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Abstract

The field of remote sensing uses imagery captured from satellites, aircrafts, and UAVs
in order to observe and analyze the Earth. Many remote sensing applications that are used
today employ deep learning models that require large amounts of data or specific types of
data. The lack of data can hinder model performance. A generative adversarial network
(GAN) is a deep learning model that can generate synthetic data and can be used as a
method for data augmentation to increase performance of data reliant deep learning mod-
els. GANs are also capable of image-to-image translation such as transforming a satellite
image containing cloud coverage into one without clouds. These possibilities have led to
many new and exciting GAN applications.

This thesis explores ways generative adversarial networks (GANs) can be applied in
a variety of remote sensing applications. To evaluate this, four experiments using GANs
are implemented. The tasks are: generating synthetic aerial forestry imagery, translating a
satellite segmentation mask into a real satellite image, removal of thin cloud cover from a
satellite image, and super resolution to increase the resolution of a satellite image. In all
experiments the tasks were deemed successful and prove the potential for further use of
GANs in the field of remote sensing.

Keywords: Generative Adversarial Networks, Data Generation, Remote Sensing



Acknowledgments

I would like to thank the company Arboair for much of the motivation and discussion of the
ideas behind this thesis as well as the opportunity to use their hardware and data in parts
of the work. Arboair is a startup company focusing on sustainable forestry and detection of
forest damage using machine learning models.

I also want to thank my supervisor George Osipov who gave me feedback throughout the
process of writing my thesis and my examiner Cyrille Berger.

iv



Contents

Abstract iii

Acknowledgments iv

Contents v

List of Figures vii

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Aim . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Research questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.4 Delimitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Theory 4
2.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Generative Adversarial Networks . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3 Extensions of the GAN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.4 Applications of GANs and Related Work . . . . . . . . . . . . . . . . . . . . . . 13

3 Method 16
3.1 Experiment 1: Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2 Experiment 2: Image-to-Image Translation . . . . . . . . . . . . . . . . . . . . . 18
3.3 Experiment 3: Cloud Removal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.4 Experiment 4: Super Resolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.5 Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4 Results 23
4.1 Experiment 1: Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.2 Experiment 2: Image-to-Image Translation . . . . . . . . . . . . . . . . . . . . . 25
4.3 Experiment 3: Cloud Removal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.4 Experiment 4: Super Resolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5 Discussion 32
5.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.3 The work in a wider context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

6 Conclusion 37
6.1 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

A Appendix 39

v



Bibliography 44

vi



List of Figures

2.1 Simplified architecture of a GAN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3.1 The original image (1) has its the edges evenly cropped resulting in the square
center crop (2) which is then split into even patches (3). . . . . . . . . . . . . . . . . 17

3.2 Satellite image (1) and the corresponding segmentation mask (2) . . . . . . . . . . . 19
3.3 Using alpha blending the original satellite patch (1) plus the simulated perlin noise

pattern (2) results in the final cloud simulated image (3). . . . . . . . . . . . . . . . 20
3.4 Example of a low resolution (1) and high resolution (2) image pair. . . . . . . . . . 21

4.1 Random samples of real images (1) and DCGAN generated images (2). . . . . . . . 24
4.2 Samples of good quality StyleGAN2-ADA generated imagery . . . . . . . . . . . . 24
4.3 Samples of low quality StyleGAN2-ADA generated imagery . . . . . . . . . . . . . 25
4.4 Highlight of mode collapse in StyleGAN2-ADA generated imagery . . . . . . . . . 25
4.5 Samples of low quality pix2pix style transfers where the segmentation mask (1) is

used as input to generate the synthetic image (2) and the ground truth image (3). . 26
4.6 Samples of good quality pix2pix style transfers where the segmentation mask (1)

is used as input to generate the synthetic image (2) and the ground truth image (3) 27
4.7 Samples of good mappings from domain A to B. . . . . . . . . . . . . . . . . . . . . 28
4.8 Samples of poor mappings from domain A to B. . . . . . . . . . . . . . . . . . . . . 29
4.9 Samples of mapping from domain B to A. . . . . . . . . . . . . . . . . . . . . . . . . 29
4.10 Samples of super resolution showing the low-resolution image (1), the synthetic

high-resolution image (2), and the high-resolution ground truth image (3). . . . . . 30
4.11 The red area shown on a low-resolution satellite image is zoomed to in the syn-

thetic super resolution image (1) and the ground truth high-resolution image (2). . 31

A.1 DCGAN Loss Plot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
A.2 StyleGAN2-ADA FID Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
A.3 Pix2pix Generator Loss Plot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
A.4 Pix2pix Discriminator Loss for real samples . . . . . . . . . . . . . . . . . . . . . . . 41
A.5 Pix2pix Discriminator Loss for fake samples . . . . . . . . . . . . . . . . . . . . . . 41
A.6 CycleGAN Cyclic Loss for Domain A . . . . . . . . . . . . . . . . . . . . . . . . . . 42
A.7 CycleGAN Cyclic Loss for Domain B . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
A.8 ESRGAN PSNR Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

vii



1 Introduction

This chapter provides an introduction and motivation to the thesis, the overall aim, the re-
search questions to be answered, and the delimitations to be considered.

1.1 Motivation

In recent years the rapid growth of deep learning has made it a popular technique to analyze
remote sensing data. Deep learning approaches in computer vision use large models that con-
sist of artificial neural networks with several layers, also referred to as deep neural networks.
These networks are capable of learning to understand the context in images for tasks like
object detection and image classification. Applying deep neural networks within the field
of geospatial analysis using remotely sensed imagery includes tasks such as land use and
land cover classification, semantic segmentation, object detection, and change detection [31].
Traditionally, these tasks have been accomplished with machine learning techniques such as
random forests [3], support vector machines [33], or other pixel-based approaches. While
these aforementioned methods can achieve desirable results, the advances in deep learning
models for computer vision tasks have begun outperforming previous methods [31].

A major event in the improvement of computer vision was the introduction of AlexNet
[24] in 2012. Alex Krizhevsky and his colleagues introduced their network to compete in the
ImageNet competition [38] which is a challenge where researchers compete to achieve the
best results in object detection and image classification on 1,000 classes in over 1.2 million im-
ages. Their convolutional neural network (CNN) performed over 10% better than the second
place model. Apart from their larger network architecture, they explain the necessity of large
training datasets and how the advancements of graphical processing units (GPUs) allow for
optimized convolutional operations.

Since the majority of remote sensing data is imagery that CNNs perform well on, the
jump to use deep learning with remotely sensed imagery is an apparent one. However, re-
quiring thousands or even millions of images to train a model is an issue that many deep
learning approaches have. Within remote sensing, the data acquisition can be expensive or
time-consuming making it difficult to gather large enough datasets for training these mod-
els. Methods have been introduced to help create more data for computer vision tasks such
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1.2. Aim

as data augmentation [40]. Data augmentation is the process of altering the already existing
data with techniques like changing color profiles slightly or rotating and cropping the image.
Using augmentation techniques will introduce additional training samples and diversify the
data which can help train large models by improving its generalization capabilities.

The quantity of data is important, but the diversity of data is equally relevant for the
performance of deep learning models. With an uneven data distribution, it will be difficult
for a model to learn how to correctly detect or appreciate all the features in a dataset. For
example, remotely sensed UAV (e.g., drone, aircraft) imagery of forests can be used to detect
changes in forest health by performing classification and detection at an individual tree level
[35]. In the case for forest health, the data collected might result in a distribution of less than
10% of dead or sick trees, whereas the majority would be healthy trees. Data augmentation
could help fix this unevenness by augmenting only images containing the less represented
class and therefore increasing their contribution. In some situations, introducing these images
might lead to sufficient results. However, getting an equal distribution of data is still difficult
because there is a limited number of ways to meaningfully augment the existing images.
Therefore, a technique to generate new synthetic images could be used. One such method
explored in this thesis is the generative adversarial network.

The generative adversarial network (GAN) [11] is a deep learning model that has the
ability to generate synthetic data. When given examples of images, GANs are capable of
learning the underlying data distribution which allows for generation of new imagery that
does not exist in the training set but contains the same characteristics as images that do.
By using this learned distribution, a trained GAN can continue to generate as much data
as needed. This allows the usage of new synthetic samples as a technique for fixing the
unevenness that may be present in a dataset or simply increasing the dataset size altogether.
In addition to generation, the GAN architecture can perform image-to-image translation [15]
where the characteristics of one image is transferred onto the other. This is also useful as
a controllable augmentation technique where the type of data can be specified by the two
domains that are being transferred between. In the field of remote sensing GANs have been
used in several different ways: image-to-image translation to transfer styles from basemaps
to real satellite imagery [46], removing thin cloud cover from satellite imagery [42], and as a
tool for super resolution to increase the resolution of remotely sensed images [36].

1.2 Aim

The aim of this thesis is to explore the capabilities and applications of generative adversarial
networks in the domain of remote sensing. Specifically, the focus of this thesis includes:
GANs as a tool for generating synthetic remote sensing data, image-to-image style transfer,
removal of thin cloud cover from satellite imagery, and image super resolution. The data
used includes satellite imagery and unmanned aerial vehicle (UAV) imagery.

A broad overview of some ways to utilize GANs in the field of remote sensing is given
by evaluating different GAN architectures for the aforementioned tasks. The already existing
usage of machine learning in remote sensing applications is a key factor why the introduction
of GANs is important. For example, how the introduction of GANs can aid in data-centric
machine learning models and how GANs can be used for better solutions to already existing
techniques.

1.3 Research questions

This thesis focuses to explore and evaluate the following research questions:

2



1.4. Delimitations

1. At what resolution and quality can synthetic aerial forest imagery be generated with
GANs?

2. Can a GAN learn the mapping between segmented satellite masks and real satellite
imagery using paired image-to-image translation?

3. Can a GAN learn to remove thin cloud cover from satellite imagery using unpaired
image-to-image translation techniques?

