
Master of Science Thesis in Electrical Engineering
Department of Electrical Engineering, Linköping University, 2021

Modelling and Trajectory
Planning for a Small-Scale
Surface Ship

Fabian Steen and Gustav Zetterqvist

Master of Science Thesis in Electrical Engineering

Modelling and Trajectory Planning for a Small-Scale Surface Ship

Fabian Steen and Gustav Zetterqvist

LiTH-ISY-EX--21/5414--SE

Supervisor: Fredrik Ljungberg
isy, Linköping University

Jonas Linder
ABB Corporate Research

Examiner: Martin Enqvist
isy, Linköping University

Division of Automatic Control
Department of Electrical Engineering

Linköping University
SE-581 83 Linköping, Sweden

Copyright © 2021 Fabian Steen and Gustav Zetterqvist

Abstract

Autonomous ships are one way to increase safety at sea and to decrease environ-
mental impact of marine traveling and shipping. For this application, a good
representation of the environment and a physical model of the ship are vital com-
ponents. By optimizing the trajectory of the ship, a good trade-off between the
time duration and energy consumption can be found.

In this thesis, a three degree of freedom model that describes the dynamics of a
small-scale surface ship is estimated. By using optimal control theory and a grey-
box model, the parameters are estimated by defining an optimal control problem
(OCP). The optimal solution is found by transcribing the problem into a nonlin-
ear program and solving it using an interior point algorithm. The identification
method is tested and validated using simulated data as well as using data from
real world experiments. The performance of the estimated models is validated
using cross validation.

In a second track of this thesis, a trajectory is created in two steps. The first is
path planning to find a shortest geometric path between two points. In the second
step, the path is converted to a trajectory and is optimized to become dynamically
feasible. For this purpose, a roadmap is generated from a modified version of
the generalized Voronoi diagram. To find an initial path in the roadmap, the
A-star algorithm is utilized and to connect start and goal position to the map a
few different methods are examined. An initial trajectory is created by mapping
a straight-line trajectory to the initial path, thus connecting time, position and
velocity. The final trajectory is found by solving a discrete OCP initialized with
the initial trajectory. The OCP contains spatial constraints that ensures that the
vessel does not collide with static obstacles.

The suggested estimation method resulted in models that could be used for tra-
jectory planning to generate a dynamically feasible trajectory for both simulated
and real data. The trajectory generated by the trajectory planner resulted in a
collision-free trajectory, satisfying the dynamics of the estimated model, such
that the trade-off between time duration and energy consumption is well bal-
anced. Future work consists of implementation of a controller to see if the planned
trajectory can be followed by the small-scale ship.

iii

Acknowledgments

First off all, we could like to thank our supervisor Jonas Linder from ABB Cor-
porate Research for his never-ending support and enthusiasm throughout this
thesis work. He always took the time to answer our question and helped us move
forward when we were stuck. We really appreciate all the time and effort he has
put in to help us succeed with this thesis. Thanks to all parties at ABB trying
their best to introduce us to our colleagues at ABB during these troubling times.
Sadly, we could not come meet you personally, but thanks for all the laughs at
the digital fika.

Thanks to Fredrik Ljungberg, our supervisor at Linköping University, for all your
help and assistance. He was always available to answer any questions and gladly
came by the lab to check on our progress. Thanks for all assistance and ideas
regarding the model ship, without him it would probably not even float.

We would also like to express our gratitude to Martin Enqvist, our examiner, who
suggested this thesis to us. He has provided valuable input and has always been
positive and supportive.

Lastly, we would like to acknowledge our families and friends for their ever-
lasting support and excitement during these years.

Linköping, June 2021
Fabian Steen & Gustav Zetterqvist

v

Contents

Notation ix

1 Introduction 1
1.1 Background . 1
1.2 Problem Description . 3
1.3 Goals . 3
1.4 Limitations . 3
1.5 Contributions . 4
1.6 Outline . 4

2 Modelling 5
2.1 Ship Model . 5

2.1.1 Reference Frames . 6
2.1.2 Kinematics . 6
2.1.3 Kinetics . 7

2.2 External Forces . 9
2.2.1 Azimuth Thrusters . 9
2.2.2 Tunnel Thruster . 10
2.2.3 Rudder Model . 11
2.2.4 Wind Model . 11

2.3 State-Space Model . 12

3 Optimal Control 15
3.1 Optimal Control Problem . 15
3.2 Multiple Shooting . 16

4 Model Estimation 19
4.1 Data Collection . 19
4.2 Parameter Estimation . 20

4.2.1 Problem Formulation . 20
4.2.2 Extended Kalman Filter . 21

4.3 Model Validation . 22
4.4 Experimental Platform . 22

vi

Contents vii

4.5 Estimation Results . 24
4.5.1 Simulated Data . 24
4.5.2 Experimental Data . 27

5 Path Planning 35
5.1 Roadmap . 35

5.1.1 Voronoi Diagram . 36
5.1.2 Generalized Voronoi Diagram (GVD) 36
5.1.3 Generate Roadmap from GVD 37

5.2 Connecting Start and Goal Positions 41
5.2.1 Connecting to Closest Point 41
5.2.2 Connecting to Nearby Edges 43
5.2.3 Connecting to Crossroads 43

5.3 Auxiliary Path . 44
5.3.1 Graph Search . 44
5.3.2 Path Smoothing . 45

5.4 Path Planning Results . 47
5.4.1 Roadmap Creation . 47
5.4.2 Connecting Methods . 48
5.4.3 Path Smoothing . 52
5.4.4 Conclusion . 53

6 Trajectory Planning 55
6.1 Initial Trajectory . 55

6.1.1 Straight Line Trajectory (SLT) 55
6.1.2 Mapping SLT to Geometric Path 58

6.2 Trajectory Optimization . 60
6.2.1 Collision Avoidance . 60
6.2.2 Problem Formulation . 63
6.2.3 Receding Horizon . 63

6.3 Trajectory Planning Result . 66
6.3.1 SLT and Mapping to Geometric Path 66
6.3.2 Optimization . 66
6.3.3 Conclusion . 73

7 Conclusion and Future Work 77
7.1 Future Work . 77

A Experiments 81
A.1 System Identification Experiment 81

A.1.1 Goal . 81
A.1.2 Procedure . 81
A.1.3 Result . 81

A.2 Thruster Identification Experiment 84
A.2.1 Goal . 84
A.2.2 Procedure . 84
A.2.3 Result . 84

viii Contents

A.3 PWM to Angle Mapping . 86
A.3.1 Goal . 86
A.3.2 Procedure . 86
A.3.3 Result . 86

B Proofs 89
B.1 Shortest Distance Between Figures (Obstacles) 89
B.2 Worst Generator Point Placement 90

Bibliography 91

Notation

Notations

Notation Description

ηηη Position and orientation of ship
ψ Heading of ship
ννν Linear and angular velocities of ship
τττ Forces and moments acting on ship
τττaz Forces and moments from azimuth thrusters
τττ t Forces and moments from tunnel thruster
τττ r Forces and moments from rudders
τττw Forces and moments from wind
RRR(ψ) Rotation matrix
MMM Mass and inertia matrix
CCC(ννν) Coriolis matrix
DDD(ννν) Damping matrix
ni Propeller speed of thruster i
αi Angle of thruster i
ϑϑϑ Model parameters

Reference Frames

Frame Description

b-frame Body-fixed reference frame, see Definition 2.1.
n-frame Earth-fixed reference frame, see Definition 2.2.

ix

x Notation

Abbreviations

Abbreviation Description

CG Center of Gravity
CO Center of Origin
CV Cross Validation
DOF Degrees Of Freedom
EKF Extended Kalman Filter
EKS Extended Kalman Smoother
GPS Global Positioning System
GVD Generalized Voronoi Diagram
IMU Inertial Measurement Unit
IPOPT Interior Point OPTimizer
MGVD Modified Generalized Voronoi Diagram
NED North-East-Down
NLP Non-Linear Programming

NRMSE Normalized Root Mean Square Error
OCP Optimal Control Problem
RK4 4th order Runge-Kutta method
RTK Real-Time Kinematic
RTS Rauch–Tung–Striebel

1
Introduction

In this master’s thesis, ways of estimating a mathematical model for a surface
ship are explored, along with the problem of finding a feasible trajectory in a com-
plex environment. The thesis work was performed at ABB Corporate Research in
Västerås in collaboration with Linköping University.

1.1 Background

As technology advances, an increased number of tasks can be performed without
human interaction. For example, autonomous cars and trucks are being tested in
public, and with more than 80% of all world trade by volume being carried by sea
(UNCTAD, 2020), autonomous ships are bound to follow. The main reasons for
developing autonomous systems are to improve safety, reduce cost and decrease
environmental impact (Wingrove, 2020).

Navigational errors, such as collision, contact and grounding/stranding, were
the reason for 44% of all casualty events involving a ship with a connection to
the EU between 2014-2019 (European Maritime Safety Agency, 2020). Out of all
1801 investigated accidents, 54% were attributed to human action. Futhermore,
about 1000 personal injuries are reported every year of which 4% are very serious
(European Maritime Safety Agency, 2020). With autonomous ships or automatic
advisory systems many of these casualties could potentially be prevented and
travelling by sea would be safer.

In marine shipping, the fuel cost stands for 57% of the total shipping cost (Fu-
ruichi and Shibasaki, 2015) and minimizing the fuel consumption would thus
cut costs. One way to decrease fuel consumption is to have efficient path plan-
ning and control. This also leads to reduced impact on the environment with less

1

2 1 Introduction

fuel emissions.

In the literature, autonomous ships are often categorized as autonomous surface
vehicles (ASVs) or unmanned surface vehicles (USVs), these two terms are not to
be confused with each other. An ASV is a ship that can operate and make deci-
sions on its own, without human interaction, but is not necessarily unmanned,
for example an ASV can transport passengers. An USV on the other hand does
not need to be autonomous, and is often controlled by a human operator remotely
(Vagale et al., 2020).

For the development of an ASV, many aspects need to be considered. The three
most important aspects are the ship dynamics, navigation system and the control
system (Peralta et al., 2020). In the navigation system one important aspect is
motion planning (Peralta et al., 2020). Typically, a planning algorithm tries to
find a series of actions that results in arriving at a specified goal state given an
initial state (LaValle, 2006). For path planning, the initial and goal states are
typically generalized positions, i.e. positions and orientations (LaValle, 2006).

The main purposes of path planning for ASVs are to

[. . .] reduce the risk of collisions, groundings, and stranding accidents
at sea, as well as costs and time expenditure. (Vagale et al., 2020)

For an ASV, the path planner plays a critical role in finding an optimal path to
guide a vessel from one generalized position to another. It is desirable to optimize
the path in some aspect while it should be dynamically feasible and collision-
free. Some common criteria for optimization are to minimize path length, time
duration and energy consumption (Vagale et al., 2020).

Path planning can be divided into local and global algorithms. The global path
planning problem is to acquire a feasible path from the initial state to the goal
state by assuming that a static map of the environment and information about
obstacles are available. A local path planning algorithm considers information
from sensors available on the ship to avoid dynamic obstacles in the vicinity of
the vessel. Local path planning is sometimes called reactive path planning, due
to the ability to react upon initially unknown obstacles. This causes the vessel
to deviate from the original plan or adapt the speed if an obstacle intercepts its
path (Vagale et al., 2020).

Often path planning is divided into multiple steps. First, an algorithm is applied
to find a collision-free path between the initial state and the final state. This can
be done either with or without respect to dynamics of the vessel. If the dynamics
of the vessel is not considered, the path will not necessarily be dynamically feasi-
ble, thus the path may need to be refined. In the refinement algorithm, the path
is transformed to follow all dynamic constraints and become feasible (LaValle,
2006). If the dynamic constraints are included in the collision-free path, a fea-
sible path is achieved, but generally it is not optimal and it may be dangerously
close to obstacles. Therefore, the refinement step aims at optimizing the collision-
free path with some margin to get a faster or more efficient path (Bitar et al.,

1.2 Problem Description 3

2020).

Since a global path planning algorithm typically does not consider dynamical
obstacles (Vagale et al., 2020), one way to avoid dynamic obstacles is to use a
collision avoidance system in the controller. A control framework with the possi-
bility to introduce such constraints is model predictive control (MPC). The MPC
structure contains a goal function which is optimized under various constraints,
e.g. dynamic constraints of the ship or obstacle constraints. This can be used to
avoid collisions with dynamic obstacles simultaneously as controlling the ship to
follow a given path (Eriksen and Breivik, 2017).

1.2 Problem Description

The focus of this master’s thesis is modelling and path planning algorithms for
autonomous ships. The objective is to find a dynamic model for the small-scale
surface ship in Figure 1.1 and to develop a trajectory planning algorithm based
on the model. The dynamic model is derived using a grey-box model based on
physical principles, where the model parameters are estimated using system iden-
tification methods, i.e. using data collected from experiments.

1.3 Goals

The goal of this thesis is to determine a suitable grey-box model for ships, and
then to estimate and validate the parameters of the small-scale ship using data
collected from sea trials as well as selected experiments, such as a Bollard pull
test. Further, a global path planning algorithm for ships is developed and later
refined to fulfill the dynamic constraints of the small-scale ship.

