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Abstract

With the recent advantages of machine learning in cheminformatics, the drug discovery
process has been accelerated; providing a high impact in the field of medicine and public
health. Molecular property and activity prediction are key elements in the early stages of
drug discovery by helping prioritize the experiments and reduce the experimental work.
In this thesis, a novel approach for multi-task regression using a text-based Transformer
model is introduced and thoroughly explored for training on a number of properties or
activities simultaneously. This multi-task regression with Transformer based model is
inspired by the field of Natural Language Processing (NLP) which uses prefix tokens to
distinguish between each task. In order to investigate our architecture two data categories
are used; 133 biological activities from the ExCAPE database and three physical chemistry
properties from MoleculeNet benchmark datasets.

The Transformer model consists of the embedding layer with positional encoding, a
number of encoder layers, and a Feedforward Neural Network (FNN) to turn it into a
regression problem. The molecules are represented as a string of characters using the
Simplified Molecular-Input Line-Entry System (SMILES) which is a ’chemistry language’
with its own syntax. In addition, the effect of Transfer Learning is explored by experi-
menting with two pretrained Transformer models, pretrained on 1.5 million and on 100
million molecules. The text-base Transformer models are compared with a feature-based
Support Vector Regression (SVR) with the Tanimoto kernel where the input molecules
are encoded as Extended Connectivity Fingerprint (ECFP), which are calculated features.

The results have shown that Transfer Learning is crucial for improving the perfor-
mance on both property and activity predictions. On bioactivity tasks, the larger pre-
trained Transformer on 100 million molecules achieved comparable performance to the
feature-based SVR model; however, overall SVR performed better on the majority of the
bioactivity tasks. On the other hand, on physicochemistry property tasks, the larger pre-
trained Transformer outperformed SVR on all three tasks. Concluding, the multi-task
regression architecture with the prefix token had comparable performance with the tra-
ditional feature-based approach on predicting different molecular properties or activities.
Lastly, using the larger pretrained models trained on a wide chemical space can play a
key role in improving the performance of Transformer models on these tasks.
Keywords: multi-task regression, QSAR, QSPR, attention based models, deep learning,
transfer learning.
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1 Introduction

1.1 Background

The scientific field of cheminformatics combines aspects of fields as mathematics, informatics
and machine learning to address problems in chemistry. With the rapid growth of available
chemical data and the successes of machine learning; the focus of solving chemical problems has
turned into AI-driven approaches [16]. In basic terminology of chemistry, a molecule consists
of two or more elements (atoms) which could be the same or not, and a chemical compound
consists of two or more different elements. Molecules are composed of atoms connected with
chemical bonds. Cheminformatics tries to address different problems based on molecules.

Using computational tools drug discovery process can be accelerated and the number of
trials can be reduced. This would lead to saving time and money on this process, having a
high impact in the field of medicine and in public health. Some chemical problems related to
drug discovery are property and activity prediction [47, 49], organic synthesis [10], de novo
generation and others. Property prediction focuses on estimating a molecular property (usually
a continuous value) from its structure, for example how much a molecule dissolves in water.
In organic synthesis, a complex molecule is generated from more simple compounds or vice
versa (synthesis, retrosynthesis) [10]. The de novo design methods generate molecules similar
to known; giving the ability to create new drug-like structures [41].

The molecular chemical formulas need to be represented in a specific format to be used
along with machine learning models. In the literature there exist different ways to represent
a molecule to make them compatible with machine learning methods [22]. One way to rep-
resent molecules is to create handcrafted features from the molecular structure, also known
as descriptors, which require professional knowledge. Examples of these descriptors could be
the molecular weight, the number of rotatable bonds and others [25] or extended-connectivity
fingerprints (ECFPs) [65]. ECFPs are explained on Section 2.5. Such features are compatible
with most traditional machine learning algorithms. Another way to represent a chemical struc-
ture is graphs [19], using graph-based models, such as graph variational autoencoders [42] or
graph convolutional neural networks [19]. A third approach is to represent molecules in a lin-
ear notation, more specifically as a string of characters. Simplified molecular-input line-entry
system (SMILES) [85] is a line notation for representing the structure of chemical species, a
more detailed overview of SMILES is given in Section 2.1. Using SMILES it is possible to

2



1.2. Literature review

take advantage of the natural language processing (NLP) models to address cheminformatics
problems.

In this thesis some technical terms will be mentioned repeatedly, thus at this point they will
be briefly explained and for more details, someone could look to the references that are cited.
In bioactivity prediction content, a protein array consists of multiple proteins immobilized on
a solid support [12] and is used to identify the protein-molecule interactions. Each family of
protein target arrays is represented by a gene symbol, for instance OPRD1, KCNH2, HTR7,
and each gene symbol corresponds to a regression task. Moreover, whenever the term task is
mentioned, it refers to a regression task. Each molecule is a chemical compound that consists
of atoms. Εach gene symbol is a regression task and has many molecules with their activity
values. Regarding the physical chemistry properties content, each property is a regression
task, with the molecules as inputs and the property values as output.

1.2 Literature review

In an early study of Svetnik V. et al. [78], they tackled different quantitative structure-activity
relationship (QSAR) tasks to predict the biological activity of a molecular structure. They
address four QSAR tasks as classification (blood-brain barrier, estrogen receptor binding, P-
glycoprotein transport activity, and multidrug resistance reversal activity) and two as regres-
sion problems (dopamine receptor binding affinity, COX-2 inhibition). As attributes, several
descriptors are created for each of the tasks. The machine learning models that the authors
chose are decision trees, random forest (RF), partial least squares, linear regression, support
vector machines (SVM), and artificial neural networks (ANN). After comparisons, the random
forest typically ranks among the highest performance models, concluding that “off-the-shelf”
(without an extensive hyperparameter tuning) is a suitable choice. In the paper ”Deep Neural
Nets as a Method for Quantitative Structure–Activity Relationships” [47], the authors selected
15 QSAR regression datasets to explore the performance of deep neural networks and random
forest, using a number of descriptors to represent a molecule. The DNNs have a large number
of adjusted hyperparameters and they trained over 50 DNNs with different hyperparameters.
Their results have shown that in 11 out of 15 datasets DNNs on average outperform RF. These
findings gave the incentive to explore more the deep neural network architectures on QSAR
tasks.

The QSAR task of toxicity in DeepTox paper [50] is approached using a multi-label deep
neural network by introducing a multi-task model for QSAR modeling. The dataset that was
used is Tox21 to predict the toxicity of chemical compounds on the 12 toxic effects. The input
consists of ECFPs descriptors and the output of the network has twelve neurons of the binary
classification, corresponding to the twelve toxic effects. Since the twelve different tasks are
correlated, the multi-task training could improve performance. The network combined the
information from different tasks in its weights, taking advantage of the additional knowledge
from all toxic effects which is not possible when tackling each task individually. The results
have shown that it achieved competitive results and outperform the traditional machine learn-
ing methods in 10 out of 12 assays, showing promising results utilizing multi-task learning.

The work of Sturm Noé et al. [76], uses the ExCAPE-ML with 526 targets to predict the
binary classification of molecules’ bioactivity in presence of a target protein, then they test
on an external in-house test set to evaluating on industry-oriented compounds. The activities
were assigned into two classes (i.e. inactive, active) by setting a threshold on activity values
(recorded as pXC50) where pXC50>=6 indicates that the compound-target is active. All
models used ECFP descriptors to represent compounds. More specifically, a DNN trained
on multi-task binary prediction on all target-proteins, the gradient boost model XGBoost
were trained on each protein individually for binary classification, and a Bayesian matrix
factorization; approaching the tasks as regression and then considering a compound as active
if it had pXC50>=6. The conclusion of this work show that the DNN outperforms the other
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1.3. Objectives and Research Questions

two models on most of the tasks but not all, confirming the previous literature observations
that deep learning can be useful in multi-task learning.

Li X.and Fourches D. with the ”MolPMoFiT” [45] model approached the quantitative
structure activity/property relationship QSAR/QSPR tasks like natural language processing
(NLP) problem. As input, the SMILES string of characters representation was used on a
recurrent neural network architecture, called ULMFiT [36] model. Moreover, transfer learning
was utilized where they trained the language model (LM) to predict the next character given
the previous characters. In this way the model understands the syntax of SMILES strings
and then fine-tune these parameters on a single task at a time. They tested the performance
of ULMFiT model on four benchmark datasets of molecular activities/properties and shown
that it performed better than the state-of-the-art results reported in the literature for all
four benchmark datasets. Their findings encourage the potential of NLP approach for QSAR
problems.

In the recent work ”Molecular representation learning with language models and domain-
relevant auxiliary tasks” [26], the authors used the state of the art neural network in NLP
the Transformer called Bidirectional Encoder Representations from Transformers (BERT) [24]
on QSAR tasks. The main idea is as described previously, pre-train the BERT model in a
self-supervised way and then fine-tune it on downstream tasks as QSPR, where they achieved
remarkable results on QSPR benchmarks, indicating the potentials of Transformer architecture
on these problems.

1.3 Objectives and Research Questions

This thesis aims to experiment with a novel multi-task regression approach to predict the
biological activity and physicochemical properties of a molecular structure. QSAR/QSPR
prediction is one of the key elements of early drug development. Moreover, effectively predict-
ing the activity of chemical compounds could help prioritize the experiments during the drug
discovery process, thus could reduce the time on conductive experiments.

The main research questions this thesis aims to answer:

1. Can a text-based model, with the same parameters and architecture, predict multiple
molecular activities/properties and if yes, to which extent?

2. Can transfer learning improve the performance of the text-based model, by giving prior
knowledge on the model about the syntax of chemical compounds?

3. How does the text-based model perform compare to a feature-based traditional machine
learning algorithm?

The following chapter Data2 will present the datasets that are used in this thesis.
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2 Data

The bioactivity data that is used in this work is from the publicly available database ExCAPE
[77], containing SMILES representations of molecules and their activity on a target protein.
The benchmark dataset webpage MoleculeNet [87] contain physicochemical properties with
their molecules as SMILES strings.

2.1 Simplified Molecular Input Line Entry System

Simplified Molecular Input Line Entry System (SMILES) [86] is a way to represent chemical
compounds as text on principles of molecular graph theory. SMILES is a proper language,
with a simple vocabulary (atom and bond symbols) and only a few grammar rules. Atoms are
denoted by their atomic symbol and are enclosed in square brackets, except of the elements in
the ”organic subset” ‘B, C, N, O, P, S, F, Cl, Br, and I’ which may be written without brackets
in some cases. For instance, phoshine in chemistry is written as PH3 and P as SMILES. It
shows that hydrogen is omitted when the atom is not in square brackets while in the case
of the atom in square brackets it is not, e.g. hydroxyl anion [OH-]. The lower case letters
specify the atoms in aromatic rings, for example aliphatic carbon is represented by the capital
letter C while aromatic carbon by lower case c. The bonds in SMILES are denoted with
special symbols -, =, #, and :, represent single, double, triple, and aromatic bonds, where
single and aromatic bonds are usually omitted. For instance, “CC” is ethane (CH3CH3),
“O=CO” is formic acid (HCOOH). Branches in SMILES representation are encapsulated in
parenthesis, e.g. isobutyric acid is written as “CC(C)C(=O)O”. In cyclic structures one single
(or aromatic) bond should be broken to have a non-cyclic graph and be written as line notation.
The disconnected compounds are denoted as separate structures that are concatenated by a
period, e.g. sodium phenoxide is written as “[Na+].[O-]c1ccccc1”.

In Figure 2.1 we can see how the chemical compound Tryptophan is converted from a
molecular graph to line notation of SMILES. First all cycles are broken and replaced by
matching digits, then some traversals are selected and the branches are colored to indicate an
order to be written. Finally following the main backbone the SMILES string is constructed,
where the beginning and end of each traversal are denoted as open and close parenthesis. A
molecular graph can be read starting from different edges or following different trajectories.
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Figure 2.1: Transition from graph to line notation using SMILES generation algorithm.
The molecular graph (A). All cyclic structures are broken and matching digits are written
indicating their connection, constructing a spanning tree (B). Coloring the traversals to create
paths (C). Reading the graph following the colors (D).
source: Original by Fdardel, slight edit by DMacks, CC BY-SA 3.0,
https://commons.wikimedia.org/w/index.php?curid=2556784

2.2 Exascale Compound Activity Prediction Engine database

Exascale Compound Activity Prediction Engine abbreviated as ExCAPE is a publicly available
database combining active and inactive compounds from two large open databases PubChem
[39] and ChEMBL [51]. It contains over 70 million data points with about one million com-
pounds and 1667 targets. Each data point consists of the activity of a chemical compound on
an array of protein target, including the standardized compound structures, the official gene
symbols and the standardized, log-transformed activity values (pXC50 values). This thesis is
focused on predicting the activity values of around 310000 molecules and 133 protein targets
that were of interest to investigate. In each protein target at least 1200 molecules are included
in order to have comparable results for single task predictions. Each task is represented by the
gene symbol or protein target, so every task has its chemical compounds (data points) with
their activity values (target values) on that specific task.

Table 2.1 shows ten of the one hundred and thirty tasks denoted by the gene symbol, with
the number of chemical compounds that they have, and the corresponding range and median of
the activity values in pXC50. The gene symbol with the most and the least entries are included
in this table. The regression task of ’OPRM1’ gene symbol contains the most molecules 5830,
and the ’GHSR’ gene symbol the least, 1241 molecules. All pXc50 values has minimum value
5 and the upper bound differs between genes, as well as the median differ among tasks. The
full table with all 133 gene symbols can be found in the Appendix.

The divergence between the target values of different tasks is noticed in Figure2.2, where
x-axis denotes the different gene symbols and y-axis denotes the pXC50 values. Some tasks
(GSK3B, FGFR1, AKT2) have the pXC50 values concentrated around 5 and are a bit skewed
on the high values of pXC50, while other tasks (HSD11B1, P2RX7, HTR7) have median
around 7 and high variance of the activity values. The TACR1 gene symbol is spread from
pXC50 value 6 to 10, and has some extreme values over 11 than the other displayed tasks do
not have. Thus, it is shown that some tasks have different distribution of the target values,
while others have similar.
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Gene Symbol Count pXC50 range pXC50 median
OPRM1 5830 [5.0, 13.38] 7.30
KCNH2 5275 [5.0, 9.85] 5.63
HRH3 4662 [5.0, 11.22] 7.89

ADORA3 3810 [5.0, 15.0] 6.91
CA2 3652 [5.0, 10.0] 7.44

HPGD 3061 [5.0, 8.25] 5.35
SIGMAR1 2886 [5.0, 11.6] 7.48

ROCH1 1629 [5.0, 9.55] 5.60
PRKCD 1525 [5.0, 10.0] 5.60
GHSR 1241 [5.0, 11.0] 7.56

Table 2.1: A random sample of ten gene symbols with the number of chemical compounds
that are associate with, the range and median of their activity values.

Figure 2.2: The violin plots show the divergence of the activity value distributions from a
random sample of ten different tasks.

A sample of the whole dataset is shown in Table2.2, where all tasks are concatenated in
one dataset for the multi-task approach. The first column indicate from which database is
the information of the entry extracted, the second column shows the task (gene symbol). The
third column is the SMILES stings that represent the molecules and the last column is the
activity values that will be predicted by some model.

2.3 MoleculeNet benchmark datasets

From the publicly available benchmark datasets on webpage MoleculeNet [87], three physical
chemistry property datasets were downloaded; ESOL, FreeSolv and Lipophilicity, with number
of molecules 1128, 642, 4200 respectively. Estimating Aqueous Solubility (ESOL) [23] is the
property that measueres how much a molecule disolves in water. Free Solvation (FreeSolv)
[52] dataset contains the experimental hydration free energy of small molecules in water.
Lipophilicity is an important molecular property for the drug discovery process, it shows how
easy a molecule disolves in oil, fat, and it is provided as experimental results of octanol/water
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Database Entry ID Gene Symbol SMILES pXC50
PUBCHEM53320866 HTR7 ClC1=CC=C(CN2C3=C(CN...4)C=C1 6.12

CHEMBL553 CDK2 C=12C(=NC=NC1C=C(C(=...)C=CC3 5.1
CHEMBL2372200 OPRD1 N1[C@H](C(NCCCC[C@@H...=CC=C3 7.35

PUBCHEM73353231 OPRD1 O=C1NCC(=O)N[C@@H](C...O)C=C3 7.47
CHEMBL1408587 HPGD O1C2=C(C(CC1=O)=COC(...C2)C)C 5.6
CHEMBL1080117 KCNH2 C1C2(C(CN1CCCSC3=NN=...=C6)Cl 6.7
CHEMBL1642761 OPRD1 C1CCN(C=2C=CC=CC12)C...CCCCC4 5.4
CHEMBL19876 MMP13 C=1(N(C=C(N1)C(O)NO)...C=C2)O 6.67
CHEMBL410234 KCNH2 C1(N2N=C(C=C2C)C)=CC...C)C)=O 6.19

PUBCHEM53388960 GNRHR S1C=2N(CC3=C(F)C=CC=...=CC=C6 10.15

Table 2.2: A sample of the mixed gene symbols dataset with the molecular representation
as SMILES string and the activity value as pXC50 value. Note: the SMILES strings are
truncated in order to fit in the table.

distribution coefficient (logD at pH 7.4) of each compound. In all datasets the molecules
are represented as SMILES strings. As seen in Figure2.3 the psysical chemistry property
values are from totally different distributions and value ranges. This would lead to problems
in backpropagating the gradients in the multi-task models4.2, thus each task was scaled by
subtracting the mean and dividing by the standard deviation from each task’s train set.