4. Can a GAN be used in a super resolution task using satellite imagery to generate higher
resolution satellite imagery?

All of the research questions will be answered with individual experiments and evalua-
tion is done mainly through a qualitative analysis using quantitative metrics to help deter-
mine the best performing models. The full evaluation techniques are described in the method
chapter.

1.4 Delimitations

In this thesis, the application area where generative adversarial networks are evaluated is
within remotely sensed imagery. The experiments conducted use imagery captured from
drones and satellites and the imagery is all within the visible light spectrum (RGB). Only
the aspects related to the GANs performance and quality of generation are explored. The
applications of the generated data will be discussed but not evaluated further.

3



2 Theory

2.1 Background

This section will describe the important concepts needed to understand the work done in
this thesis. First, an overview of remote sensing is given, then an introduction to generative
adversarial networks is presented. For a complete introduction to deep learning refer to the
Deep Learning Book [10] or for a condensed introduction refer to this [26] Deep Learning
article.

Remote Sensing

Remote sensing can be broadly defined as the process of gathering information at a dis-
tance. More specifically, capturing the reflected or emitted electromagnetic radiation from
the Earth’s surface from an overhead perspective [5]. Remote sensing is a vital component for
geospatial monitoring and analysis of the Earth. Remotely sensed imagery can be acquired
by satellites, aircraft, or unmanned aerial vehicles (UAVs) and can contain data from multi-
ple sensors to capture light outside of the visible spectrum. The resolution of remotely sensed
imagery is often referred to as the ground sampling distance (GSD). The GSD describes the
real distance one pixel in a remotely sensed image represents on the Earth’s surface. Satel-
lite imagery might be preferred if the area of interest is very large, whereas a UAV would be
more useful in acquiring high-precision data over a small area. Imagery in the visible light
spectrum might be most relevant for mapping urban cityscapes, whereas infrared light can be
used in agriculture to measure crop health using a vegetation index such as the normalized
difference vegetation index (NDVI).

Generative vs Discriminative

Generative and discriminative models are two distinct approaches to machine learning. Dis-
criminative models learn to find differences in data. This can be done by optimizing a sepa-
ration of the data with a decision boundary in order to create distinct groupings of the data.
The boundary is then used as a threshold where any data above the threshold is of one class
and any data located below is of another. Instead of just trying to distinguish the differences
in data, generative models learn about the underlying distribution of the data.
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2.2. Generative Adversarial Networks

Discriminative models find a direct solution by modeling the posterior P(y|x), by pre-
dicting class labels y given input x. Generative models use Bayes rule to model the joint
probability P(y, x) to choose the most likely class label y [18]. Instead of directly calculating
which class label a data point x should have, generative models compute an intermediate
step P(x|y) in order to model the distribution of a certain class label.

In more recent years deep generative modeling has gained much attention. These mod-
els learn the distributions of the data they are trained on and then use this distribution to
generate new synthetic data. Many of these models can learn this distribution completely
unsupervised. The advantage of not needing to obtain labeled data can be a tremendous
time and money saver and is one reason why generative models have gained attention. One
model that is commonly used in generation tasks is an auto-encoder.

A variational auto-encoder is a neural network architecture that can be used to generate
synthetic data. It is a combination of two neural networks that consists of an encoder net-
work that transforms the input into a smaller dimension space called the latent space, and a
decoder network that effectively undoes the process of the encoder by using the latent space
in order to reconstruct the input. The objective of this architecture is to minimize the error
between the original input data and the reconstructed data. During training the auto-encoder
learns the properties of the data distribution in a lower-dimensional representation that can
later be used as the basis for generation. This is done by first removing the encoder network,
then the latent space and the decoder can be used to generate data by taking a random sam-
ple in the latent space, and sending it through the decoder network [25]. Because the latent
space will define the underlying distribution of the data the auto-encoder has been trained
on, it allows the decoder to produce data that resembles the inputted training data.

The generative capabilities of variational auto-encoders is limited to how much the data
can be compressed by the encoder and stored in the restricted size of the latent space. This is
a problem that limits the ability to learn complex image representations and something that
the generative adversarial network can solve.

2.2 Generative Adversarial Networks

The timeline of generative adversarial networks is relatively short, but many improvements
to the original architecture have been made. This next section introduces generative adver-
sarial networks, the important details regarding training, common issues, extensions to the
GAN architecture, and the applications of GANs.

The Original GAN

In 2014 a novel architecture with the goal of generating new data was proposed by Ian Good-
fellow et al [11]. The proposed generative adversarial network consists of two separate neural
networks, a generator network and a discriminator network both of which are multi-layered
feed-forward neural networks. The GAN architecture works by having these two networks
train as adversaries, meaning they are competing against each other. The generator network
simply tries to generate an output that resembles the training data starting from a random
noise vector as input. The discriminator network then decides if any particular sample is
from the training set (real) or created by generator network (fake). In the context of image
synthesis, the untrained generator will initially generate an image of random noise. Conse-
quently, the discriminator will look at these obviously fake images and classify them as such.
The feedback that the discriminator could detect this image as a fake is given back to the
generator in order for it to improve its generation. As the discriminator is also improving its
ability to recognize real images, its ability to recognize the fake images improves as well [25].
As the generator network continuously improves its generation capability it will eventually
begin to generate images that look exactly alike the images from the training set. At this point
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2.2. Generative Adversarial Networks

the discriminator will no longer be able to classify if the image is fake or real and reach the
end of training.

Figure 2.1: Simplified architecture of a GAN

Specifically, the training process for the GAN is a back and forth process where the dis-
criminator learns to maximize its classification accuracy in order to detect if a sample image
is real or fake. This is done by sampling a batch of real images and a batch of fake images
both which are labeled accordingly. Since the labels are known the discriminator learns in
a supervised manner in order to improve. Adversely, the generator tries to minimize the
discriminator’s ability to classify the generated image as a fake image. These two networks
alternate to updating their weights through backpropagation during training to train evenly
and reduce overfitting in one the networks. Due to consisting of two separate neural net-
works the GAN loss function is actually two separate loss functions. These two separate
equations can be combined into what is described as minimax loss [11] expressed below as:

min
G

max
D

V(D, G) = Ex„pdata(x) [log D(x)] + Ez„pz(z) [log(1´D(G(z)))] . (2.1)

where D and G represent the discriminator and generator network respectively, and z
is the random noise vector fed as input into the generator. D maximizes the classification
accuracy over all samples. G only influences 1´ D(G(z)), the probability that D detects a
fake sample, which is to be minimized by G.

To further simplify and understand how GANs work Goodfellow [11] wrote a great anal-
ogy in his original paper, "The generative model can be thought of as analogous to a team of
counterfeiters, trying to produce fake currency and use it without detection, while the dis-
criminative model is analogous to the police, trying to detect the counterfeit currency. Com-
petition in this game drives both teams to improve their methods until the counterfeits are
indistinguishable from the genuine articles."

The results seen from the original generative adversarial network include generating
numbers from the MNIST dataset [27], generating faces from Toronto Face Database [43],
and generating many diverse scenes from the CIFAR-10 dataset [23]. While the early results
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2.2. Generative Adversarial Networks

of the first GAN model are impressive, Goodfellow et al. [11] leave many suggestions for
extending and improving the generative adversarial network.

Difficulties with GANs

With traditional neural networks, it is straightforward to monitor the training and validation
losses and then stop the training when they begin to diverge in order to avoid overfitting
[25]. With GANs, however, this is not the case because two separate loss functions are being
optimized each with a different goals. They do not converge like a traditional loss function,
but is instead referred to as a minimax two-player game by Goodfellow [11]. A minimax,
or a zero-sum game, is a competition between two players (the discriminator and generator
networks in the case of GANs) and the solution to such a game is known as the Nash Equilib-
rium [34]. Proposed in 1951, Nash Equilibrium is defined as a point where neither competitor
in a zero-sum game can improve their standing without changing their tactic. GANs reach
this point when the generator starts generating images that are nearly identical to the training
data and the discriminator has reached a point where it is uncertain if any data sample is real
or fake. At this point guessing randomly if an image real or fake is the optimal choice for the
discriminator [25].

A weakness of the original GAN discriminator is that it makes a simple binary decision
if an image is real or fake. Proposed in 2017 by Martin Arjovsky et al [2], Wasserstein GAN
(WGAN) provides methods that for the first time show properties of convergence of the loss
functions in GANs. The authors introduce Wasserstein loss as a solution that changes the
discriminator’s binary classifier from the original GAN into a critic that produces a numerical
value that describes how real or fake an image is [29]. The loss is based on the Earth Mover’s
distance which is the distance between the distribution of real images and fake images. The
Wasserstein loss is represented as:

min
G

max
C

Ex„pdata(x)[(c(x))]´Ez„pz(z)[(c(g(z)))]. (2.2)

where c is the discriminator network which is now a critic, g is the generator and z is the
input noise vector. This is similar to the minimax loss but with the removal of logarithms as
the outputs from the critic are not bounded by [0,1] and the distance between two distribu-
tions is being calculated.

Another solution to improve the discriminator is the relativistic GAN [17] (RGAN). RGAN
is a GAN implementation where the discriminator uses prior knowledge that half the samples
seen are actually fake. Meaning that at convergence the discriminator should assign higher
probability to a given sample being fake rather than being fooled that all the samples are real.
Essentially, as the generator has begun to fool the discriminator, the discriminator should
know the probability of a realistic image being real is actually lower than it was earlier in the
training phase.