1.4 Limitations

One limitation of this thesis is that all environmental disturbances, such as wind,
waves and water currents are neglected to simplify both modelling and trajectory
planning. In simulation, wind forces are included to investigate if the wind speed
could be estimated from collected data. Futhermore, only the thruster configura-

Figure 1.1: Hull of the model ship

4 1 Introduction

tion on the small-scale ship is considered in the modelling, system identification
and the path planning algorithm. During data collection a global positioning
system (GPS) and an inertial measurement unit (IMU) are used to measure the
position and orientation of the ship. The GPS is assumed to have the possibility
to use real-time kinematic (RTK) positioning to greatly increase the accuracy. In
the path planning algorithm, a static map is used to generate a feasible path, and
dynamic obstacles will be neglected.

1.5 Contributions

In this thesis, an optimal control based system identification method is imple-
mented and tested with experimental data. The method is used to estimate the
parameters of a 3 degrees of freedom (DOF) ship model with promising results.
The identified model can be used for trajectory planning, control or simulation
purposes. Furthermore, a trajectory planning algorithm is proposed based on
the model of the ship. The generated trajectory combined with a controller can
be used for navigation in confined waters to minimize the risk of collisions or
grounding.

1.6 Outline

The thesis is outlined as follows. Chapter 2 includes the relevant theory on mod-
elling of a ship and its thrusters, as well as descriptions of how to represent the
forces created by the rudder and wind disturbances. Additionally, the proposed
grey-box model of the ship is presented. Chapter 3 contains relevant theory in
optimal control, used throughout the thesis. In Chapter 4, theory on model esti-
mation and validation is given. Thereafter, the parameters of the grey-box model
are estimated using both simulated data and data collected experimentally with
the model ship. Chapter 5 begins with relevant theory and methodology for path
planning. Then, different methods of how to connect start and goal positions to
the path are presented. Chapter 5 concludes with a graph search method and
methods to smoothen the obtained path. Thereafter, Chapter 6 presents theory
on trajectory planning to achieve a feasible path for the model ship and obstacle
avoidance. Lastly, in Chapter 7, conclusions and further work are presented.

2
Modelling

A mathematical model is useful to describe a physical system influenced by ex-
ternal forces. A model is also a powerful tool when designing advanced control
systems and for path planning (Ljung and Glad, 2004).

In this chapter, a grey-box model for a ship is given. First, the dynamics of the
ship are presented in Section 2.1 and then, Section 2.2 describes the external
forces acting on the ship. Lastly, the full state-space model is presented in Sec-
tion 2.3.

2.1 Ship Model

To fully describe a ships motion in all situations, 6DOF, surge, sway, heave, roll,
pitch and yaw, should be considered. However, in calm seas where environ-
mental disturbances, such as wind, waves and currents, are minimal, heave, roll
and pitch are negligible (Fossen, 2011). A 3DOF model is therefore proposed to
model the ship in this thesis. Using the notation from SNAME (1952) described
in Table 2.1, the dynamics of the ship can be described by

η̇ηη = RRR(ψ)ννν - Kinematics (2.1a)

MMMν̇νν +CCC(ννν)ννν +DDD(ννν)ννν = τττ - Kinetics (2.1b)

where RRR(ψ) is a rotation matrix and MMM, CCC(ννν) and DDD(ννν) are matrices describing
the mass-inertia, Coriolis forces and damping of the ship, respectively (Fossen,
2011).

5

6 2 Modelling

2.1.1 Reference Frames

A convenient way of describing the motion of a ship is by introducing reference
frames, one body-fixed frame attached to the ship, denoted as the b-frame, and
one Earth-fixed frame, called the n-frame (Fossen, 2011). These are defined ac-
cording to Definition 2.1 and Definition 2.2, respectively. The relationship be-
tween the two reference frames can be seen in Figure 2.1(a).

Definition 2.1 (b-frame). The b–frame has its origin fixed to the ship’s center of
origin (CO), the xb–axis facing towards the bow, the yb–axis facing the starboard
side and the zb–axis facing downwards.

Definition 2.2 (n-frame). The n–frame has its origin fixed to the surface of the
Earth, the xn–axis facing North, the yn–axis facing East and the zn–axis facing
the center of the Earth. This is also referred to as the North-East-down (NED)
coordinate system.

2.1.2 Kinematics

The kinematics are described by the generalized position ηηη and the generalized
velocity ννν. As can be seen in (2.1a), this geometric relation is

η̇ηη = RRR(ψ)ννν,

where RRR(ψ) is a rotation matrix given by

RRR(ψ) =

cosψ − sinψ 0
sinψ cosψ 0

0 0 1

 . (2.2)

Table 2.1: Notation used for describing the 3DOF motions of a ship (SNAME,
1952).

Notation Description

ηηη =
[
x y ψ

]T
Generalized position in 3DOF given by Carte-
sian position (x, y) and heading angle ψ.

ννν =
[
u v r

]T
Generalized velocities in 3DOF given by surge
velocity u, sway velocity v and yaw-rate r.

τττ =
[
τX τY τN

]T
Forces and moments affecting the ship in a body-
fixed coordinate system in surge τX , sway τY and
yaw τN .

2.1 Ship Model 7

(a) (b)

Figure 2.1: Reference frames for a ship. (a) illustrates the relationship be-
tween the b-frame and the n-frame, where ψ is the heading of the ship. In
(b) the generalized velocities in the b-frame are shown.

2.1.3 Kinetics

The kinetics describe the motion of the ship under the influence of external forces.
The kinetics are described by the generalized velocity ννν and the generalized ex-
ternal forces τττ , both expressed in the b-frame. From (2.1b), the relationship is

MMMν̇νν +CCC(ννν)ννν +DDD(ννν)ννν = τττ ,

whereMMM, CCC(ννν) andDDD(ννν) are matrices describing the mass-inertia, Coriolis forces
and damping of the ship, respectively (Fossen, 2011). The generalized forces
acting on the ship τττ are described separately in Section 2.2.

As a ship moves through water, the surrounding water is displaced and set into
motion. It is common to separate the mass and inertia matrix MMM, along with the
Coriolis matrix CCC(ννν), into one part for the rigid-body kinetics and one part for
the added mass due to hydrodynamic effects, such that

MMM = MMMRB +MMMA (2.3a)

CCC(ννν) = CCCRB(ννν) +CCCA(ννν). (2.3b)

With the b-frame defined as in Definition 2.1, and assuming that the ship is sym-
metric in the xb-zb-plane, the surge motion can be decoupled from the sway- and
yaw motion (Fossen, 2011). Furthermore, by assuming that the center of gravity

8 2 Modelling

(CG) coincides with CO, the mass and inertia matrixMMM is given by

MMM B

m 0 0
0 m 0
0 0 Iz

︸ ︷︷ ︸
MMMRB

+

−Xu̇ 0 0
0 −Yv̇ 0
0 0 −Nṙ

︸ ︷︷ ︸
MMMA

=

m11 0 0
0 m22 0
0 0 m33

 , (2.4)

where m is the mass, Iz is the moment of inertia about the zb-axis and the param-
eters Xu̇ , Yv̇ and Nṙ are referred to as hydrodynamic derivatives. From a control
perspective, only the sum of mass-inertia and hydrodynamical parameters are
important. Also, when identifying the parameters experimentally it is difficult to
separate them, thus the terms are added together for simplification purposes.

The Coriolis matrix can be described as a function of the mass and inertia matrix
MMM and the generalized velocities ννν

CCC(ννν) B

 0 0 −mv
0 0 mu
mv −mu 0

︸ ︷︷ ︸
CCCRB(ννν)

+

 0 0 Yv̇v
0 0 −Xu̇u
−Yv̇v Xu̇u 0

︸ ︷︷ ︸
CCCA(ννν)

=

 0 0 −m22v
0 0 m11u

m22v −m11u 0

 ,

(2.5)
where the last equality follows from (2.4).

The hydrodynamic damping consists of a linear part and a non-linear part, but it
is convenient to combine them to get the damping matrix

DDD(ννν) B

d11(ννν) 0 0
0 d22(ννν) d23(ννν)
0 d32(ννν) d33(ννν)

 , (2.6)

with

d11(ννν) =Xu − X|u|u |u| (2.7a)

d22(ννν) =Yv − Y|u|v |u| − Y|v|v |v| − Y|r |v |r | (2.7b)

d23(ννν) =Yr (2.7c)

d32(ννν) =Nv − N|v|v |v| (2.7d)

d33(ννν) =Nr − N|r |r |r |, (2.7e)

where the parameters will be identified experimentally. Additional non-linear
terms can be added, but those mentioned in (2.7) are assumed to suffice for these
applications (Teeuwen, 2018).

To ensure the stability of the ship, (2.1b) is linearized at constant surge velocity

2.2 External Forces 9

(u = U0, v = r = 0), which yieldsm11 0 0
0 m22 0
0 0 m33

 ν̇νν +

Xu 0 0
0 Yv − Y|u|v |U0| Yr + m11U0
0 Nv − (m11 −m22)U0 Nr

︸ ︷︷ ︸
BNNN

ννν = τττ , (2.8)

where, in addition, X|u|u has been neglected for simplicity. In Mucha (2017), it
is proven that for straight line stability, i.e., when moving in a straight line, the
matrix NNN needs to be positive definite, which yields

Xu > 0 (2.9a)

Yv > 0 (2.9b)

Nr > 0 (2.9c)(
Yv − Y|u|v |U0|

)
Nr − (m11U0 + Yr) (Nv − (m11 −m22)U0) > 0. (2.9d)

If (2.9d) is fulfilled for U0 = 0 as well as for the maximum surge velocity the ship
can achieve (U0 = Umax), stability for all velocities 0 ≤ u ≤ Umax can be shown to
be guaranteed if m11 < m22.

2.2 External Forces

There are a lot of forces acting on a ship, in this section, the most prominent of
these will be addressed. Firstly, actuators on the ship, such as propellers and
rudders, cause a controllable force on the ship, called τττ c. Secondly, there are
forces caused by environmental changes in the vicinity of the ship, denoted by
τττenv. Thus, the combined generalized force affecting the ship is assumed to be

τττ = τττ c + τττenv. (2.10)

With the thruster configuration of the investigated ship, as seen in Figure 2.2, the
controllable generalized force is assumed to be divided into a propulsion force
from the azimuth thrusters τττaz and the tunnel thruster τττ t , as well as a rudder
force τττ r caused by the duct of the azimuth thrusters. The total controllable gen-
eralized force is thereby

τττ c = τττaz + τττ t + τττ r . (2.11)

The environmental forces include forces from wind, currents and waves. For
simplicity, only disturbances from the wind will be considered in this thesis, thus

τττenv ≈ τττw, (2.12)

where τττw is the generalized force generated by the wind.

2.2.1 Azimuth Thrusters

On the ship there are two azimuth thrusters located in the aft. They can be ro-
tated about their zb-axis to create a force in any direction in the xb-yb-plane.

10 2 Modelling

Figure 2.2: An overview of the ship with thruster locations, where lx,1 and
ly,1 are the position of thruster 1 in the b-frame and α1 is the angle of
thruster 1. The position of the tunnel thruster on the xb-axis is denoted
by lx,t . The parameters for thruster 2 is similar to thruster 1, but they are left
out for readability.

Let αi denote the angle and ni denote the propeller angular velocity of thruster
i, where i = 1, 2, are the indices of the thrusters. The angle αi is assumed to be
zero when thruster i is pointing towards the bow of the ship and increases with
rotation about the zb-axis. Assuming that both thrusters are equally efficient, the
generalized force from the azimuth thrusters can be described with

τττaz =

(µaz − κu) τ̃X
µazτ̃Y
µazτ̃N

 , (2.13)

where µaz and κ are positive constants and

τ̃ττ =

τ̃Xτ̃Y
τ̃N

 B

∑2
i=1 n

2
i cos(αi)∑2

i=1 n
2
i sin(αi)∑2

i=1 n
2
i

(
lx,i sin(αi) − ly,i cos(αi)

)
 , (2.14)

where lx,i and ly,i describes the mounting position in the xb-yb-plane of thruster
i in the b-frame as seen in Figure 2.2 (Lewandowski, 2004). Note that τ̃ττ is known
if the system inputs, αi and ni , as well as the mounting positions of the thrusters
are known.

2.2.2 Tunnel Thruster

The tunnel thruster is a transversal propeller built into the hull of the ship and
can be modelled as a fixed azimuth thruster with αt = 90°. Assuming the tunnel
thruster is mounted on the center line of the ship, the generalized force from the

2.2 External Forces 11

tunnel thruster is

τττ t = µtn
2
t

 0
1
lx,t

 , (2.15)

where µt is a positive constant and nt is the propeller speed of the tunnel thruster.
The position on the xb-axis is denoted by lx,t .

