordinary differential
equations given by the method of characteristics. A pipe of length L is divided
into N parts with length ∆x = L/N as shown in Figure 3.6a), where dx

dt = a is
satisfied along the C+ diagonal and dx

dt = −a is satisfied along the C− diagonal.
The flow rate Q and pressure p is known at the points A and B in Figure 3.6a).
This makes it possible to integrate between AP and PB which gives two equations
and makes it possible to calculate the unknown flow rate and pressure at point P.
By multiplying (3.29b) with adt = dx and (3.30b) with −adt = dx, it is possible
to integrate along the C+ and C− characteristics as in (3.31).
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t

x

t

x

Figure 3.6: Illustration on how flow rate and pressure is calculated at a new
time instant.

pP∫
pA

dp +
aρ

A

QP∫
QA

dQ +
f ρ

2DA2

xP∫
xA

Q|Q|dx + ρgsinα

xP∫
xA

dx = 0

−

pB∫
pP

dp +
aρ

A

QB∫
QP

dQ −
f ρ

2DA2

xB∫
xP

Q|Q|dx − ρgsinα
xB∫
xP

dx = 0

(3.31)

The integration of Q with respect to x in (3.31) is unknown and is approximated
with a first order approximation. The integration along the characteristic lines is
then given by:

pP − pA +
aρ

A
(QP − QA) +

f ρ∆x

2DA2QA|QA| + ρg∆xsinα = 0

pP − pB −
aρ

A
(QP − QB) −

f ρ∆x

2DA2QB|QB| − ρg∆xsinα = 0
(3.32)

Solving (3.32) for Hp gives (3.33), where B = aρ
A and R = f ρ∆x

2DA2

C+ : pP = pA − B(QP − QA) − RQA|QA| − ρg∆xsinα
C− : pP = pB + B(QP − QB) + RQB|QB| + ρg∆xsinα

(3.33)

To solve the equations, initial conditions at t = 0 for p and Q are set which are
usually steady state conditions. Q and p are then found for each grid point at
time t = ∆t first then at time t = 2∆t and so on until the desired time limit has
been reached as is shown in Figure 3.6b. At all of the interior grid points are
the equations in (3.33) solved simultaneously for the unknown pP and QP . The
equations are written in a more simple form as in the following equation:
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C+ : pP = Cp − BQP
C− : pP = Cm + BQP
Cp = pi−1 + BQi−1 − RQi−1|Qi−1| − ρg∆xsinα
Cm = pi+1 − BQi+1 + RQi+1|Qi+1| + ρg∆xsinα

(3.34)

Equation 3.34 gives that pP =
Cp+Cm

2 and C− or C+ can then be used to solve for
Qp. The equations can be used to solve the interior points in the pipes but at the
two end points some boundary conditions are needed.

3.4.5 Boundary Conditions

Only one of the characteristic lines holds for the boundaries, at the upstream
end only C− holds and at the downstream end only C+ holds. An additional
equation that specifies Qp, pP or some relation between them is needed in order
to be able to solve for pP and QP at the end points. The boundaries are solved
independently of each other and the interior points.[21]

Centrifugal Pump If there is a centrifugal pump at the upstream end with a
known pump characteristic curve for a certain rpm the pressure pP can be mod-
eled with (3.35) [21], where a0, a1 and a2 are constants that describes the pump
characteristic curve. Figure 3.7 shows how characteristic curves can look like for
a pump where each line represents one characteristic curve for a certain rpm.

pP = a0 + QP (a1 + a2QP ) (3.35)

The constants a0, a1 and a2 can be calculated by choosing a few known points on
the pump characteristic curve for a certain rotational velocity and then applying
the least squares method to approximate the constants. In (3.36) Q1 to Qn and p1
to pn are known and a0, a1 and a2 are unknown.

A =


Q2

1 Q1 1
...

...
...

Q2
n Qn 1

 , X =

a2
a1
a0

 , Y =


p1
...
pn

 , AX = Y (3.36)

The least squares method can then be used as in (3.37) which fits the constants
a0, a1 and a2 to the known points on the pump characteristic curve for a certain
rotational speed.