Figure 2.3: The distributions of the three physicochemical properties (Lipophilicity, ESOL,
FreeSolvation) on the left and the scaled property values on right.

The length of SMILES strings in each property, which is measured by the number of
characters that each string has, varies as shown in Figure 2.4. Lipophilicity has median of
SMILES lengths around 50 characters which is more than twice the median of ESOL and
FreeSolvation, around 20 characters. All three properties have upper thin tails with max
length values 267 for Lipophilicity, 98 for ESOL and 82 for FreeSolvation.

2.4 Preprocessing for text-based models

As shown in Section 2.1, SMILES strings is a textual representation of molecules. These
SMILES strings must be transformed into numerical representations, in order to be processed
by machine learning models. This section will explain how SMILES string are processed to
feed in a text-base model using tokenization and in a feature-base model using fingerprints
(i.e. molecular features). The datasets are split into train and test sets. From each task 25%
of the data kept for test set and the other 75% for training. In both approaches, text-base and
feature-base, the split train and test sets contain the same observation, in that way we can
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Figure 2.4: The histograms of SMILES strings’ lengths in Lipophilicity, ESOL, FreeSolvation
datasets. All three properties have upper thin tails with max length values 267 for Lipophilicity,
98 for ESOL and 82 for FreeSolvation.

compare the two approaches. Finally, for the text base approach 10% of the train set kept for
validation set and for feature-base approach 5-fold cross-validation is used.

2.4.1 Tokenization
Tokenization is an early step in most natural language processing models. Tokenization tech-
nique divides the input text into characters or chunks of characters, called tokens. For example,
in English language one of the most common way to tokenize a text is by words, where each
word is a token [84]. Similarly in cheminformatics, SMILES strings should be divided into
tokens, there exist different ways to tokenize SMILES strings. Using atom-level tokenization,
each SMILES string is divided into characters with some exceptions. The atoms with two
characters are extracted as tokens such as ’Cl’, and ’Br’. Special cases encoded in brackets
construct a token, for instance ’[Na-]’ is a token. For example, D-alanine SMILES representa-
tion ’N[C@H](C)C(=O)O’ is tokenized as ’N’,’[C@H]’,’(’,’C’,’)’,’C’,’(’,’=’,’O’,’)’,’O’. All unique
tokens of the training set construct the ’vocabulary’ of the dataset. In this vocabulary some
other special tokens are added, such as the start of SMILES token [SOS], the end of SMILES
[EOS], the padding token [PAD] which pads the sequences in each mini-batch (mini-batch is
defined in the end of Section 3.1) to have the same length, and the unknown token [UNK]
which represents a token that does not exist in the train set but it appears in the test set. Ad-
ditionally, each gene symbol will be represented as a token, meaning that for 133 gene symbols
there exist 133 unique tokens, and the same for the three physical chemistry properties there
exist three tokens. Finally, every token of the vocabulary corresponds to an index (integer
number), so each input sequence can be transformed from text representation to numerical
representation. After the input sequence is transformed into sequence of integers then it can
be fed into the Embedding layer which is described in Section 3.2.1. In this thesis, the atom-
level tokenization of SMILES will be used, following the literature [70, 46], which is the most
common way to tokenize SMILES strings because it preserves valuable information about the
molecules.

2.4.2 Data augmentation
Deep learning models need a lot of data to show their predictive power, thus in different
applications data augmentation techniques have been developed [27, 37]. Esben Bjerrum
introduced a technique to augment SMILES srings[9]. Each molecule can be represented as
SMILES string as shown in Section 2.1, where having different starting atom from the same
molecule can lead different SMILES representation [5].
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Figure 2.5: The sequence input to tokens. on the left side are the input sequences, i.e. the
concatenation of the gene symbol and the SMILES string and in the blue boxes is the sequence
tokenized.

SMILES augmentation in this thesis is performed using the open-source package for chem-
informatics in python called RDKit [43], version 2020.09.11. Data augmentation is possible
only in the text-base models where it is performed during the training, meaning that in each
batch the SMILES are augmented on the fly. Using this approach the model receives different
SMILES stings for the same molecule and makes it generalize better.

Figure 2.6: The illustration of data augmentation. The molecule toluene represented as dif-
ferent SMILES strings having different starting points of the 2D representation.
Reprinted with permission: Esben Jannik Bjerrum, SMILES Enumeration as Data Augmen-
tation for Neural Network Modeling of Molecules, arXiv, 2017 [9]

2.5 Molecular Fingerprints

In cheminformatics exists different ways to create molecular fingerprints (i.e. features) for
representing a molecule. Following the models’ performance on different molecular representa-
tion from literature [63, 22]; the most commonly used is the extended-connectivity fingerprints
(ECFPs) [65]. ECFPs are binary arrays that encode physiochemical and structural properties
of molecules. ECFPs represent molecular structures by means of circular atom neighborhoods,
getting into account only the information in a specific radius of each atom. They can quickly
be calculated from SMILES strings using the RDKit [43] python package. The radius and the
number of bits can be specified when calculating fingerprints from SMILES strings.

In this work, radius=2 and bits number=2048 is used, which has shown competitive results
in the literature with SVR [64].

1https://rdkit.org/
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3 Theory

This chapter introduces the different theoretical frameworks that are used in this thesis to
tackle the research questions. First, all the pieces to implement a Transformer Neural Net-
work will be explained. Then the Support Vector Regression model and the ’kernel trick’ are
explained. Finally, Bayesian Hyperparameter Optimization is introduced, which is an efficient
way to find optimal hyperparameters for a machine learning model.

The mathematical notation that will be used throughout this thesis will denote with lower
case letters the scalar or scalar-valued functions, and with bold lower case letters the vectors
or vector-valued functions. While the matrices or higher order matrices (called tensors in
programming frameworks) with be denoted as capital letters.

3.1 Feedforward Neural Network

The idea of artificial neural networks is highly inspired by the human brain. Imagine a situation
that a person is thirsty, the human feels the sense of being thirsty, so this input goes to the

Figure 3.1: One neuron with a non-linearity, the input is x of d dimensions, the weights are
w in the same dimensions as x and b is the bias. The weighted sum of the input plus the bias
is passed through the activation function σ to get the output.
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brain to be processed. Afterwards the brain takes a decision to act, this action could be to
drink a glass of water. The decision of the brain to act is the output, this is a highly simplified
procedure of a neuron. The same way artificial neuron works, the model with one neuron is
called perceptron [66]. The one neuron model is illustrated in Figure 3.1, where the input is
denoted by x of d dimensions, the weights w and the bias b. The weighted sum of the input
plus the bias is passed through the activation function σ to get the output. The activation
function is a non-linear transformation and in perceptron is the step function. Generally the
activation function is related to the outcome that is need, for example if task is a binary
classification, the output must be from zero to one then the sigmoid activation function is
suitable. The perceptron equation for one data point looks like ŷ = σ(xT w + b), where x and
w are vectors of d dimension, b is a scalar and σ is the step function (which gives 1 if the input
is greater than zero, and zero otherwise).

Figure 3.2: A Feedforward Neural Network with one hidden layer. It consists of three input
units, four neurons in the hidden layer and two output units.

Combining multiple perceptron in a network resulting the Multi-Layer Perceptron (MLP),
also called Feedforward Neural Network (FNN). It is called feedforward because information
flows forward to the network and there is no connection that fed back into itself. Usually,
the FNN that has more than one hidden layer is called Deep Neural Network (DNN) which
are commonly used nowadays. The Figure 3.2 shows a FNN with the input layer of three
dimensions, one hidden layer of four dimensions and the output layer of two dimensions. The
used mathematical notations is in vectorized form, denoting the input X with n×d dimensions,
where n is the number of observation points and d the dimension of each point (i.e. the number
of features). The forward propagation is calculated with the following steps:

h(X) = σ(XW1 + b1) (3.1)

and

y(h) = σ(hTW2 + b2) (3.2)

where W1, b1 and W2, b2 are the weights and biases of input to hidden and hidden to output
layers respectively. The weights and biases are called parameters of the model and are usually
initialized in the beginning by random values close to zero. Regarding the weight initialization,
there exists careful considerations about the activations to get a proper flow of the signal
and ensure that there is no diminishing or exploding gradients during backpropagation, two
common initialization’s schemes are Xavier [29] and He [34] initializations. The activation
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functions denoted by σ could be any activation function such as Sigmoid, Hyperbolic tangent
(tanh), Rectified Linear Unit (ReLU) [53] and others.

sigmoid(x) = 1

1 + e−x
, tanh(x) = ex − e−x

ex + e−x
, ReLU(x) =max(0, x) (3.3)

Figure 3.3: The activation functions sigmoid, tanh and ReLU along with their derivatives.
Note: all three functions have domain all the real values.

The FNN are powerful models in which usually is needed to introduce some regularization
in order to avoid overfitting, the most common and effective way to do that is by using dropout
[74]. The dropout layer is usually used after the activation function is applied and it drops
each connection of a layer with probability p (which is a hyperparameter), and the output of
the neuron is also adjusted by dividing with (1-p) during training to ensure more or less same
”signal” after the dropout is turned off, in that way the model does not memorize to activate
specific neurons. The network will learn not to rely in particular connections too heavily but
to consider more connections.

After the end of the forward pass, the loss is calculated and using backpropagation [68] the
weights of the neuron are updated.

The loss function depends on the type of problem that is addressed, for example classifi-
cation, regression and others. Denoting the output of the network ŷ and the actual values y,
the loss function is denoted as L(ŷ,y). Using the backpropagation algorithm the gradients of
the loss with respect to each layer parameters is computed, propagating through the layers of
the network backwards. With a gradient descent algorithm [67] and using a learning rate η

the weights of the output layer from the previous example are updated as follows:

Wnew
2 =W2 − η

∂L
∂W2

,

b2
new = b2 − η

∂L
∂b2

(3.4)

where the learning rate η denotes the size of the step that each update will have. Then the
other parameters W1 and b1 are updated going backwards. There are different variations of
the gradient descent algorithms [67], using one observation at a time to update the gradients
is called stochastic gradient descent, and using all observation is called batch gradient descent.
Usually a variation in-between is used, the mini-batch gradient descent, where the data are
split into batches and the parameters are updated after each mini-batch step. One epoch of
the training is when all data points (i.e. all mini-batches) are used to update the parameters
of the network. For training a neural network a number of epochs is needed (depending on the
problem) to update the parameters and find the optimal ones. One of the most widely used
gradient descent optimization algorithms is Adaptive Moment Estimation (Adam) [40] which
has shown robust performance on large datasets and on non-convex optimization problems.
The key elements of Adam is the adaptive learning rates for different parameters in the net-
work, the exponentially decaying average of past gradients mt and the exponentially decaying
average of past squared gradients vt, which are estimated of the first (mt) and second (vt)
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statistical moments of the gradients, i.e. the mean and the variance. The β1, β2 ∈ [0,1) are
hyperparameters that control the exponential weight decay rates of mt and vt.

m̂t =
mt

1 − βt
1

v̂t =
vt

1 − βt
2

(3.5)

where m̂t and v̂t are the biased-corrected first and second moment estimates.
So the update rule for the Adam optimizer is:

wt =wt−1 −
η√

v̂t + ϵ
m̂t (3.6)

where wt is the weight vector at time step t. The suggested values of the hyperparameters
from the authors of Adam are: β1 = 0.9, β2 = 0.999 and ϵ = 10−8.

3.2 Transformer Neural Network

The Transformer architecture was proposed in the paper ”Attention is All You Need” by
Vaswani et al. [79] in 2017. The original use case of Transformer was as sequence to sequence
model, which was used for the neural machine translation application. Since then it is used for
all kind of tasks (having a sequence as input) with different variations of its architecture. For
instance, the BERT (Bidirectional Encoder Representations from Transformers) [24] model is
used mainly for discriminative tasks, the GPT3 (Generative Pre-trained Transformer 3) [13]
is usually used for generative tasks and others.

The big picture of the original Transformer architecture consists of a muber of encoders
which receive the input sequence to create meaningful representations of it, and a muber of
decoders which generate the output sequence in an autoregressive way (one element of the
output sequence at time given the previous sequence positions) as ilustrated in the Figure 3.4.

Figure 3.4: The big picture of the original Transformer model [79] which consists of encoder
and decoder parts.

3.2.1 Embedding layer and Positional Encoding
The Embedding layer is maping one index to a high dimensional vector. More specifically, all
unique tokens of the dataset construct the vocabulary, in natural language context the tokens
could be all unique words and symbols of the dataset (see Section 2.4.1). As it is illustrated on
Figure 3.5, a numeric index is assigned on each unique token (from blue to green boxes Figure
3.5), so the input text sequence is possible to be represented as a sequence of numeric indixes.
The embedding layer maps each index to an d-dimensional vector (from green to yellow boxes
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Figure 3.5: The procedure from tokens to embedding vectors. First the input sequence is
tokenized (blue boxes), second each unique token is converted into an index of the vocabulary
(green boxes), and then each index is mapped into an embedding vector with learnable values
(yellow boxes).

Figure 3.5), where usually in literature [24, 60] d=256, 512, 1024. In the beginning of the
training phase these d-dimensional vectors are randomly initialized, and they are part of the
learnable parameters of the model which are updated in every mini-batch step.

The Recurrent Neural Networks (RNN) [71] receive the input sequence sequentially, one
token (input step) at a time, which enables them to capture the order of the input sequence but
also makes them relatively slow because of their recurrent nature; they cannot parallelize the
computations [79]. The Transformer architecture receives the input sequence all at the same
time and perform the computations in parallel, which makes it much faster than RNN but is
missing a way to take into account the order in which the input sequence is received. Thus, to
address this issue the positional encoding [79] is introduced. It injects in the input sequence
the information about relative or absolute position of the tokens. The positional encoding
vectors have the same dimension (we denote dmodel dimensions) as the input embeddings and
they are added together to construct the information that corresponds to the input sequence
and its order combined. There are different techniques to get the positional embeddings with
learnable of fixed values. The original paper [79] introduce it as fixed positional encodings.
They use wave frequencies to capture position information, using sine and cosine functions of
different frequencies:

PE(pos,2i) = sin(pos/100002i/dmodel)

PE(pos,2i+1) = cos(pos/100002i/dmodel)
(3.7)

Where pos is the position of the token in the sequence, i is the specific dimension of the
embedding vector and dmodel is the size of the embedding layer. They take the signals of sine
and cosine and interweaves them to construct the positional encoding. Figure 3.6 shows the
positional encodings of a sequence with 30 tokens and 256 embedding size, the values of the
interweaves are shown as colors. Each row of the figure from top to the bottom, corresponds
to the positional encoding that is added to the respective embedding, in order to capture the
order of the sequence.

Finally, after the input embeddings are constructed, they pass through a dropout [74] layer
to introduce regularization.
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Figure 3.6: The positional encoding as rows, with their values in different color intensity. The
x-axis corresponds to the token position and the y-axis the embedding dimension. The color
represent the interweaves of sin and cosine.

3.2.2 Attention Mechanism
The Attention Mechanism helps the model to focus on important tokens of the sequence
and to relate each individual token to each of the other tokens of the sequence. First step,
the matrices of queries Q, keys K and values V need to be calculated, where each matrix is
composed of query, key and value vectors, respectively. The names query, key and value are just
to distinguish between these three matrices, the names are inspired from the field of databases
where for example when someone searches in a database for a file giving a word (query), this
is assosiated with the file names of the database (keys) and the best matched files (values) are
provided. In the Transformer network content queries, keys and values are representations of
each token of the sequence. Notice that for the computations, matrix notation will be used.
The input X (sum of embedding vectors and positional encodings) is replicated three times
and each gets through a linear layer without activation function (each linear layer has its own
weights) and produces the three matrices Q, K and V as follows:

Q =WQX, K =WKX, V =WV X (3.8)

where X is the input embeddings, and WQ, WK and WV are the weight matrices.
For now, these three matrices can be thought as abstraction that will be useful for cal-

culating and thinking about attention. Second step is to calculate the Scaled Dot-Product
Attention which is the dot product between each query and key to determine how related they
are. For all queries and keys the dot product is simplified as the matrix multiplication QKT ,
then it is scaled by the square root of the dk-dimensions of the keys. The previous outcome
goes through the softmax function (which scales the values to be between zero and one, and
to sum up to one), afterwards the softmax output is getting through a dropout layer and then
multiplied with the matrix V. The equetion of Scaled Dot-Product Attention is:

Attention(Q,K,V ) = softmax(QKT

√
dk
)V (3.9)

All the combinations of how relevant is the token represented by query vector to all other
key vectors construct the scaled weighted matrix: softmax(QKT

√
dk
) and the value vector is the

input information from which specific parts will be highlighted when it is multiplied by the
scaled weighted matrix. This Scaled Dot-Product Attention is performed multiple times which
gives attention to different aspects of the input sequence by having different weight matrices
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WQ, WK and WV . Each Scaled Dot-Product Attention is called attention head, and its output
is denoted as Zh = Attention(Qh,Kh, Vh) of the attention head h. In the original paper [79],
they used h = 8 heads. After computing all attention head in parallel, they are concatenated
horizontal into one long matrix Z which captures information from all heads. This matrix is
fed to a linear layer performing the matrix multiplication WZZ and gets the output of the
Multi-Head Attention, as illustrated in Figure 3.7.

Figure 3.7: The operations of Multi-Head Attention (following Vaswani et al. 2017 [79]).