2.2.3 Rudder Model

The configuration of the ship has no rudder, however, the duct of the azimuth
thrusters potentially cause a force comparable with a rudder force. The general-
ized force generated from a rudder can be described by

FFFr (δ, νννr) =

−FN (δ, νννr) sin(δ)
FN (δ, νννr) cos(δ)

FN (δ, νννr)
(
lx,r cos(δ) + ly,r sin(δ)

)
 , (2.16)

where δ is the rudder angle, lx,r and ly,r describe the mounting position of the
rudder in the b-frame and

FN (δ, νννr) =
1
2
ρwArF

′
N (δ, νννr)

(
u2
r + v2

r

)
(2.17a)

F′N (δ, νννr) = CN sin(δ − atan2 (vr , ur)), (2.17b)

where ρw is the water density, Ar is the effective rudder area, CN is a positive
constant, ur and vr are the surge and sway velocities at the rudder, respectively
(Kang et al., 2008). In Kang et al. (2008), experiments found that F′N (δ, νννr) is not
perfectly modelled as in (2.17b), especially at high rudder angles where stall oc-
curs. Nevertheless, this approximation will suffice for this thesis. Thus, the total
generalized force generated by rudder effects from the two azimuth thrusters is

τττ r =

∑2
i=1 −FN (αi , ννν) sin(αi)∑2
i=1 FN (αi , ννν) cos(αi)∑2

i=1 FN (αi , ννν)
(
lx,i cos(αi) + ly,i sin(αi)

)
 , (2.18)

where the flow velocities at the rudder are approximated with the velocities of
the ship. In the rudder model, CN is the only parameter to be estimated.

2.2.4 Wind Model

To consider forces from the wind acting on the ship a simple wind model pro-
posed by Fossen (2011) is

τττw =
1
2
ρaV

2
rw

 CX(γrw)Afw
CY (γrw)Alw

CN (γrw)AlwLoa

 , (2.19)

where ρa is the density of air, Loa is the length overall of the ship, Afw and Alw
are the frontal and lateral projected areas of the ship, respectively. The length

12 2 Modelling

overall Loa is the maximum length of the ship that is parallel to the waterline.
Furthermore,

Vrw =
√
u2

rw + v2
rw (2.20a)

CX(γrw) = −cx cos (γrw) (2.20b)

CY (γrw) = cy sin (γrw) (2.20c)

CN (γrw) = cn sin (2γrw) (2.20d)

γrw = −atan2 (vrw, urw) , (2.20e)

where urw and vrw are the relative surge and sway velocities in the b-frame, re-
spectively, and cx, cy and cn are the wind coefficients for the ship and in Fossen
(2011) it is stated that cx ∈ [0.50, 0.90], cx ∈ [0.70, 0.95] and cx ∈ [0.05, 0.20]. The
relative velocities can be described by

urw = u − uw (2.21a)

vrw = v − vw (2.21b)

uw = Vw cos(βw − ψ) (2.21c)

vw = Vw sin(βw − ψ), (2.21d)

where uw and vw are the wind velocities in the b-frame, Vw is the speed of the
wind and βw is the wind direction in the n-frame, calculated as the angle starting
from the positive yn-axis and increasing by rotation about the positive zn-axis
(Fossen, 2011).

2.3 State-Space Model

To identify the unknown parameters experimentally, the inputs and outputs of
the system need to be measured. The inputs are propeller speed and thruster
angle of all thrusters, and the outputs are Cartesian coordinates in the n-frame,
the heading angle as well as yaw-rate of the ship. A standard notation of a state-
space model is

ẋxx = fff (xxx,uuu,ϑϑϑ) (2.22a)

yyy = hhh(xxx,ϑϑϑ), (2.22b)

where xxx is the state vector, uuu is the input vector, ϑϑϑ is a constant vector containing
the model parameters and yyy is the output vector.

2.3 State-Space Model 13

Rewriting (2.1b) on this form yields

ν̇νν =
[
u̇ v̇ ṙ

]T
= MMM−1 (−CCC(ννν)ννν −DDD(ννν)ννν + τττ)

=

1
m11

0 0
0 1

m22
0

0 0 1
m33

 m22vr − Xuu + X|u|u |u|u
−m11ur − Yvv − Yr r + Y|u|v |u|v + Y|v|v |v|v + Y|r |v |r |v

(m11 −m22)uv − Nvv + N|v|v |v|v − Nr r + N|r |r |r |r

+

τX(uuu,ϑϑϑ)
τY (uuu,ϑϑϑ)
τN (uuu,ϑϑϑ)

=

1
m11

(
m22vr − Xuu + X|u|u |u|u + τX(uuu,ϑϑϑ)

)
1
m22

(
−m11ur − Yvv − Yr r + +Y|u|v |u|v + Y|v|v |v|v + Y|r |v |r |v + τY (uuu,ϑϑϑ)

)
1
m33

(
(m11 −m22)uv − Nvv + N|v|v |v|v − Nr r + N|r |r |r |r + τN (uuu,ϑϑϑ)

)
 .

(2.23)

By including (2.1a) and the measurements, the full state-space model is given by

ẋxx =

cos(ψ)u − sin(ψ)v
sin(ψ)u + cos(ψ)v

r
1
m11

(
m22vr − Xuu + X|u|u |u|u + τX(uuu,ϑϑϑ)

)
1
m22

(
−m11ur − Yvv − Yr r + +Y|u|v |u|v + Y|v|v |v|v + Y|r |v |r |v + τY (uuu,ϑϑϑ)

)
1
m33

(
(m11 −m22)uv − Nvv + N|v|v |v|v − Nr r + N|r |r |r |r + τN (uuu,ϑϑϑ)

)

︸ ︷︷ ︸
Bfff (xxx,uuu,ϑϑϑ)

(2.24a)

yyy =

x
y
ψ
r

 B hhh(xxx,ϑϑϑ), (2.24b)

where xxx = [x y ψ u v r]T is the state, uuu = [α1 α2 n1 n2 nt]T is the input, yyy is the
output and

ϑϑϑ = [m11 m22 m33 Xu X|u|u Yv Yr Y|u|v Y|v|v Y|r |v Nv Nr N|v|v N|r |r κ CN Vw βw cx cy cn µaz µt]T

(2.25)
is the vector of unknown parameters. The external forces are

τττ =

τX(uuu,ϑϑϑ)
τY (uuu,ϑϑϑ)
τN (uuu,ϑϑϑ)

 (2.26)

and they are given in Section 2.2.

3
Optimal Control

Optimal control is a useful tool when dealing with system identification as well
as optimization of trajectories. In this chapter, the theory on optimal control is
presented.

In Section 3.1 a general optimal control problem is formulated, and in Section 3.2
a numerical method to solve the problem is presented.

3.1 Optimal Control Problem

For an optimal control problem (OCP), the aim is to minimize a cost function
given the system dynamics, a control variable and boundary constraints. In gen-
eral, the cost function is given by

φ
(
xxx(tf)

)
+

tf∫
ti

f0 (t, xxx, uuu) dt (3.1)

where the first term penalizes the deviation from some desired final state and
the integral part is a cost associated with the state and control trajectories. The
system dynamics is defined in terms of a state space equation ẋxx = fff (xxx,uuu,ϑϑϑ), the
control variable is restricted to uuu ∈ U and the state vector xxx is constrained to
xxx ∈ S . The initial and final times are denoted by ti and tf , respectively. This

15

16 3 Optimal Control

results in the optimal control problem

min
uuu

φ
(
xxx(tf)

)
+

tf∫
ti

f0 (t, xxx, uuu) dt (3.2a)

s.t. ẋxx = fff (xxx,uuu,ϑϑϑ) (3.2b)

xxx ∈ S (3.2c)

uuu ∈ U . (3.2d)

The optimal control problem is thus to find an admissible control signal uuu ∈ U ,
such that the state stays within the set S with minimal cost (Jönsson et al., 2010).

3.2 Multiple Shooting

To solve the OCP, a numerical approach called multiple shooting can be applied.
The multiple shooting algorithm is described in Algorithm 3.1, and results in a
nonlinear programming (NLP) problem on the form

min
www

Φ(www) (3.3a)

s.t. GGG(www) = 0 (3.3b)

HHH(www) ≤ 0, (3.3c)

where Φ(www) is the objective function, www = [xxxT1 , xxx
T
2 , . . . , xxx

T
N+1, uuu

T
1 , uuu

T
2 , . . . , uuu

T
N , ϑϑϑ

T]T

is the decision vector containing the decision variables where the states and con-
trol signals are discretized. Furthermore, the equality constraints GGG(www) includes
the shooting constraints and the inequality constraints (3.3c) corresponds to the
constraints on the state, control signal and parameter vector.

For the shooting constraints, a discrete-time model FFF(xxxk , uuuk) is defined using the
4th order Runge-Kutta (RK4) method

kkk1 = fff (xxxk , uuuk) (3.4a)

kkk2 = fff (xxxk +
h
2
kkk1, uuuk) (3.4b)

kkk3 = fff (xxxk +
h
2
kkk2, uuuk) (3.4c)

kkk4 = fff (xxxk + hkkk3, uuuk) (3.4d)

FFF(xxxk , uuuk) = xxxk +
h
6

(kkk1 + 2kkk2 + 2kkk3 + kkk4) , (3.4e)

where h is the discretization time step. Given a state xxxk and a control input uuuk ,
the next iteration can be defined as xxxk+1 = FFF(xxxk , uuuk), thus the equality constraints

3.2 Multiple Shooting 17

becomes

GGG(www) =

FFF(xxx1, uuu1) − xxx2
FFF(xxx2, uuu2) − xxx3

. . .
FFF(xxxN , uuuN) − xxxN+1

ggg(www)

 , (3.5)

where ggg(www) contains the equality constraints other than the shooting constraints.

Algorithm 3.1: Direct multiple shooting (Bock and Plitt, 1984).

1 Discretize the time horizon, [ti , tf], into subintervals [ti , ti+1], such that
ti = t1 < t2 < · · · < tN+1 = tf , (3.6)

where N is the number of subintervals.
2 Approximate the control signal as piecewise constant on all subintervals

uuu(t) = vvvi for t ∈ [ti , ti+1] and i = 1, 2, . . . , N . (3.7)

3 Choose the initial values of the states at each time instance
xxx(ti) = hhhi for i = 1, 2, . . . , N . (3.8)

4 Calculate the state trajectories in each subinterval using the initial value
and the system dynamics

ẋxxi = fff (xxxi(t), vvvi(t), ϑϑϑ), t ∈ [ti , ti+1] (3.9a)

xxxi(ti) = hhhi for i = 1, 2, . . . , N . (3.9b)

5 Ensure continuity of the solution by adding the shooting constraints
hhhi+1 − xxxi(ti+1;hhhi , vvvi) = 0 for i = 1, 2, . . . , N . (3.10)

6 Compute the objective function for each subinterval, then solve the NLP

min
vvvi

φ(xxxN+1) +
N∑
i=1

ti+1∫
ti

f0(xxxi(t), vvvi)dt (3.11a)

s.t. hhhi+1 − xxxi(ti+1;hhhi , vvvi) = 0, i = 1, 2, . . . , N (3.11b)

xxxi ∈ S (3.11c)

vvvi ∈ U . (3.11d)

4
Model Estimation

For the estimation of the unknown parameters in the grey-box model, an optimal
control problem is formed and solved using a multiple shooting method. The
OCP is equivalent to a non-linear least square error problem using an non-linear
output error-model.

This chapter threats the theory and results for the estimation of the grey-box
model derived in Chapter 2. The chapter begins with Section 4.1, where it is
explained how the data was gathered. Then, the theory on how to estimate the
parameters is presented in Section 4.2. A method is thereafter proposed to vali-
date an estimated model in Section 4.3. In Section 4.4 the experimental platform
is described. Lastly, the results from the simulated and experimental model esti-
mation are presented in Section 4.5

4.1 Data Collection

During the experiments, described in Appendix A, data was collected in datasets.
Each experiment has a separate dataset of Ni data points, denoted by

Di(Ni) =
{
ȳyy i(k), ūuui(k)

}Ni
k=1

, (4.1)

where i is the experiment index and ȳyy and ūuu represents the measurement of yyy
and uuu, respectively. The datasets are then divided into estimation data and val-
idation data, where the former will be used for estimating the model and the
latter will be used for validation of the estimated model. All the estimation and
validation data will then be gathered into two datasets, denoted by De(Ne) and
Dv(Nv), respectively, where N = Ne ≈ Nv is the number of data points in each
dataset.

19

20 4 Model Estimation

4.2 Parameter Estimation

With a chosen model structure, the parameters ϑϑϑ, can be estimated by solving

ϑ̂ϑϑN = argmin
ϑϑϑ

VN (ϑϑϑ,De(N)), (4.2)

where VN (·) is a value function depending on the model structure and the es-
timation data, and N denotes the number of data points used for the optimiza-
tion problem. The value function, VN (·), can have different structures, and each
structure will correspond to a unique estimator. A commonly used estimator is
the weighted least squares (WLS), which is defined by using the value function

VWLS
N (ϑϑϑ,De(N)) =

N∑
k=1

(ȳyy(k) − ŷyy(k|ϑϑϑ))T WWW (ȳyy(k) − ŷyy(k|ϑϑϑ)) , (4.3)

where WWW is a weighing matrix, ȳyy is the measured output and ŷyy is the predicted
output given ϑϑϑ (Gustafsson, 2018).

To be able to distinguish between different models, the dataset has to be informa-
tive enough, otherwise the problem will not converge to the global minimum.