A common problem that can occur when working with GANs is mode collapse. This oc-
curs during the training phase when the generator network gets stuck producing the same
set of images despite the training data containing other samples [25]. In practice, this can be
detected when the images being generated are all similar in appearance. In the case of heavy
mode collapse, all generations could be the exact same image. The original GAN discrimi-
nator evaluates data samples one by one which easily leads to mode collapse due to never
comparing the generated images to one another. This makes it impossible for the network to
detect if the generated images are similar. Therefore, by always receiving good feedback by
producing any image that fools the discriminator, the generator can continue producing the
same image [10].
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2.2. Generative Adversarial Networks

One solution to help mitigate mode collapse is minibatch discrimination [39] which al-
lows the discriminator to evaluate a whole batch of generated images instead of just one at a
time. This is similar to batch normalization [14] which shows how normalizing every batch
of training samples which can reduce training times by allowing for higher learning rates.
However, in minibatch discrimination, instead of normalizing the whole batch of inputs, the
similarity between the batch of images is calculated and then used as extra information to
help the discriminator decide if a generated image is real or fake. With the information about
the similarity between images, the discriminator will learn to penalize the generation of sim-
ilar images, therefore, steering the generator away from mode collapse.

Evaluation of GANs

In addition to all the aforementioned difficulties that can occur when training generative ad-
versarial networks, yet another issue arises when evaluating them. Due to the adversarial
training procedure, it is possible for a GAN to never converge. This makes evaluating the
loss an unreliable metric. Because of this fact, several evaluation metrics have been intro-
duced but no standard method for evaluation has been decided upon and differs between
researchers. This has led to a combination qualitative and quantitative assessment of the
quality of generation being the best way to assess the performance of a GAN [39] [4].

One metric that is used to assess the quantitative performance is the Fréchet Inception Dis-
tance (FID) [12]. FID is a metric that can be used to evaluate how similar generated images
are compared to the real training images. FID is calculated by using the last feature embed-
ding layer from a pre-trained Inception V3 model (a large CNN used for object detection) is
used to compare the distributions of fake and real images. By inputting samples of generated
and real images into this feature layer, two respective feature vectors are obtained. These two
vectors are modeled as multi-dimensional gaussian distributions where the distance between
the two is measured by the Fréchet distance. The FID is calculated as:

FID = }µg ´ µr}
2 + Tr(Σg + Σr ´ 2

b

ΣgΣr). (2.3)

where r represents the real images, and g are the generated images. The distance is calcu-
lated as the difference between the means µ plus the variation of the respective distributions.
By taking the Trace (Tr) of the matrix representing the covariance Σ for each distribution, the
variance is calculated. The closer the two distributions are the lower distance between them,
meaning that the real and fake images are similar. Since this metric relies on modeling dis-
tributions based on mean and variance, the more samples that are used, the more accurate
the metric will be. This can be problematic with smaller datasets leading to an inaccurate
representation of the GAN’s performance.

Evaluating one GAN architecture with a metric such as FID is a valid method to compare
different hyperparameters and small tweaks in architecture. This can be done by generating
many synthetic images from each configuration and calculating the respective FID values.
Based on these values a conclusion as to which model performs best can be reached. When
comparing results between different GAN architectures trained on different data this is un-
fortunately not the case. Comparison of the minimum FID is a meaningless metric which
does not accurately represent the difference in the performance of two GANs. One suggested
method to correctly evaluate models is comparing the distribution of the FIDs over a fixed
sample size with a fixed computational budget [30].

In many cases, a purely visual inspection is the best indicator of GAN performance. To
perform a qualitative analysis a human actor is needed in order to assess the image quality.
As done by [39] they asked a group of human annotators to distinguish between real and
generated data. Unfortunately, they found that the motivation of the annotators varied and
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tainted the results from this type of evaluation. Another interesting finding is that by giving
the annotators feedback about whether they correctly labeled an image improved their ability
to spot the fakes as more images were shown. So as more images were evaluated, the quality
of generation seemingly went down due to this fallacy.

2.3 Extensions of the GAN

Since the introduction of the GAN in 2014 [11] several new extensions and variations to the
original architecture have been proposed. The original GAN is limited by only being able to
generate a random sample from its training distribution. To change this, the authors of the
Conditional GAN (CGAN) [32] present a method to include a class label into training. By
conditioning each data sample on a class label it gives the ability to control which class will
get generated during inference. The CGAN loss builds on the minimax loss as:

min
G

max
D

V(D, G) = Ex„pdata(x) [log D(x|y)] + Ez„pz(z) [log(1´D(G(z|y)))] . (2.4)

where the discriminator D and generator G model the conditional probability given a
class label y. Aside from this, the loss is identical to the original minimax loss.

The downside from this method is the training data now requires a class label for each
data input as this GAN. Even though this labeled data may be difficult and time-consuming to
obtain, the advantages with CGAN is a powerful improvement because generating random
samples as done by traditional GANs might not be useful in certain applications.

The convolutional neural network (CNN) has long been among the best performing mod-
els in image recognition tasks. Borrowing the operation of convolutions and incorporating
them into generative adversarial networks shows a great increase to performance on image
generation tasks. Introduced by Radford et al., [37] the deep convolutional GAN (DCGAN)
is a new GAN architecture that is specialized to improve image generation by replacing fully
connected layers with convolutions in both the generator and the discriminator networks.
Guidelines that are proposed include: use of strided convolutions in the discriminator and
fractional-strided convolutions in the generator, use of batch normalization in both networks,
remove all fully connected layers, use ReLu activation in the generator except for output
layer which uses Tanh, and use LeakyReLu in the discriminator. These design choices result
in more stable training and the ability to support higher resolution generation than previous
GAN networks. The success of the DCGAN proves the importance of using convolutions
in GANs and has become standard across most novel GAN architectures used in computer
vision tasks.

Progressive GAN (ProGAN) [19] introduces stability and decreased training times in gen-
erating higher resolution images. Karras et al. introduce a new method of progressively
growing the size of the generator and discriminator during training. ProGAN begins with
generating low-resolution images that are 4x4 resolution and throughout the training pro-
cess additional layers are continuously added onto the generator and discriminator until
1024x1024 resolution images are being generated. Introducing these layers progressively was
found to greatly increase stability in training. This is due to correctly generating a small
image is easier than generating a large one. Instead of trying to generate higher resolution
images from scratch, the ProGAN correctly learns the features of the image in a lower reso-
lution first. Afterwards, slowly fading in the higher resolution layers in both the generator
and the discriminator slowly builds the image at a higher resolution providing more accurate
images and more reliable training patterns.

StyleGAN [21] is another variation of generative networks that expands on the ProGAN
and gives users more control over the generation of images and being able to produce high-
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resolution images. In their paper, the authors introduce an alternative generator architecture
while keeping the discriminator true to the original GAN architecture. Instead of inputting
a random noise vector to the generator, the generator will begin training from a learned con-
stant which gets adjusted with each convolution. This learned constant is provided by a
mapping network that along with adaptive instance normalization (AdaIN) [13] provide a
style to each convolutional layer. The mapping network is a eight-layer feed-forward neural
network that transforms the noise vector into a ’style’ vector which better represents the fea-
tures the GAN is trying to learn. AdaIN is a normalization technique which includes a scale
and translation factor which is what the authors declare as giving control over the style of the
generation. AdaIN in expressed as:

AdaIN(xi, y) = ys,i
xi ´ µ(xi)

σ(xi)
+ yb,i. (2.5)

where each feature vector xi in the convolutional layers gets normalized individually. As
well as being scaled and translated by the style of y. The style is the latent vector containing
characteristics learned by the mapping network.

Additionally, every convolutional layer gets some extra noise as input in order to intro-
duce stochastic variation. The authors generate high-resolution human faces and explain
how introducing this noise helps the network generate the stochastic aspects of human faces
such as hair and freckles. Due to this noise being added to every layer, there is no carryover
from previous layers which creates a localized application of this stochastic noise.

StyleGAN2 [22] is a direct extension of the first styleGAN model that fixes common is-
sues that were discovered. First, it was found that the AdaIN operation caused water droplet
characteristics during generation and it was fixed by redesigning the normalization. Weight
demodulation is introduced which normalizes the weights in each convolutional layer di-
rectly and removes the need for AdaIN. Weight demodulated normalized weights w

2

ijk are
defined by:

w
2

ijk = w
1

ijk

/
d

ÿ

i,k

w1

ijk
2 + ε. (2.6)

where w
1

ijk represents the scaled convolution weight i with corresponding feature maps j
and size of the convolution k and where ε represents a small constant.

Additionally, the method of progressive growing is re-visited and found that replacing it
with skip connections between low and high-resolutions resulted in better generation. The
skip connections allow the network to learn which resolutions are important for the final
generated image and it was found that the network automatically applies a method similar
to progressive growing without being told to. The final generation is a summation of all the
lower resolution images with their respective contributions.

StyleGAN2-ADA [20] introduces data augmentation to help alleviate overfitting in the
discriminator of the StyleGAN2 model. When small amounts of data are used to train GANs
the discriminator can easily overfit due to easily being able to detect the small amount of real
images. An important insight from the paper is the idea of leaking augmentations. Leak-
ing augmentation can be experienced if the generator network ’sees’ the augmented images
and starts to learn to produce these altered images. In their paper they use a total of 18 im-
age altering techniques in order to implement the discriminator augmentation. Early testing
showed that in some cases higher levels of augmentation became harmful to the training. This
means the amount of augmentation applied would need to be reasoned forward depending
on the dataset. In order to get rid of this unnecessary hyper parameter adaptive discrimi-
nator augmentation was implemented. Adaptive discriminator augmentation (ADA) makes
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this tuning of augmentation dynamic so it automatically adjusts the probability of applying
augmentation as the network trains and can increase or decrease based on if the network
starts to overfit. The idea is that the amount of augmentation slowly increases as the GAN
has seen the images multiple times over many epochs to help stop overfitting.

Another consequential improvement seen by the introduction of ADA is the possibility to
train GANs and achieve good results with only a few thousand training images. With the pre-
viously introduced GAN architectures the amount of training images is orders of magnitude
more than what is needed with styleGAN2-ADA.

Style Transfer

Style transfer is the process of altering some image A by applying the style from another
image B onto the content of A. Using convolutional neural networks (CNNs) Gatys et al. [9]
show how the recent improvements to CNNs can extract semantic information from images.
Their method, A Neural Algorithm of Artistic Style, works by using feature representations
from convolutional layers that capture textures and style from an image. This style can then
be applied to the content in a new image. This method of style transfer is limited by being
able to extract style from only one image. To get true style transfer from one whole domain
to another, generative adversarial networks can be used.