An additional feature of Scaled Dot-Product is Masking, which is used in the decoder part
of the Transformer. Usually the model should not know the context of the next steps of the
sequence, thus before the softmax function masking is applied. Masking sets all tokens of the
matrix that correspond to next step to minus infinity so after the softmax function, they turn
into zero, meaning that the model will give zero attention to the next steps of the position
that it currently is.

3.2.3 Transformer model architecture
First, the inputs, outputs and output probabilities that are illustrated in the Figure 3.8 will be
explained with an example. Let us assume an example from machine translation of NLP, and
assuming that each sequence is split into words. We want to translate from Swedish to English
the sentence ”Jag dricker vatten” to ”I drink water”. In the beginning of the translation the
input is the sequence ”Jag dricker vatten” while the output (that gets as input on the decoder)
is just the start token and the model should predict the word ’I’ which is the chosen from the
max of the output probabilities. Then the output would be the start token and the word ’I’,
so the network tries to predict the word ’drink’. Finally, the output would be the start token
and the words ’I drink’, thus the models should predict ’water’. The prosedure of hidding the
future positions of the output sequence is called masking.
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3.2. Transformer Neural Network

Figure 3.8: The original encoder-decoder Transformer model architecture (following Vaswani
et al. 2017 [79]).

An encoder block of the Transformer Neural Network consists of a Multi-Head Attention
with h number of attention heads (which is expained in the previous subsection), afterwards a
residual connection is used, followed by layer normalization. Residual connection [33] simply
means that the input of the Multi-Head Attention is added to its output (i.e. in the first
residual connection we have X + Z). The residual connection serves two main purposes,
knowledge preservation meaning that early information can be preserved through the network
no matter how big it is, and vanishing gradient problems in which during backpropagation if
the network is large the gradients may get really small and could vanish. Layer normalization
[6] normalizes across the features dimension the output of the activation function of a layer to
have zero mean and one variance which potentially could reduce the training time.

As mentioned in the paper [79], after the layer normalization each position of the sequence is
fed separately into a Feedforward Neural Network by using the same weight matrices (W1,W2)
and biases (b1, b2) for all elements of the sequence, which is called Position-wise Feed-Forward.
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Each of the FNN consists of two linear transformations with a ReLU [53] activation in between,
passing through a dropout layer in the end (the light green box in Figure 3.8):

FNN(x) =max(0,xW1 + b1)W2 + b2 (3.10)

After the feedforward network again a residual connection and layer normalization are
applied. The above layers that are mentioned construct the encoder block as it is illustrated
in a rounded box on the left part of the Figure 3.8. The output and input of an encoder block
have the same size. The encoder is composed of N stack identical blocks, the original paper
[79] uses N=6, where stack the encoder (or decoder) blocks means that the output of the first
encoder (or decoder) block becomes the inputs of the second block and so on.

Masked Multi-Head Attention layer means that the input of this layer is masked until the
position of the sequence that the decoder is currently processing. The input to this layer
follows the same operations as in Multi-Head Attention but with the future positions of the
sequence masked.

A decoder block consists of a Masked Multi-Head Attention layer, then a residual con-
nection is added and then passed through a layer normalization. After that layer a cross
Multi-Head Attention layer is added, which has as inputs the output key and value vectors of
last encoder block and the query vectors of the decoder’s Masked Multi-Head Attention. It
is followed by residual connection and layer normalization. Last piece of the decoder block is
the feedforward network (equetion 3.10) with a residual connection and a layer normalization.
The decoder consists of N identical blocks stacked as explained in the encoder.

Finally, to make predictions the output of the decoder at each step of the sequence has been
flatten into a vector and being fed into a linear layer of output size equal to the vocabulary
size, afterwards a softmax function is applied to transform the logits into probabilities. The
loss function to be minimized, that calculates the error between the target and the predicted
output is the cross entropy loss.

3.3 Transfer Learning

Deep learning models require large datasets to achieve high performance which is not always
affordable. This motivates the need to explore other directions, one of them is to transfer
knowledge from one model to another, which is called transfer learning [89]. In literature
exists numerous transfer learning categories, and in this work, we will focus on the Sequential
Transfer Learning [4]. Sequential Transfer Learning refers to the process of learning different
tasks sequentially. For instance, a model M is trained (we call this pre-trained model) on a
task T0 and we want to transfer the learning to another task T1, where usually T0 is a more
general task, and T1 a more specific task which is called downstream task. Additionally, the
model M could be modified to adapt to the downstream task T1.

Following the paper [4], Sequential Transfer Learning can be further divided into subcate-
gories, in this thesis we will use the fine-tuning approach. In fine-tuning, given a pre-trained
model M on task T0 with parameters W , the model M is used on a new task T1 to learn a
new function f that maps the parameters f(W ) =W ′. This fine-tuning approach of transfer
learning is chosen for this thesis and it is the most common approach in recent years with
Transformer models [24, 44, 60, 13].

3.4 Feature-based model

In this section the Support Vector Regression model and the ’kernel trick’ will be explained.
Moreover, an efficient method to find the optimal hyperparameters of a machine learning
algorithm called Bayesian Optimization is explained.
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3.4.1 Support Vector Regression
Support Vector Machines (SVM) were introduced by Vladimir Vapnik [21] and are charac-
terized by the property of sparseness. SVM is called sparse model because it emphasize the
predictions only on some specific data points, called support vectors which are crucial for the
prediction. SVM model is extended to Support Vector Regression (SVR) [8] for regression
problem using the same idea of support vectors.

Let the random variables xn ∈ IRd and yn ∈ IR, and the training set {(xn, yn)}, where xn is
the input and yn is the target. In Ridge Regression (linear regression with L2 regularization),
the error function to be minimized is given by

1

2

N

∑
n=1
(ŷ(xn) − yn)2 +

λ

2
∣∣w∣∣2 (3.11)

where ŷn = ŷ(xn) = wT xn + b, w is the coefficients (weights) and b is the intercept (bias).
In order to preserve the sparsity property of SVM the quadratic error function is replaced by
an ϵ − insensitive error function [21]:

Eϵ(ŷ(x) − y) =
⎧⎪⎪⎨⎪⎪⎩

0, if ∣ŷ(x) − y∣ < ϵ;
∣ŷ(x) − y∣ − ϵ, otherwise

(3.12)

The ϵ − insensitive error function gives zero error if the absolute value of the error is less
than ϵ where ϵ > 0. It specifies the epsilon-tube within which no penalty is associated in the
training loss function with points predicted within a distance epsilon from the actual value.

Therefore to get sparse solution the ϵ− insensitive regularized error function is minimized:

C
N

∑
n=1

Eϵ(ŷ(xn) − yn) +
1

2
∣∣w∣∣2 (3.13)

where C>0 controls the regularization, specifically C is the inverse regularization parame-
ter.

To have a more flexible model and tolerance in the error two slack variables ξn, ξ̂n ⩾ 0 for
each data point are introduced.

ξn =
⎧⎪⎪⎨⎪⎪⎩

yn − ŷ(xn) − ϵ, if yn > ŷ(xn) + ϵ;
0, otherwise

(3.14)

and

ξ̂n =
⎧⎪⎪⎨⎪⎪⎩

ŷ(xn) + ϵ − yn, if yn < ŷ(xn) + ϵ;
0, otherwise

(3.15)

As illustrated in Figure 3.9, the regression curve is the red solid curve and the ϵ-insensitive
”tube” is the yellow shaded area. The data points which are inside the ϵ-tube have ξ = ξ̂ = 0,
the points above the ϵ-tube have ξ > 0 and ξ̂ = 0, and the points below the ϵ-tube have ξ̂ > 0
and ξ = 0. Only the point outside the ϵ-tube contribute to the final cost.

Taking into account the additional constrains the error function can be reformulated as
the following optimization problem that can be solved using Lagrange multipliers.

min
w,b,ξ,ξ̂

C
N

∑
n=1
(ξn + ξ̂n) +

1

2
∣∣w∣∣2 (3.16)

subject to yi − ŷ(xi) ⩽ ϵ + ξi,

ŷ(xi) − yi ⩽ ϵ + ξ̂i,

ξi, ξ̂i ⩾ 0, i = 1, ..., n

(3.17)
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Figure 3.9: The Support Vector Rregression, showing the regression curve in red, the ϵ-tube
in yellow and the datapoints as grey dots.

When accurate prediction is not feasible in the input space, the standard scalar product
⟨⋅, ⋅⟩ is replaced by a kernel function k(⋅, ⋅). A kernel can be though as a similarity function and
is defined by k(x,x′) = ϕ(x)Tϕ(x′) where ϕ(⋅) is mapping the input into a higher dimensional
feature space, without the need to compute the mapping function ϕ(⋅). This is called the
kernel ’trick’, by using it the SVR can be adapted to a more powerful non-linear regression
model.

The optimization problem 3.16 can be solved by introducing the Lagrange multipliers
αn ⩾ 0, α̂n ⩾ 0, µn ⩾ 0, µ̂n ⩾ 0 and optimizing the Lagrangian:

L =C
N

∑
n=1
(ξn + ξ̂n) +

1

2
∣∣w∣∣2 −

N

∑
n=1
(µnξn + µ̂nξ̂n)

−
N

∑
n=1

αn(ϵ + ξn + ŷn − yn) −
N

∑
n=1

α̂n(ϵ + ξ̂n − ŷn + yn)
(3.18)

Then by substituting ŷn = wT xn + b and setting the derivatives of the Lagrangian to zero
with respect to w, b, ξn, and ξ̂n, we get:

∂L

∂w = 0⇒w =
N

∑
n=1
(αn − α̂n)ϕ(xn)

∂L

∂b
= 0⇒

N

∑
n=1
(αn − α̂n) = 0

∂L

∂ξn
= 0⇒ αn + µn = C

∂L

∂ξ̂n
= 0⇒ α̂n + µ̂n = C

(3.19)

where ϕ(⋅) is a function which we do not need to know that maps the input into a higher
dimensional feature space, as indroduced above by the kernel ’trick’.

Now by eliminating the corresponding variables from the Lagrangian, the problem can be
seen as maximizing the following Lagrangian with respect to {αn} and {α̂n} and by introducing
the kernel k(x,x′) = ϕ(x)Tϕ(x′):

L̃(αn, α̂n) = −
1

2

N

∑
n=1

N

∑
m=1
(αn − α̂n)(αm − α̂m)k(xn, xm)

− ϵ
N

∑
n=1
(αn + α̂n) +

N

∑
n=1
(αn + α̂n)yn

(3.20)
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where it is again a constrained maximization which require 0 ⩽ αn ⩽ C and 0 ⩽ α̂n ⩽ C.
By substituting the first equetion of 3.19 into ŷ(x) = wT x + b, the predictions for a new

input (x) can be expressed in terms of the kernel function:

ŷ(x) =
N

∑
n=1
(αn − α̂n)k(x,xn) + b (3.21)

There exist many kernels that are used with SVR, for example the polynomial of d-degree
k(x,x′) = (xTx′)d and the gaussian radial basis function k(x,x′) = exp (− ∣∣x−x

′∣∣2
2σ2 ).

3.4.2 Bayesian Hyperparameter Optimization
There exist different ways to find the hyperparameters of a machine learning algorithm. One
way is to search manually some specific values, another is to make a grid search on an interval
or search randomly values from an interval. These approaches require expert experience,
brute-force search, or sometimes luck.

Bayesian optimization [73, 11] uses a powerful strategic search on finding the extrema of
an objective function which could be the validation error of a machine learning algorithm. It
is called Bayesian because it uses the ”Bayes’ theorem”, simplifying it says that the posterior
probability of the model M given the data D is proportional to the likelihood of D given M
multiplied by the prior probability of M:

P (M ∣D)∝ P (D∣M)P (M) (3.22)

The prior represents the belief about the search space for the optimal hyperparameters.
Since the objective function (e.g. validation error) of a machine learning algorithm is unknown
given different hyperparameter values, a surrogate model is used to estimate it under some
uncertainty. A common choice of surrogate model is a Gaussian Process(GP) [61], which is
a flexible and has the ability to give uncertainty estimates. It is not possible to evaluate the
model infinite times randomly because it is expensive, thus a function to choose strategically
where to evaluate next will be used. It needs to balance exploring the objective function for
the optimal value but also exploit it, focusing on regions of the potential optimum. This
decisions are made using an acquisition function. Acquisition function is a heuristic to show
how desirable is to evaluate a point, based on the previous evaluations and the surrogate
model.

The goal of Bayesian optimization is to find the location where the optimum (global mini-
mum or maximum) of a function is. The algorithm is described as follows:

Algorithm 1: Bayesian Optimization
Choose a surrogate model for modeling the objective function f and define its prior.
for t = 1,2, ... do

Given the set of function evaluations, use Bayes rule to obtain the posterior;
Use an acquisition function α(x), which is a function of the posterior, to decide
the next sample point xt = argmaxxα(x);

Add new sampled evaluation to the set of function evaluations;
end
In this thesis for the SVR hyperparameters, as surrogate function the Gaussian process

(GP). A GP is specified by its mean function m(x), and covariance function k(x,x′). We will
use Matern kernel while the noise is assumed to be iid gaussian. Let r = ∣∣x − x’∣∣, the Matern
kernel is defined as:

kmatern(r) =
21−ν

Γ(ν)
(
√
2ν

ℓ
r)

ν

Kν (
√
2ν

ℓ
r) (3.23)
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where the parameter ν > 0 controls the smoothnes, ℓ > 0 is the length-scale (the distance
we have to move in the input space for the function to vary signicantly), Γ(⋅) is the gamma
function, and Kν(⋅) is a modified Bessel function [61].

Let x1∶n = {x1, ..., xn} be a set of data points (i.e. for this thesis the hyperparame-
ters of SVR), f be the objective function, and the values of the objective function f1∶n =
{f(x1), ..., f(xn)} can be approximated by a multivariate gaussian distribution

f1∶n ∼ N(m(x1∶n),K) (3.24)

where m(x1∶n) = [m(x1), ...,m(xn)]T , and K is the n×n kernel matrix i.e. [K]ij = k(xi,xj)
While the chosen acquisition function is the expected improvement (EI). It is defined as

follows:

EI(x) = E[max{0, f(x) − f(x+)}] (3.25)

where x+ is the current optimal set of hyperparameters. The expected improvement for a
GP model using integration by parts can be written in closed form solution as:

EI(x) = E[max{0, f(x) − f(x+)}] =
⎧⎪⎪⎨⎪⎪⎩

(m(x) − f(x+))Φ(Z) + σ(x)ϕ(Z) if σ(x) > 0
0 if σ(x) = 0

(3.26)

where σ(x) is the standard deviation, Z = m(x)−f(x+)
σ(x) , Φ is the cumulative distribution of

the standard normal distribution and ϕ(z) is its the probability density.
Deriving that EI is high when the uncertainty σ(x) around x is high, or when the posterior

of the objective function m(x) is higher that the current optimum value f(x+).
In the Figure3.10 are illustrated four steps of the Bayesian optimization procedure from a

toy example. In iteration zero (i.e. first plot on top), there is one observation evaluated denoted
with black dot, where close to this point the uncertainty is low. The acquisition function with
green curve at the right indicate its maximum with blue cross, and the next suggested point
to evaluate the objective function is shown with red dot. In iteration one, the point that was
indicated by the acquisition function in the previous step is evaluated. The uncertainty of GP
is updated, and the acquisition function suggest another point to evaluate and so on. It can be
seen from iteration three that the max value of the acquisition function is at the neighbor area
of the previous step where the algorithm exploits that area. The acquisition function chose to
explore first and then to exploit in a specific space on iteration three, which actually was the
optimal choice as it is shown by the true objective function.

3.5 Statistical comparison

This section will introduce the methods that are used to evaluate and compare the performance
of the implemented models. All approaches are evaluated on the same unseen test sets to
measure their generalization performance.

3.5.1 Root Mean Square Error
The Root Mean Square Error (RMSE) shows standard deviation of the error. The error
measures how far the predicted values ŷi from the true values yi are (i = 1,2, ..., n), and RMSE
measures how spread out these errors are, i.e. measures the expected variation of the errors.

RMSE(ŷ,y) =
¿
ÁÁÀ 1

n

n

∑
i=1
(ŷi − yi)2 (3.27)
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Figure 3.10: The Bayesian Optimization procedure. The unkown objective function is illus-
trated as purple curve, the mean of GP is the black curve, and its posterior uncertainty is the
grey shaded area. The evaluated observations are the black dots. In the plots on the right
side, the acquisition function is the green curve and its maximum is denoted with a blue cross.
Figure adapted from: Agnihotri A. and Batra N., ”Exploring Bayesian Optimization”, Distill,
2020, CC-BY 4.0. [2]

3.5.2 Coefficient of Determination
Pearson’s [58] correlation coefficient measures how linearly related are two variables x and y.
The formula for correlation coefficient is rxy = sxy

sxsy
, where sxy is the covariance. The values

that r takes are from -1 to 1, where -1 denotes high negative linear correlation, +1 high positive
linear correlation and 0 denotes no correlation.

The Coefficient of Determination (R2) measures how closely two variables follow a linear
relationship, in this case the two variables are the estimated value ŷ and the true value y. The
R2 take values from 0 to 1, where higher value indicates that the relationship is more linear.

R2(ŷ,y) = ∑
n
i=1(ŷi − ȳ)2

∑n
i=1(yi − ȳ)2

(3.28)
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where ȳ is the mean value of y. On the above equation3.28 the nominator is the variance
of the linear fit and the denominator is the variance of y.