4.2.1 Problem Formulation

The optimization problem (4.2) can be seen as an OCP, with the notation used in
Section 2.3, it can be expressed as

min
xxx,ϑϑϑ

tf∫
0

L (ŷyy(t|ϑϑϑ), ȳyy(t)) dt (4.4a)

s.t. ẋxx = fff (xxx,uuu,ϑϑϑ) (4.4b)

ggg(ϑϑϑ) ≤ 0, (4.4c)

where (4.4a) corresponds to the optimization problem (4.2), (4.4b) are the dy-
namic equations of the ship (2.24a) and (4.4c) are the inequality constraints on
the parameters (2.25). Since the dynamics in (4.4b) are nonlinear, the problem is
non-convex, meaning that the problem might have many local minima (Boyd and
Vandenberghe, 2004). As a consequence, a good initial guess is often necessary
for the problem to converge to the global minimum (Boyd and Vandenberghe,
2004).

To solve the OCP (4.4), multiple shooting is applied, this results in a NLP on the
form

min
www

Φ(www, ȳyy) (4.5a)

s.t. GGG(www, ūuu) = 0 (4.5b)

HHH(www) ≤ 0, (4.5c)

4.2 Parameter Estimation 21

with

Φ(www, ȳyy) =
N∑
i=1

(
ȳyy i − yyy i

)T
WWW

(
ȳyy i − yyy i

)
(4.6)

where www = [xxxT1 , xxx
T
2 , . . . , xxx

T
N+1, ϑϑϑ

T]T is the decision vector containing the discrete
system state xxxk and the model parameters ϑϑϑ. The measured output is denoted
by ȳyy = [ȳyyT1 , ȳyy

T
2 , . . . , ȳyy

T
N]T , while yyyk denotes the output given the system state xxxk .

Further, the shooting constraints is GGG(www, ūuu) where ūuu = [ūuuT1 , ūuu
T
2 , . . . , ūuu

T
N]T is the

measured control input. Lastly, the inequality constraints (3.3c) corresponds to
the constraints on the model parameters ϑϑϑ.

For the shooting constraints, a discrete-time model FFF(xxxk , uuuk) is defined using the
RK4 method, which yields

GGG(www, ūuu) =

FFF(xxx1, ūuu1) − xxx2
FFF(xxx2, ūuu2) − xxx3

. . .
FFF(xxxN , ūuuN) − xxxN+1

 . (4.7)

The constraints on the parameters from Chapter 2 can be summarized as

Xu > 0 (4.8a)

Yv > 0 (4.8b)

Nr > 0 (4.8c)(
Yv − Y|u|v |U0|

)
Nr − (m11U0 + Yr) (Nv − (m11 −m22)U0) > 0 (4.8d)

YvNr − YrNv > 0 (4.8e)

m22 −m11 > 0 (4.8f)

κ > 0 (4.8g)

0.50 ≤ cX ≤ 0.90 (4.8h)

0.70 ≤ cY ≤ 0.95 (4.8i)

0.05 ≤ cN ≤ 0.20. (4.8j)

4.2.2 Extended Kalman Filter

For the Multiple shooting algorithm to converge, a good initial guess of the de-
cision vector www is crucial. Therefore, an extended Kalman filter (EKF) is ap-
plied to estimate ννν from measurements of ηηη. This algorithm consists of a predic-
tion step, where the states of the system are predicted using a constant velocity
state-space model, and a measurement update step, where the measurements are
used to correct the states (Gustafsson, 2018). Optionally, a Rauch–Tung–Striebel
(RTS) smoother can be applied afterwards to smoothen the estimates (Gustafsson,
2018), this is referred to as an extended Kalman smoother (EKS).

22 4 Model Estimation

The constant velocity state-space model is defined by

fff CV(xxx, vvv) = RRR(ψ)ννννννννν + vvv (4.9a)

hhhCV(xxx) =
[
ηηη
r

]
, (4.9b)

where vvv is the process noise. To get a satisfying result, the noise matrices where
chosen as

Q = 10−1

1 0 0
0 1 0
0 0 1

 (4.10a)

R = 10−2

10 0 0 0
0 10 0 0
0 0 1 0
0 0 0 1

 . (4.10b)

4.3 Model Validation

By intuition, the instinctive approach of evaluating the estimated parameters
would be to compare them to the true system parameters ϑϑϑ0. However, when
dealing with system identification the true parameters of the system are often
unknown. Therefore, a method called cross validation (CV) is used. In CV, the
model is validated with the validation data set Dv(N). The fit of the model to
the validation data is calculated using the nomalized root mean square error
(NRMSE)

NRMSE =

√√√√ ∑N
k=1 (yyy(k) − ŷyy(k))2∑N

k=1

(
yyy(k) − 1

N

∑N
i=1 yyy(i)

)2 (4.11)

the model fit is then calculated as

fit (ŷyy(k|ϑϑϑ)) = 100 (1 −NRMSE) . (4.12)

This value can be interpreted as a percentage. The best possible fit will result in
a value of 100. However, values below 0 are possible and there is no minimum
value since the model can have arbitrarily bad fit (Ljungberg, 2020).

4.4 Experimental Platform

The experimental that was used platform was provided by Linköping University
and can be seen in Figure 4.1. The propulsion system of the ship consists of
three thrusters, two azimuth thrusters mounted in the aft and a tunnel thruster
located in the bow of the ship. All thrusters are powered with brushless electrical
motors and the rotation of the azimuth thrusters are powered by electrical servos.
The ship was equipped with an IMU sensor that measures the angular velocities,
linear accelerations as well as the magnetic field. To measure the position of the

4.4 Experimental Platform 23

(a) (b)

Figure 4.1: The experimental platform used in the thesis. Seen from outside
in (a) and the inside in (b).

ship a GPS with RTK positioning is used and to measure the rotational speed of
the thrusters RPM sensors are fitted to each thruster. The specifications of the
model ship can be seen in Table 4.1.

Table 4.1: Specifications of the model ship.

Component Specifications

Hull length 0.99 m
Hull width 0.30 m
Positioning GPS with RTK positioning
Sensors IMU and RPM sensors
Azipod, starboard lx,1 = −0.39m, ly,1 = 0.07m
Azipod, portside lx,2 = −0.39m, ly,2 = −0.07m
Bow thruster lx,t = 0.37m
Effective rudder area Ar = 0.001m2

Frontal projected area Afw = 0.01m2

Lateral projected area Alw = 0.1m2

24 4 Model Estimation

4.5 Estimation Results

In this section, the results of the model estimation are presented. In Section 4.5.1,
the results of the estimated model are given using simulated data. Thereafter, the
result using experimental data are presented in Section 4.5.2.

4.5.1 Simulated Data

The grey-box model proposed in Chapter 2 is implemented in Matlab with the
parameters ϑ0ϑ0ϑ0 given in Table 4.2. The parameters are chosen according to theory,
to roughly match the model ship and the specifications of the model ship are
presented in Section 4.4. The parameters µaz and µt are assumed to be known
from a Bollard pull test and are not estimated.

Then, the model was simulated for 400 seconds in Simulink with a 4th order
Runge-Kutta method. A sampling time of 1 second was used, resulting in 400
data points. The input signals were chosen to generate an experiment similar
to the one described in Appendix A.1. Also, white noise was added to the mea-
surements. For the measurement of the position a standard deviation of σx,y =√

0.01 m = 10 cm was used, meaning that it is a 95% probability that each mea-
surement lies within a circle with radius 20 cm of the true value. The stan-
dard deviation for the measurement of the heading angle was chosen to be σψ =√

0.001 rad ≈ 1.81°, implicating that the measured value lies within ±3.62° of the
true value with 95% probability. This was done twice, with slightly different in-
put signals, to receive one dataset for estimation and another one for validation.

Thereafter, an EKS with a constant velocity model was applied to the estimation
data to estimate the surge and sway velocities. The estimated states from the EKS
were used as initial guesses for the decision variables and the initial guess for the
parameters is presented in Table 4.2. With the initial decision vector, the NLP
was formed and solved using the CasADi framework (Andersson et al., 2019)
with the interior point optimizer (IPOPT) solver (Wächter and Biegler, 2005) to
receive an estimate of the unknown parameters. The estimated parameters ϑ̂ϑϑ can
be seen in Table 4.2. To evaluate the model, a cross validation with the validation
data was performed with NRMSE as performance measure and the result can be
seen in Figure 4.2.

The fit of the model was over 93% for all DOF when using simulated valida-
tion data. Also, the estimated parameters lie close to the true values, indicating
that the used input signal is sufficiently informative for the identification of the
parameters. However, as can be seen in Table 4.2 there are some parameter es-
timates that are further from the true value than the initial guess. One reason
for this can be that the poor initial guess of the non-linear damping parameters
causes the optimization problem to adjust some parameters in the wrong direc-
tion. Another reason may be that the sampling time of 1 Hz does not give suffi-
ciently informative data to capture all the dynamics of the vessel.

4.5 Estimation Results 25

Table 4.2: Parameters for the simulated grey-box model.

Parameter True value Initial value Estimated value Unit

m11 17.06 16.80 15.41 kg
m22 17.41 17.50 15.50 kg
m33 36.21 35.00 21.59 kgm2

Xu 0.20 0.14 0.15 kg/s
X|u|u -0.79 0 -0.77 kg/m
Yv 3.57 2.80 3.83 kg/s
Yr -51.19 -56.00 -49.08 kgm/s
Y|u|v 0 - - kg/m
Y|v|v -0.71 0 0.71 kg/m
Y|r |v 0 - - kg
Nv 4.29 7.00 4.19 kgm/s
Nr 21.59 21.00 18.07 kgm2/s
N|v|v 0 - - kg
N|r |r -6.24 0 -12.65 kgm2

κ 3.57 · 10−8 0 5.29 · 10−8 s/m
CN 0.20 0 0.20 -
Vw 1.53 0 1.16 m/s
βw 78.69 0 81.23 °
cx 0.70 0.55 0.50 -
cy 0.80 0.75 0.95 -
cn 0.10 0.15 0.05 -
µaz 1.30 · 10−6 - - -
µt 4.80 · 10−8 - - -

26 4 Model Estimation

Validation - Position

0 50 100 150 200 250 300 350 400
0

50

100

x
-c

o
o

rd
in

a
te

 [
m

]

True

Estimated: 93.7%

0 50 100 150 200 250 300 350 400

0

50

100

y
-c

o
o

rd
in

a
te

 [
m

]

True

Estimated: 94.5%

0 50 100 150 200 250 300 350 400

Time [s]

-600

-400

-200

0

200

H
e

a
d

in
g

 a
n

g
le

 [
d

e
g

]

True

Estimated: 97.2%

(a)

-20 0 20 40 60 80 100 120

y-coordinate [m] (East)

0

10

20

30

40

50

60

70

80

90

100

x
-c

o
o
rd

in
a
te

 [
m

]
(N

o
rt

h
)

Model validation - Simulated data

True model

Estimated model

(b)

Figure 4.2: Validation of the model from simulated data. In (a) the validation
of each DOF is presented separately, together they create the path in (b).

4.5 Estimation Results 27

4.5.2 Experimental Data

The experimental data was collected using the small-scale surface ship described
in Section 4.4.

Firstly, a Bollard pull test were conducted to determine the thrust generated by
each thruster. The test was performed in a small pool and the estimated parame-
ters, µaz and µt , can be seen in Table 4.3. More details about the test are available
in Appendix A.2.

Unfortunately, no sensor to measure the angle of the azimuth thrusters was mounted
to the ship. Therefore, a mapping from PWM to angle was carried out which is
explained in Appendix A.3. Since this is not a measurement, it will be referred
to as the calculated thruster angle.

The model identification experiment took place at Blå Lagunen, a small lake 10
kilometers south of Linköping. Before the experiments, a calibration of the mag-
netometer in the IMU was necessary to remove hard and soft iron distortions
caused by magnetic material in the vicinity of the sensor. This was done by ro-
tating the IMU in the Earth-frame, and since only the yaw angle is estimated,
rotation about the z-axis was sufficient for this calibration. After the calibration,
the control signals were chosen to generate a test similar to the one described in
Appendix A.1. Data was collected at 1 Hz for the positioning, 5 Hz for the IMU
and 10 Hz for the RPM sensors. During the tests, the weather conditions were
mild, with wind speeds close to zero.

Before the estimation of the parameters, some preprocessing of the data was nec-
essary. Firstly, the heading angle was estimated from the IMU data using a com-
plementary filter (Mahony et al., 2008). Thereafter, all data was downsampled
to 1 Hz, and outliers were removed. The preprocessed data can be seen in Ap-
pendix A.

Similarly as for the simulated data, an EKF with a constant velocity model along
with a RTS smoother was applied to the position data and the estimated heading
angle to estimate the surge and sway velocities of the ship to use as an initial
guess in the parameter estimation.