X = (ATA)−1AT Y (3.37)
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Figure 3.7: Characteristic curves for a pump.

The pump is controlled in such a way that it changes rotational speed and jumps
between characteristic curves which means that it is also necessary for the model
to be able to jump between characteristic curves for different rotational speeds.
The affinity laws can then be used to scale the constants a0, a1 and a2, the affinity
laws are defined in (3.38) [18] where Q1, p1 and N1 are flow rate, pressure and
rpm for one characteristic curve and Q2, p2 and N2 are flow rate, pressure and
rpm for a second characteristic curve.

Q1

Q2
=
N1
N2

,
p1

p2
=

(
N1
N2

)2

(3.38)

Equation 3.39 shows how the constants can be scaled and the scaling of the con-
stant is derived in Appendix A.

a2, a1
N1

N2
, a0

(N1

N2

)2
(3.39)

Once the constants are determined, (3.35), the scaling from (A.2) and the C−

characteristic equation are used to give an equation for QP which is (3.40), pP
can then be calculated from the C− equation.



3.5 Model Validation 21

QP =
1

2a2

(
B − a1

N1

N2
−
√(

B − a1
N1

N2

)2
+ 4a2

(
Cm − a0

(N1

N2

)2))
(3.40)

Series Connection This boundary condition is used when the diameter, rough-
ness, thickness or anything else changes in the pipe. The C− equation is available
for the second pipe and the C+ equation is available for the first equation. The
condition of a common hydraulic grade line elevation and the continuity expres-
sion gives two equations in (3.41), where the subscripts 1,NS and 2,1 stands for
first pipe downstream boundary and second pipe upstream boundary. [21]

QP1,NS
= QP2,1

pP1,NS
= pP2,1

(3.41)

Equation 3.41 and the characteristic equations C+ and C− gives (3.42) and the
pressure pP1,NS

= pP2,1
can then be determined with either the C− or C+ equation.

QP1,NS
= QP2,1

=
Cp1
− Cm2

B1 + B2
(3.42)

Valve It is assumed that the transient flow through a valve is given by a similar
expression as in the steady state flow [21]. This is the same as (3.4) but with
a kv that changes depending on how open the valve is. It is also assumed that
the pressure on the other side of the valve is zero which results in the following
equation.

QP = kv

√
pP
ρ

(3.43)

The C+ equation and (3.43) is solved simultaneously and gives (3.44). The pres-
sure pP can then be determined from the C+ equation or (3.43).

QP = −Bk
2
v

2ρ
+

√(
Bk2

v

2ρ

)2

+
Cpk

2
v

ρ
(3.44)

3.5 Model Validation

The model is validated by using measured data as input to the model and then
comparing the simulated outputs with equivalent measured data. It is done to
see that model behaves in a similar way to reality.





4
Model Simplification

To be able to develop a controller for the system it is necessary to breakdown
the model to be able to see how different variables affect each other. It is done
separately for the pressure control and the level control.

4.1 Pressure Control

The interesting part of the model for the pressure control is the pumps, pipes and
valves. The consumers in the system are seen as disturbances from the controllers
point of view. Because of that all of the consumers, in this simplification of the
model, are lumped together to one valve. In the first step only one pump and
valve is considered without the dynamic in the pipes between them. Figure 4.1
shows a block diagram of a pump and a valve, where ur (t), is the control signal
in rpm, a0, a1 and a2 are the constants describing the pumps characteristic curve
for rotational speed N and uv(t) is the control signal to the valve.

Figure 4.1: Block diagram of simplified model with one pump.
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In the second step more pumps are considered. Since the pumps, work in parallel
the pressure at the pumps will be the same for all pumps, but the flow rate that
each of the pumps provides will be summed up. Equation 3.35, (3.39) and the
fact that the pressure is the same and the flow rate is summed up gives (4.1). In
other words if several pumps are running at once each pump will contribute with
the flow rate Qtot

Npumps
where Npumps in the number of pumps running. The small

pump is replaced with a large pump because of the results that are presented
later in Chapter 6.