3.5.3 Error bars for R2

To calculate the error bars i.e. confidence intervals of R2 using the analytic form as described in
the paper by Nickolls [54]. First, we need calculate the Pearson correlation coefficient (r). The
values of r have range [−1,1], r cannot assumed to be Gaussian distributed, so they should be
transformed somehow to (−∞,+∞). The Fisher transform is used to transform the correlation
coefficient r approximately to a Gaussian distribution with a standard deviation close to one,
making its confidence intervals easy to compute. The Fisher transform is calculated as follows:

F (r) = 1

2
ln

1 + r
1 − r

(3.29)

The confidence intervals for r are calculated by assuming that F is normaly distributed
and by taking the t−statistic of 95% confidence intervals from F values. Then these F values
are back-transformed into r values. It is shown by Fisher that the standard error decreases
with respect to

√
N − 3 rather than

√
N . The back-transform function from F to r-values is:

r(F ) = e2F − 1
e2F + 1

(3.30)

So the procedure is first calculate r, then transform to F (r), add and subtract {t −
statistic/

√
N − 3} for the confidence intervals of F , afterwards back-transform them to r-

values.

3.5.4 Nonparametric hypothesis test
The Wilcoxon Signed-Rank Test is a nonparametric test that tests if two paired samples come
from the same distribution [81, 20]. The assumptions of Wilcoxon test are: the observations in
each sample can be ranked and are independent and identical distributed, and the observations
are paired across each sample.

Let’s assume n paired samples of the form (Xi, Yi), i = 1,2, ..., n. Step 1: the differences
di =Xi −Yi are calculated, and the ones that are equal to zero are eliminated and the number
of pairs (n) is reduced accordingly. Step 2: the signs of each difference is noted, and the
absolute value differences are ranked (writing down the rank number). If two or more absolute
differences are tied for the same rank then as rank for the tied differences the average of those
ranks is used. Step 3: the sum of the ranks from the negative differences is calculated (denoted
as W −), and the sum of the ranks from the positive differences is calculated (denoted as W +).

The null hypothesis states that the distribution of of X’s and Y ’s are identical (or it can be
rephrased as the medians of X and Y are equal). For a two-tailed test the W =min(W +,W −)
is used as test statistict to test the null hypothesis. Thus we reject the null hypothesis in favor
of the alternative, if W is less than or equal to some value W0, where W0 is the critical value.
For a one-tailed test if we want to detect that the distribution of X’s is shifted to the right
of Y ’s then the W − is used, and we reject the null hypothesis if W − ⩽ W0. Similarly if we
want to detect that the distribution of Y ’s is shifted to the right of X’s the W + is used and
we reject the null hypothesis if W + ⩽W0.

H0: The distributions of X’s and Y’s are identical.

H1: (a) The distributions differ in location (two-tailed). (b) The distribution of X’s is
shifted to the right of Y’s (one-tailed).

In this thesis the Wilcoxon Signed-Rank Paired Test is used to examine if the differences
in R2 between two models are statistically significant. One-tailed hypothesis test is performed
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to determine whether a model has higher median coefficient of determination from another
model with significance level of 0.05. The Wilcoxon signed-rank test is run using the python
package SciPy [80] version 1.4.11.

1https://docs.scipy.org/
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4 Method

The main aim of this thesis is to introduce and experiment with a novel architecture to
approach multi-task regression prediction with a text-base neural network, inspired by the
field of natural language processing, and the paper ”Exploring the Limits of Transfer Learning
with a Unified Text-to-Text Transformer” [60]. As the recent literature indicates [26, 18,
57, 82], the Transformer Neural Networks are showing competitive results on QSAR/QSPR
tasks. Additionally, in the work of Colin Raffel et al. [60], they introduced a Transformer
architecture that can handle multiple natural language tasks with the same model. Inspired
from the above works on cheminformatics and NLP, this thesis will experiment on predicting
multi-task activities and properties with the same Transformer model. The idea is illustrated
in Figure 4.1 for the bioactivities tasks, where the input consists of the gene symbol (the name
of the task) and the SMILES string (the molecule), while the output is the activity value of the
molecule on that specific gene symbol. This approach is different from the existing multitask
QSAR prediction of published papers [50, 76] where they used a neural network with multiple
output neurons, predicting if a molecule is active or not, on different tasks. They need the
targets of all tasks for each molecule to train the network, in contrast this thesis’ approach
does not require that, by specifying the task in the input sequence. As output of the model
that is used in this thesis, is the activity value itself not just if the molecule is active or not,
which defines the problem as regression. Moreover, we have the hypothesis that by training
simultaneously on all gene symbols or properties could share information between them and
improve performance.

4.1 Workflow

For the text-base approach, the molecular structure of each observation from the datasets is
represented as SMILES strings (see Section 2.1) which are preprocessed to be fed into the
Transformer Neural Network model using tokenization (see Section 2.4.1). Afterwards, the
Transformer network is build to perform multi-task QSAR prediction with two approaches,
without or with using Transfer Learning. If Transfer Learning is not used, the model is trained
with randomly initialed weights of the Embeddings, the Encoder blocks and the Feedforward
Neural Network. Otherwise, the weights from the Embeddings and the Encoder are transferred
from the pretrained model, and the FNN is randomly initialized, so the Transformer network
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Figure 4.1: The input and output of Multi-task QSAR regression using the Transformer Neural
Network. The input is the gene symbol and the chemical compound as one string and the
output is the activity value (a real number).

fine-tunes all parameters. Each Transformer model that is used is trained simultaneously on
all biological activities or on all physical chemistry properties.

For comparison of the text-based models, the feature-based model SVR is used which is
extensively explored in the literature [64, 47]. Now, the molecular structure of each observa-
tion from the datasets is represented as extended-connectivity fingerprints (see Section 2.5)
which are calculated features. These models are trained on each task separately. The hyper-
parameters of all models are searched using the Bayesian Optimization technique, providing a
strategical way of searching the optimal ones.

The training workflow diagrams for both text-base and feature-based approaches are il-
lustrated in Figure 4.2. Finally, the results are compared using the root mean squared error
(RMSE) and the coefficient of determination (R2) on each task separately for all model ap-
proaches.

All experiments are coded in Python1 version 3.7 computer language utilizing a number
of open-source packages. For the visualizations the packages matplotlib [38] (version 3.3.42)
seaborn [83] (version 0.11.13) is used, and for the diagrams the site draiw.io4. An extensive
list with all packages that are used in this thesis can be found in the Appendix.

4.2 Transformer Encoder-Regression

For implementing the Transformer networks, the packages PyTorch [56] (version 1.8.05) and
PyTorch Lightning [28] (version 1.2.36) are used.

The Transformer network that is used has as input the sum of the input sequence em-
beddings and the positional encoding (see Section 3.2.1) for each molecule input. Then a
number of encoder blocks is used, as described in Section 3.2.3, to encode the information and
create meaningful representation of the input sequence. The encoder block has the following
hyperparameters: embeddings dimenstions, number of attention heads, dropout probability
and neurons of the FNN which belongs to the encoder block. As mentioned in Section 3.2,
the input and output of an encoder block has the same size, so the input flows from the first
encoder block and then to the second encoder block. As it is illustrated in Figure 4.3, from the
output of the second encoder block, only the array that is align with the name of the task is
used. This approach of using only the first output of the last encoder block for discriminative
tasks has first seen in the field of NLP, particularly in BERT [24] model.

1http://www.python.org
2https://matplotlib.org/
3https://seaborn.pydata.org/
4https://draw.io/
5https://pytorch.org/
6https://www.pytorchlightning.ai/

28



4.2. Transformer Encoder-Regression

Figure 4.2: On the left the workflow diagram of the text-based Transformer model without and
with Transfer Learning (a). On the right the workflow diagram of the feature-based Suport
Vector Regression model. ECFPs stands for Extended-connectivity fingerprints which are the
features that are created from the molecular structure (b).

Afterwards, the chosen encoder output goes through a FNN to get the output value. The
FNN has the ReLU activation function between its layers except the last layer which has no
activation for predicting the molecular activities/properties. The hyperparameters of this FNN
are the number of layers and neurons and the dropout probability. The chosen hyperparameters
for all Transformer models can be found in the Appendix’s Section A.3.

The Transformer encoder-regression architecture is illustrated on Figure4.4.
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Figure 4.3: The representation of the Encoder Regression model. The input sequence is fed
into the encoder blocks and then from the output of the last block only the vector that is
aligned with the task token goes to the Feedforward neural network for Regression.

The error of the Transformer network is assumed to be normally distributed, thus the
maximum likelihood estimate of the normal distribution will be optimized. By doing the
derivations this can be simplified as minimizing the mean squared error (MSE).

MSE(ŷ,y) = 1

n

n

∑
i=1
(ŷi − yi)2 (4.1)

where y denotes the true value and ŷ the estimated value of the network.
Thus, as loss function to be minimized the MSE has been chosen. The optimizer is Adam

[40]. The learning rate scheduler One Cycle is utilized where the learning rate is increasing for
a number of epochs (which is called warm-up phase) until it reaches its maximum value and
then it is gradually decreasing, helping on quicker convergence [72].

In order to find the suitable hyperparameters for the Transformer model two-steps were
used. First, some initial experiments were conducted, with manual choices and sort running
times, to determine the suitable intervals for each hyperparameter. Second, the search for
the optimal hyperparameters was done by using Bayesian Optimization with the Optuna [3]
python package(version 2.3.07). The search space for each hyperparameter was chosen based
on the intervals from the first step and using 100 trials per model. The hyperparameters have
the following search spaces: the learning rate has the loguniform [0.000001, 0.01], the weight
decay has the loguniform [0.000000001, 0.01], the embedding size has the set 256, 512, the
number of heads have the set {4, 8, 16}, the number of encoder blocks take uniform integers in
[1, 4], the dimension of the FNN in the encoder block has the set {512, 1024, 2048}, the dropout
of the encoder blocks takes values from the uniform [0.1, 0.5], the FNN of the regression part
has the set {512, 1024, 2048}, and the dropout of the FNN takes values from the uniform [0.1,
0.8]. The chosen hyperparameters that achieved the lowest validation loss for each model can
be found in the Appendix.

4.3 Transfer Learning in Cheminformatics

Transfer Learning [89] is a widely used technique in variety of deep learning problems, also in
cheminformatics and drug discovery [14]. The idea of it is to transfer the gained knowledge

7https://optuna.org/
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Figure 4.4: The Encoder-Regression Transformer architecture (following Vaswani et al. 2017
[79]), with N encoder blocks and a FeedForward Neural Network with three layers, where the
last layer has one output neuron.

from solving one problem to another (see Section 3.3). In this thesis, transfer learning is
performed by experimenting with two pretrained Transformer neural networks trained on
unlabeled data. These two Transformer are pretrained by a scientist from AstraZeneca, and
their weights are provided for this work. The first model is trained on around 1.5 million
molecules from ChEMBL [51] database and the second is a larger Transformer trained on
around 100 million molecules from ZINC [75] database. The goal of the pretrained model is
to learn the representation and the syntax of SMILES strings. The pretrained model is the
Bidirectional and Auto-Regressive Transformers (BART) [44] model which consists of encoder
decoder Transformer architecture.

As it is illustrated in Figure 4.5, the training is performed by masking some parts of the
input sequence (molecule), as it is displayed one token can be masked (here the last token
’1’) or a span of more than one tokens can be masked (here ’C’ and ’1’ are masked together).
These masking techniques erase some elements of the input sequence and introduces noise
to the input. Then the corrupted input is fed into the encoder. The decoder is trying to
construct the whole original sequence in an autoregressive way which means that the decoder
is generating one by one the tokens from left to right given the previous tokens of the sequence.
For example, to predict the third token ’C’ in Figure 4.5, the decoder receives as input the
encoder’s output and the previous tokens of the sequence (’<s>’ (starting token) and ’Cl’).

As mentioned above the pre-trained weights of these two models are provided by the
company. For this thesis only the parameters from the embedding layer and the encoder are
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4.4. Support Vector Rregression using ECFPs

used and after the extracted encoder block, m number of fully connected layers are added,
with ReLU activation and dropout between the fully connected layers, converting it into a
regression model. Then, the models are fine-tuned on the multi-task QSAR/QSPR problems
using the same optimizer. The hyperparameters for all Transformer models can be found in
the Appendix.

Figure 4.5: The encoder decoder BART Transformer model with the masked input and the
autoregressive generation of the input sequence (following Lewis M., Liu Y. et al., 2019 [44]).

The first pre-trained model on ChEMBL has 4 encoder layers with embedding size of 256
dimensions, 8 attention heads, the FNN of the encoder block has 2048 neurons and afterwards
a FNN with mS layers for regression is added, which has in total around 5 million parameters.
While the larger pre-trained model on ZINC has 6 encoder layers with embedding size of 512
dimensions, 8 attention heads, the FNN of the encoder block has 2048 neurons and then a
FNN for regression is added mL layers, which has in total around 20 million parameters. The
full list of hyperparameters from the additional FNN blocks for all models can be found in
the Appendix. The hyperparameters of the pretrained part are fixed and the rest are chosen
using the Optuna framework as described on the Subsection 4.2.

4.4 Support Vector Rregression using ECFPs

In this thesis the Tanimoto kernel (also called Tanimoto index) is used for the Support Vector
Rregression (SVR) models, which is a well known tool to capture the similarity between sets of
binary vectors (in our case the ECFPs). In the paper ”Why is Tanimoto index an appropriate
choice for fingerprint-based similarity calculations?”, the authors compare eight similarity
metrics on a large dataset of molecular fingerprints, and they concluded that Tanimoto index
is one of the best metrics on molecular similarity. In cheminformatics, it is one of the most
popular kernels in literature [48, 7] for molecular fingerprint representations. Additionally, it
is quick to be calculated as it consists of four dot products between binary vectors as shown
below:

k(x,x′) = ⟨x,x′⟩
⟨x,x⟩ + ⟨x′, x′⟩ − ⟨x,x′⟩

(4.2)

The SVR models are trained in each task with ECFPs as features using the scikit-learn [59]
package (version 0.22.28) and the custom Tanimoto kernel implemented in numpy [30] package
(version 1.19.29). The hyperparameters are chosen using Bayesian Optimization, utilizing the
scikit-optimize [35] (version 0.8.110) package. As described in section3.4.2, as surrogate model
the gaussian process is used, which can capture the uncertainty around points, to model
the validation loss, and the expected improvement as acquisition function to choose the next
point to evaluate. The prior distributions of the hyperparameters are: uniform distribution
on [0.1-50.0] for C, uniform distribution on [0.00001-1.0] for γ and a uniform distribution on

8https://scikit-learn.org/
9https://numpy.org/

10https://scikit-optimize.github.io/
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[0.001-1.0] for ϵ. The optimal hyperparameters for all SVR models on all datasets are shown
on the appendix section.

Figure 4.6: The histograms of the configuration space (uniform prior on specified interval) and
the explored space of the bayesian optimization. The three hyperparameters are C, ϵ, γ of
SVR, where 200 trials are conducted on the dataset of OPRD1 gene symbol.

An example of Bayesian Optimization search space is illustrated on Figure 4.6, to find the
SVR’s hyperparameters on the QSAR task of the gene symbol OPRD1. The histograms of
the hyperparameters configuration (which we chose as prior knowledge) and explore spaces are
shown, where 200 trials were performed to illustrate the behavior of Bayesian Optimization,
but as observed around 30 trials were needed to find optimal hyperparameters. For the inverse
regularization hyperparameter C, with uniform prior the algorithm explored a bit almost all
the given space and focused on the values around 5, where the lowest validation error found for
C=4.11. The same behavior is seen from the hyperparameter epsilon which given a uniform
prior, again the algorithm explored a bit the whole space and focused the search exploiting
around 0.1 where the optimal epsilon was on 0.11. To find γ the algorithm exploits highly on
the upper and lower boundary of the configuration space, around 0.1 and 0.9, probably the
validation loss had not big difference choosing high or low value for gamma, where the chosen
value was 0.92

4.5 Oversampling

In literature exists different techniques to oversample a dataset [32]. Most of these tech-
niques only suitable for tabular data, where we want to oversample text-based data (SMILES
strings), thus these oversampling techniques are not considered. Usually, oversampling in ma-
chine learning is referred to classification problems where the classes are imbalanced. In this
thesis, multiple regression tasks are addressed and the main approach is to train simultaneously
on a number of regression tasks (molecular activity or property prediction) using Transformer
models. Inspired from the oversampling approaches on imbalanced classes, we apply oversam-
pling on regression tasks. Some of the regression tasks have less observations (molecules) than
others, thus as oversampling in this work we imply that the tasks with the less observations
will be duplicated m times in order to have approximately the same size as the task with the
most observations. For example, the training sets of the three physical chemistry properties
Lipophilicity, ESOL and FreeSolvation have 3150, 846 and 482 molecules, respectively. The
tasks that will be oversampled are ESOL and FreeSolvation where the first will be duplicated
3.5 times and the latter 6 times, resulting to have 2961 and 2892, respectively.

This oversampling approach is promising on SMILES strings when data augmentation
(see Section 2.4.2) is used. On each mini-batch every SMILES string is augmented on-the-
fly (i.e. while the model is training), thus the Transformer models receive different SMILES
representations of the same molecule. SMILES augmentation helps the model not to see the
same molecules and avoids memorizing them. Finally, undersampling is not a valid option on
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Transformer models while having limited amount of training data, because these models are
data hungry [1].
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5 Results

This chapter is divided into two sections. First the results of the 133 molecular biological activ-
ity (QSAR) tasks are presented, and second the results of three molecular physical chemistry
property (QSPR) tasks.