During the parameter estimation a problem arised of getting the NLP to converge.
This was solved by simplifying the model, at first the rudder model was removed
due to its complexity and limited effect on the ship. Then, the wind model was
disregarded, mostly since the wind speed during the tests was close to zero. Also,
the parameter κ was set to zero to help convergence. Furthermore, it was found
out that the PWM to angle mapping did not suffice, causing the ship to turn even
when the calculated angle was zero, as seen in Figure 4.3. Therefore, the azimuth
angles were chosen to be a decision variable at each control interval in the NLP,
and was thus also included in the objective function

Φ(www, ȳyy) =
N∑
i=1

(
ȳyy i − yyy i

)T
WWW

(
ȳyy i − yyy i

)
+

K∑
k=1

2∑
i=1

(
αααk,i − ᾱααk,i

)T WWW α
(
αααk,i − ᾱααk,i

)
,

28 4 Model Estimation

2 3 4 5 6 7 8 9

x-coordinate [m]

-1

0

1

2

3

4

y
-c

o
o
rd

in
a
te

 [
m

]

Position

Figure 4.3: The resulting path when the thruster angles were zero according
to the PWM to angle mapping. As seen, the ship turns with a radius of about
5 meters.

where K is the number of control intervals.

Thereafter, the NLP was formed and solved in two steps using the CasADi frame-
work (Andersson et al., 2019) with the IPOPT solver (Wächter and Biegler, 2005).
Firstly, without the Coriolis term CCC(ννν) to get a good initial guess of the grey-box
parameters. Then, different combinations of the damping parameters were tested
to obtain a combination that converged. The result from the first step was then
used as an initial guess when the Coriolis term was included in the second step.
Lastly, as many of the damping parameters were removed, while still getting the
optimization problem to converge. The estimated parameters ϑ̂̂ϑ̂ϑ as well as the
initial guesses can be seen in Table 4.3.

To validate the model, validation data was collected in the same manner, with
slightly different control signals. The model was thereafter simulated using a
RK4 method with the measured control signal. The results are presented in Fig-
ure 4.4. As can be seen in Figure 4.4, the fit of the model to the measurements
is really poor. However, it can be seen that the ship moves in a similar way, in-
dicating that the model is better than the fit measure implies. This can be seen
by looking at the generalized velocities of the ship in Figure 4.5, where the veloc-
ities estimated by the EKS match the velocities of the simulated data using the
estimated model quite well. Also, a small deviation in the heading angle causes
a big drift in the position in the long run.

To compensate for the deviation of the azimuth angles, an NLP was formed where
the estimated parameters were fixed and the azimuth angles chosen as decision
variables. After the NLP was solved, the model was once again simulated with a

4.5 Estimation Results 29

Table 4.3: Parameters for the grey-box model of the model ship. In the sec-
ond column, the initial values for the first NLP are presented. The result of
the first NLP is thereafter used as initial values for the second NLP, as pre-
sented in the second column. In the forth column, the estimated parameter
values of the second NLP are presented, as well as the estimated parameters
from the Bollard pull test.

Parameter Initial value
without CCC(ννν)

Initial value
with CCC(ννν)

Estimated
value Unit

m11 16.8 7.39 14.10 kg
m22 25.2 8.33 14.10 kg
m33 42.0 0.55 0.23 kgm2

Xu 1.4 14.40 0.98 kg/s
X|u|u 0 0 -10.28 kg/m
Yv 1.4 4.20 · 10−8 4.52 · 10−9 kg/s
Yr -42 0.76 -1.3 kgm/s
Y|u|v 0 -7.82 -47.90 kg/m
Y|v|v 0 -24.92 -17.14 kg/m
Y|r |v 0 -13.66 -1.32 kg
Nv 1.4 -4.24 2.21 kgm/s
Nr 21 2.65 2.09 kgm2/s
N|v|v 0 -20.77 9.09 kg
N|r |r 0 −5.64 · 10−9 −2.31 · 10−10 kgm2

µaz - - 1.435 · 10−6 -
µt - - 4.840 · 10−8 -

30 4 Model Estimation

Validation - Position

0 20 40 60 80 100 120 140 160 180 200 220

-10

-5

0

5

x
-c

o
o
rd

in
a
te

 [
m

]

Measured

Estimated: -172.0%

0 20 40 60 80 100 120 140 160 180 200 220
-10

0

10

y
-c

o
o
rd

in
a
te

 [
m

]

Measured

Estimated: -144.2%

0 20 40 60 80 100 120 140 160 180 200 220

Time [s]

-500

0

500

1000

H
e
a
d
in

g
 a

n
g
le

 [
d
e
g
]

Measured

Estimated: -81.5%

(a)

-8 -6 -4 -2 0 2 4 6 8 10 12

y-coordinate [m] (East)

-10

-5

0

5

x
-c

o
o
rd

in
a
te

 [
m

]
(N

o
rt

h
)

Validation data - Experimentally

Measurements

Estimated model

(b)

Figure 4.4: Validation of the model from experimental data without correc-
tion of the thruster angles. In (a) the validation of each DOF is presented
separately, together these create the path in (b).

4.5 Estimation Results 31

Validation - Velocities

0 20 40 60 80 100 120 140 160 180 200 220
-0.5

0

0.5

1

S
u

rg
e

 [
m

/s
] From EKS

Estimated model

0 20 40 60 80 100 120 140 160 180 200 220

-0.5

0

0.5
S

w
a

y
 [

m
/s

] From EKS

Estimated model

0 20 40 60 80 100 120 140 160 180 200 220
-2

-1

0

1

Y
a

w
-r

a
te

 [
ra

d
/s

]

Measurement

Estimated model

Figure 4.5: Validation of the generalized velocities of the ship using the ex-
perimental data without correction of the thruster angles.

RK4 method using the estimated control signal. The results can be observed in
Figure 4.6, where the corrected azimuth angles are presented in Figure 4.7.

By allowing the NLP to slightly change the azimuth angles, a much better result
is achieved as shown in Figure 4.6. With a model fit close to 90 percent for y and
ψ. However, the x value is a bit off at roughly 50 percent. It seems like this is
caused by the first 50 seconds of the path, and the ship is constantly off by around
one meter afterwards. Likely, this is a hard manoeuver to model since the boat
mostly just spun around. Another possible effect on the fit is the wind during the
experiment. Although the conditions were good, some wind guts could have put
the ship in the wrong way.

32 4 Model Estimation

Validation - Position

0 20 40 60 80 100 120 140 160 180 200 220

-10

-5

0
x
-c

o
o
rd

in
a
te

 [
m

]

Measured

Estimated: 53.3%

0 20 40 60 80 100 120 140 160 180 200 220

0

5

10

y
-c

o
o
rd

in
a
te

 [
m

]

Measured

Estimated: 87.7%

0 20 40 60 80 100 120 140 160 180 200 220

Time [s]

-500

0

500

H
e
a
d
in

g
 a

n
g
le

 [
d
e
g
]

Measured

Estimated: 89.6%

(a)

0 2 4 6 8 10

y-coordinate (East)

-10

-9

-8

-7

-6

-5

-4

-3

-2

-1

x
-c

o
o

rd
in

a
te

 (
N

o
rt

h
)

Validation of ship path

Measurements

Estimated parameters

(b)

Figure 4.6: Validation of the model from experimental data with correction
of the thruster angles. In (a) the validation of each DOF is presented sepa-
rately, together these create the path in (b).

4.5 Estimation Results 33

0 50 100 150 200 250
-200

-100

0

100

A
n

g
le

 [
d

e
g

]

Thruster angle 1

Measured

Estimated

0 50 100 150 200 250
-100

0

100

200

A
n

g
le

 [
d

e
g

]

Thruster angle 2

Measured

Estimated

Figure 4.7: The calculated angles of the azimuth thrusters of the validation
data, as well as the corrected angles from the solution of the NLP.

5
Path Planning

The goal with a path planner is to find a feasible path between a start and goal
state. Let X be the state space of a given area, not to be confused with the state-
space model. With Xobst defined as the set containing the static obstacles, the
free-space in which a path is sought is given by Xfree = X\Xobst assuming no
dynamic obstacles.

In this chapter, a graph search approach using an undirected graph (roadmap)
created from a Voronoi diagram is explored. A discretization Xr of Xfree is done
in the form of a roadmap over a static environment X and an auxiliary path is
found using a graph search algorithm. The auxiliary path is then smoothened to
decrease the impact of discretization artifacts.

In Section 5.1, the theory and method for creating an undirected graph (roadmap)
using a Voronoi diagram are given. Methods of how vertices such as start and goal
position can be inserted to the roadmap are presented in Section 5.2. Section 5.3
contains the methods used for graph search and path smoothing to obtain an
auxiliary path that will be used to initialize the trajectory planning in Chapter 6.

5.1 Roadmap

A roadmap can be created given that the environment is assumed to be static
(LaValle, 2006). There exist multiple methods to obtain roadmaps, one of which
is the generalized Voronoi diagram (GVD), also known as maximum-clearance
roadmap (LaValle, 2006). As the name suggest, this type of roadmap aims at
maximizing the distance to obstacles, thus reducing the risk of collision.

35

36 5 Path Planning

5.1.1 Voronoi Diagram

The ordinary Voronoi diagram is constructed from a set of distinct points P =
{ppp1, ppp2, . . . , pppn } in the plane, called generator points (Sugihara, 1993). For each
generator point pppi there is a Voronoi region

V (pppi) = {ppp | d(ppp, pppi) < d(ppp, pppj) for any j , i } (5.1)

such that for any point ppp ∈ V (pppi) the closest generator point is pppi , where d(ppp, qqq) is
the Euclidean distance between two points ppp and qqq (Sugihara, 1993). The Voronoi
diagram generated from P is then denoted V (P). The lines splitting the Voronoi
regions are called Voronoi edges and a point connecting Voronoi edges is called a
Voronoi vertex (Sugihara, 1993).

5.1.2 Generalized Voronoi Diagram (GVD)

The generalized Voronoi diagram for figures (obstacles) is similar to the ordi-
nary Voronoi diagram, but instead of a set of generator points P there is a set
of nonoverlapping generator obstacles G = { g1, g2, . . . , gn }, where the obstacle
gi ⊂ R

2 is a closed set of points for i = 1, 2, . . . , n, and gi ∩ gj = ∅ for i , j
(Sugihara, 1993). Similar to (5.1), the Voronoi region for each obstacle gi is

V (gi) = {ppp | d(ppp, gi) < d(ppp, gj) for any j , i } (5.2)

An approximation of the GVD is proposed by Sugihara (1993). The approxima-
tion is given by first generating the ordinary Voronoi diagram for a set of points
approximating the boundary of the obstacles and then removing edges between
Voronoi regions where both generator points belong to the same obstacle.

For a Voronoi vertex to be generated between two obstacles the distance y in
Figure 5.1 has to be larger than zero. With

y =
x2 − ab

2x
, (5.3)

then x >
√
ab and the worst case is when a = b = d/2, i.e., D is equidistant from

A and B, for proofs see Appendix B.1 and Appendix B.2.

By using (5.3) in the worst case scenario (a = b = d/2), the distance y in Figure 5.1
is

y =
x2 − (d/2)2

2x
, (5.4)

and thus y → x/2 when d → 0 and y < 0 when d > 2x, i.e., the Voronoi vertex
is either inside of gi or on the other side of gi . From (5.2), it can be said that
ppp ∈ V (gi) is closer to obstacle gi than any other obstacle gj , j , i. Thus, the
Voronoi vertices are equidistant to two or more obstacles in an ideal GVD and
y = x/2. However, since the distance between generator points on each obstacle
in G then would have to be d = 0, this is impossible. Instead d can be calculated
to guarantee that a Voronoi vertex is not generated closer to an obstacle than the

5.1 Roadmap 37

Figure 5.1: Voronoi diagram (blue) generated by the points A, B and C,
where generator points A and B belongs to the same obstacle and genera-
tor point C belongs to another obstacle. The green dotted lines are of equal
length, which indicates that the Voronoi vertex E is equidistant from the
generator points A, B and C.

distance dc. Rewriting (5.4) with the requirement y ≥ dc gives

d ≤ 2
√
x2 − 2xdc, where dc ∈ [0, x/2) and d > 0. (5.5)

Equation (5.5) in turn can be rewritten to return a lower limit on the distance x
between two obstacles that will guarantee that a Voronoi vertex is no closer to an
obstacle than dc

x ≥ 1
2

√
d2 + 4d2

c + dc. (5.6)

5.1.3 Generate Roadmap from GVD

An algorithm for obtaining an approximate GVD from figures (obstacles) is pro-
posed by Sugihara (1993). This algorithm however, does not leave any edges in
gbi = gci \gi , where gci is the convex hull of obstacle gi and thus, gbi is the free-
space between the convex hull and the obstacle. An illustration of the remaining
edges is given in Figure 5.2(a). These edges in gbi are important to keep since
the Voronoi edges and vertices later form the roadmap. To solve this problem,
only edges that are intersecting with an obstacle (or that are completely inside an
obstacle) are removed, see Figure 5.2(b).

As can be seen in Figure 5.2, some edges go to infinity and there are no edges that
surround the individual obstacles. To solve this either generator points can be
placed on a bounding box encompassing the obstacles or along the edge of each
expanded obstacle. The first method however, only works for the outer obstacles

38 5 Path Planning

(a) (b)

Figure 5.2: Voronoi diagram (blue) generated from the corners of the obsta-
cles (black dots). The red edges are what is returned by the algorithm given
by (Sugihara, 1993) (a) and the modified algorithm (b) where edges that are
intersecting obstacles are removed.