Qi = − a1

up
N

2a2
+

√
p−a0

(
up
N

)2

a2
−
(
a1

up
N

2a2

)2

Qtot =
∑Npumps
i=0 Qi

=⇒

p = a0

(
up
N

)2

+ a1
up
N

Qtot
Npumps

+ a2

(
Qtot
Npumps

)2

(4.1)

The block diagram for several pumps running at the same time is then almost the
same as the one for just one pump running, see Figure 4.2, the only difference is
the 1

Npumps
block.

Figure 4.2: Block diagram of simplified model with several pumps.

4.1.1 Pipe Dynamics

There is no simple transfer function between the pressure and flow rate, which
makes it hard to understand the dynamics in the pipe. A black box model is used
to create a simplified model of the relation between the pressure and flow rate.
There are a few different types of time discrete black box models and the most
common are, ARX, ARMAX, BJ and OE. The equations for the black box models
are given in (4.2), where u(t) is the input, y(t) is the output, q is the delay operator
and in (4.3) are a, b, c, d and f are parameters that are fit to data and na, nb, nc,
nd, nf and nk are chosen parameters. [7]
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ARX: A(q)y(t) = B(q)u(t) + e(t)

ARMAX: A(q)y(t) = B(q)u(t) + C(q)e(t)

BJ: y(t) =
B(q)
F(q)

u(t) +
C(q)
D(q)

e(t)

OE: y(t) =
B(q)
F(q)

u(t) + e(t)

(4.2)

Where A(q), B(q), C(q), D(q) and F(q) are given by the following equations:

A(q) = 1 + a1q
−1 + . . . + anaq

−na

D(q) = 1 + ddq
−1 + . . . + dndq

−nd

F(q) = 1 + f1q
−1 + . . . + fnf q

−nf

C(q) = 1 + c1q
−1 + . . . + cncq

−nc

B(q) = b1q
−nk + b2q

−nk−1 + . . . + bnbq
−nk−nb+1

(4.3)





5
Controller

When considering what type of controller to use in this system it is important
to consider controller performance versus simplicity of the controller. The river
water pumping station is a crucial part of the factory which makes it very impor-
tant that the controller is easy to understand and maintain. The most common
controller in the process industry is the PI controller and it is in most cases a
sufficiently good controller [22]. Different types of common controllers for wa-
ter distribution networks have been studied in [8], where one of the conclusions
is that a classical type of controller such as PI gives sufficient performance for
smaller water distribution networks and it is also more cost-effective and easier
to implement than more advanced controllers. The PI controller should be suf-
ficient in this case since it is a small distribution system and the PI controller is
something most of the people that work with controllers understand.

Regarding the distribution of the control signal between the multiple actuators,
the most efficient way to control pumps working in parallel, according to [16], is
with the same control signal, when more than one pump is turned on.

Another thing to take into account when considering the controller is that reso-
nances can occur in the system because of the transient flow [1]. To avoid intro-
ducing resonance in the pipe, a low pass filter can be used in the feedback [3] so
that the controller will not react to the resonance frequencies. The poles for the
low pass filter are placed in such a way that they become dominant in the feed-
back and dampen the resonance frequencies. Since the feedback is dominated
by a low pass filter, the modulus optimum tuning method is a good tuning al-
ternative, because the it gives a good frequency response for lower frequencies
[2].

27
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5.1 PID-Controller

The PID-controller, proportional-integral- derivative controller, is a feedback con-
troller, Figure 5.1 shows a block diagram of a feedback controller. The output
from the process, y(t), is fed back to calculate the error, e(t), between the actual
output from the process and the wanted output value, r(t), the error is then used
to calculate a control signal, u(t).