A number of experiments were conducted to answer the research question 1: Can a text-
based model, with the same parameters and architecture, predict multiple molecular activ-
ities/properties and if yes, to which extend? As text-based model the Transformer is used
because we want to test the novel approach of multi-task regression with Transformers (see
Chapter 4) which was inspired from the paper [60]. It is trained simultaneously on QSAR
or QSPR tasks, and its architecture consists of a number of Encoder blocks and Feedforward
Neural Network for regression (see Section 4.2). Moreover, two pretrained Transformer models
are used to answer the research question 2: Can transfer learning improve the performance of
the text-based model, by giving prior knowledge on the model about the syntax of chemical
compounds? Finally, the Transformer model with higher generalization performance was cho-
sen, in aftermath of the previous questions, in order to be compared with a feature-based to
answer the research question 3: How does it perform compare to a feature-based traditional
machine learning algorithm? As features, to represent the molecular structure, the ECFP
fingerprints are used, they are widely used in QSAR and QSPR tasks with high performance.
While as feature-based model the SVR with Tanimoto kernel is used because it performs well
as shown in literature and is relatively quick to train.

Through this chapter, the Transformer model is denoted as EncRegr meaning that it con-
sists of Encoder and Regression parts. The pretrained models which are fine-tuned are de-
noted as EncRegrTL_ChEMBL and EncRegrTL_ZINC, meaning Encoder Regression with
Transfer Learning on ChEMBL and ZINC database respectively. As far as the size of these
two pretrained models, the EncRegrTL_ZINC has four times more parameters than EncRe-
grTL_ChEMBL which has around 4 million parameters, more details can be found on Section
4.3. While if oversampling is used the model is denoted as oversEnvRegrTL_ChEMBL which
means oversampled data using the Encoder Regression with Transfer Learning on ChEMBL
database.

In result tables the best score is marked bold. To address any ambiguity, next to each
evaluation metric, arrow up (↑) means that higher values are better and arrow down (↓) means
that lower values are better. Specifically, for R2 higher values are better and for RMSE lower
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values. The numerical results are rounded on three decimal places for the first section and on
four decimal places for the second.

5.1 Biological Activities

The biological activity datasets consists of 133 gene symbols (i.e. regression tasks). The
Transformer models are trained simultaneously on all tasks and evaluated afterwards separately
on each task, in order to be easily comparable. SVR models are trained and evaluated on each
task separately. The same train/test splits are used for all model approaches, having fixed
information as input and output between different model evaluations and being consistent on
their comparison.

The bar chart Figure 5.1 shows the coefficient of determination R2 of eight gene symbols
on the test set, and their error bars which are calculated using the Fisher transformation on
Pearson correlation (see Subsection 3.5.3). The gene symbols that are displayed are chosen
to have different number of molecules, in order to observe the behavior on these tasks with
different sizes, the rest bioactivity tasks can be found in the Appendix A.4. It is noticeable that
ADAM17, CHRNA7, GSK3A and MAOB have wide error bars because these four gene symbols
have small number of molecules compared to the other four tasks of the figure. Observing the
Transformer models, the pretrained on ZINC EncRegr outperforms significantly the pretrained
on ChEMBL and the one that does not use transfer learning; on all eight displayed tasks. In five
out of the eight tasks that are illustrated, the feature-based model (SVR) has higher R2 that the
best Transformer model (EncRegrTL_ZINC). Overall, SVR outperforms EncRegrTL_ZINC
on 99 of the 133 gene symbols, comparing their test performance (see Appendix).

Figure 5.1: The R2 on test sets of 8 molecular bioactivities, where their error bars are cal-
culated using the Fisher transformation on Pearson correlation. The three models are the
Transformer without Transfer Learning (EncRegr), with Transfer Learning on ChEMBL and
on ZINC (EncRegrTL_ChEMBL and EncRegrTL_ZINC respectively), and the Support Vec-
tor Regression (SVR).

Table 5.1 shows the RMSE and R2 on train and test set of the same eight gene symbols as
the bar chart above; next to each gene symbol the number of molecules that it has is displayed.
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Gene Symbol EncRegr EncRegrTL C EncRegrTL Z SVR

ADAM17 (1371 mols)
Train RMSE 0.5681 0.6135 0.2488 0.1695
Test RMSE (↓) 0.7549 0.7437 0.6635 0.5942
Train R2 0.7238 0.6768 0.9469 0.9764
Test R2 (↑) 0.5599 0.5613 0.6633 0.7259

ALOX5 (2891 mols)
Train RMSE 0.5262 0.5335 0.2727 0.2667
Test RMSE (↓) 0.6730 0.6609 0.5675 0.5762
Train R2 0.5568 0.5439 0.8809 0.8914
Test R2 (↑) 0.3171 0.3218 0.4987 0.4700

CHRNA7 (1443 mols)
Train RMSE 0.6825 0.7117 0.3923 0.4417
Test RMSE (↓) 0.9392 0.9304 0.9307 0.8155
Train R2 0.6593 0.6295 0.8874 0.8607
Test R2 (↑) 0.3235 0.3253 0.3875 0.479

DPP4 (3293 mols)
Train RMSE 0.6100 0.6247 0.2853 0.2283
Test RMSE (↓) 0.7886 0.7827 0.6539 0.6093
Train R2 0.6364 0.6172 0.9201 0.9486
Test R2 (↑) 0.4602 0.4593 0.6239 0.6681

GSK3A (1606 mols)
Train RMSE 0.4354 0.4323 0.1825 0.1169
Test RMSE (↓) 0.6779 0.5828 0.4546 0.5604
Train R2 0.7704 0.7730 0.9596 0.9866
Test R2 (↑) 0.4595 0.5643 0.7541 0.5957

KCNH2 (5275 mols)
Train RMSE 0.5002 0.5338 0.2212 0.1389
Test RMSE (↓) 0.6941 0.6706 0.5966 0.5554
Train R2 0.6052 0.5502 0.9227 0.9726
Test R2 (↑) 0.2842 0.3194 0.4733 0.5202

MAOB (1688 mols)
Train RMSE 0.7038 0.7256 0.2860 0.3200
Test RMSE (↓) 0.9372 0.9404 0.8341 0.7684
Train R2 0.5939 0.5679 0.9329 0.9203
Test R2 (↑) 0.2934 0.2763 0.4411 0.4893

OPRM1 (5830 mols)
Train RMSE 0.7585 0.7676 0.4355 0.4531
Test RMSE (↓) 1.0570 1.0020 0.8162 0.7321
Train R2 0.7145 0.7074 0.9058 0.8995
Test R2 (↑) 0.4734 0.5173 0.6796 0.7366

Table 5.1: The RMSE and R2 on train and test set of the models Transformer without Transfer
Learning (EncRegr), with Transfer Learning on ChEMBL (EncRegrTL_ChEMBL), on ZINC
(EncRegrTL_ZINC), and the Support Vector Regression (SVR), on 8 gene symbols. Next to
these gene symbols the are shown the number of molecules that they have.
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It seems that the two best models, the EncRegrTL_ZINC and the SVR, have the ten-
dency to overfit in the training set, but the selected hyperparameters shown that both models
generalize better on the validation set by having this behavior on train set.

Figure 5.2 shows the R2 comparison on test set between text-based Transformer models and
feature based SVR on all 133 gene symbols. The x-axis is the R2 of SVR and the y-axis is the
R2 of Transformer model. There are 133 blue dots that represent each gene symbol comparing
the Transformer without Transfer Learning and the SVR, showing that SVR performs better
on all gene symbols, all blue dots are below the red diagonal line where the red diagonal
line denotes that Transformer and SVR performs equally good. While the 133 orange dots
compare the Transformer with Transfer Learning (pretrained on 100 million molecules from
ZINC) and the SVR, where in the majority of the tasks SVR outperforms the Transformer
with Transfer Learning. More specifically, SVR performs better on 99 of the 133 QSAR tasks.
It is noticeable the big improvement of the Transformer model by using Transfer Learning,
where the line that captures the overall trend is moved closer to the red line, i.e. the blue line
is shifted to the orange which is close to the red diagonal line.

Figure 5.2: Comparison of the R2 on test sets of SVR against the Transformer model. The
blue dots denote the 133 regression tasks (bioactivities) where the x-axis is the R2 of SVR and
the y-axis the R2 of the Transformer without Transfer Learning (EncRegr). While the orange
dots denote again the 133 QSAR tasks but now the y-axis is the R2 of the Transformer using
Transfer Learning on ZINC (EncRegrTL_ZINC).

On Figure 5.3 the histogram of the R2 (on the test sets) differences between the SVR
and the pretrained on ZINC Transformer model is displayed, for all 133 biological activities.
The positive differences indicate that SVR model performs better. Most of differences are
between -0.1 and 0.1 showing that most of the performances are close. Moreover, the majority
are positive differences indicating that SVR outperforms the pretrained on ZINC Transformer
model in most of the tasks, specifically on 99 out of the 133 QSAR tasks.

In order to compare if the SVR performs statistically significantly better than the Trans-
former with Transfer Learning on all the 133 bioactivities, the nonparametric paired test
Wilcoxon signed-rank test (see Section 3.5.4) is used. The paired samples are the test R2 of
the SVR and the EncRegrTL_ZINC evaluated on the 133 biological activities, which gives 133
paired values. The null hypothesis states that the median (mA) of the test R2 using the SVR
model is less or equal than the median (mB) of test R2 using EncRegrTL_ZINC, while the
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Figure 5.3: The histogram of the differences from all 133 biological activities in test R2 of the
SVR minus the pretrained on ZINC Transformer model. The differences that have positive
value (i.e. belong on the right side of the vertical red line) denote that SVR performs better.

alternative hypothesis states that the median of the test R2 using the SVR model is greater
than the median of test R2 using EncRegrTL_ZINC.

• H0: mA ≤mB

• H1: mA >mB

We reject the null hypothesis with p-value = 5 ⋅ 10−9 at a 5% significance level. Overall
the SVR performs statistically significantly better on the bioactivities than the Transformer
model that was pre-trained on ZINC database.

5.2 Physical Chemistry Properties

The physicochemical property datasets are split 20 times on random train test splits and the
same splits are used to train each model (SVR and Transformers). Note that some molecules
overlap between different property datasets (eg. some molecules are both in ESOL and FreeSolv
datasets), thus these molecules have been chosen to be on the train set in all random splits.
This prevents from overestimated results, for example a molecule could be in the train set with
the ESOL value and in the test set with the FreeSolv value, so it will be easy for the model
which is trained simultaneously on all three properties to predict the FreeSolv on the test set
because ESOL and FreeSolv are associated chemically. First the Transformer models will be
compared to find the higest perfomed on and then the one with the best performance will be
compared with the baseline SVR.

Table 5.2 displays the mean plus/minus the standard error (standard deviation over the
square root of the number of splits) of RMSE and R2 from the 20 random splits on train
and test sets for all three physicochemical properties. The four models that it shows are the
Transformer without Transfer Learning (EncRegr), the Transformer that was pretrained on
around 1.5 million molecules from ChEMBL database (EncRegrTL C), the same pretrained
model on ChEMBL but using oversampling on the ESOL and FreeSolvation properties in
order to have approximately the same size as Lipophilicity is denoted as ovrEncRegrTL C,
and the pretrained Transformer on around 100 million molecules from ZINC database with
oversampling is denoted as ovrEncRegrTL Z.
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Property EncRegr EncRegrTL C ovrEncRegrTL C ovrEncRegrTL Z

Lipophilicity
Train RMSE 0.129 ± 0.001 0.094 ± 0.000 0.090 ± 0.000 0.047 ± 0.001
Test RMSE (↓) 0.161 ± 0.001 0.117 ± 0.000 0.115 ± 0.001 0.111 ± 0.001
Train R2 0.590 ± 0.003 0.780 ± 0.002 0.799 ± 0.002 0.945 ± 0.003
Test R2 (↑) 0.382 ± 0.005 0.667 ± 0.003 0.676 ± 0.004 0.698 ± 0.005

ESOL
Train RMSE 0.058 ± 0.000 0.052 ± 0.000 0.042 ± 0.000 0.026 ± 0.001
Test RMSE (↓) 0.070 ± 0.001 0.061 ± 0.001 0.056 ± 0.001 0.052 ± 0.001
Train R2 0.867 ± 0.002 0.890 ± 0.002 0.927 ± 0.001 0.972 ± 0.001
Test R2 (↑) 0.811 ± 0.005 0.853 ± 0.005 0.876 ± 0.005 0.895 ± 0.004

FreeSolvation
Train RMSE 0.059 ± 0.000 0.052 ± 0.000 0.037 ± 0.000 0.021 ± 0.000
Test RMSE (↓) 0.077 ± 0.002 0.070 ± 0.003 0.059 ± 0.002 0.053 ± 0.002
Train R2 0.819 ± 0.004 0.859 ± 0.003 0.927 ± 0.002 0.976 ± 0.001
Test R2 (↑) 0.736 ± 0.013 0.786 ± 0.014 0.848 ± 0.010 0.874 ± 0.010

Table 5.2: RMSE and R2 of the models trained on the same 20 random train/test splits, the
mean plus/minus the standard error (standard deviation over the square root of the number
of splits) are shown for the three physical chemistry properties. The models are the Encoder
Regression Transformer (EncRegr), the EncRegr that was pretrained on ChEMBL (EncRe-
grTL C), the same model pretrained on ChEMBL but with oversampling of the minority tasks
ESOL and FreeSolvation denoted as ovrEncRegrTL C, and the pretrained EncRegr on ZINC
with oversampled properties is denoted as ovrEncRegrTL Z.

The ovrEncRegrTL_Z model outperforms the other Transformer model approaches looking
at the test RMSE or R2 on all three physicochemical properties from the Table 5.2. Moreover,
using Transfer Learning it seems that improves performance by looking how EncRegr increases
the test R2 using the pretrained on ChEMBL weights (EncRegrTL C model). When oversam-
pling the minority tasks ESOL and FreeSolvation, it seems that we get better performance
as seen from the model EncRegrTL C, where test R2 increases for Lipophilicity from 0.66 to
0.676, for ESOL from 0.853 to 0.876 and for FreeSolvation from 0.786 to 0.848.

Figure 5.4 shows the improvements of the Transformer model performance by using Trans-
fer Learning and by oversampling the minority properties. The x-axis shows the three physical
chemistry properties while the y-axis shows the R2 on their test sets. We can notice the behav-
ior of EncRegr without and with the use of Transfer Learning, where using Transfer Learning
increases the performance on all properties. For Lipophilicity EncRegr has test R2 0.382 that
increased to 0.667 with EncRegrTL_ChEMBL, similarlly for ESOL test R2 increased from
0.811 to 0.853 and FreeSolvation test R2 increased from 0.736 to 0.786. Moreover, we observe
increase on generalization performance by using oversampling on the pretrained on ChEMBL
Transformer (EncRegrTL_ChEMBL), the coefficient of determination increases on all prop-
erties. In addition, the variance of the R2 evaluations on the 20 random train/test splits
is decreased in ESOL and FreeSolvation by using oversampling. It can also be seen by using
oversampling that a bigger Transformer architecture, pretrained on 100 million molecules from
ZINC, outperforms all Transformer model approaches that are used on this thesis. Thus, this
model will be compared with the feature-based SVR.

Figure 5.5 illustrates the impact of using Transfer Learning on the validation MSE. The
x-axis shows the steps of training where each step is one mini-batch update, and the y-axis
shows the validation MSE. The Transformer model is the orange curve while the Transformer
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Figure 5.4: The R2 on test sets of the three physicochemical properties from four approaches
of the Transformer model, on 20 random train/test sets. The models are the Encoder Re-
gression Transformer (EncRegr), the EncRegr that was pretrained on ChEMBL (EncRe-
grTL_ChEMBL), the same model pretrained on ChEMBL but with oversampling of the
minority tasks ESOL and FreeSolvation denoted as oversEncRegrTL_ChEMBL, and the pre-
trained EncRegr on ZINC with oversampled properties is denoted as oversEncRegrTL_ZINC.

with Transfer Learning on ChEMBL is the blue curve. It can be observable that the blue
curve (using Transfer Learning) on zero step its loss has lower value (around 0.04) than the
orange curve which has value higher than 0.18. Additionally, the blue curve ends up having
lower validation MSE than the orange curve.

Figure 5.5: Learning curves on validation set of the EncRegr Transformer without Transfer
Learning (orange curve) and with Transfer Learning using the pretrained model on ChEMBL
(blue curve). The x-axis is the steps (i.e. the mini-batch update), and the y-axis is the
validation MSE.
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Train and test evaluations (RMSE, R2) of the best Transformer model oversEncRe-
grTL_ZINC that is shown in Figure 5.4 and the feature-based model SVR on the three prop-
erties are shown on Table 5.3. Observing the train and test R2, especially on Lipophilicity
property, it seems that again oversEncRegrTL_ZINC and SVR are overfitting but this is not
the case here because the hyperparameters are chosen reagarding the generalization error, i.e.
the lowest validation loss.

Property oversEncRegrTL ZINC SVR

Lipophilicity
Train RMSE 0.047 ± 0.001 0.006 ± 0.000
Test RMSE (↓) 0.111 ± 0.001 0.125 ± 0.001
Train R2 0.945 ± 0.003 0.999 ± 0.000
Test R2 (↑) 0.698 ± 0.005 0.617 ± 0.004

ESOL
Train RMSE 0.026 ± 0.001 0.023 ± 0.001
Test RMSE (↓) 0.052 ± 0.001 0.078 ± 0.001
Train R2 0.972 ± 0.001 0.978 ± 0.001
Test R2 (↑) 0.895 ± 0.004 0.766 ± 0.010

FreeSolvation
Train RMSE 0.021 ± 0.000 0.002 ± 0.000
Test RMSE (↓) 0.053 ± 0.002 0.078 ± 0.005
Train R2 0.976 ± 0.001 0.980 ± 0.000
Test R2 (↑) 0.874 ± 0.010 0.754 ± 0.021

Table 5.3: RMSE and R2 of the models trained on the same 20 random train/test splits, the
mean plus/minus the standard error (standard deviation over the square root of the number
of splits) are shown for all physical chemistry properties.