Using the findings from conditional GANs, the creators of the pix2pix [15] network in
their paper Image-to-Image Translation with Conditional Adversarial Networks introduce a
GAN model to transfer styles from one domain to another. Pix2pix learns by conditioning
the input image that the GAN is trying to generate with an additional image containing the
style the synthetic image should have. The generator network is a convolutional U-net based
architecture with skip connections which help the network correctly generate scenes in cor-
rect locations. The discriminator includes a convolutional patch-GAN classifier. This means
that instead of evaluating a whole image at once in order to determine if it is real or fake, a
patch-GAN classifier splits the image into smaller patches and decides whether each patch
is real or fake. By averaging the patch results a final decision can be made for the whole im-
age. This is advantageous as the Patch-GAN classifier is faster, yet still produces high quality
results. While the results from pix2pix are impressive, the model requires paired input data
which is still a difficult task in many domains. In most cases creating these training pairs
between images can be expensive and time-consuming, and in some cases it might not even
be possible as the expected output may be uncertain. This issue disappears with a model
capable of learning the translation from one domain to the other completely by itself. This is
exactly what is done by using two GANs combined into one large model introduced in 2017
called CycleGAN [47].

Cycle-consistent Adversarial Networks (cycleGAN) is a large model containing four net-
works. Introduced in their paper, Jun-Yan Zhu et al [47] describe a new GAN architecture
that is capable of translating styles from one image onto another image without the need
for paired training examples. The importance of not needing paired training examples is a
huge breakthrough. The solution to this is what the authors of cycleGAN introduce as cycle
consistent translation. This can be directly compared to a language translation task where
a sentence is translated from Swedish to English, and then back to Swedish. Being cycle
consistent would mean the exact same sentence should be returned back. The same idea is
true for cycle-consistent GANs and they introduce a cycle consistency loss to be able to ef-
fectively learn unpaired image-to-image translation. This loss calculates the information lost
when translating from domain A to B, and then back to A from B. Given two domains X, Y
CycleGAN contains two mapping (generator) networks G and F that learn the mappings
G : X Ñ Y, F : Y Ñ X. Each of these networks employ the original minimax loss expressed
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in equation 2.1 where the discriminator and generator learn as adversaries. The addition of
cycle consistent loss is introduced as:

Lcyc(G, F) = Ex„pdata(x) [||F(G(x))´ x||] + Ey„pdata(y) [||G(F(y))´ y||] . (2.7)

where the generator G first brings data x into domain Y, then generator network F trans-
lates G(x)) back into domain X. Then the loss is calculated as the difference between this
reconstructed data vs real data x. The same procedure is then replicated in the opposite di-
rection. The full objective for cycleGAN adds the adversarial loss and the cycle consistency
loss.

CycleGAN can be difficult to train as it consists of four different networks, two generators
and two discriminators. In their paper, the authors mention the difficulties of training the
cycleGAN model and state the complexity from one domain to other must be similar in order
to get meaningful results, ie. the model cannot learn to turn houses into dogs, whereas, dogs
into wolves would be feasible.

Super Resolution

Super resolution is the process of estimating and interpolating a high-resolution image from
a low-resolution image. Similar to many novel GAN techniques that aim to improve already
existing solutions, super resolution first achieved state of the art results using deep learning
with CNNs [6] [16].

Super resolution GAN (SRGAN) [28] builds on the previous works done with CNNs by
including an adversarial learning process that helps guide the model into generating more
realistic super resolution images. The generator in the SRGAN is a deep neural network
containing residual blocks with skip connections and convolutions that up-sample the input.
The input into a SRGAN is a low-resolution image as opposed to random noise as done
by other GAN architectures. The discriminator classifies images by using a large CNN in a
similar manner to how DCGAN does [37]. With eight strided convolutional layers and a final
sigmoid layer the network aims to determine if a given sample is a super resolution version
of the image or the original high-resolution image. The perceptual loss for super resolution
(SR) is then calculated as a sum of the content loss X and the weighted adversarial loss GEN:

LSR = LSR
X + 10´3LSR

GEN . (2.8)

where the adversarial loss is defined as:

LSR
GEN =

N
ÿ

n=1

´ log DθD (GθG (ILR)) . (2.9)

The probabilities over all the training samples are minimized where GθG (ILR) is the syn-
thetic super resolution image generated from a low-resolution (LR) image that DθD classifies.

The content loss is the information lost when comparing the generated image to the orig-
inal high-resolution image and is calculated as the euclidean distance between feature rep-
resentations after activation layers in a pre-trained VGG19 [41] (a deep CNN) network ex-
pressed as:

LSR
VGG/i.j =

1
Wi,j Hi,j

Wi,j
ÿ

x=1

Hi,j
ÿ

y=1

(φi,j(IHR)x,y ´ φi,j(GθG (ILR))x,y)
2. (2.10)
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In the context loss φ(i, j) are the feature representations at the j-th convolution and i-th
max-pooling layer and W/H are the respective dimensions. The euclidean distance between
these two representations of high-resolution and low-resolution can then be calculated as the
context loss.

Enhanced SRGAN (ESRGAN) [44] expands on SRGAN by building a deeper model using
residual-in-residual dense blocks which contain multiple skip connections and removes batch
normalization layers. It also employs the relativistic GAN’s [17] loss function to improve the
GAN’s learning process instead of the adversarial loss introduced in SRGAN. The context
loss is also improved by calculating the distance between features before the activation as
it was found that before the activation layer many more neurons were activated leading to
a better representation of the feature maps. ESRGAN is capable of reaching state of the art
performance in super resolution for sharpness and detail.

Evaluating the results in a super resolution task is commonly done by using a peak signal
to noise ratio (PSNR) calculation to calculate the reconstruction quality for images which in
this case would be a super resolution image versus the original high-resolution image. PSNR
is a ratio between a signals maximum strength and the power of the signal’s noise and is
calculated as:

PSNR = 20 log (
255

?
MSE

) . (2.11)

where 255 is the maximum signal strength of a pixel in an image and MSE is the mean
squared error between the pixels in the original image and the super resolution image. The
PSNR is then reported as decibels where a higher value represents a higher quality image.

2.4 Applications of GANs and Related Work

There are many interesting and diverse applications of generative adversarial networks. The
ability to generate new synthetic data can be applicable in all domains that rely on data to
train machine learning models. The control of generation given by Conditional GANs help
make GANs a useful tool in a machine learning pipeline. One such use case is when data
augmentation techniques do not provide enough of an increase to the data amounts in order
to get the desired results. Using a GAN to generate synthetic data is a technique that can be
used to help increase the amount of data of the underrepresented class in an unbalanced data
distribution. In remote sensing, this can be applied in any application where deep learning
models rely on large amounts of data such as object detection, segmentation, or classification.

Style transfer between images also has many diverse applications. The pix2pix model has
great capabilities in image-to-image translation including translating winter scenes to sum-
mer scenes, sketches to photographs, photos to cartoons, and plenty more domains shown
in their paper [15]. The applications in remote sensing is similar to generating new data, but
instead of just randomly generating synthetic data, style transfer allows for direct control of
the result. A researcher might be trying to train a model to detect forest fire damage from
satellite imagery but has few images containing damages. A GAN could potentially learn the
mapping from healthy forest to burned forest and therefore be able to produce synthetic data
to improve the detector.

Resolution is an important topic in remote sensing. In most applications, higher resolution
imagery is more desirable than low-resolution imagery. The higher the resolution the more
expensive the data due scarcity of satellites or UAVs that have larger sensors or the inability
to capture imagery closer to the area of interest. One solution to this issue would be to capture
low-resolution imagery and then use a GAN for super resolution to create synthetic imagery
at high-resolution.
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Data Augmentation with GANs

In a paper by Antoniou et al [1] they explore Data Augmentation using Generative Adver-
sarial Networks. Their findings indicate that using a GAN to automatically augment data
increased classifier performance. They introduce a new architecture they call Data Augmen-
tation GAN (DAGAN) that is specifically used to simulate classical data augmentation. Their
model takes data from one domain and with some data item, it can learn to generalize this
data item to be able to generate similar data. This was proven in their results to be effective
in many applications such as standard classifiers and matching networks.

Using generative adversarial networks [45] augmented a dataset in order to detect tomato
disease in images of plants. Their initial problem is one similar to many machine learning
projects: having an uneven distribution of data on top of not having enough data overall.
Their classifier models were struggling to detect disease in tomato plants in China. Using a
GAN they successfully trained a DCGAN in order to generative synthetic images of plants
that contained the rare disease they were trying to detect. Re-training their original models
with the GAN augmented data, they received significant improvements proving the usage of
GAN generation in a machine learning pipeline.

Style Transfer with Satellite Imagery

In a 2018 research paper success in generating fake satellite imagery using generative adver-
sarial networks was published in order to help show the potential of spoofing satellite data.
Xu et al [46] using the CycleGAN [47] architecture successfully transfer the style of the cities
of New York, Seattle, and Beijing onto basemaps. The style would be the architecture of a city
from a satellite image perspective and a basemap is a reference map that shows topography
of features like buildings, streets, and parks but omits realistic details. Their method involves
training cycleGAN on unpaired images of basemap tiles and satellite images from the spec-
ified city each of which are 512x512 pixels in size. Their results show that the CycleGAN
model can sufficiently apply styles of different cities onto basemaps.

Cloud Removal

Remotely sensed satellite imagery often contain clouds that obstruct the area of interest.
There are techniques to remove clouds by simply retrieve multiple satellite images over the
same area and replace the obstructed pixels from one image to the other. By implementing
a cycle consistent [47], Cloud-GAN [42] removes thin clouds from satellite imagery by learn-
ing a mapping from cloudy to cloud-free imagery. Cloud obstruction can be categorized into
thin cloud cover which partially obstructs information and thick cloud cover that completely
obstructs objects. The limitations in their findings is their GAN can not successfully remove
thick cloud cover as the loss of information is too large and they propose usage of higher
wavelength data that can penetrate cloud cover such as synthetic-aperture radar (SAR).