(the ones closest to the bounding box) while the obstacles in the middle of the
area still can have edges really far away. Thus the second method is used.

To get edges enclosing each individual obstacle, an expanded obstacle is created
and generator points are distributed along its boundary, see Figure 5.3. The dis-
tance di,e with which obstacle gi is expanded by is calculated using (5.6), where
x is replaced with di,e

di,e ≥
1
2

√
d2
i,max + 4d2

c + dc. (5.7)

Here, di,max is the largest distance between two generator points on gi and dc is
the closest possible distance between an obstacle and a Voronoi vertex generated
by the obstacle and its expansion.

However, as visible in Figure 5.3(a), when the expanded obstacles overlap, the
guarantee from (5.7) does not hold. Thus, generator points on the expanded
obstacles that lie within another expanded obstacle must be removed, see Fig-
ure 5.3(b). Then, whether or not a Voronoi vertex is generated closer than dc to an
obstacle only depends on the resolution (the distance d between generator points)
of the obstacles and the distance between them. Even more generator points on
the expanded obstacles can be removed to reduce patterns on the modified GVD
(MGVD) like the one between the obstacles in Figure 5.3(c). If this pattern is un-
desired, generator points on the expanded obstacles that overlap any of the other
obstacles expanded even further than di,e can be removed.

A comparison of a roadmap generated without generator points on expanded ob-
stacles and with generator points on expanded obstacles is shown in Figure 5.4.
As can be seen in Figure 5.4(b), there are roads (edges) closer to the obstacles
and thus the best path between two points is more likely to be shorter, since the
path could be closer to a straight line between the points. But the main advan-
tage with the generator points on the expanded obstacles is the addition of road

5.1 Roadmap 39

(a) (b)

(c)

Figure 5.3: Modified GVD (red) with no generator points (black dots) re-
moved (a) and with generator points on expanded obstacles (green) inter-
secting another expanded obstacle removed (b). In (c) a different map is
used compared to the one in (a) - (b), to show what happens if the extended
obstacles does not intersect. The dashed lines marks the original obstacles
expanded by dc in (5.7).

40 5 Path Planning

-50 0 50 100

y [m]

-100

-50

0

x
 [

m
]

Roadmap

Frame

Obstacle

Road

Land

(a) (b)

Figure 5.4: Example of roadmap without generator points on expanded ob-
stacles (a) and with generator points on expanded obstacles (b).

connections over areas where there were none before.

The resolution of the obstacles d can be determined for individual line segments
of each obstacle. Depending on the shortest distance x from a line segment on an
obstacle to all other obstacles, d may be decreased, i.e., the resolution may be in-
creased. Given that a certain minimum distance ds between Voronoi vertices and
obstacles is desired, e.g. a safe distance that a vehicle needs to keep to obstacles,
the resolution of generator points can be calculated adaptively with respect to ds.
If x < 2ds there is no meaning in adding generator points on that line segment
since the vehicle would not be allowed to travel there. With x ≥ 2ds however,
then d may be decreased on that line segment to make the MGVD smoother and
the edges of the GVD end up closer to the middle of the free-space between ob-
stacles in that area.

A bounding box (minimum area rectangle) is fitted to the obstacles which can be
said to be the boundary of X . Edges completely outside the bounding box are
removed while those crossing its boundary are shortened, i.e., the outer point is
moved to the intersection between the bounding box and the edge. This is done
to remove outliers from the MGVD that would not add anything to the roadmap.

Inspired by the algorithm for approximate GVD from figures given in Sugihara
(1993), the final algorithm for obtaining the roadmap is given in Algorithm 5.1
and the result can be observed in Figure 5.5.

Let V be the vertices of R from Algorithm 5.1. The discrete state space is then

5.2 Connecting Start and Goal Positions 41

Algorithm 5.1: Roadmap from obstacles

Input: Set G = { g1, g2, . . . , gn } of n nonoverlapping obstacles.
Output: RoadmapR from obstacles

1 Create the minimum area rectangle B for the obstacles
2 For each i = 1, 2, . . . , n, create a finite set Pi of points that approximates

the boundary of gi . Also create an expanded obstacle gei of gi and create a
finite set of points P ei that approximates its boundary. Remove from P ei
those points that lie within any of the expanded obstacles gej , j , i.

3 Construct the ordinary Voronoi diagram V generated by point set
P1 ∪ P2 ∪ · · · ∪ Pn ∪ P e1 ∪ P

e
2 ∪ · · · ∪ P en

4 Delete from V those Voronoi edges crossing the boundary of an obstacle
or that are completely inside an obstacle.

5 Remove the edges that are outside B and shorten edges that intersect its
boundary so that the edge ends at the intersection between the boundary
of B and the edge. Finally, delete isolated Voronoi vertices, if any exist,
from V .

6 Return roadmap (graph)R = V .

given by

Xr = {ppp | ppp ∈ V }, where ppp =
[
x y

]T
(5.8)

5.2 Connecting Start and Goal Positions

With a roadmap available, start and goal positions can be connected to the map.
In this section, three possible methods of connecting vertices to the roadmap are
explored. The first method connects an added vertex to the closest point on the
roadmap. The second method is similar to the first method but connects to the
closest point on each edge of the roadmap given that the connecting edge only
intersects the roadmap once, i.e., the connection cannot cross any edge already
in the roadmap. The third method makes connections from an added vertex to
feasible crossroads on the roadmap. A crossroad refers to a vertex in the roadmap
that is connected to three or more other vertices. For a visualization of how the
different methods connect to the roadmap, see Figure 5.6.

5.2.1 Connecting to Closest Point

In the first method, a vertex vvv, e.g. start or goal position, that is added to the map
is connected to the point pppc on the map that is closest to vvv such that the straight
line between vvv and pppc is collision-free and no closer than ds to any obstacle. This
is done by projecting vvv on all edges in the roadmap and then trying to connect
vvv to the projection with shortest distance to vvv. If the connection is collision-free
and the minimum distance to obstacles is satisfied pppc is found. Thus vvv may not be

42 5 Path Planning

1 2 3 4 5 6 7

1

2

3

4

Figure 5.5: Roadmap (red) using Algorithm 5.1, with obstacles (blue) and
minimum area rectangle (green ∪ blue).

1 2 3 4 5 6 7

1

2

3

4

(a) Original roadmap without added ver-
tices

1 2 3 4 5 6 7

1

2

3

4

(b) Connecting to Closest Point

1 2 3 4 5 6 7

1

2

3

4

(c) Connecting to Nearby Edges

1 2 3 4 5 6 7

1

2

3

4

(d) Connecting to Crossroads

Figure 5.6: Example of how the methods connect to the roadmap.

5.2 Connecting Start and Goal Positions 43

(a) (b) (c) (d)

Figure 5.7: Different ways for vvv to be connected to the roadmap, where vvv1
c

and vvv2
c are vertices in the map. (a) Case I: vvv ∈ Xr , (b) Case II: vvv < Xr but

pppc ∈ Xr , (c) Case III: vvv = pppc and vvv, pppc < Xr , (d) Case IV: vvv , pppc and vvv, pppc < Xr .

connected to the closest point on the map, but rather the closest possible point in
regards to the obstacles. There are four possible cases when a vertex is connected
to the roadmap and they are shown in Figure 5.7.

Case I This occur when vvv ∈ Xr , i.e., vvv already exist in the roadmap. Then vvv does
not need to be inserted.

Case II When vvv < Xr and pppc ∈ Xr . Then insert vvv and add an edge between vvv and
pppc.

Case III If vvv = pppc and vvv, pppc < Xr , then vvv is on an edge in the roadmap. Let vvv1
c

and vvv2
c denote the endpoints of said edge. Then insert vvv and split the edge into

two, one between vvv1
c and vvv and one between vvv2

c and vvv.

Case IV When vvv , pppc and vvv, pppc < Xr both vvv and pppc are inserted. Since pppc lies on
an edge with endpoints vvv1

c and vvv2
c in the roadmap, split that edge as in Case III.

Also an edge between vvv and pppc has to be added.

5.2.2 Connecting to Nearby Edges

The second connection method, connecting to nearby edges, is similar to the pre-
vious one but instead of connecting only to one point on the roadmap, it connects
to all edges where the line between the added vertex vvv and pppc does not intersect
any other edges.

5.2.3 Connecting to Crossroads

Lastly, connecting to crossroads is a method were a vertex vvv is connected to cross-
roads on the roadmap. For vvv to be able to connect to a crossroad vvvcr the line
segment L formed by vvv and vvvcr cannot intersect any obstacle and the distance
between an obstacle and L has to be greater or equal to ds.

44 5 Path Planning

Figure 5.8: The initial path from A* (magenta line) with sharp corner and
smoothened path (dashed red line) without sharp corners, from start posi-
tion (green cross) to goal position (red cross). Black dashed lines are marking
the minimum distance allowed to the obstacles.

5.3 Auxiliary Path

An auxiliary path is obtained through a couple of steps: graph search and path
smoothing. A graph search algorithm is employed to a graph (roadmap) to quickly
find a shortest path in the roadmap. The path is then smoothened to reduce dis-
cretization artifacts such as, sharp turns and zig-zag patterns, which will also
lead to reduced path length.

5.3.1 Graph Search

A graph search algorithm can be applied to the roadmap described in Section 5.1
to find the shortest path between two points. An algorithm that is suitable for
this is the A-star (A*) algorithm since it is both fast and guarantees optimality
(Hart et al., 1968). The heuristic function used in A* is the Euclidean distance
in two dimensions, which gives optimality in terms of distance. The acquired
path using A* may, however, contain sharp corners due to the discretization of
the free-space, see Figure 5.8, and since the GVD ideally maximizes the distance
to obstacles the path may also be unnecessarily long (Patle et al., 2019). Thus,
the path can often be shortened without increasing the risk significantly. In the
A* algorithm, an extra condition, checking if a vertex is closer than a given safe
distance to any obstacle, was added to prevent the algorithm from finding paths
going too close to obstacles. This is needed since parts of the free-space in the
map that is used to generate the roadmap can be narrow. Thus, the roadmap can
contain road segments where the safe distance is not satisfied.

5.3 Auxiliary Path 45

5.3.2 Path Smoothing

An iterative method for removing redundancies and smoothen the path while at
the same time keeping a given minimum distance to obstacles is given by Bhat-
tacharya and Gavrilova (2007). Since the smoothened path will not get closer
to any obstacle than the given minimum distance (Bhattacharya and Gavrilova,
2007), it will remain within Xfree.

Let V = {vvv1, vvv2, . . . , vvvk } be the vertices (in sequence) of a path. Redundancies
(unnecessary vertices) in the path are removed by checking if vertex vvvi can be
connected to vvvi+2. If they can be connected, i.e., the line segment L between vvvi
and vvvi+2 is collision-free and the shortest distance from L to an obstacle is greater
than ds, then vvvi+1 is said to be redundant and is removed. When the whole path
has been checked, if the number of vertices in the path with removed redundan-
cies is the same as the number of vertices in the original path, all redundancies
have been removed, otherwise do the same for the new path. This step is done to
increase the performance of the path smoothing algorithm.

After the redundancies have been removed the path can still contain sharp cor-
ners. Thus, the next step is to smoothen the path. The smoothing algorithm given
in Bhattacharya and Gavrilova (2007) uses a corner cutting technique and is in-
terpreted as can be seen in Algorithm 5.2 with a slight modification. With this
method sharp, corners are effectively removed and the initial path is shortened,
see Figure 5.8.

A modification was introduced (Line 10 - Line 13) to address a problem that oc-
curred when the incident edges of a vertex were almost parallel and is illustrated
in Figure 5.9. When it is checked if the path can be smoothened around the vertex
marked in Figure 5.9(a), an endpoint is reached in the first step. Since a connec-
tion could be made, the marked vertex is replaced with the point marked with a
circle. Then, the vertex marked in Figure 5.9(b) is checked and replaced with the
point marked as a circle since the endpoint was reached on one of the incident
edges and a connection was possible. After that, the path would be almost the
same as in Figure 5.9(a) and a infinity loop is created.