ProcessController

Figure 5.1: Block diagram of a process with a feedback controller

The equation for the PID-controller is given by Equation 5.1, where K is the pro-
portional gain, 1

Ti
the integral gain and Td the derivative gain.

u(t) = Kc

(
e(t) +

1
Ti

t∫
0

e(τ)dτ + Td
de(t)
dt

)
(5.1)

The proportional part of the PID-controller is used to speed up the controller, but
there is often a static error if just the proportional part is used, the integral part is
used to remove such errors. The proportional and integral part of the controller
can contribute to making the controller more unstable. For this reason it is some-
times necessary to add a derivative part that makes the controller more stable
because it takes the future error into account, but it also reacts much more to
disturbances and noise. The derivative gain, in this case, would not add anything
to the controller.

5.2 Low Pass Filter

A low pass filter is a filter that lets lower frequencies pass while higher frequen-
cies are dampened. The second order low pass filter is commonly used in control
feedback loops because it has a steeper slope and introduces less phase lag in the
system than first order low pass filters [3]. The equation for a second order low
pass filter is given in (5.2) where ωN is the natural frequency for the filter and ζ
is the damping ratio.

Glp(s) =
ω2
N

s2 + 2sζωN + ω2
N

(5.2)
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5.3 Modulus Optimum Tuning

In modulus optimum tuning the controller parameters are chosen in such a way
that the transfer function between SP and PV is as close to one as possible for low
frequencies. The desired loop transfer function for modulus optimum method is
given by (5.3), where ω0 is a parameter. [2]

GMO =
ω0

s(s +
√

2ω0)
(5.3)

When having a second order transfer function for the process as in (5.4), where Kp
is the process gain and T1 and T2 are time constants, a PI-controller can be used.
The control parameters are set such that the loop transfer function becomes the
desired loop transfer function in (5.3), which means that Ti = T1 which cancels
the dominant pole and K = T1

2KpT2
which gives the desired gain.

G(s) =
Kp

(sT1 + 1)(sT2 + 1)
, T1 > T2 (5.4)

The process, in this case, is nonlinear which means that the process gain can vary
depending on operating point. To help determine the controller gain an adaptive
controller can be used, that continuously calculates the process gain.

5.3.1 Adaptive Controller

Adaptive controllers adjust their parameters continuously to the process dynam-
ics or disturbances [22]. Figure 5.2 shows a block diagram of an adaptive con-
troller where the parameter estimation block estimates the process, which is then
used to tune the control parameters. The type of adaptive controller used in this
case is similar to gain scheduling which changes control parameters depending
on the operation point of the system.

Parameter
estimation

ProcessController

Controller
design

Controller
Parameter

Controller estimatesSpecifications

Figure 5.2: Block diagram of an adaptive controller
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The simplification of the model, from Chapter 4, is used to estimate the process
gain, however the transfer function from control signal to pressure is nonlinear
therefore the transfer function is linearized in order to use it to estimate the gain.
Equation 5.5 shows how the linerization of this system can be done, where p is
pressure, ur is the control signal, Q is the flow rate, the subscript 0 stands for the
operating point and f is the nonlinear function that is linearized [9].


∆p = p − p0

∆ur = ur − ur0
∆Qtot = Qtot − Qtot0

∆p =
δf

δur
∆ur +

δf

δQtot
∆Qtot

(5.5)

Linearizing the pump and the valve model from Figure 4.2 this results in:

∆p =
2a0ur0
N2 ∆ur +

a1Qtot0
NNpumps

∆ur +
a1ur0

NNpumps
∆Qtot +

2a2Qtot0
N2
pumps

∆Qtot

∆Q =
kv

2
√
p0

∆p =
/
kv =

Q
√
p

/
=
Qtot0
2p0

(5.6)

From the linerization of the system it is possible to get a linear function that
describes the relationship between control signal to pressure as is shown in the
following equation:

∆p

∆up
=

2a0up0

N2 + a1Qtot0
N

1 −
( a1up0

N + 2a2Qtot0
N2
pumps

)
Qtot0
2p0

(5.7)

The operating points are low pass filtered measured signals such that high fre-
quency disturbance does not affect the calculation of the gain. In other words the
estimate of the process gain is given by (5.7).