The results for the comparison on physical chemistry properties between the text-based
Transformer model oversEncRegrTL_ZINC and the feature-based SVR model are visualized
on Figure 5.6. Again the models are evaluated in 20 random train/test splits, the boxplots
with blue color are the oversEncRegrTL_ZINC and with orange the SVR. It is clear that
oversEncRegrTL_ZINC outperforms SVR on all 20 splits of Lipophilicity and ESOL.

We can observe that the oversEncRegrTL_ZINC model has higher R2 than SVR on the
test sets of all three physical chemistry properties.
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5.2. Physical Chemistry Properties

Figure 5.6: The R2 of test sets on the same 20 random train/test splits. The two models are
the Transformer with Transfer Learning and oversampling of the manority tasks, and the SVR
trained on single task at a time.
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6 Discussion

In this chapter the results and methods that are used will be analyzed and discussed, having
as main aim to answer and comment on the research questions that are stated on Section 1.3.
Additionally, the societal aspects that are related with this thesis have been discussed on a
subsection in the end of this chapter.

6.1 Results

Biological Activities
The impact of Transfer Learning on Transformer models for predicting molecular biological
activity values is crucial as seen from Section 5.1. More specifically, the model without Trans-
fer Learning (EncRegr) and the pretrained model on 1.5 million molecules from ChEMBL
(EncRegrTL_ChEMBL) perform similarly. The improvement that we observe using EncRe-
grTL_ChEMBL is not significant, which is visualized on Figure 5.1. In contrast, when we fine-
tuned a larger model which was pretrained on more observations, i.e. 100 million molecules
from ZINC database (EncRegrTL_ZINC), a huge improvement is observed. The EncRe-
grTL_ChEMBL model has around 6 million parameters while the EncRegrTL_ZINC model
has 20 million parameters. To investigate if using just a bigger model will give better perfor-
mance, we trained a Transformer with the same number of parameters as EncRegrTL_ZINC
but without Transfer Learning, initializing the weights randomly. The results were worse than
using a smaller EncRegr model. These experiments indicate that by using a larger model the
performance is not improved; however, the combination of a larger model that was pretrained
on a big chemical space (here 100 million molecules) has huge improvement on predicting the
bioactivity values. Thus, a large Transformer model pretrained on a wide variety of chemical
compounds can play a key role in improving the performance on downstream tasks.

Comparing the text-based Transformer models with the feature-based SVR on the 133
bioactivities (see Figure 5.2), we observed that the EncRegr model performs poorly as opposed
to SVR, while EncRegrTL_ZINC is comparable with SVR. The SVR model outperforms En-
cRegrTL_ZINC on the majority of the QSAR tasks and it is overall significantly statistically
better as shown in Section 5.1. The behavior that text-based models cannot achieve better re-
sults than feature-based models using ECFP features is shown on another recent study ”Using
Molecular Embeddings in QSAR Modeling: Does it Make a Difference?” [69] (here embed-
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6.1. Results

dings mean the latent representation of molecules, not specifically the embedding layer that
is explained in Section 3.2.1). They used different ways to represent molecules with learnable
embeddings, and they compared these models to other models using traditional molecular
representations (deterministic features), computed with feature engineering. The authors con-
cluded that there is no evidence that learnable embeddings perform better. Futhermore, in
the work of Rodríguez-Pérez R. and Bajorath J. [62], the authors trained SVR models with
Tanimoto kernel and DNN models on biological activity tasks, by using ECFPs representation
of the molecules. Their results showed that the mean (± standard deviation) of MSE was
0.586±0.198 for DNN and 0.519±0.291 for SVR. Additionally, in another study by Yadi Zhou
et al. [88] the authors trained SVM and DNN models using ECFP to represent the molecules
on classification and regression molecular activities tasks. They state that ”DNN and SVM
models showed no significant difference”. Taking into account the findings from these studies,
we conclude that using a DNN with ECFPs would have a similar performance compared to the
SVR. Additionally, SVR models are used as a strong baseline to compare our novel approach
of multi-task regression.

Looking at the literature our intuition on the good performance of SVR using the ECFP
features is connected with the way the ECFPs features are created. The molecular bioactivity
values are highly related to the topological structure of the molecule and the ECFPs descrip-
tors are created taking into account the neighbor structure of each atom of the molecule, where
the neighbor area is indicated by a radius [65]. As mentioned in the ”Extended-Connectivity
Fingerprints” paper [65] ”ECFPs were developed specifically for structure−activity model-
ing”, meaning that the ECFPs descriptors are designed to capture molecular features related
to molecular activity. This might be an indication why SVM performs better than the Trans-
former models on bioactivity data.

Each biological activity task has different number of molecules, which varies from 5830 to
1241. As it has stated in this work, the Transformer models are trained simultaneously on all
133 bioactivity datasets. Thus, it is tried to use oversampling on the tasks that have lesser
molecules. As explained in Section 4.5, oversampling SMILES might improve performance
due to the augmention on SMILES strings in each mini-batch so the model does not see the
same molecular representations repeatedly in an epoch. The experiments shown that it is not
improving the performance on biological activity tasks, so these results have not been included.

Another useful outcome of Figure 5.2 is that the orange and blue lines, which describe
the trend of the performance comparison between the Transformer and the SVR, are parallel
to the red diagonal. The red diagonal indicates that the two models perform equally, thus
being parallel with the diagonal means that the difficult to predict regression tasks for the
Transformer model; are also difficult for the SVR. It implies that the biological activity datasets
are not easy to predict. In QSAR tasks the goal is to prioritize large number of molecules, thus
to be less accurate in individual predictions is not of high importance, yet of course higher
prediction accuracy is always desirable [17].

Physical Chemistry Properties
Comparing the results from physicochemical properties, it can be seen that Transfer Learning
again improves the Transformer model’s performance on all three properties. A question
might rise looking the Figure 5.4, why is that huge the improvement between EncRegr and
EncRegrTL_ChEMBL (i.e. by using Transfer Learning) only on Lipophilicity property? To
answer this question one might consider that as seen on Figure 2.4, Lipophilicity has longer
SMILES string lengths (mean around 50 characters) than the other two properties ESOL and
FreeSolvation (mean around 20 characters). These longer sequences make the prediction of
Lipophilicity more difficult for the Transformer model that is not using transfer learning. By
transferring the knowledge from the pretrained on ChEMBL model, the Transformer has seen
a wide variety of molecules and has learned a lot about the syntax of SMILES. In addition, the
average length of SMILES string in ChEMBL is around 50 characters, similar to the SMILES
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in Lipophilicity, thus the molecules that the model has seen in the pretraining face helped
a lot on the performance improvement. Furthermore, Transfer Learning not only improved
performance by having lower loss, but converged quicker (starting from a lower loss), as seen
by the learning curves of Figure 5.5.

On physical chemistry properties is observed the same behavior as in the biological ac-
tivities, where by using a larger Transformer model that was pretrained on a huge and wide
chemical space (100 million molecules from ZINC) improves the performance. Combining the
pretrained model on ZINC and oversampling of the minority properties provides the Trans-
former model with the highest generalization performance that we got from this thesis exper-
iments.

As seen on Figure 5.6 comparing the oversEncRegrTL_ZINC model and the SVR with
ECFPs features shows that oversEncRegrTL_ZINC outperforms significantly on all three
properties. SVR using ECFPs features is a strong baseline and quick to train and tune for
physical chemistry properties but not the best that exists in the literature. In the paper
”MoleculeNet: A Benchmark for Molecular Machine Learning” [87], provides the state of the
art model of these datasets on the time that this paper was published. We did not include these
results because they come from different train/validation/test splits which were not provided
with the datasets, the split is crucial to determine which models performs better because the
performances were really close.

6.2 Methods

In literature, all approaches on multi-task property prediction with DNNs are described as
having in the output layer of the network multiple neurons where each output corresponds
to a different molecular property [47]. This approach requires all different property values
for each molecule of the dataset which is not usually possible; the molecule-property labeled
datasets are limited and expensive to compute experimentally. Thus, our novel multi-task
method utilizing Transformer models overcomes the obstacle of requiring all properties for
each molecule. In our aproach as illustrated in Figure 4.1, the predicted property is specified
in the input sequence hence there could be molecules in the dataset that only one property
value is known and be included in the simultaneously training.

In the experiments of this thesis, the hyperparameter selection of Transformer models
was conducted with manual search on short training times and then using extensive search
with the Optuna framework which does not give significant improvement on performance than
choosing the hyperparameters carefully with some manual trials. This shows that Transformer
Neural Network is a robust architecture and can be used without a big effort on tuning its
hyperparameters. On the other hand, an extensive search of the hyperparameter space is
crucial for the SVR, where we used Bayesian Optimization with the framework scikit-optimize
which improved the performance significantly.

SVR models seems to overfit on biological activity datasets (see Table 5.1 and on Ap-
pendix), meaning that the training error is notably lower than validation and test error,
having a big gap between them. Even by decreasing C the inverse regularization hyperpa-
rameter; the validation loss increases. Additionally, the same behavior is observe by the large
Transformer model EncRegrTL_ZINC which seems to slightly overfit, and if we increase the
dropout probability or the weight decay, then the validation error increases. Thus a question
rise, does this mean that these models are overfitting? In this thesis we did not consider this
as a training problem. The hyperparmeters on all models are chosen by having the lowest
possible validation loss, even if the models look like they overfit the train data.

In this work the experimental time was limited to more or less three months, thus some
aspects could have conducted differently. On biological activity tasks each protein array is
represented by a name called gene symbol which is one token of the input sequence. On the
contrary, the protein array could be a sequence itself and be concatenated with the input
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sequence of the molecule in the embedding layer. This approach of using the whole gene
expression of the protein array as sequence is used by Oskooei A., Born J., Manica M. et al.
[55]; however, on other datasets with classification problems and utilizing Recurrent Neural
Networks with attention mechanism. They used RNN to encode the information of the protein
array and the molecule, structuring the input by concatenating them into one long sequence.
This could give more information to the model about the protein arrays and create more
meaningful dependences between similar gene symbols.

Additionally it could lead to better performance if more physicochemical properties were
added because only three are used in this thesis. It is known that Transformer Neural Networks
need a lot of data to show their power; to some extent this is addressed by the use of Transfer
Learning. Another experiment that could be done is to train simultaneously on biological
activities and physical chemistry properties or even to add other tasks.

6.3 Source Criticism

In this thesis trustworthy sources considered the published papers on journals or conferences,
and the published books from researchers and scientists which are the majority of the used
references that can be found in Bibliography at the end of this work. Additionally, a number
of unpublished pre-prints were cited which was necessary because most of these are new work
that has not be reviewed yet. The majority of the pre-prints that are used, have many citation
even from published papers, thus they are considered reliable sources. Also, preprints are
usually used in computer science field without peer review, as the models are often open
sourced, and thus the results are easier to verify for other researchers. Furthermore, all figures
are created for the purpose of this thesis following the theory, some others have been adapted
from researcher’s work which has Creative Commons (CC) licence where the author’s name
and work are cited below the figure. Additionally, the Figure 2.6 is displayed as it is from its
paper where the permission from the author is taken and the paper is cited again below the
figure.

6.4 Ethical Considerations

The datasets that are used in this thesis are downloaded from publicly available databases as
mentioned in Chapter 2. Moreover, the models that are used are discriminative i.e. regression
models, thus there is no concern on generating new molecules that could rise privacy issues
for potential company’s ownership. All methods and experiments are conducted following the
Ethical Guidelines for Statistical Practice1 of the American Statistical Association.

1https://www.amstat.org/ASA/Your-Career/Ethical-Guidelines-for-Statistical-Practice.aspx
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7 Conclusion

In this thesis a novel text-based multi-task regression Transformer architecture, inspired by
the field of NLP, was introduced for molecular property and activity prediction. After several
experiments and trials, the answers to the research questions are presented below.

7.1 Answers to Research Questions

1: Can a text-base model, with the same parameters and architecture, predict
multiple molecular activities/properties and if yes, to which extend?

The Transformer architecture that is used consists of an embedding layer with positional
encoding, encoder blocks and a FNN for regression with one neuron in the end. The different
regression tasks are introduced to the model by having a prefix token which corresponds to
each task, so the input is the concatenation of the prefix token and the SMILES string as
is illustrated on Figure 4.1. This architecture was able to be trained simultaneously on 133
biological activity regression tasks or on three physical chemistry properties. The results
indicated that it was able to distinguish between tasks and to have comparable evaluations
with the baseline SVR model. More specifically, the best found Transformer achieved test R2

on the three physicochemical properties 0.7, 0,9 and 0.87 while SVR achieved 0.62, 0.77 and
0.75 respectively. This multi-task approach could be used for other tasks as well, opening other
paths of multi-task learning by combining regression tasks with generative and classification
tasks.

2: Can transfer learning improve the performance of the text-base model, by
giving prior knowledge on the model about the syntax of chemical compounds?

By testing two different pretrained Transformer models, one on 1.5 million molecules from
ChEMBL and another larger model on 100 million molecules from ZINC we get a significant
improvement on performance by using Transfer Learning. More specifically, on biological
activities the pretrained Transformer on ChEMBL did not significant improve the performance,
but by using the large model that was pretrained on ZINC, we observed a huge improvement
and the pretrained on ZINC model achieved comparable performance to the traditional feature
based SVR approach. Additionally, on physical chemistry properties, both pretrained models
increased the performance of Transformer networks. Thus, the main outcome is that using
large pretrained models on a wide chemical space is the key to improve the performance on
property and activity prediction.
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7.2. Future Work

3: How does the text-based model perform compare to a feature-based tradi-
tional machine learning algorithm?

A traditional approach to QSAR/QSPR prediction usually use the well studied ECFPs
features, in this work the SVR model with the Tanimoto kernel is used for comparison. As
discussed in Section 6.1, on bioactivities datasets the Transformer model with Transfer Learn-
ing is comparable with the SVR on the 133 QSAR tasks but overall SVR is statistically
significantly better. On the other hand, on physical chemistry properties the Transformer
model with Transfer Learning outperforms SVR on all three properties that are tested.

7.2 Future Work

This thesis shown that the multi-task regression Transformer, with the prefix token to distin-
guish between QSAR/QSPR tasks, achieves competitive results compared to strong baselines,
also it shown the huge impact of Transfer Learning on the performance. As continuation of
this work, the idea of multi-task Transformer could be extended and different tasks can be
added, not only property and activity prediction. More specifically, a model could be trained
simultaneously on property/activity prediction, molecular optimization, organic synthesis, de
novo generation and other tasks. The architecture of this model could be changed to full
Encoder-Decoder Transformer to handle generative and discriminative tasks which would be
distinguished by their prefix tokens. Thus, this model will combine information from different
aspects of the chemical space; creating complex information from supervised tasks. This might
lead to an exciting direction of drug discovery process.
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A.2. Python 3.7 used packages.

A.2 Python 3.7 used packages.

package version

SciPy 1.4.1
matplotlib 3.3.4
seaborn 0.11.1
numpy 1.19.2
pandas 1.1.5
RDKit 2020.09.1
scikit-learn 0.22.2
scikit-optimize 0.8.1
PyTorch 1.8.0
PyTorch Lightning 1.2.3
cudatoolkit 10.1
tensorboard 2.4.1
Optuna 0.2.3

A.3 Hyperparameters.

A.3.1 Transformer models on Biological Activities,
using multi-task simultaneous learning.
EncRegr model = {d_model: 512, num_enc_layers: 2, num_heads: 32,
d_FNN: 1024, dropout: 0.2, activation: 'relu', h_FNN: [1024, 512, 1],
dropout: 0.7, lr: 0.0003, weight_decay: 0.000003}

EncRegrTL ChEMBL = {d_model: 256, num_enc_layers: 4, num_heads: 8,
d_FNN: 2048, dropout: 0.15, activation: 'relu', h_FNN: [1024, 512, 1],
dropout: 0.5, lr: 0.0003, weight_decay: 0.0}

EncRegrTL ZINC = {d_model: 512, num_enc_layers: 6, num_heads: 8,
d_FNN: 2048, dropout: 0.13, activation: 'relu', h_FNN: [2048,1024, 1],
dropout: 0.5, lr: 0.0006, weight_decay: 0.000004}
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A.3. Hyperparameters.

A.3.2 SVR models on Biological Activities,
using single task learning.