By using SAR data Gao et al. [8] created a GAN model that successfully could remove
thicker clouds from satellite imagery. Their proposed method uses a CNN to fuse together
RGB and SAR images which are then used to learn a mapping from cloud covered imagery
and cloud-free imagery with a GAN model based on the pix2pix [15] architecture. While
their proposed method outperformed CNNs and GANs in cloud removal, there are clear
limitations in obtaining SAR data. They propose that the solution to successfully remove
thick cloud cover is temporal data in order to correctly reconstruct the information that is
obstructed by the clouds.
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Super Resolution

Using ERSGAN Pashei et al. [36] analyze the capabilities of super resolution in remote sens-
ing. Their data consists of UAV captured imagery over a residential area in Texas affected by
hurricane damage. By down-sampling their high-resolution imagery they created artificial
low-resolution data in order to train an ERSGAN model for super resolution. They test their
results in photogrammetry software that creates orthomosaics from drone imagery. Their re-
sults show no significant loss of information between the ground truth high-resolution and
synthetic super resolution images reported by the software used. Furthermore, the synthetic
super resolution imagery exhibit the same characteristics as the original high-resolution im-
agery in qualitative and quantitative assessments.
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3 Method

This chapter presents the approach that is taken to answer the proposed research questions.
With the intention of exploring a variety of different applications of GANs in remote sensing,
a series of four distinct experiments are implemented. Each experiment number is connected
to the corresponding research question that it tries to answer.

• Experiment 1: an evaluation of the generation capabilities of GANs using DCGAN and
StyleGAN2-ADA trained on UAV imagery.

• Experiment 2: testing the capability of paired image-to-image translation from segmen-
tation masks to satellite imagery using the pix2pix architecture.

• Experiment 3: an unpaired image approach to remove thin cloud cover and haze from
satellite imagery using CycleGAN.

• Experiment 4: evaluating ESRGAN for the task of super resolution using satellite im-
agery.

The experiments performed are split into sections that each contain relevant information
about the data, pre-processing steps, implementation, and training details.

These four evaluations are meant to cover a variety of tasks that are applicable in the field
of remote sensing where GANs can be employed. The evaluation of each experiment will be
done primarily with a qualitative assessment of image quality and usability. The details of
the evaluation procedures are outlined in the final section of this chapter.

3.1 Experiment 1: Generation

To sufficiently answer the first research question regarding what resolution and quality of
aerial imagery of forests GANs can generate, two approaches are implemented. First, the
DCGAN architecture is implemented for the generation of low-resolution images, then the
StyleGAN2-ADA architecture is implemented to generate higher-resolution images. The DC-
GAN model is useful as a comparison metric showing the progression in resolution and
quality of GAN generation. This experiment aims to train a model capable of generating
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synthetic data that resembles the characteristics of the training data. In remote sensing, the
lack of data can be a hindering issue for any machine learning solution. Successfully training
a GAN to produce synthetic remotely sensed data can create new data augmentation tech-
niques through generation aiding in many remote sensing tasks.

Data and Pre-processing

The images used throughout experiment 1 are UAV captured aerial images of Swedish
forests. Two drones are used in the collection of this data: DJI Phantom P4 and DJI Mavic
Pro 2 with all imagery being captured in the visible light spectrum (RGB). The images are
captured within summer months (May - September) and are all consistent with the same
flight parameters. The images are captured with a vertical and horizontal overlap of 30%
and the flight altitude is consistent at 110 meters in all images. UAV images are captured
with an overlap between successive images meaning that the same area is present within
more than one image. This is useful to create orthomosaics using photogrammetric software,
but in this experiment, the 30% overlap leaves room for cropping the images without losing
information.

Aerial images taken by UAVs suffer from distortion causing leaning entities around the
edges of the frame due to the wide-angle of the lens. To help remove some of this distortion
the center areas of images are cut out removing much of the tilt distortion that occurs along
the edges of the image. This process helps keep data more uniform by having images con-
taining trees that are generally more orthogonal. Afterward, patches of size 1024x1024 pixels
are created from the center cutouts. Figure 3.1 demonstrates this process. This results in a
total image count of around 1400 patches. The images are scaled appropriately to the desired
output size before the training of each model. In this task of generation a test and train split
is not used because the models are learning completely unsupervised to learn the underlying
distribution of the training data and the metrics compare newly generated synthetic data to
the original data.

Figure 3.1: The original image (1) has its the edges evenly cropped resulting in the square
center crop (2) which is then split into even patches (3).

Implementation DCGAN

The deep convolution GAN is implemented using Pytorch 1 to test the generation capability
of a simple network that is limited to low resolutions. All the input data is scaled to be of
size 64x64 pixels before training the model. The generator network receives as input a latent
vector of length 100 which is fed into five convolutional layers which convert the vector into
a three-channeled RGB image of size 64x64 pixels. The discriminator is a mirrored implemen-
tation of the generator with an additional final sigmoid layer that can classify if images are

1https://pytorch.org/
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3.2. Experiment 2: Image-to-Image Translation

real or fake. The DCGAN implementation uses an Adam optimizer with beta coefficients of
β1 = 0.5 β2 = 0.999, a learning rate of 0.0002, and is trained for 100 epochs on an Nvidia GTX
1660 GPU.

Implementation StyleGAN2-ADA

An official Pytorch implementation of StyleGAN2-ADA supplied by the Nvidia research
team is used for generating high-resolution imagery. The model is available as open-source
on Github 2.

StyleGAN2-ADA is trained on the same dataset of UAV images used to train DCGAN ex-
cept kept at their original size of 1024x1024 pixels. Instead of training a randomly initialized
network from scratch, transfer learning is used to reduce training times and improve results.
The starting weights used are from a pre-trained model that has been trained to generate full
HD human faces at 1024x1024 pixel resolution.

The training configuration uses random flip augmentation for every image in the training
set doubling the size to contain 2800 images. The resolution of generation is increased from
the default setting of 512x512 pixels up to 1024x1024 pixels. The Adam optimizer is used in
both the generator and discriminator networks with a learning rate of 0.002, beta coefficients
of β1 = 0.9 β2 = 0.99, and a batch size of 4. All other training parameters are consistent with
the original styleGAN2-ADA implementation. The model is trained for 320 epochs on an
Nvidia RTX 3090 GPU.

3.2 Experiment 2: Image-to-Image Translation

Experiment 2 tries to answer the second research question by implementing a GAN for paired
image-to-image style transfer. The pix2pix model is used to learn the mapping from a seg-
mentation mask to a real image using satellite imagery. By training a GAN to recreate a
realistic image from a segmentation mask the result can be used as a controllable data gen-
eration technique. Similar to experiment 1 the synthetic data can be used in many remote
sensing tasks where a large amount of data is needed. In many cases, the ability to control
generation is a benefit over the random generation explored in experiment 1.

Data and Pre-processing

To be able to learn a mapping from segmented imagery to real imagery it is necessary to
have paired data because pix2pix is a conditional GAN that learns through labeled image
pairs. The data used contains segmentation masks of satellite imagery over rural landscapes
in Poland. The segmentation masks are one-channel images where each pixel is given a value
to classify the pixel in the corresponding RGB image. The classes in the segmentation masks
are buildings, forest, water, and ground. The ground class also includes anything not cap-
tured by the other classes such as roads. The data is publicly available at LandCover.ai3.
The original one-channel segmentation masks are converted into a three-channel RGB repre-
sentation using QGIS4 to allow for easier visualization during training of the pix2pix model.
Figure 3.2 shows an example of a segmentation mask after the color has been converted and
the corresponding satellite image. The full-size satellite images and masks are then split into
patches of size 256x256 pixels using Python for a total of 1,024 patches. A split of 10% of the
data is left as test data and 90% is used for training.

2https://github.com/NVlabs/stylegan2-ada-pytorch
3https://landcover.ai/
4https://qgis.org/en/site/
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3.3. Experiment 3: Cloud Removal

Figure 3.2: Satellite image (1) and the corresponding segmentation mask (2)

Implementation

The official Pytorch implementation of pix2pix was used for evaluating image-to-image
translation. The model is available as open-source on GitHub5.

Pix2pix was trained on paired images and the dataset structure is created with a script
provided by the authors to concatenate each pair into one file containing the mask and the
satellite image side by side. Using the default parameters defined by the original pix2pix
model configuration of training image size of 256x256 pixels, the Adam optimizer with β1 =
0.5 and β2 = 0.999, a learning rate of 0.0002, using a batch size of 1, and training for a total of
200 epochs on an Nvidia RTX 2080 Ti.

3.3 Experiment 3: Cloud Removal

Experiment 3 attempts to answer the third research question regarding a GANs ability to
remove clouds using unpaired image-to-image translation. In this experiment, CycleGAN
is trained to remove thin cloud cover from satellite imagery. Cloud cover is a common issue
when working with satellite imagery. Many times the area of interest in a remote sensing task
is obstructed by clouds depending on location and time of year. Clouds in satellite imagery
can be categorized into two types: thin and thick clouds. Thick clouds fully obstruct the
area underneath them and leave a near-impossible task to remove them without the use of
temporal or multi-spectral data. In this experiment, the thin clouds and haze-like obstruction
are the focus as they only partially obstruct the area underneath them. The goal is to train a
GAN to remove thin clouds from satellite imagery by generating synthetic cloud-free images.