5.3.2 Scaling

Another part that has to be considered is the scaling between different units in
the system. Figure 5.3 shows a block diagram of how the signals are scaled in the
system.

Following the block diagram one can see that the total scaling ends up at rpmmax
barmax

.
This is what the estimated process gain has to be multiplied with in order for the
scaling in the system to be correct.
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Controller Scaling ProcessScaling

Figure 5.3: Block diagram that shows how the signals are scaled.





6
Results and Discussion

In this chapter are the results presented and discussed.

6.1 Model Validation

In this section the results from the modeling of the system are presented. Mea-
sured data from the real process has been used in the simulations as inputs. Mea-
sured data has also been plotted in figures with the outputs from the simulated
data to qualitatively evaluate the model.

6.1.1 Pumps

The pump characteristic curve is approximated by first taking a few points on
the pump characteristic curve, for a certain rotational speed, given by the data
sheet of the pump and then using the least squares method, (3.37), as in Section
3.4. The operating point for the large pump is 920 rpm and small pump is 1078
rpm. The result from the approximation of the pump characteristic curve for
both the large and small pump is shown in Figure 6.1, where real curve refers to
the points on the pump characteristic curve given by the data sheet, and approxi-
mated curve is the least squares approximation of the real curve.

As can be seen in Figure 6.1 the approximation of the pump characteristic curves
with a second order polynomial is quite good and the approximated curves follow
the real curves well.

The model of the pumps were tested by using measured pressure and control sig-
nals in rotational speed as inputs to the model. The results from the simulations
are shown in Figure 6.2, where Figure 6.2(a) shows the measured total flow rate
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0 500 1000 1500 2000 2500 3000
2

3

4

5
Pump Characteristic Curves, Small Pump

Approximated curve

Real curve

1000 2000 3000 4000 5000 6000 7000
2

4

6
Pump Characteristic Curves, Large Pump

Approximated curve

Real curve

Figure 6.1: Real and approximated pump characteristic curve for both the
large and the small pump.

and total simulated flow rate and Figure 6.2(b) shows the simulated flow rate for
each of the pumps.

Figure 6.3 shows real data on how the controlled pressure reacts when the smaller
pump is on and off.

The three large pumps give the same flow rate and the smaller pump has a much
lower flow rate which is sometimes even a zero, see Figure 6.2(b). This happens
because the pressure in the pipe is too high for the smaller pump and in those
moments it does not have the capacity to push the water back. In other words the
installment of the smaller pump was quite problematic and could be part of the
problem why the current controller does not work very well. This theory is also
supported by Figure 6.3 where it can be seen that when the small pump is turned
on the pressure oscillates more than when it is off. The small pump has also
never worked the way it was supposed to. The main reason it was installed was
to run by itself, which it never has, when the flow rate was too low for the large
pumps. The circumstances has also changed since the small pump was installed
and the overall need for water has increased. Therefore when the new controller
is developed the smaller pump is replaced with a larger pump. This could solve
the problem with the disturbances and the shortage of water that occurs during
the warmer periods.

To validate that the logic for when to start and stop the pumps work. The real
control signal, from a period when three of the pumps are turned on and off, was
used as input to the model of the logic. The result from this simulation is shown
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Figure 6.2: Simulated and measured flow rate for the small pump and the
large pumps.

in Figure 6.4 where the simulated output from the logic, which is the rotational
speed for each of the pumps, is plotted against the measured rotational speed for
each of the pumps.

The logic for the pumps works well and the pumps are turned on and off when
they are supposed to as seen in the figure.

6.1.2 Pipes

The pumps, the pipes leading to the consumers, valves at the large consumers
and the pressure controller that control the pumps is simulated with the the flow
rate to the consumers as the input. Figure 6.5 shows result from this simulation,
where Figure 6.5(a) shows the simulated and measured pressure in the pipes right
after the pumps and Figure 6.5(b) shows the measured and simulated flow rate
in the pipes right after the pumps.

The result of the pipe simulation in Figure 6.5 is a bit off the measured values
when it comes to the total flow rate because in the model there are only two
consumers, but in reality there are several more of them. This resulted in the
simulation deviating slightly in total flow rate compared to reality however the
general behavior is similar.