Gene Symbol C epsilon gamma Gene Symbol C epsilon gamma
ABL1 5.803 0.143 0.859 DPP4 5.742 0.063 0.0
ACHE 5.236 0.094 1.0 DRD1 5.029 0.233 1.0
ADAM17 5.112 0.006 0.738 DRD3 5.761 0.109 0.619
ADORA2A 5.136 0.187 0.0 DRD4 5.619 0.069 0.0
ADORA2B 8.172 0.001 0.069 DYRK1A 7.136 0.134 0.414
ADORA3 5.713 0.062 0.982 EDNRA 5.037 0.081 0.077
ADRA1A 7.331 0.001 1.0 EGFR 8.742 0.099 0.463
ADRA1D 45.169 0.214 0.0 EPHX2 4.778 0.04 0.0
ADRB1 5.392 0.154 1.0 ERBB2 5.202 0.228 1.0
ADRB2 4.726 0.134 1.0 ESR1 5.505 0.052 1.0
ADRB3 5.727 0.001 0.099 ESR2 5.129 0.305 0.0
AKT1 5.144 0.001 0.0 F10 5.086 0.104 0.0
AKT2 5.728 0.001 1.0 F2 6.994 0.059 1.0
ALK 8.742 0.099 0.463 FAAH 4.962 0.201 0.0
ALOX5 5.62 0.124 1.0 FGFR1 4.063 0.017 1.0
AR 7.184 0.078 1.0 FLT1 5.296 0.065 0.908
AURKA 5.626 0.047 0.994 FLT3 5.66 0.001 1.0
AURKB 5.613 0.142 1.0 GHSR 4.395 0.001 1.0
BACE1 5.266 0.147 1.0 GNRHR 4.268 0.386 0.751
CA1 5.567 0.03 0.847 GRM5 5.832 0.096 0.0
CA12 6.427 0.001 1.0 GSK3A 20.519 0.103 1.0
CA2 5.711 0.004 0.414 GSK3B 5.483 0.014 0.0
CA9 6.109 0.001 0.0 HDAC1 1.752 0.001 1.0
CASP1 5.083 0.142 0.508 HPGD 13.944 0.13 0.0
CCKBR 4.778 0.173 0.853 HRH3 5.21 0.216 0.0
CCR2 5.01 0.251 0.0 HSD11B1 3.241 0.319 0.319
CCR5 5.356 0.107 0.993 HSP90AA1 47.185 0.059 0.617
CDK1 8.457 0.001 0.382 HTR2A 5.667 0.091 1.0
CDK2 5.986 0.096 0.976 HTR2C 4.291 0.093 0.0
CHEK1 6.979 0.001 0.534 HTR6 5.128 0.094 1.0
CHRM1 5.228 0.21 0.0 HTR7 8.742 0.099 0.463
CHRM2 5.804 0.029 1.0 IGF1R 5.617 0.14 0.0
CHRM3 4.232 0.001 1.0 INSR 8.139 0.001 0.755
CHRNA7 4.419 0.001 0.949 ITK 9.659 0.001 1.0
CLK4 5.491 0.187 0.071 JAK2 6.021 0.001 0.612
CNR1 5.312 0.048 1.0 JAK3 10.228 0.001 0.0
CNR2 5.045 0.067 1.0 KCNH2 8.742 0.099 0.463
CRHR1 5.416 0.001 0.0 KDR 5.307 0.001 0.883
CSF1R 5.271 0.125 1.0 KIT 7.08 0.001 0.0
CTSK 5.051 0.19 0.0 LCK 5.693 0.108 0.0
CTSS 5.196 0.107 1.0 MAOB 5.428 0.14 1.0
CYP19A1 6.207 0.186 1.0 MAPK14 5.884 0.066 1.0
DHFR 8.742 0.099 0.463 MAPK8 7.784 0.001 0.0
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A.3. Hyperparameters.

Gene Symbol C epsilon gamma Gene Symbol C epsilon gamma
MAPK9 24.049 0.04 1.0 PIK3CA 5.401 0.097 1.0
MAPKAPK2 6.008 0.001 0.615 PIM1 12.667 0.051 1.0
MC4R 4.699 0.001 1.0 PIM2 10.887 0.001 1.0
MCHR1 8.742 0.099 0.463 PLK1 1.802 0.05 0.347
MET 4.772 0.001 1.0 PPARA 11.816 0.14 1.0
MMP1 4.924 0.001 0.0 PPARD 4.803 0.247 0.882
MMP13 3.166 0.001 0.0 PPARG 18.158 0.18 1.0
MMP2 5.953 0.056 1.0 PRKACA 3.267 0.097 0.0
MMP3 5.432 0.09 0.728 PRKCD 12.641 0.049 1.0
MMP9 5.003 0.107 1.0 PTGDR2 6.202 0.001 1.0
MTOR 5.068 0.149 1.0 PTGS2 5.822 0.14 0.0
NPY5R 5.033 0.001 1.0 PTPN1 10.713 0.023 0.518
NR3C1 4.762 0.108 1.0 REN 4.82 0.204 0.948
NTRK1 14.697 0.035 0.0 ROCK1 6.779 0.109 1.0
OPRD1 4.852 0.174 0.719 ROCK2 4.586 0.001 0.256
OPRK1 4.902 0.161 0.0 S1PR1 5.61 0.001 0.0
OPRL1 4.99 0.001 0.421 SCN9A 5.046 0.15 0.0
OPRM1 4.904 0.165 0.772 SIGMAR1 5.788 0.089 1.0
P2RX7 5.513 0.089 0.835 SLC6A2 5.232 0.205 0.0
PARP1 5.969 0.18 1.0 SLC6A3 6.534 0.174 1.0
PDE5A 5.224 0.001 0.874 SRC 3.912 0.097 0.359
PDGFRB 7.056 0.001 1.0 TACR1 5.702 0.123 0.0
PGR 9.205 0.001 0.0 TRPV1 4.973 0.001 0.0

A.3.3 Transformer models on Physical chemistry properties,
using multi-task simultaneous learning.
EncRegr model = {d_model: 256, num_enc_layers: 2, num_heads: 8,
d_FNN: 1024, dropout: 0.15, activation: 'relu', h_FNN: [1024, 512, 1],
dropout: 0.5, lr: 0.0003, weight_decay: 0.0}

EncRegrTL ChEMBL = {d_model: 256, num_enc_layers: 4, num_heads: 8,
d_FNN: 1024, dropout: 0.15, activation: 'relu', h_FNN: [1024, 512, 1],
dropout: 0.5, lr: 0.0003, weight_decay: 0.0}

EncRegrTL ZINC = {d_model: 512, num_enc_layers: 6, num_heads: 8,
d_FNN: 2048, dropout: 0.13, activation: 'relu', h_FNN: [2048, 1024, 1],
dropout: 0.5, lr: 0.0006, weight_decay: 0.000004}

A.3.4 SVR models on Physical chemistry properties,
using single task learning.
SVR on Lipophilicity = {C: 58.2757, epsilon: 0.0016, gamma: 0.0792}
SVR on ESOL = {C: 0.5053, epsilon: 0.0017, gamma: 0.9089}
SVR on FreeSolvation = {C: 100.0, epsilon: 0.001, gamma: 1.0}
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A.4. Biological Activities Additional Results.

A.4 Biological Activities Additional Results.

Bar charts with error bars of R2 on test sets (using Fisher transformation
on Pearson correlation for the error bars).
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A.4. Biological Activities Additional Results.

Results of the 133 SVR models on all 133 Gene Symbols.

Gene Symbol N mols RMSE train RMSE test R2 train R2 test
ABL1 1858 0.1852 0.6146 0.9656 0.6066
ACHE 3151 0.3291 0.7002 0.9197 0.6442
ADAM17 1371 0.1695 0.5942 0.9764 0.7259
ADORA2A 5269 0.2966 0.6589 0.9337 0.6758
ADORA2B 2072 0.1861 0.6101 0.9667 0.6378
ADORA3 3810 0.3284 0.7 0.9241 0.6512
ADRA1A 1779 0.2648 0.747 0.9558 0.6224
ADRA1D 1458 0.2999 0.713 0.9399 0.6861
ADRB1 1297 0.2826 0.6773 0.9374 0.6428
ADRB2 1940 0.2869 0.7417 0.9643 0.7195
ADRB3 1455 0.2459 0.6632 0.9531 0.6566
AKT1 2229 0.1886 0.5967 0.9783 0.7947
AKT2 1368 0.1076 0.4103 0.9901 0.8424
ALK 1434 0.1166 0.5779 0.991 0.7434
ALOX5 2891 0.2667 0.5762 0.8914 0.47
AR 2571 0.3227 0.8262 0.9273 0.556
AURKA 2733 0.1302 0.5801 0.9846 0.7036
AURKB 2199 0.1773 0.6218 0.9779 0.7068
BACE1 2951 0.2891 0.6174 0.9268 0.6185
CA1 2858 0.223 0.5263 0.9556 0.7242
CA12 1299 0.087 0.5363 0.9935 0.7777
CA2 3652 0.1716 0.5224 0.9703 0.7279
CA9 1744 0.1496 0.5418 0.9791 0.7277
CASP1 1378 0.2056 0.5541 0.976 0.8007
CCKBR 1611 0.4226 0.7316 0.889 0.6876
CCR2 1689 0.3536 0.6664 0.8946 0.6138
CCR5 2016 0.2949 0.635 0.9415 0.6956
CDK1 1593 0.0667 0.5739 0.9955 0.6942
CDK2 2088 0.1715 0.6413 0.9788 0.6886
CHEK1 2718 0.125 0.6204 0.9914 0.7824
CHRM1 2757 0.3389 0.8009 0.9367 0.6308
CHRM2 1787 0.2897 0.7601 0.951 0.6555
CHRM3 1672 0.3544 0.7432 0.9427 0.7661
CHRNA7 1443 0.4417 0.8155 0.8607 0.479
CLK4 1492 0.1904 0.6718 0.9698 0.561
CNR1 5279 0.3031 0.6429 0.9346 0.7177
CNR2 4476 0.2832 0.6669 0.9425 0.6754
CRHR1 1999 0.1644 0.5968 0.9729 0.6124
CSF1R 1986 0.2566 0.6493 0.9595 0.7262
CTSK 1603 0.401 0.7755 0.9105 0.6273
CTSS 1570 0.2094 0.5904 0.9667 0.7191
CYP19A1 1622 0.3048 0.7492 0.9337 0.5717
DHFR 1516 0.4167 0.9038 0.9268 0.6282
DPP4 3293 0.2283 0.6093 0.9486 0.6681
DRD1 1732 0.389 0.7504 0.8851 0.6176
DRD3 3491 0.2955 0.6814 0.9454 0.6923
DRD4 1956 0.2363 0.6688 0.9515 0.571
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A.4. Biological Activities Additional Results.

Gene Symbol N mols RMSE train RMSE test R2 train R2 test
DYRK1A 2568 0.1773 0.5582 0.9593 0.5313
EDNRA 2085 0.3109 0.6907 0.9477 0.7222
EGFR 4314 0.1976 0.6685 0.9738 0.7002
EPHX2 1792 0.3475 0.7486 0.8963 0.4914
ERBB2 1924 0.2292 0.5098 0.9499 0.736
ESR1 2591 0.1948 0.7234 0.9765 0.6757
ESR2 1946 0.3345 0.7635 0.9251 0.5254
F10 4637 0.2899 0.6779 0.957 0.7734
F2 3896 0.2484 0.6661 0.9667 0.7701
FAAH 2267 0.3829 0.7365 0.9051 0.6237
FGFR1 1807 0.1143 0.5209 0.9851 0.6887
FLT1 1643 0.1513 0.6398 0.9792 0.6163
FLT3 2000 0.1716 0.715 0.9782 0.6192
GHSR 1241 0.2923 0.6981 0.9217 0.5168
GNRHR 1720 0.5737 0.7623 0.7784 0.583
GRM5 2534 0.1785 0.6279 0.9695 0.6307
GSK3A 1606 0.1169 0.5604 0.9866 0.5957
GSK3B 3330 0.1373 0.607 0.9836 0.6573
HDAC1 1936 0.3255 0.5567 0.8949 0.6869
HPGD 3061 0.1203 0.4004 0.9534 0.4443
HRH3 4662 0.3555 0.6805 0.8945 0.6146
HSD11B1 3906 0.4581 0.7254 0.7961 0.5104
HSP90AA1 1368 0.0606 0.4612 0.9966 0.7659
HTR2A 4134 0.2854 0.7058 0.945 0.6456
HTR2C 2751 0.2539 0.6535 0.9427 0.5729
HTR6 2356 0.2144 0.6429 0.9659 0.6574
HTR7 1525 0.1948 0.6571 0.966 0.6025
IGF1R 2014 0.1628 0.3887 0.973 0.838
INSR 1381 0.0658 0.4552 0.9928 0.6195
ITK 1381 0.1108 0.5182 0.989 0.7175
JAK2 2146 0.1598 0.6664 0.9819 0.6805
JAK3 1665 0.1148 0.5436 0.9838 0.5985
KCNH2 5275 0.1389 0.5554 0.9726 0.5202
KDR 5749 0.1661 0.6634 0.9788 0.6806
KIT 1622 0.1394 0.6038 0.9821 0.6292
LCK 2652 0.1704 0.6464 0.9807 0.6816
MAOB 1688 0.32 0.7684 0.9203 0.4893
MAPK14 3947 0.1635 0.6232 0.9794 0.6694
MAPK8 1848 0.0992 0.5059 0.9875 0.7188
MAPK9 1503 0.0804 0.4418 0.9913 0.7212
MAPKAPK2 1620 0.0917 0.4549 0.9923 0.8071
MC4R 2516 0.3547 0.6331 0.8967 0.6674
MCHR1 3198 0.2151 0.6421 0.9558 0.6197
MET 2811 0.1365 0.5384 0.9852 0.7847
MMP1 2071 0.2423 0.5936 0.9468 0.6621
MMP13 1856 0.3288 0.696 0.9239 0.648
MMP2 2437 0.2466 0.7556 0.9666 0.68
MMP3 1566 0.2633 0.6584 0.9399 0.6335
MMP9 1999 0.2661 0.7403 0.9519 0.6201
MTOR 2907 0.204 0.69 0.9799 0.7582
NPY5R 1516 0.2445 0.7189 0.9481 0.5444
NR3C1 2522 0.3096 0.706 0.9329 0.6453
NTRK1 1296 0.0966 0.5234 0.9895 0.6148
OPRD1 5337 0.481 0.834 0.8773 0.6365
OPRK1 3667 0.3609 0.7419 0.9386 0.7308
OPRL1 1344 0.2575 0.7221 0.9462 0.6116
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A.4. Biological Activities Additional Results.

Gene Symbol N mols RMSE train RMSE test R2 train R2 test
OPRM1 5830 0.4531 0.7321 0.8995 0.7366
P2RX7 2093 0.2596 0.6502 0.9046 0.4306
PARP1 1583 0.2391 0.6258 0.9454 0.6255
PDE5A 1467 0.3133 0.7719 0.9534 0.7336
PDGFRB 1509 0.1375 0.6976 0.9847 0.6348
PGR 1636 0.1287 0.6393 0.9891 0.7402
PIK3CA 2308 0.1645 0.5628 0.9822 0.7625
PIM1 2126 0.0736 0.5762 0.9965 0.7925
PIM2 1336 0.0536 0.4748 0.9969 0.7906
PLK1 3837 0.1505 0.3955 0.9589 0.7188
PPARA 2086 0.3282 0.7807 0.9059 0.4667
PPARD 1295 0.3077 0.6436 0.9361 0.6875
PPARG 2702 0.2262 0.6597 0.959 0.6362
PRKACA 1271 0.162 0.4709 0.9611 0.6382
PRKCD 1525 0.1204 0.5122 0.9897 0.793
PTGDR2 1375 0.2136 0.6618 0.96 0.5984
PTGS2 2861 0.2786 0.6385 0.9352 0.6621
PTPN1 1453 0.0491 0.4214 0.9966 0.7117
REN 2498 0.4253 0.7265 0.8993 0.705
ROCK1 1629 0.158 0.5947 0.9783 0.6584
ROCK2 1760 0.2421 0.6553 0.9594 0.6894
S1PR1 1361 0.2674 0.8355 0.9622 0.6216
SCN9A 1654 0.1791 0.5518 0.9644 0.6445
SIGMAR1 2886 0.347 0.7475 0.8992 0.5386
SLC6A2 3865 0.3369 0.7065 0.9008 0.5599
SLC6A3 5006 0.3152 0.6256 0.9217 0.6728
SRC 3086 0.2443 0.5726 0.9468 0.6875
TACR1 2412 0.3628 0.7191 0.9254 0.6925
TRPV1 2980 0.2943 0.6868 0.9348 0.6477
VDR 2585 0.2433 0.6164 0.958 0.7104
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A.4. Biological Activities Additional Results.

Results of the EncRegr model on 133 Gene Symbols.