Data and Pre-processing

For the cloud removal task, open satellite imagery from Sentinel-2 was used. Sentinel-2 is a
satellite that was deployed by the European Space Agency in 2015. This satellite has global

5https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix
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3.4. Experiment 4: Super Resolution

coverage and will re-capture imagery over every location about every ten days. The reso-
lution of the satellite data is 10 meters meaning that every pixel in the image represents a
real-world measurement of 10x10 meters. Sentinel-2 satellite data is available for download
from the Copernicus API. 6

Manually finding enough training data where satellite imagery contains thin clouds or
haze is difficult. Therefore, a method using Perlin noise [7] is used to simulate thin cloud
cover that can then be applied to satellite images that do not contain cloud cover. Perlin
noise is an algorithm that has the ability to generate randomized textures and patterns which
in this case will be configured to be visually similar to clouds. First, 1600 patches of size
512x512 pixels are created from a large Senintel-2 satellite image. Afterward, the simulated
randomized Perlin noise pattern is applied to each patch using alpha blending to produce
a transparent cloud-like coverage as shown in figure 3.3. Alpha blending is the process of
adding an extra alpha channel to an image which allows for adjustment of the transparency.
The transparency of each cloud-covered image also varies to introduce more diversity into
the data.

Figure 3.3: Using alpha blending the original satellite patch (1) plus the simulated perlin noise
pattern (2) results in the final cloud simulated image (3).

Implementation

The official CycleGAN implementation in Pytorch was used for this experiment. The model
is available as open-source on GitHub7.

The training parameters for CycleGAN are left as the default configurations done by the
original implementation except for increasing the default image size to 512x512 pixels. The
training uses the Adam optimizer with β1 = 0.5 and β2 = 0.999, a learning rate of 0.0002, a
batch size of 1, and training for a total of 120 epochs on an Nvidia RTX 2080 Ti.

3.4 Experiment 4: Super Resolution

Experiment 4 answers the final research question regarding the ability to use a GAN to per-
form a super resolution task using satellite imagery. An implementation of ESRGAN is used
to enhance the resolution of low-resolution images. The task to enhance the resolution of a
remotely-sensed image is relevant in almost all applications of remote sensing. Having higher
resolution imagery means smaller objects can be detectable and distinguishable from other
objects. Even in tasks dealing with larger features higher resolutions lead to more accurate
representations of shapes and areas in remotely sensed imagery.

6https://scihub.copernicus.eu/
7https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix
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3.4. Experiment 4: Super Resolution

Data and Pre-processing

Satellite imagery from DOTA8 is used for the process of evaluating the super resolution task.
DOTA is a collection of remotely sensed imagery collected from Google Earth, and the GF-
2 and JL-1 satellites. It is a popular open-source dataset used for segmentation and object
detection tasks in satellite imagery. To train the ESRGAN model a low-resolution and high-
resolution pair of images are required. In this case, the raw satellite images are used as the
high-resolution images. In order to create the low-resolution pair a down sampling method
using a bi-cubic kernel was implemented using OpenCV9. The down-sampling reduces the
resolution by a factor of 4x. The original satellite images from DOTA are all very large non-
uniform shaped satellite images that are not compatible with ESRGAN. To reduce the image
size and make consistent data a pre-process patching is applied in order to make patches of
480x480 pixels for high-resolution images, and 120x120 pixels for the low-resolution images.
This results in the pair of patches covering the same area but at different resolutions, as shown
in figure 3.4. The data is further split into a training set containing 18,000 patches or about
90% of the data and 2,000 patches or 10% being used as a test set.

Figure 3.4: Example of a low resolution (1) and high resolution (2) image pair.

Implementation

The official ESRGAN Pytorch implementation was used in this experiment. The model is
available as open-source on GitHub10.

The configuration used is trained to increase the resolution of the input image by 4x. The
training process of ESRGAN further splits the input data into smaller patches of 128x128
pixels as it was found by the original authors that it provides better performance and lowers
training time. The generator and discriminator networks both use the Adam optimizer with
β1 = 0.9 and β2 = 0.99, a learning rate of 0.0001, using a batch size of 16, and train for a total
of 11 epochs training on an Nvidia RTX 2080 Ti.

8https://captain-whu.github.io/DOTA/dataset.html
9https://opencv.org/

10https://github.com/xinntao/BasicSR
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3.5. Evaluation Metrics

3.5 Evaluation Metrics

There are two main methods that are used in the evaluation of generated imagery. A quan-
titative analysis using a mathematically calculated metric or a qualitative metric from a sub-
jective human perspective using visual inspection. There are no metrics used to compare the
different GAN models to one another because all four experiments are independent and they
are trained to accomplish different tasks on different data sets.

In all experiments, a qualitative analysis of the generation is conducted by visually in-
specting and evaluating the synthetic data. Results displaying good and poor quality of
generation are reported and discussed. The visual inspection includes closely evaluating
synthetic images and reporting any artifacts or flaws in generation, overall image quality,
resolution, and the potential usability of synthetic data in the remote sensing task that is be-
ing evaluated based on all previously mentioned information. This is meant to be a thorough
and unbiased analysis of both good and bad samples.

In addition to the qualitative evaluation, various quantitative metrics are reported to help
convey the performance of the models and are used to help choose the best performing mod-
els:

• In experiment 1 the best DCGAN model is selected by monitoring loss values from the
discriminator and generator. For the StyleGAN2-ADA model Fréchet inception dis-
tance (FID) is calculated from samples of generated images. To select the best perform-
ing model the FID is calculated at the end of each epoch using 50,000 images. After
training, the model with the lowest FID is selected. After every epoch, a visual in-
spection of a batch of synthetic imagery is conducted to verify the visual improvement
shown by the FID.

• In experiments 2 and 3 the best performing models are selected through visual inspec-
tion during training. After each epoch, a varying amount of images are generated and
inspected visually to ensure improvement in the quality. The results are evaluated only
with a qualitative measure comparing the synthetic images to the real training images.
The loss values are not informative for selecting the best models as they oscillate heavily
and do not provide enough insight into performance.

• In experiment 4 regarding evaluating super resolution, a peak signal to noise ratio
(PSNR) is used as a metric to determine the best performing model. In addition to
PSNR, a visual inspection of a batch of images after each epoch is done to verify quality
and improvement and to help select the best model.
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4 Results

This chapter presents the results following the experiments introduced in the method chapter.
The results shown are picked to highlight a variety of good and poor quality generations and
to display any important characteristics found in the results.

4.1 Experiment 1: Generation

The DCGAN model trained to 100 epochs taking around 15 minutes and the best perform-
ing model is chosen based on the loss values. The discriminator and generator loss begin
to diverge at around 3000 iterations or 50 epochs which is a sign of overfitting therefore the
weights at epoch 50 are used. The complete loss plot is available in the appendix in figure
A.1. The model successfully generates aerial forest imagery at a 64x64 pixel resolution. The
generated images are diverse in the way that mode collapse is not present but exhibit slightly
worse quality when compared to the training samples. Further inspecting the results shown
in figure 4.1 the real samples are much sharper and contain finer details at the individual
tree level. Compared to the synthetic images which appear blurry and in some cases make
it hard to distinguish individual trees. While generation is possible with DCGAN, the syn-
thetic images are not particularly useful as a data augmentation technique in a remote sensing
application due to their low-resolution.

The StyleGAN2-ADA model trained for 320 epochs taking around 6 hours and the FID
metric for the best performing model is 13.925 which occurred at epoch 280. A full plot of the
FID values throughout training can be seen in figure A.2. StyleGAN2-ADA has great capa-
bility of generating synthetic images at a much higher resolution than DCGAN at 1024x1024
pixels. In figure 4.2 a sample of synthetic images of good quality is presented. These images
look realistic and have little to no artifacts or visible distortion upon inspection. The diversity
is apparent and displays how the model did not simply learn to memorize a set of training
images but rather learn how trees are represented and then generate new images based on
the characteristics of the training data. This is further proven by the FID which would be
closer to 0.0 if the GAN generated images were identical to the training images.

Three examples of poor quality results are shown in figure 4.3 where the generator pro-
duces images that contain distortion and unrealistic appearances. These types of images are
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4.1. Experiment 1: Generation

Figure 4.1: Random samples of real images (1) and DCGAN generated images (2).

uncommon in a batch of generated images but do occur. The main artifact seen are ripple
effects where the ground and trees begin to look like water. Even with the distortion present
the trees still look realistic with slightly worse quality due to some warping from the ripples.

The model has also begun to exhibit small amounts of mode collapse in the majority of
synthetic images. As highlighted in figure 4.4 the areas shown in red have become consis-
tently the same shape and color in some generations. This is an artifact of mode collapse as
the training data does not contain this property.

Figure 4.2: Samples of good quality StyleGAN2-ADA generated imagery
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4.2. Experiment 2: Image-to-Image Translation

Figure 4.3: Samples of low quality StyleGAN2-ADA generated imagery

Figure 4.4: Highlight of mode collapse in StyleGAN2-ADA generated imagery

4.2 Experiment 2: Image-to-Image Translation

Pix2pix trained for 200 epochs taking about 2 hours. The best model is at 200 epochs and is
selected by visually inspecting several of the generations from the final epochs and choos-
ing the model that produces the most visually accurate images with respect to the training
images. When checking the loss values not much information can be gained as they do not
converge. The discriminator loss does begin to stabilize which shows the model was still
learning up until the final epoch. The generator loss in figure A.3, discriminator loss for fake
samples in figure A.5, and the discriminator loss for real samples in figure A.4 can be viewed
in the appendix.

The samples shown in figure 4.5 display how the model failed to produce a synthetic
image that looks realistic. These images show how the distortion interferes to a degree where
large amounts of information is lost. It is difficult to decipher the green forest class from the
ground in these images as the ground is quite randomly generated. On the other hand, the
same model performed well on predicting some forests from the masks and some buildings
as shown in figure 4.6. It can be seen that the model struggled most to learn that the grey
color represents a general class of ground (anything that is not of class building, forest, or
water). Yet, it performed well on the other classes where green is the forest, blue for water,
and black represents buildings. In some cases even in these examples the synthetic data is not
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4.2. Experiment 2: Image-to-Image Translation

perfect. Distortion in the form of mild to severe blurriness is also present in all the images.
The building class is also difficult to generate as the training data contains buildings with
many colors of roofs. This information is not accurate in the synthetic images as seen by
looking at the bottom-most example in 4.6.