6.1.3 Inside the Pumping Station

The model of everything, except for the pumps and pipes, is validated by run-
ning the model with measured values of the total flow rate out of the river water
pumping station as input to the model. The result from this is shown in Figure
6.6 and Figure 6.7.
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Figure 6.3: Real data on how the pressure reacts on when the small pump is
on and off.

The result from this seems to be good in general and has similar behavior as the
measured data, as seen in the figures. The parameters in the model were chosen
by hand. An alternative to this is to instead fit them directly to the data. This
would improve the model fit, however it is not very important in this case because
it is the general dynamics in the system that are interesting. The controller for the
inlet hatch is also not perfect, which is probably due to the delays in the system.
Once the inlet hatch is done moving one position there is a pause of 30 seconds
before feedback and no new control done within the next 8 minutes. The time
for how long it takes to move the inlet hatch one position varies which makes it
hard to capture the delays in the simulation.

6.2 Black Box

Estimation and validation data is created by running the pipe model with a
pseudo-random signal as input, which is the flow rate out of the pipe. The output
is then the pressure at the upstream end of the pipe. The different black box mod-
els described in 4.1.1 were estimated using the estimation data and their level of
fit to the validation data is shown in Figure 6.8. Figure 6.9 shows the frequency
response for the estimated black box models.

All of the different types of black box models fit the validation data quite well.
However the black box models are made in order to get an estimation of the
transfer function for the pipe, this makes the frequency response for the models
interesting to look at because resonance in the pipe can then be investigated. In



6.3 Filter 37

Figure 6.4: Measured and simulated rpm for all pumps to see that the logic
works.

Figure 6.9 it can be seen that all of the black box models have a resonance peak
at around 0.1 Hz.

6.3 Filter

Since the filter is supposed to suppress the resonance in the system, the black box
model with the largest resonance peak is chosen when tuning the low pass filter.
The result from this is shown in Figure 6.10 with a Bode plot of the black box
model and the filter.

When it comes to creating the filter the important part is to suppress the reso-
nance peak. Figure 6.10(a) shows that the resonance peak is 24 dB high. In order
to suppress that peak the low pass filter has to attenuate that frequency by at least
24 dB. Figure 6.10(b) shows a manually tuned filter which fulfills that demand.

6.4 Controller

The new controller is tested by simulating two different ways of closing the valves,
as a step and as a ramp that takes 30 s, at the consumers. The pressure, flow rate
and control signal from the new controller is compared to the corresponding
signals from the old controller in the same simulations. Figure 6.11 and 6.12
show the result from the simulations when the valves close as step for the old
and new controller respectively.

Figure 6.13 and 6.12 shows the result from closing the valves as a ramp that takes
30 s for the old and new controller respectively.
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(a) Simulated and measured pressure in
the pipe.

(b) Simulated and measured flow rate in
the pipe.

Figure 6.5: Simulated and measured flow rate and pressure in the pipe

(a) Measured and simulated data of the
water level in the inlet channel.

(b) Measured and simulated data of the
water level in the pump well.

Figure 6.6: Simulated and measured water level for the inlet channel and
pump well.

There does not seem to be that much of a difference in the controllers when con-
sidering the figures showing the pressure and flow rate, see Figure 6.11(a)-6.14(a).
On the other hand when it comes to the control signal there is a difference, as
seen in Figure 6.11(b)-6.14(b). The control signals from the old controller oscil-
lates more when the valves close than what the new controller does. The new
controller is therefore nicer to the pumps because it does not make any large
sudden changes in the control signal.
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Figure 6.7: Measured and simulated positions for the inlet hatch.

Figure 6.8: A few black box models fit to validation data.
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10
-3

10
-2

10
-1

10
0

10
1

10
2

-100

-50

0

50

100

Bode Diagram
From:u1 To:y1

Figure 6.10: Bode plot of one of the black box models with 24 dB high reso-
nance peak at 0.737 Hz and the filter which is -24.6 dB at 0.73 Hz
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(a) Simulated pressure and flow rate in the
pipe with the old controller.