46 5 Path Planning

Algorithm 5.2: Path smoothing

Input: A path V = {vvv1, vvv2, . . . , vvvk }, a maximum resolution ∆min and a
minimum clearance ds

Output: A new path V
1 N ←− # vertices in V
2 if N = 2 then
3 return
4 end
5 ∆←−mean of the distance between vertices in V
6 while ∆ > ∆min do
7 ∆←− ∆/2
8 i ←− 2 // Start with second vertex
9 while i ≤ N − 1 do

10 if vvvivvvi−1 and vvvivvvi+1 parallel then
11 i ←− i + 1
12 continue
13 end
14 eee1 ←− evenly distributed points with spacing ∆ between vvvi and vvvi−1

15 eee2 ←− evenly distributed points with spacing ∆ between vvvi and vvvi+1

// The first point in eee1 and eee2 is vvvi and the last
points are vvvi−1 and vvvi+1 respectively

16 j ←− 2
17 C ←− ∅
18 M ←− the least number of points among eee1 and eee2
19 while j ≤ M do
20 L←− line segment between eee1[j] and eee2[j]
21 if L is collision-free and clearance to L is greater than ds then
22 C ←− L
23 j ←− j + 1
24 else
25 break
26 end
27 end
28 if C is empty then
29 i ←− i + 1
30 else
31 V ←− replace vvvi with C\V
32 if endpoint of eee1 is reached and i , 2 then
33 i ←− i − 1
34 end
35 end
36 N ←− # vertices in V
37 end
38 end

5.4 Path Planning Results 47

(a) (b)

Figure 5.9: Illustration of the problem discovered in the interpretation of
the smoothing algorithm given by Bhattacharya and Gavrilova (2007). The
blue rectangle is an obstacle, the blue line is a path acquired from removing
redundancies. Vertices are marked as crosses and the black circle is a tem-
porary point used by the smoothing algorithm. (a) - (b), Path is smoothened
around the magenta vertex. The green line indicates the edge replacing the
magenta vertex, i.e., the magenta vertex is replaced by the black circle.

5.4 Path Planning Results

For the results the maps have been generated using ds = 15/16. The resolution
on each individual edge of an obstacle is chosen using (5.5) with dc = 0.95x/2.
For the map generated with generator points on expanded obstacles (WEO) the
expanded obstacle gei is expanded using (5.7). Generator points on gei are dis-
tributed with a maximum distance di,e/2. Generator points on an expanded ob-
stacle gej are removed if they are within any of the other obstacles gi expanded
with distance 2di,e for i , j. The safe distance for graph search, redundancy
removal and path smoothing was set to 0.3.

5.4.1 Roadmap Creation

A roadmap with generator points on expanded obstacles (WEO) and without
(NEO), was created ten times each for both types (WEO and NEO) with the same
obstacles. The average computational times are presented in Table 5.1 and as
seen the WEO map takes approximately twice as long to be calculated which is
a consequence of adding more generator points and thus more Voronoi edges to
check in the roadmap creation. The created NEO map can be seen in Figure 5.4(a)
while the WEO map is illustrated in Figure 5.4(b).

48 5 Path Planning

Table 5.1: Mean computational time [s] for roadmap creation.

WEO NEO

16.06 8.76

Table 5.2: Time [ms] of each connection method for the different missions
and map types.

Map Type WEO NEO
Method CC CNE CCR CC CNE CCR

Mission

1 54.5 11920.0 4564.0 18.7 4157.3 393.9
2 28.4 9280.5 3260.7 17.1 3838.9 378.0
3 29.9 6277.3 2119.5 19.8 2953.8 296.3
4 22.4 9468.6 3846.3 17.3 3208.2 326.3
5 34.1 6703.7 2518.4 17.6 2558.9 297.2
6 24.2 5608.0 1814.6 16.4 2834.1 286.8
7 23.3 6073.2 2230.5 17.4 2546.0 243.8
8 27.9 8905.5 3023.0 15.4 3901.5 378.9
9 20.9 8387.1 3440.0 16.9 2624.7 282.2

10 20.7 7898.1 3206.8 16.2 2710.9 273.4

Mean 28.6 8052.2 3002.4 17.3 3133.4 315.7

5.4.2 Connecting Methods

The connection methods examined are described in Section 5.2 and are: Connect-
ing to Closest Point (CC), Connecting to Nearby Edges (CNE) and Connecting
to Crossroads (CCR). The data was collected from ten different missions on both
types of roadmaps, created with generator points on expanded obstacles (WEO)
and without (NEO). A mission is defined as going from a starting position to a
goal position.

In Table 5.2, the time for connecting both start and goal position to the roadmap
is presented for the missions. Table 5.3 contains the length of the auxiliary path,
i.e., the smoothened path, given the connection method.

As can be seen in Table 5.2, the connecting method demanding the least amount
of computational power is the CC method followed by CCR and CNE. The com-
putation time increases for the WEO map type compared to NEO due to the in-
creased number of edges in the map, hence increasing the number of calculations
and collision checks needed to ensure a feasible connection. When connecting a
vertex using the CNE or CCR method, a significant number of collision checks
are performed, causing them to be slower than the CC method. The CCR method
is faster than CNE since it only has to check for collisions with obstacles while
CNE has to check both for collisions with obstacles and intersections with other
edges in the roadmap.

5.4 Path Planning Results 49

Table 5.3: Distance [m] of the auxiliary path for each connection method for
the different missions and map types.

Map Type WEO NEO
Method CC CNE CCR CC CNE CCR

Mission

1 47.78 47.78 47.78 47.78 47.78 47.78
2 111.08 111.08 111.08 111.08 111.08 111.08
3 83.82 83.82 84.59 121.01 83.81 84.59
4 129.00 128.99 129.00 149.87 149.90 129.00
5 26.21 26.21 26.21 37.12 26.23 26.23
6 110.20 110.21 110.21 110.21 110.21 110.21
7 40.46 40.45 40.46 40.47 40.45 40.45
8 110.04 110.03 110.03 103.72 110.04 103.72
9 74.61 74.61 74.61 184.06 184.04 74.61

10 83.58 83.60 83.58 83.59 83.58 83.60

From Table 5.3 it can be seen that the connecting method does not matter much in
the WEO map while it varies drastically in the NEO map. This is probably due to
the density of edges in the WEO map and that it has more edges around obstacles
that are not completely surrounded by other obstacles. The reason for the CC and
CNE method performing worse in the NEO map is that there are no connections
around some obstacles as can be seen in Figure 5.10. An exception to this is seen
in Mission 8 where CC performs better on the NEO map. This is probably caused
by the remove redundancies algorithm, described in Section 5.3.2, since CC and
CNE have similar initial paths as can be seen in Figure 5.11. Connecting method
CCR however, gives almost the same distance no matter the map type, with the
exception of Mission 8. The exception in Mission 8 can be explained by the same
reasoning as for the CC and CNE method for the same map, see Figure 5.12.

Small distance differences across the connecting methods are probably a result
of the initial path from the graph search not being exactly the same due to the
different connecting methods. Thus the smoothened path will not be either, even
though it would if the maximum resolution in the smoothing algorithm was set
to infinity. Hence, these lengths are considered to be equal.

Due to the lower computational complexity, the CC method is the best choice if
the roadmap contains roads along the obstacles and thus creating road connec-
tions that otherwise would not be there. However, if there are no roads around
the obstacles, the CCR method is probably a better choice than CC since it can
obtain a path that is less than half the distance of the path acquired by the CC
method.

Another important aspect is the methods’ ability to connect a position to the
roadmap. The CCR method, for example, cannot connect a position to the roadmap
if there are no crossroads in the map. However, this is unlikely to happen.

50 5 Path Planning

(a) Connecting method CC,
map WEO.

-50 0 50 100

y [m]

-100

-50

0

x
 [

m
]

Roadmap NEO

Frame

Obstacle

Road

Start

Goal

Land

Path

(b) Connecting method CC,
map NEO.

(c) Connecting method CNE,
map WEO.

-50 0 50 100

y [m]

-100

-50

0

x
 [

m
]

Roadmap NEO

Frame

Obstacle

Road

Start

Goal

Land

Path

(d) Connecting method CNE,
map NEO.

(e) Connecting method CCR,
map WEO.

(f) Connecting method CCR,
map NEO.

Figure 5.10: Example of the use of different connection methods on the dif-
ferent maps for Mission 4.

5.4 Path Planning Results 51

-50 0 50 100

y [m]

-100

-50

0

x
 [

m
]

Roadmap NEO

Frame

Obstacle

Road

Land

CC

CNE

(a) -50 0 50 100

y [m]

-100

-50

0

x
 [

m
]

Roadmap NEO

Frame

Obstacle

Road

Land

CC

CNE

(b)

Figure 5.11: NEO roadmaps with the initial paths for Mission 8 (a) and the
auxiliary path for Mission 8 (b).

-50 0 50 100

y [m]

-100

-50

0

x
 [

m
]

Roadmap NEO

Frame

Obstacle

Road

Land

Path

(a) -50 0 50 100

y [m]

-100

-50

0

x
 [

m
]

Roadmap NEO

Frame

Obstacle

Road

Land

Path

(b)

Figure 5.12: NEO roadmaps with the initial path for the CCR method for
Mission 8 (a) and the auxiliary path for Mission 8 (b).

52 5 Path Planning

Table 5.4: Time [s] for path improvement.

Mission Remove redundancies Smoothing

1 0.19 0
2 0.79 1.09
3 0.66 3.13
4 0.77 2.07
5 0.26 0.43
6 0.62 3.84
7 0.24 1.99
8 0.99 2.64
9 0.44 0

10 0.63 3.58

Table 5.5: Number of vertices in the path when redundancies have been
removed.

Mission 1 2 3 4 5 6 7 8 9 10
Vertices 2 5 8 6 3 8 5 7 2 8

5.4.3 Path Smoothing

The minimum resolution ∆min in Algorithm 5.2 is set to 5/16 and two incident
edges were considered parallel if the angle between them was less than 0.57°.

A comparison of the computation time of path improvement between only remov-
ing redundancies and removing redundancies in combination with smoothing is
presented in Table 5.4. The comparison is done over ten missions (the same ones
as before) with connecting method CNE and map type WEO.

Table 5.4 and Table 5.3 suggest that the length of the path does not affect the
computation time of the smoothing. Especially since the time of the improvement
of Mission 3 is significantly longer than the time for Mission 2 even though the
path length for Mission 2 is about 30% longer than Mission 3.

One reason for the smoothing taking longer time on some of the shorter paths
than the longer ones could be caused by the number of curves needed to be
smoothened since that would require more vertices to be checked if an improve-
ment is possible. This is also strengthened by Table 5.5 when compared to Ta-
ble 5.4 since a greater number of vertices in the path result in a longer computa-
tion time for the smoothing algorithm.

5.4 Path Planning Results 53

5.4.4 Conclusion

Since the mean computational time for creating a roadmap using generator points
on expanded obstacles (WEO) is almost twice the time it takes to create a roudmap
without generator points on expanded obstacles (NEO) and since the connect-
ing to crossroads (CCR) method performs equally well on both types of maps in
terms of distance, NEO combined with CCR is a good candidate. The computa-
tional time for CCR is also relatively short, thus the best combination of map type
and connecting method is NEO and CCR. This combination is both fast and gives
a short auxiliary path.

However, if any of the other connecting methods are used a WEO map could be
used to decrease the path length. If the WEO map is used, the best connecting
method would be the connecting to closest point (CC) since it is by far the fastest
method and have similar performance in terms of length.

6
Trajectory Planning

The purpose of trajectory planning is to find a route that satisfies the dynamics
of a vessel. The trajectory planning is based on a two-step approach where the
first step is to calculate a simple initial trajectory and the second step is to opti-
mize said trajectory. In this chapter, an initial trajectory is first generated from a
geometric path, see Section 6.1. Then in Section 6.2, an optimal control problem
is formed to improve the initial trajectory such that it satisfies the dynamics of
the vessel. In Section 6.3, the results from the trajectory planning are presented
as well as a short conclusion.

6.1 Initial Trajectory

The initial trajectory is obtained through a series of steps. First, a geometric path
is obtained as described in Section 5.3. Then, a straight line trajectory (SLT) is
calculated. The SLT is a trajectory created under the assumption that the vessel
only moves in one direction. Lastly, a mapping of the SLT to a geometric path
is performed to get a trajectory in the horizontal plane consisting of generalized
position.

6.1.1 Straight Line Trajectory (SLT)

The SLT is created under the assumption that the vessel is travelling on a straight
line and that it is subject to a maximum allowed velocity Vmax and acceleration
amax. A method for obtaining the SLT is called the linear segment with parabolic
blends (LSPB) approach (Spong and Hutchinson, 2005). The LSPB approach is
useful when it is desired to have a constant velocity over a portion of the tra-
jectory (Spong and Hutchinson, 2005), and since there is a maximum allowed

55

56 6 Trajectory Planning

velocity for the vessel this is useful in this thesis. The SLT q(t) is split into five
parts over different time intervals

q(t) =

q1(0), t < 0
q1(t), 0 ≤ t ≤ tb
q2(t), tb < t ≤ tf − tb
q3(t), tf − tb < t ≤ tf
q3(tf), tf < t

(6.1)

where q1(t) is the transient at the start where the vessel accelerates, q2(t) is when
the vessel is moving with constant velocity along the path and q3(t) is the decel-
eration such that the vessel comes to a halt (Spong and Hutchinson, 2005). The
time tb of the switch from q1(t) to q2(t) is called blending time and tf is the total
time of the route (Spong and Hutchinson, 2005).

The transient q1(t) at the start is subject to

q1(t0) = q0 = 0 (6.2a)

q̇1(t0) = V0 = 0 (6.2b)

q̈1(t0) = a0 = 0 (6.2c)

q̇1(tb) = Vmax ≥ 0 (6.2d)

q̈1(tb) = atb = 0 (6.2e)

|q̈1(t)| ≤ amax, t0 ≤ t ≤ tb (6.2f)

with t0 = 0. In words, the transient is starting at the position q0 with the velocity
V0 and acceleration a0 at time t0, then accelerates to a maximum and constant
velocity Vmax at time tb without exceeding the maximum allowed acceleration
amax. Since q1(t) has six constraints and tb is a free variable q1(t) needs to be a
forth degree polynomial

q1(t) = b10 + b11t + b12t
2 + b13t

3 + b14t
4.