Figure 4.5: Samples of low quality pix2pix style transfers where the segmentation mask (1) is
used as input to generate the synthetic image (2) and the ground truth image (3).
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4.2. Experiment 2: Image-to-Image Translation

Figure 4.6: Samples of good quality pix2pix style transfers where the segmentation mask (1)
is used as input to generate the synthetic image (2) and the ground truth image (3)
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4.3. Experiment 3: Cloud Removal

4.3 Experiment 3: Cloud Removal

After training for 120 epochs taking roughly 65 hours, CycleGAN successfully removes thin
cloud coverage and haze like interference from satellite imagery. The final epoch was chosen
as the best performing model through visual inspection at each of the last 60 epochs and
based off the loss values which show that the model was not getting worse but convergence
was not necessarily reached. The cycle consistent loss for the domain A (cloud) in figure A.6
and domain B (cloud free) in figure A.7 are available in the appendix.

Figure 4.7 shows four examples where the reconstructed image has little to no artifacts or
noise introduced by the generation. The quality of the synthetic image is essentially indistin-
guishable from a real satellite image in the sense of information loss, sharpness, and overall
color profile. When inspecting the regions located at the edges of clouds a small color change
may be apparent, but in these samples the artifacts are barely visible.

On the other hand, figure 4.8 shows some examples of degradation during generation. In
these cases, the model has over or underexposed areas that are not covered by clouds shifting
the colors drastically enough to leave large artifacts on the image. Also, images containing
water seem to fail more often than land covered areas in removing cloud coverage.

Figure 4.7: Samples of good mappings from domain A to B.

Despite the task being to remove cloud cover, CycleGAN contains two generators for
learning the mapping of A to B and B to A. By using the generator that learned the oppo-
site mapping this model is also capable of acting as a cloud simulator that can add clouds to
remotely sensed imagery. While the cloud simulated images from CycleGAN are not espe-
cially useful in this study, they do exhibit some interesting traits such as generating clouds
that follow water boundaries or clouds that follow paths of similar colors and brightness. A
few examples of these traits are shown in figure 4.9.
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4.4. Experiment 4: Super Resolution

Figure 4.8: Samples of poor mappings from domain A to B.

Figure 4.9: Samples of mapping from domain B to A.

4.4 Experiment 4: Super Resolution

ESRGAN was trained to approximate a high-resolution image from a 4x down-sampled im-
age. Training 11 epochs took about 45 hours resulting in a PSNR of 19.4887 for the best
performing model. The full PSNR plot is shown in figure A.8. The results shown in figure
4.10 present four samples of results each showing the low-resolution image, synthetic high-
resolution result, and the ground truth image. The super resolution quality is very good with
only minor artifacts. Figure 4.11 show two examples of such artifacts where the information
lost in the low-resolution image made it impossible to up-sample into a correct representa-
tion. This leads to small features sometimes blending into each other, or becoming a blob-like
shape instead of taking the shape of the actual feature. These distortions occur with small ob-
jects in the image that are close to each other because when converted into a low-resolution
representation the features that were defined by multiple pixels become represented by just
one pixel. From one pixel interpolating back into multiple pixels is what can cause these
features to blend into each other.
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4.4. Experiment 4: Super Resolution

Overall, the ESRGAN model for super resolution in satellite imagery tasks can be used
to increase the spatial resolution for remotely sensed imagery granted accessibility to the
necessary data.

Figure 4.10: Samples of super resolution showing the low-resolution image (1), the synthetic
high-resolution image (2), and the high-resolution ground truth image (3).
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4.4. Experiment 4: Super Resolution

Figure 4.11: The red area shown on a low-resolution satellite image is zoomed to in the syn-
thetic super resolution image (1) and the ground truth high-resolution image (2).
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5 Discussion

In this chapter, the overall work done in this thesis is discussed with regards to the aim of
exploring the usage of GANs in remote sensing. First, the results are analyzed and discussed
in detail with relation to each research question split into sections similar to the method and
results chapters. The method is then critiqued in approach, reputability, and reliability. Then,
the work in a wider context is discussed.

5.1 Results

Generation

Experiment 1 evaluates the capabilities of generation and shows the ability to generate new
synthetic data that is representative of the training data. When interpreting the results from
DCGAN it is clear that the model is too simple to have real usage in remote sensing appli-
cations. Compared to real UAV images the distribution of generation is good, the model
learned a diverse set of tree types to generate, but as aforementioned, the resolution is unus-
able for any real world application. Being just 64x64 pixels in size the quality of the images
are fairly low and it is difficult to classify them as applicable as a data augmentation tech-
nique due to the relatively large data sizes of remotely sensed data. For example, in the case
of augmentation of UAV images taken from a drone, the raw imagery is usually at least Full
HD at 1920x1080 pixels and often times up to 4K resolution. DCGAN was introduced as one
of the first extensions to GANs in 2015 and it can act as a good comparison metric to compare
how much the models have improved in the past five years, but as a technique on its own it
would not be applicable in remote sensing.

The low resolution results from DCGAN act as a starting point showing potential for the
GAN’s generation capabilities. By upgrading to a powerful model of StyleGAN2-ADA the
results drastically improved. StyleGAN2-ADA shows how research within GANs has accel-
erated in the past five years. The generation resolution increased by over an order of magni-
tude from 64x64 up to 1024x1024 pixels. Even with such a jump in resolution, the quality of
the images actually improved over DCGAN. The results are very sharp and represent accu-
rate characteristics of the training data. The synthetic StyleGAN2-ADA images could be used
in a machine learning pipeline as an additional data augmentation technique to generate syn-

32



5.1. Results

thetic data. As described in the results section, small amounts of mode collapse occur in most
of the synthetic images. This could be due to the high resolution of the images or the lack
of a larger training dataset. Training at a lower resolution might result in less mode collapse
occurring due to smaller dimensionality in the generator as learning to generate fewer pixels
is an easier task for the generator. As mentioned by the original styleGAN2 authors [21],
the images are better described as sharpened 512x512 pixel images instead of true 1024x1024
images.

It is also important to note what the goal is when generating new data. It should not
be to produce an exact replica of the training data, but rather to learn an approximation of
the underlying characteristics that describe the data. While the generations might not be
perfect and do contain visual artifacts, creating synthetic data that resembles something that
could come from the same domain is feasible in most situations. The synthetic data might
even get augmented even further which further lessens the importance of imperfections that
exist in synthetic data. This is a fine line in data generation with GANs as when using small
data sets the model can easily learn to simply memorize how the training data looks and
not actually provide meaningful results. Sometimes the synthetic images look so real that
they could convince someone that they are from the training set. This is difficult to inspect
visually if the dataset contains more than a few hundred images. The FID is one method
that tries to solve this problem. If the FID is 0 the generated data and the training data are
identical. This gives an insight into how much a model might have overfitted a dataset but
it is not perfect. If half the samples used in the calculation are replicas from the training set
and half represent the dataset but are novel the FID would still give a score indicating good
performance. Overall, the FID score gives good insight into how a model performs and is
commonly used but accurately evaluating the exact performance of the models used in this
experiment is difficult.

Image-to-Image Translation

The pix2pix model was trained to transform a segmented image into a real image. The re-
sults, in this case, are not ideal in translating between domains for all classes even though
the training data contains a fairly even representation of buildings, forest, water, and ground.
However, the struggle to generate a realistic building was hard due to the variances observ-
able the in roof top colors and placement of chimneys or certain roof types. This made it
difficult for the model to correctly generate a building as several roofs and buildings all were
contained within one class. The gray class for ground is also problematic for the same reason
as for buildings. Ideally each class in the segmentation mask should be clear and consistent
with what it represents in the real image. Unfortunately, this dataset allows large variation
within it’s classes. The ground can contain roads, trails, green farmland, brown farmland,
bushes, among other natural vegetation.

The results from this experiment showcase the importance of the training data in a ma-
chine learning model and show the potential for useable results in the case of conditional
data augmentation for remote sensing applications. The provided method shows how to cre-
ate synthetic data of satellite imagery and selecting the specific classes that are needed by
simply creating images of the mask in the shape, arrangement, and quantity necessary. These
images can then be used as input to the GAN in order to generate realistic looking imagery.

Cloud Removal

The imagery used for training CycleGAN in this experiment is mostly grassland covered
areas with cities and water bodies during the summer season. This leads to images look-
ing similar and being easier for the model to learn to remove the clouds and restructure the
underlying satellite image. If this specific cloud removal GAN were to be tested in a new do-
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main the performance would suffer. Therefore, this is not a generalized solution, but rather
one that must be re-trained or fine tuned to apply in other domains where the satellite im-
agery might consist of a different landscapes or contain unseen features such as mountains.

Some artifacts also occur when an underrepresented class like water is present underneath
a cloud which is to be removed. The model learns to interpolate that this could be grassland
instead of water causing green spots in the water. This also conveys the difficulty of having
one model for multiple domains.

Unfortunately, it is common that satellite imagery contain thick clouds along with thin
clouds or haze. Thick clouds are impossible to to see through in visible light. The issue
with training a machine learning model to remove thick clouds is the interpolation of the
data underneath the clouds is near impossible with a single image. The complete loss of
information makes it difficult to predict accurately what might exist underneath. A proven
method is to use multiple images taken at different times. This is the best way to successfully
remove clouds from satellite imagery by using temporal data in order to understand the
environment that exists underneath the cloud cover and then interpolate and stitch together
images that complete a cloud free image.

The cloud removal solution uses image-to-image translation and therefore it is possible
to train a paired image model such as pix2pix. Since the data is simulated the access to
paired training data is available and would potentially lead to better results, or at least faster
convergence during training. However, CycleGAN was chosen in this task for the sake of
evaluating a new model and to provide a broader exploration with unpaired training. A
comparison of the two approaches would be an interesting experiment to test. As mentioned
in the related work section, researchers [8] have tested a similar method to remove thin cloud
cover, however this experiment using CycleGAN at 512x512 pixel resolution doubled the
previous resolution and further proves the potential of the method.