(b) Simulated control signal to the pumps
with the old controller.

Figure 6.11: Simulation of old controller with the two consumers valve clos-
ing as a step.

(a) Simulated pressure and flow rate in the
pipe with the new controller.

(b) Simulated control signal to the pumps
with the new controller.

Figure 6.12: Simulation of new controller with the two consumers valve clos-
ing as a step.
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(a) Simulated pressure and flow rate in the
pipe with the old controller.

(b) Simulated control signal to the pumps
with the old controller.

Figure 6.13: Simulation of old controller with the two consumers valve clos-
ing as in reality.

(a) Simulated pressure and flow rate in the
pipe with the new controller.

(b) Simulated control signal to the pumps
with the new controller.

Figure 6.14: Simulation of new controller with the two consumers valve clos-
ing as in reality.
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Conclusion

In conclusion, the problem with the river water pumping station is the control
system and that it cannot pump enough water during the warmer periods of the
year and the questions that this thesis aimed to answer were:

• What is it in the current control system that causes the control problems?

• How does the dynamics in the system affect the choice of control structure
and is there a better way to control this system?

• How should the natural nonlinearities in the system be handled?

In this thesis a model has been created to capture the overall dynamics of the
system. The model is then used to test the newly develop controller to evaluate
its performance. The model captured the overall dynamics of the system. When
modeling the system it was found that the smaller pump contributes a much
smaller flow rate than the larger pumps and it also introduces oscillations to
the system. Because of that the smaller pump is removed in the new controller
and four large pumps are used instead. This could solve the problem with the
disturbances and the shortage that occurs during the warm periods of the year.
In other words this smaller pump could be the cause of the control problems in
the system.

The nonlinearities in the system are handled by linearizing the model and with
the help of the linearized model adapt the control gain to different operating
points.

Resonance could occur in the pipes so when it came to the choice of controller
this aspect had to be taken into account to not trigger the resonance frequency.
The newly developed controller preforms similarly to the old controller when
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just comparing pressure and flow rate. However when taking the control signal
into account the new controller is a little bit better because it does no make any
large sudden changes.



8
Future Work

There are a few different things that would be interesting to look into in the future
related to this thesis.

There is a problem with the control of the inlet hatch in the river water pump-
ing station. The controller is not fast enough when large amounts of water are
suddenly drawn or large amounts have been drawn and it suddenly stops. One
possible solution to the problem could be to use the flow rate measurement and
to also open the hatch when the flow rate increases a certain amount.

The controller could be improved by a feedforward controller from the consumers.
That way the controller would know when the consumers will open their valves
and thereby be able to compensate for the valves opening before it affects the
pressure too much.

Further development that could be done with the model is to use it for fault diag-
nosis in the system. In other words the model could be used to create residuals
and variables that can give an indication on the status of the pumps, sensors etc.
If such variables are found it may be possible to also use them to adapt the pa-
rameters in the controller to compensate for the faults.
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A
Scaling of the Pump Constants

The scaling of the constants that describes the pump characteristic curve can
be derived the following way. The inverse of ATA in (3.37) can be calculated
with 1

|AT A|adj(A
TA) this gives (A.1), where n are all of the points on the pump

characteristic curve and Qi and pi are the flow rate and corresponding pressure
of one point on the characteristic curve.
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(A.1)

It is assumed that N1, N2, p2 and Q2 are known when using the affinity laws in
(3.38), which means that p1 and Q1 can be calculated with the affinity laws. All
the points Qi and pi , in Equation A.1, are known and they are on the character-
istic curve with rpm N2. The control signal to the pumps is rpm N1, new points
along the characteristic curve with rpm N1 can then be calculated with the affin-
ity laws. This results in (A.2) which is the calculation of the constants for the
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characteristic curve for rpm N1, the equation results in how the constants a0, a1
and a2 can be scaled in order to jump from the characteristic curve with rpm N2
to the characteristic curve with rpm N1.
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