Gene Symbol N mols RMSE train RMSE test R2 train R2 test
ABL1 1858 0.4624 0.7596 0.6979 0.5006
ACHE 3151 0.6311 0.7054 0.8751 0.4655
ADAM17 1371 0.5681 0.7238 0.7549 0.5599
ADORA2A 5269 0.6326 0.6803 0.8797 0.4398
ADORA2B 2072 0.593 0.6577 0.7072 0.512
ADORA3 3810 0.6897 0.6596 0.9086 0.4352
ADRA1A 1779 0.6407 0.7458 0.8793 0.4906
ADRA1D 1458 0.5691 0.776 0.8852 0.5318
ADRB1 1297 0.5687 0.7416 0.7921 0.5354
ADRB2 1940 0.6236 0.8267 0.9912 0.5348
ADRB3 1455 0.5712 0.7505 0.8025 0.5197
AKT1 2229 0.529 0.8268 0.7503 0.6799
AKT2 1368 0.4053 0.861 0.513 0.7553
ALK 1434 0.4522 0.8608 0.7824 0.5533
ALOX5 2891 0.5262 0.5568 0.673 0.3171
AR 2571 0.6342 0.7146 0.9534 0.4285
AURKA 2733 0.5058 0.7625 0.7373 0.5418
AURKB 2199 0.5018 0.7925 0.7563 0.5784
BACE1 2951 0.5999 0.6722 0.7487 0.4636
CA1 2858 0.5966 0.6781 0.7428 0.4722
CA12 1299 0.5405 0.74 0.6894 0.6312
CA2 3652 0.5854 0.654 0.6844 0.5442
CA9 1744 0.5695 0.7024 0.6773 0.5818
CASP1 1378 0.4765 0.8677 0.6862 0.7058
CCKBR 1611 0.726 0.6645 1.0433 0.3945
CCR2 1689 0.6406 0.6291 0.8525 0.3967
CCR5 2016 0.6204 0.731 0.8462 0.4841
CDK1 1593 0.4832 0.7603 0.7126 0.5354
CDK2 2088 0.5168 0.7914 0.7975 0.5365
CHEK1 2718 0.5613 0.8268 0.8975 0.5681
CHRM1 2757 0.6491 0.7445 1.0197 0.4354
CHRM2 1787 0.6141 0.7798 0.8773 0.5557
CHRM3 1672 0.6168 0.8254 0.9366 0.6406
CHRNA7 1443 0.6825 0.6593 0.9392 0.3235
CLK4 1492 0.5585 0.6584 0.8471 0.3433
CNR1 5279 0.6641 0.687 0.8722 0.4905
CNR2 4476 0.6346 0.7059 0.8803 0.4615
CRHR1 1999 0.6443 0.5742 0.7901 0.343
CSF1R 1986 0.4874 0.8485 0.7435 0.6527
CTSK 1603 0.7177 0.7079 0.9955 0.4177
CTSS 1570 0.5602 0.7457 0.8204 0.4794
CYP19A1 1622 0.6466 0.674 1.0015 0.2963
DHFR 1516 0.8331 0.7078 1.1469 0.4364
DPP4 3293 0.61 0.6364 0.7886 0.4602
DRD1 1732 0.6692 0.6505 0.9629 0.3844
DRD3 3491 0.658 0.7228 0.9391 0.4479
DRD4 1956 0.6494 0.6131 0.8841 0.3017
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A.4. Biological Activities Additional Results.

Gene Symbol N mols RMSE train RMSE test R2 train R2 test
DYRK1A 2568 0.5203 0.6042 0.6545 0.3759
EDNRA 2085 0.6998 0.731 0.9015 0.537
EGFR 4314 0.6436 0.7183 0.9094 0.4656
EPHX2 1792 0.6762 0.5984 0.8983 0.2811
ERBB2 1924 0.4618 0.7767 0.6485 0.582
ESR1 2591 0.64 0.7333 0.9378 0.4763
ESR2 1946 0.6423 0.6756 0.9361 0.3439
F10 4637 0.6557 0.776 0.9551 0.5619
F2 3896 0.683 0.7455 1.001 0.4998
FAAH 2267 0.6654 0.7048 0.9001 0.4684
FGFR1 1807 0.4094 0.8077 0.5882 0.6191
FLT1 1643 0.5051 0.7516 0.6713 0.5822
FLT3 2000 0.5149 0.8029 0.7823 0.5575
GHSR 1241 0.6456 0.6249 0.8973 0.2587
GNRHR 1720 0.7244 0.6351 0.8683 0.4717
GRM5 2534 0.6482 0.5757 0.8629 0.3325
GSK3A 1606 0.4354 0.7704 0.6779 0.4595
GSK3B 3330 0.5583 0.7222 0.7658 0.4821
HDAC1 1936 0.5423 0.702 0.8002 0.405
HPGD 3061 0.3884 0.3507 0.4656 0.2653
HRH3 4662 0.6421 0.645 0.822 0.4526
HSD11B1 3906 0.6356 0.5982 0.8339 0.3774
HSP90AA1 1368 0.4176 0.8143 0.6616 0.5452
HTR2A 4134 0.6565 0.6997 0.9287 0.4279
HTR2C 2751 0.6323 0.6214 0.883 0.288
HTR6 2356 0.6589 0.6624 0.8987 0.394
HTR7 1525 0.6264 0.6233 0.878 0.3245
IGF1R 2014 0.4442 0.792 0.527 0.7131
INSR 1381 0.3918 0.7535 0.4794 0.5961
ITK 1381 0.4595 0.8153 0.6985 0.5152
JAK2 2146 0.4972 0.8284 0.775 0.578
JAK3 1665 0.4245 0.7807 0.5758 0.5623
KCNH2 5275 0.5002 0.6052 0.6941 0.2842
KDR 5749 0.5665 0.7491 0.8459 0.4955
KIT 1622 0.5065 0.7669 0.7261 0.5027
LCK 2652 0.4961 0.8169 0.7547 0.5794
MAOB 1688 0.7038 0.5939 0.9372 0.2934
MAPK14 3947 0.5783 0.7302 0.8306 0.448
MAPK8 1848 0.4266 0.7676 0.6676 0.5362
MAPK9 1503 0.4069 0.7727 0.5784 0.5428
MAPKAPK2 1620 0.4161 0.8398 0.5644 0.7071
MC4R 2516 0.6757 0.6221 0.7975 0.4806
MCHR1 3198 0.6061 0.6367 0.8753 0.3291
MET 2811 0.4803 0.8159 0.7043 0.6408
MMP1 2071 0.595 0.6822 0.7757 0.4399
MMP13 1856 0.6192 0.7317 0.9152 0.428
MMP2 2437 0.6587 0.7595 0.9769 0.4805
MMP3 1566 0.6117 0.6653 0.8713 0.3807
MMP9 1999 0.656 0.6973 0.9512 0.4091
MTOR 2907 0.6247 0.7841 0.8173 0.6661
NPY5R 1516 0.6573 0.6227 0.8963 0.3241
NR3C1 2522 0.6311 0.7185 0.8867 0.4632
NTRK1 1296 0.3979 0.8178 0.6304 0.4735
OPRD1 5337 0.7962 0.6613 1.0986 0.3962
OPRK1 3667 0.6833 0.7708 0.9606 0.5631
OPRL1 1344 0.6291 0.6845 0.8901 0.4262
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A.4. Biological Activities Additional Results.

Gene Symbol N mols RMSE train RMSE test R2 train R2 test
OPRM1 5830 0.7585 0.7145 1.057 0.4734
P2RX7 2093 0.5741 0.5233 0.7849 0.2233
PARP1 1583 0.5584 0.6844 0.8272 0.392
PDE5A 1467 0.6301 0.8144 0.9057 0.6365
PDGFRB 1509 0.497 0.7967 0.8259 0.4992
PGR 1636 0.591 0.7687 0.8636 0.5427
PIK3CA 2308 0.6006 0.7491 0.8017 0.5338
PIM1 2126 0.4666 0.8547 0.6777 0.7162
PIM2 1336 0.3625 0.8581 0.6377 0.6352
PLK1 3837 0.3671 0.7602 0.4931 0.5805
PPARA 2086 0.6653 0.5842 0.9102 0.2874
PPARD 1295 0.5936 0.7364 0.8858 0.4449
PPARG 2702 0.5983 0.696 0.857 0.4087
PRKACA 1271 0.4189 0.717 0.5396 0.5457
PRKCD 1525 0.4627 0.8411 0.6499 0.6666
PTGDR2 1375 0.6506 0.6207 0.8848 0.3372
PTGS2 2861 0.6587 0.6184 0.8156 0.4626
PTPN1 1453 0.406 0.7596 0.5288 0.5625
REN 2498 0.7527 0.6753 0.9775 0.4716
ROCK1 1629 0.4985 0.7682 0.6981 0.5375
ROCK2 1760 0.5551 0.7857 0.8508 0.5023
S1PR1 1361 0.6796 0.7544 1.0073 0.4738
SCN9A 1654 0.6598 0.4717 0.7861 0.3117
SIGMAR1 2886 0.6886 0.5955 0.8975 0.3647
SLC6A2 3865 0.6586 0.6127 0.8565 0.3803
SLC6A3 5006 0.66 0.6508 0.8496 0.4197
SRC 3086 0.5471 0.725 0.7118 0.5295
TACR1 2412 0.6687 0.7395 0.9236 0.5127
TRPV1 2980 0.6495 0.6804 0.883 0.4359
VDR 2585 0.5144 0.8011 0.6542 0.6832
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A.4. Biological Activities Additional Results.

Results of the EncRegr with TL (pretrained on 100M molecules from
ZINC) on 133 Gene Symbols.

Gene Symbol N mols RMSE train RMSE test R2 train R2 test
ABL1 1858 0.2063 0.952 0.5586 0.6784
ACHE 3151 0.3166 0.9258 0.7773 0.5844
ADAM17 1371 0.2488 0.9469 0.6635 0.6633
ADORA2A 5269 0.2866 0.9343 0.6943 0.6439
ADORA2B 2072 0.2602 0.9339 0.6364 0.6187
ADORA3 3810 0.3268 0.9234 0.7792 0.5843
ADRA1A 1779 0.3105 0.9401 0.7819 0.6055
ADRA1D 1458 0.3326 0.9235 0.6809 0.7158
ADRB1 1297 0.2824 0.9363 0.7721 0.5604
ADRB2 1940 0.28 0.965 0.7797 0.7021
ADRB3 1455 0.2696 0.9443 0.7056 0.6237
AKT1 2229 0.2511 0.961 0.6325 0.774
AKT2 1368 0.2077 0.9636 0.381 0.8629
ALK 1434 0.2097 0.97 0.5915 0.7342
ALOX5 2891 0.2727 0.8809 0.5675 0.4987
AR 2571 0.327 0.9241 0.8733 0.531
AURKA 2733 0.2219 0.9542 0.577 0.7127
AURKB 2199 0.2138 0.9623 0.6043 0.7247
BACE1 2951 0.3096 0.9126 0.6999 0.5421
CA1 2858 0.2417 0.9471 0.5514 0.7033
CA12 1299 0.2149 0.9589 0.5526 0.7631
CA2 3652 0.2304 0.9463 0.5186 0.7372
CA9 1744 0.2255 0.9535 0.5483 0.7262
CASP1 1378 0.2359 0.9676 0.6521 0.7311
CCKBR 1611 0.435 0.8797 0.7896 0.643
CCR2 1689 0.3346 0.8987 0.7948 0.4827
CCR5 2016 0.2999 0.937 0.7561 0.592
CDK1 1593 0.1991 0.9591 0.5129 0.7558
CDK2 2088 0.2086 0.9661 0.6765 0.6627
CHEK1 2718 0.2267 0.9717 0.6401 0.7713
CHRM1 2757 0.3008 0.9451 0.8832 0.5738
CHRM2 1787 0.3125 0.9429 0.7655 0.6624
CHRM3 1672 0.3177 0.9537 0.7067 0.7915
CHRNA7 1443 0.3923 0.8874 0.9307 0.3875
CLK4 1492 0.2252 0.9445 0.6304 0.6192
CNR1 5279 0.3295 0.9231 0.7186 0.6582
CNR2 4476 0.2994 0.9345 0.7148 0.6391
CRHR1 1999 0.2687 0.9259 0.6531 0.5548
CSF1R 1986 0.2659 0.9548 0.6408 0.7403
CTSK 1603 0.3592 0.926 0.8172 0.5977
CTSS 1570 0.2671 0.9421 0.6568 0.6608
CYP19A1 1622 0.2714 0.9426 0.8426 0.4764
DHFR 1516 0.4093 0.9294 1.0143 0.5678
DPP4 3293 0.2853 0.9201 0.6539 0.6239
DRD1 1732 0.3509 0.9036 0.9256 0.4463
DRD3 3491 0.3131 0.9373 0.771 0.6154
DRD4 1956 0.2875 0.9243 0.7613 0.4785
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A.4. Biological Activities Additional Results.

Gene Symbol N mols RMSE train RMSE test R2 train R2 test
DYRK1A 2568 0.2263 0.9249 0.5517 0.5613
EDNRA 2085 0.3431 0.9353 0.8107 0.6359
EGFR 4314 0.265 0.9522 0.7409 0.6432
EPHX2 1792 0.3429 0.8964 0.745 0.5109
ERBB2 1924 0.2348 0.9419 0.5388 0.7088
ESR1 2591 0.255 0.9576 0.7497 0.6597
ESR2 1946 0.2841 0.9363 0.8109 0.4958
F10 4637 0.3125 0.9491 0.7595 0.721
F2 3896 0.3054 0.9491 0.7438 0.718
FAAH 2267 0.3541 0.9163 0.8117 0.5742
FGFR1 1807 0.1918 0.9579 0.5226 0.6968
FLT1 1643 0.2144 0.9552 0.5639 0.7027
FLT3 2000 0.2237 0.9627 0.671 0.6724
GHSR 1241 0.3402 0.8955 0.7569 0.4431
GNRHR 1720 0.4954 0.8293 0.8374 0.5271
GRM5 2534 0.2727 0.9249 0.7277 0.528
GSK3A 1606 0.1825 0.9596 0.4546 0.7541
GSK3B 3330 0.2254 0.9546 0.6145 0.6576
HDAC1 1936 0.2418 0.9405 0.6266 0.6191
HPGD 3061 0.1983 0.8299 0.4451 0.3569
HRH3 4662 0.3626 0.8866 0.7202 0.5852
HSD11B1 3906 0.401 0.8394 0.7826 0.4566
HSP90AA1 1368 0.1863 0.963 0.5098 0.7213
HTR2A 4134 0.2906 0.941 0.7356 0.6321
HTR2C 2751 0.2987 0.9153 0.6882 0.5463
HTR6 2356 0.298 0.9308 0.7115 0.5978
HTR7 1525 0.2486 0.9404 0.7191 0.5362
IGF1R 2014 0.208 0.9542 0.4028 0.8307
INSR 1381 0.1754 0.9507 0.3675 0.7558
ITK 1381 0.193 0.9672 0.5656 0.6759
JAK2 2146 0.2348 0.9616 0.6371 0.7075
JAK3 1665 0.2137 0.9444 0.5064 0.6576
KCNH2 5275 0.2212 0.9227 0.5966 0.4733
KDR 5749 0.2418 0.9543 0.6526 0.694
KIT 1622 0.1917 0.9664 0.6488 0.6031
LCK 2652 0.2149 0.9656 0.6034 0.7226
MAOB 1688 0.286 0.9329 0.8341 0.4411
MAPK14 3947 0.2584 0.946 0.6859 0.6173
MAPK8 1848 0.1865 0.9553 0.509 0.7175
MAPK9 1503 0.1804 0.9549 0.4244 0.7474
MAPKAPK2 1620 0.1991 0.9635 0.4682 0.8082
MC4R 2516 0.3799 0.8803 0.7412 0.5607
MCHR1 3198 0.2837 0.9204 0.7138 0.547
MET 2811 0.2112 0.9642 0.5778 0.7558
MMP1 2071 0.2567 0.9409 0.6203 0.6461
MMP13 1856 0.2862 0.9426 0.7232 0.6432
MMP2 2437 0.2699 0.9596 0.7768 0.6742
MMP3 1566 0.2664 0.9364 0.6704 0.6231
MMP9 1999 0.2633 0.9512 0.7417 0.6329
MTOR 2907 0.23 0.9708 0.711 0.7483
NPY5R 1516 0.261 0.9405 0.811 0.4672
NR3C1 2522 0.3353 0.9204 0.7504 0.608
NTRK1 1296 0.159 0.9709 0.5607 0.5833
OPRD1 5337 0.4608 0.8865 0.9038 0.5898
OPRK1 3667 0.3267 0.9476 0.8054 0.6908
OPRL1 1344 0.2875 0.9339 0.7836 0.5494
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A.4. Biological Activities Additional Results.

Gene Symbol N mols RMSE train RMSE test R2 train R2 test
OPRM1 5830 0.4355 0.9058 0.8162 0.6796
P2RX7 2093 0.3049 0.865 0.6369 0.4639
PARP1 1583 0.2828 0.9184 0.6726 0.5791
PDE5A 1467 0.3415 0.9455 0.8448 0.6922
PDGFRB 1509 0.2192 0.9606 0.6339 0.7017
PGR 1636 0.2735 0.9504 0.7654 0.6422
PIK3CA 2308 0.2344 0.9617 0.6683 0.6724
PIM1 2126 0.2163 0.969 0.5556 0.8075
PIM2 1336 0.172 0.9677 0.4495 0.8153
PLK1 3837 0.1943 0.9326 0.4346 0.6726
PPARA 2086 0.3519 0.8836 0.84 0.4066
PPARD 1295 0.2918 0.9363 0.7132 0.6276
PPARG 2702 0.273 0.9367 0.7296 0.5789
PRKACA 1271 0.1906 0.9407 0.4713 0.6436
PRKCD 1525 0.2151 0.9656 0.5438 0.7712
PTGDR2 1375 0.2813 0.929 0.7575 0.5017
PTGS2 2861 0.288 0.9269 0.7096 0.6077
PTPN1 1453 0.2032 0.9401 0.4695 0.6639
REN 2498 0.4272 0.8955 0.8677 0.5906
ROCK1 1629 0.2151 0.9574 0.5255 0.7316
ROCK2 1760 0.2759 0.947 0.6592 0.6936
S1PR1 1361 0.309 0.9491 0.8775 0.5937
SCN9A 1654 0.2642 0.9148 0.6478 0.5317
SIGMAR1 2886 0.3403 0.9009 0.8045 0.5005
SLC6A2 3865 0.3042 0.9171 0.7355 0.5404
SLC6A3 5006 0.3007 0.9274 0.6486 0.6568
SRC 3086 0.2731 0.9313 0.6273 0.635
TACR1 2412 0.3533 0.9273 0.8349 0.6047
TRPV1 2980 0.315 0.9248 0.8002 0.552
VDR 2585 0.2433 0.9556 0.6491 0.6929
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