Super Resolution

The results from training ESRGAN show that this model is capable of performing basic super
resolution tasks in remote sensing. The small blob-like artifacts and small features blending
into each other is a common occurrence with super resolution tasks. The information from a
low resolution image makes it difficult to interpolate what data should lie in the extra pixels
being added to the image. For example, if four pixels in a high resolution image contain two
cars and they are down sampled, now these two cars may be represented by just one pixel. In
the up sampling stage the model must generate what each of these four pixels should contain
based off of one pixel.

In the samples presented in the results chapter it might be that enough training data con-
taining similar objects and features were seen during the training phase of the GAN and
therefore leading to more accurate super resolution results. The dataset used to train ESR-
GAN is commonly used for object detection tasks in satellite imagery. This made it a perfect
dataset for super resolution as well because it includes many small objects that made learn-
ing how to up sample these objects easier. Without a good dataset, the results in the super
resolution task might be considerably worse.

5.2 Method

The approach taken is one meant to be an exploration of the different ways that GANs can
be applied within the domain of remote sensing. The method used consists of four distinct
tasks that utilize GANs in an application area that is relevant to the domain of remote sens-
ing. Since all the experiments used different GAN architectures and datasets the comparison
between them is not done in this work.
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The usage of a baseline when comparing machine learning models is necessary to have a
comparison metric to appreciate how well a model performs. Unfortunately, with GANs it is
an ongoing research question as to what the best way to compare GAN models is [4]. When
generating synthetic images a quantitative metric is difficult to interpret. Therefore, several
stages of visual inspection are necessary during training and when analyzing the results.
This was done by generating images after every epoch and using a subjective decision if the
quality is increasing or not. Of course the quantitative metrics that do exist give some insight
to how close a feature extractor might think two images are by using metrics like FID that use
inception weights in order to compare two distributions of fake and real images. It has been
found that this score is not important in finding the best performing models with regards to
generation. A feature extractor in a deep learning model will not be able to fully describe the
quality of an image from a human perspective.

The qualitative assessment performed to determine the quality and usability of the syn-
thetic images is a flawed one. The subjectivity of the domain will differ between every indi-
vidual. A computer vision researcher will probably detect the mode collapse in experiment 1
and consider them poor generations, whereas a layman might consider them indistinguish-
able from the training data. In order to more accurately use a qualitative assessment ideally a
large group of people should inspect many images. This could be done by conducting a sort
of survey that randomly selected participants will determine the quality of the generation of
imagery. This was not done in this thesis due to resource and time constraints but would
have led to a more unbiased estimate of quality.

In experiment 2 and 3 regarding image-to-image translation a trained machine learning
model to segmentate images could have been used to evaluate the performance. This process
could be implemented by measuring the models performance on segmentation tasks in real
samples and synthetic samples and then comparing the accuracy. This was not implemented
due to being out of scope for this thesis but would have provided a better quantitative metric
of generation quality without a human bias. A similar approach could also be applied within
the super resolution task but swapping the segmentator with an object detector to detect the
small features in both the synthetic and real satellite imagery.

5.3 The work in a wider context

The shift seen in the remote sensing community moving from classical methods of machine
learning into deep learning over the past years is a key factor as to why this work is important.
Currently, the usage of GANs in remote sensing is a new topic where much research has yet
to be done. The work done in this thesis can impact this field by providing insight into how
GANs can be used within remote sensing applications and to help grow further interest.

Looking beyond the field of remote sensing, the work done in this thesis regarding GANs
can be applied to many other fields where computer vision is used such as medical imagery,
surveillance, autonomous vehicles, and manufacturing. In all of these fields, the ability to
generate synthetic data is a potential method to improve existing deep learning models. In
the case of surveillance and autonomous vehicles, there will be times where imagery and
video feeds are affected by haze or rain hindering a system’s ability to detect features. A
method similar to the one used in experiment 3 could be employed to train a GAN model for
attempts to remove such distortions. These models relying on visual input also could benefit
from super resolution demonstrated in experiment 4. Increasing the resolution of surveillance
cameras, for example, to enhance the ability to detect dangerous items or situations is one
such use case.

While the positivity and excitement behind generative models such as GANs are growing,
the act of generating synthetic data can also be used in a malicious manner. An article posted
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on The Verge1 describes research done to create synthetic remote sensing data, the same work
is referenced in this thesis in the related work section. The article goes on to describe the
malicious implications of generating fake data and specifically a worry about fake satellite
imagery. GAN generated satellite imagery could fool people into believing there is a flood
or wildfire, or be used to mislead rival countries by spoofing military planning sites. Even
though the vast majority of work done in machine learning, and with GANs specifically,
are positive and provide beneficial usage, the malicious and ethical use of machine learning
should always be considered.

1https://www.theverge.com/2021/4/27/22403741/deepfake-geography-satellite-imagery
-ai-generated-fakes-threat
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6 Conclusion

This chapter begins by answering the research questions this thesis proposed. Then, a collec-
tion of suggestions regarding future work that can be done beyond this work is presented.

6.1 Research Questions

The aim of this thesis was to investigate and explore some of the applications of GANs in
the domain of remote sensing. These applications include the generation of high-resolution
aerial imagery from UAVs, image-to-image style transfer between a segmentation mask and
real imagery, removal of thin clouds from satellite imagery, and super resolution of satellite
imagery. The four experiments set out to answer the proposed research questions. The first
two experiments prove how GANs can create synthetic remote sensing data. This data is
useful for a variety of remote sensing applications such as training a deep learning model
for detecting objects in UAV or satellite images or segmentation for land use classification.
The third experiment showed how a GAN can remove thin cloud cover which is a common
task encountered by anyone using satellite imagery. The fourth showed how a GAN can
perform a super resolution task. Higher resolution data is usually more desirable, yet more
expensive, in remote sensing tasks. This makes this process of enhancing the resolution of
satellite imagery using a GAN useful. The research questions are summarized below:

1. At what resolution and quality can synthetic aerial forest imagery be generated with
GANs?

The synthetic images generated by GANs are impressive and using state of the art mod-
els such as styleGAN2-ADA become almost indistinguishable from the real images gen-
erating samples at a resolution of 1024x1024 pixels.

2. Can a GAN learn the mapping between segmented satellite masks and real satellite
imagery using paired image-to-image translation?

Yes, the possibility to train a GAN is shown despite the issues encountered with data
distribution. The data directly controls the results as is the case with most machine
learning applications. Given a specific domain where there was a need for conditional
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data augmentation the pix2pix model is a plausible solution for generating specific syn-
thetic data.

3. Can a GAN learn to remove thin cloud cover from satellite imagery using unpaired
image-to-image translation techniques?

Yes, CycleGAN can learn to remove thin cloud cover from satellite imagery. The results
are overall great except for the few cases containing the less represented class which was
similar to what was found in experiment 2. The synthetic imagery is high quality, and
the majority of test samples successfully remove all thin cloud coverage in the image.

4. Can a GAN be used in a super resolution task using satellite imagery to generate higher
resolution satellite imagery?

Yes, ESRGAN shows promising results in super resolution with satellite imagery leav-
ing almost no major artifacts. These results would also be applicable using any remote
sensing data such as UAV imagery where higher resolution is also desirable.

6.2 Future Work

There are many possibilities to expand on the work done in this thesis. The research of
GANs has grown quickly and interest in generative models continues to grow. Due to the
rapidly moving research there will most likely be new state of the art models in the domains
presented in this thesis within months. Therefore, evaluating these new architectures and
changes made by researchers again in similar experiments would be an interesting evalu-
ation. It could be the case that in certain applications within remote sensing some model
outperforms another based on what it specializes to do.

Throughout the experiments in this thesis only remotely sensed imagery in the RGB spec-
trum was used. Beyond the visible light spectrum there are many possibilities to use GANs
in new and exciting ways. A GAN could learn the mapping between a multi-spectral image
in infrared or radar and in RGB or vice versa. This can be useful in cases where certain re-
mote sensing data is only captured in one of the spectrum and the other is desired. The usage
of multi-spectral imagery for tasks such as cloud removal using GANs could also be further
researched with the help of remotely sensed radio imagery. The radio imagery has the ability
to penetrate cloud cover and build a physical model of what lies underneath. In combination
with a GAN it could be possible to use the physical model and use image-to-image transla-
tion techniques to convert this model into a realistic representation of the surface below the
clouds.

As mentioned many times throughout this thesis, the evaluation of GANs is a difficult
task. In addition to evaluating one GAN, the comparison between different GAN models is
an ongoing research topic as well. A suggestion of work could be one regarding the best way
to compare synthetic remote sensing data generated by GANs. There is research done on
comparison as a general evaluation, but within remote sensing nuances due to small features
in satellite imagery and very high-resolution from UAV images might lead to new insights.
For example, a standard could be set that an object detection model must be able to perform
at a certain accuracy for the synthetic data to be classified as usable.

Finally, to achieve a deeper understanding of one of the applications introduced in this
thesis a more in-depth evaluation of any of the experiments could be done. The work done
in this thesis is a broad exploration and focusing on one specific use case would allow for
a clearer picture of the overall usability and applicability of GANs in that setting. Overall,
much research is still necessary to get a better understanding of the usability of GANs in
remote sensing.
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A Appendix

Figure A.1: DCGAN Loss Plot
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Figure A.2: StyleGAN2-ADA FID Values

Figure A.3: Pix2pix Generator Loss Plot
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Figure A.4: Pix2pix Discriminator Loss for real samples

Figure A.5: Pix2pix Discriminator Loss for fake samples
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Figure A.6: CycleGAN Cyclic Loss for Domain A

Figure A.7: CycleGAN Cyclic Loss for Domain B
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Figure A.8: ESRGAN PSNR Values
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