Since q̈1(t) is a second order polynomial and q̇1(tb) ≥ 0 this implies that q̈1(t) ≥ 0
on the interval t ∈ [t0, tb]. Thus, the constraint (6.2f) can be rewritten as

0 ≤ q̈1(t) ≤ amax, 0 ≤ t ≤ tb. (6.3)

Since it is desired to minimize the time of the trajectory, let

q̈1(tm) = amax, 0 < tm < tb, (6.4)

where t = tm is at the maximum of q̈1(t) for t ∈ (0, tb). Then, Vmax will be
achieved as fast as possible.

Solving the system of equations (6.2a–e) given the constraints (6.3) and (6.4) re-
sults in

b10 = 0, b11 = 0, b12 = 0, b13 =
4a2

max
9Vmax

, b14 = − 4a3
max

27V 2
max

(6.5)

6.1 Initial Trajectory 57

and

tb =
3Vmax

2amax

thus

q1(t) =
4a2

max
9Vmax

t3
(
1 − amax

3Vmax
t

)
. (6.6)

Trajectory q2(t) is a linear function according to

q2(t) = q(tb) + Vmax(t − tb) (6.7)

(Spong and Hutchinson, 2005) and the third segment of the trajectory is

q3(t) = b30 + b31t + b32t
2 + b33t

3 + b34t
4

with the constraints

q̇3(tf − tb) = Vmax ≥ 0

q̈3(tf − tb) = 0

q3(tf) = qf

q̇3(tf) = 0

q̈3(tf) = 0

−amax ≤ q̈3(t) ≤ 0, tf − tb < t ≤ tf
where qf is the total distance of the trajectory. Due to symmetry

q3(t) = qf − q1(tf − t) (6.8)

(Spong and Hutchinson, 2005) and with qf known, the time tf can be calculated
using

tf =
qf − 2q(tb) + 2tbVmax

Vmax
.

In the case where

tb =
3Vmax

2amax
>
tf
2

the trajectory described above is infeasible, since there is not sufficient time to
reach the maximum velocity. To solve this issue, a new blend time tb,2 is calcu-
lated. The time tb,2 is set to when half the total distance is traversed

qf
2

= q(tb,2) =
4a2

max
9Vnew

t3b,2

(
1 − amax

3Vnew
tb,2

)
(6.9)

where Vnew is a new maximum allowed velocity. The new maximum velocity can,
due to symmetry be written as

Vnew =
qf
tb,2

. (6.10)

58 6 Trajectory Planning

Solving (6.9) for tb,2 using (6.10) gives

tb,2 =

√
3qf

2amax

then the new final time will be

tf ,2 = 2tb,2.

By replacing Vmax with (6.10) in (6.5), a feasible trajectory is acquired. The trajec-
tory will accelerate the first half and achieve a velocity of Vnew at time tb,2 =

tf ,2
2 .

The second half will be a deceleration to rest at time tf ,2.

6.1.2 Mapping SLT to Geometric Path

When the SLT is mapped to the geometric path, a discrete trajectory in the plane
describing the generalized position of the vessel is acquired. The trajectory also
contains a surge velocity u(t) = q̇(t).

In order to map the SLT to a geometric path, the SLT is first sampled at time inter-
vals Ts such that, q[n] = q(nTs) for n = 0, 1, . . . , N , where N =

⌈ tf
Ts

⌉
. By letting the

distance di for the i:th vertex vvvi in the geometric path be the cumulative distance
from all the previous vertices including the distance from vertex vvvi−1 to vvvi . Then,
for each sample q[n], the previous and next vertex on the geometric path is found.
The previous vertex vvvprev is the vertex with distance closest to q[n] and satisfying
di ≤ q[n], for some n = 0, 1, . . . , N , and the next vertex vvvnext is the vertex on
the geometric path closest to q[n] where q[n] < di . With VVV dir being a vector with
length one, pointing from vvvprev to vvvnext, then the position pppn of the n:th sample
is given by

pppn = (q[n] − dprev)VVV dir + vvvprev (6.11)

where dprev is the distance to vvvprev. If there is no di > q[n], then vvvprev is set to be
the second to last vertex and vvvnext is set to be the last vertex in the geometric path
and pppn = vvvnext instead of (6.11).

The orientation ψn of the vessel at sample n is given by

ψn = atan2(VVV dir,y , VVV dir,x) (6.12)

where VVV dir,x and VVV dir,y are the x and y component of VVV dir respectively. This
procedure will ensure that the initial trajectory is within the bounds of the free-
space Xfree since the auxiliary path described in Section 5.3 is. The algorithm is
presented in pseudo code in Algorithm 6.1.

6.1 Initial Trajectory 59

Algorithm 6.1: Mapping SLT to geometric path

Input: A path V = {vvv1, vvv2, . . . , vvvk }, a trajectory q(t), a sample time Ts and
the total time tf

Output: A discrete trajectory in the plane T
1 T ←− ∅
2 N ←−

⌈ tf
Ts

⌉
3 for n = 0 to N do
4 qn ←− q(nTs)
5 un ←− q̇(nTs) // Surge velocity
6 jprev ←− index of vvv ∈ V with distance d closest to qn satisfying d ≤ qn
7 jnext ←− index of vvv ∈ V with distance d closest to qn satisfying d > qn
8 if jnext does not exist then
9 vvvprev ←− vvvjprev−1

10 vvvnext ←− vvvjprev

11 VVV dir ←− the normalized vector going from vvvprev to vvvnext

12 pppn ←− vvvnext
13 else
14 vvvprev ←− vvvjprev

15 vvvnext ←− vvvjnext

16 VVV dir ←− the normalized vector going from vvvprev to vvvnext

17 pppn ←− (qn − dprev)VVV dir + vvvprev

18 end
19 ψn ←− atan2(VVV dir,y , VVV dir,x)
20 T ←− insert position pppn, heading ψn and surge un at time nTs
21 end

60 6 Trajectory Planning

6.2 Trajectory Optimization

To make the trajectory dynamically feasible for the vessel, an OCP is formed and
solved using multiple shooting, as described in Chapter 3.

With the state vector xxxe =
[
xxxT uuuT

]T
and with uuue = u̇uu, where xxx, uuu and ϑϑϑ are the

same as in Section 2.3, the state space model becomes

ẋxxe =
[
fff (xxx,uuu,ϑϑϑ)

uuue

]
(6.13)

where fff (xxx,uuu,ϑϑϑ) is given by (2.24a). The reason why uuu is included in the state
vector instead of being treated as a control input is to take the dynamics of the
thrusters into account (Bergman et al., 2020).

6.2.1 Collision Avoidance

An efficient representation of the free-space is essential in order to reduce the
computational complexity of the trajectory optimization step. One method de-
scribed by Bergman et al. (2020), is to compute local spatial constraints for each
sample on the initial trajectory. The constraint for sample i on the initial trajec-
tory is represented by a convex polytope S ienv defined by a number of half planes
Ki such that

S ienv = {ppp ∈ R2 | AAAippp ≤ bbbi } (6.14)

where AAAi =
[
aaai,1 · · · aaai,Ki

]T
∈ R

Ki×2, aaai,j ∈ R
2 for j = 1, . . . , Ki , and bbbi ∈ R

Ki

(Bergman et al., 2020). The approach is based on the expansion of a convex poly-
tope Sb approximating the body of the vessel. The algorithm used to compute
S ienv in this report is the same as the one described by Bergman et al. (2020), but
with a few modifications for easier implementation.

As in Bergman et al. (2020), first S ienv is initialized as a directed cyclic graph
Gienv =< V ienv, E ienv > where pppk ∈ V ienv composes the convex hull of S ienv and the
edge ek ∈ E ienv represents a vector from pppk to pppk+1. For each pppk there is an asso-
ciated expansion direction gggk , selected such that the area spanned by the graph
Gienv is increased after expansion. An example of an expansion direction that was
used in this report is given by Bergman et al. (2020), which is to choose gggk to be
parallel to the vector going from the center of the ship’s body to the initial vertex
pppk .

The first part (Line 1 - Line 7) of Algorithm 6.2 is exactly the same as in Bergman
et al. (2020). The graph Gienv is initialized using Sb at ηηη i , see Figure 6.1(a). The
initial vertex pppc is then selected as the vertex with expansion direction closest to
ννν i . Then, the graph is expanded for as long as any of the vertices are expandable.
Vertex ppp ∈ V ienv is not considered to be expandable if the corresponding step
length ∆l falls below a minimum value or the expansion reaches a maximum
distance. If ppp is expandable, it is expanded in its direction ggg with step length ∆l .

6.2 Trajectory Optimization 61

The second part is where the change has been done (Line 8 - Line 16). After a
vertex is expanded it is checked if the shape of the graph is still convex. If the
graph is not convex, then the expansion is reverted and the corresponding step
length ∆l is divided by two and the next vertex in the graph is processed, see
Figure 6.1(c) and Figure 6.1(d). If the graph is convex, then, if any of the edges
E ienv intersect with Eobst, the expansion is dismissed and the step length ∆l is
halved, see Figure 6.1(b) and Figure 6.1(c), then the next vertex is processed.

Algorithm 6.2: Computation of local spatial constraints
Input: ηηη i , ννν i , Sb, Eobst
Output: S ienv

1 Gienv =< V ienv, E ienv >←− a cyclic graph of Sb given ηηη i
2 pppc ←− vertex ppp ∈ V ienv with expansion direction closest to ννν i
3 while Gienv is expandable do
4 if pppc is expandable then
5 ∆l ←− step length of pppc
6 ggg ←− expansion direction of pppc
7 pppc ←− pppc + ∆lggg
8 if the shape of Gienv is not convex then
9 pppc ←− pppc − ∆lggg

10 step length of pppc ←− ∆l /2
11 else
12 if any of the edges E ienv intersect Eobst then
13 pppc ←− pppc − ∆lggg
14 step length of pppc ←− ∆l /2
15 end
16 end
17 end
18 pppc ←− next vertex in V ienv
19 end
20 S ienv ←− span of V ienv

The condition for collision avoidance is then

AAAicccrot(xxxe,i , pppj) ≤ bbbi , ∀pppj ∈ Vb (6.15)

where Vb are the vertices of Sb,AAAi and bbbi are the half-plane representation of S ienv
in (6.14) and

cccrot(xxxe,i , pppj) =
[
cosψi − sinψi
sinψi cosψi

]
pppj +

[
xi
yi

]
(6.16)

62 6 Trajectory Planning

(a) Initialize Gienv using Sb(ηηηi) and ex-
pand in direction closest to νννi .

(b) Continue expanding ppp ∈ V ienv that
are expandable. Intersection detected,
revert last expansion and halve the step
length for that ppp.

(c) Span of V ienv not convex, revert
last expansion and halve step length
for that ppp.

(d) Gienv after one cycle of expansions.

Figure 6.1: Expanding Sb(ηηη i) (red) to form the spatial constraints for colli-
sion avoidance. In the subfigures, the graph Gienv is green, obstacle are blue
and the vertices ppp ∈ V ienv are black circles.

6.2 Trajectory Optimization 63

6.2.2 Problem Formulation

The discrete OCP can be formulated as in Bergman et al. (2020)

minimize
{uuue,i }N−1

i=0 ,∆t

Jd =
N−1∑
i=0

L(xxxe,i , uuue,i ,∆t) (6.17a)

s.t. xxxe,0 = xxxe,cur, bbbl,N ≤ xxxe,N ≤ bbbu,N (6.17b)

xxxe,i+1 = FFF(xxxe,i , uuue,i ,∆t) (6.17c)

AAAicccrot(xxxe,i , pppj) ≤ bbbi , ∀pppj ∈ Vb (6.17d)

xxxe,i ∈ Xfree, uuue,i ∈ U (6.17e)

The decision variable ∆t represents the time between two consecutive samples.
The function L is the numerical integral of

ℓ(xxxe, uuue) =
104

Th
+ u2αααTααα + 10−1nnnTnnn + 102α̇ααT α̇αα + 102ṅnnT ṅnn (6.18)

over the time ∆t , where Th is the planning horizon time, ααα =
[
α1 α2

]T
and

nnn =
[
n1 n2 nt

]T
. The function FFF is the state-space model (6.13), discretized

using the RK4 method. For the final state xxxe,N , there is a lower and upper bound,
denoted bbbl,N and bbbu,N , respectively. This freedom is introduced since the initial
trajectory may not be achievable. BothAAAi and bbbi are the half-plane representation
at the sample point on the initial trajectory that is closest to xxxe,i . Finally, xxxe,cur is
the sample on the trajectory that the optimization starts from.

The lower and upper bounds are given by

bbbl,N = [xe,cur+N ye,cur+N ψe,cur+N ue,cur+N −∞ −∞ −∞ −∞ −∞ −∞ −∞]T (6.19a)

bbbu,N = [xe,cur+N ye,cur+N ψe,cur+N ue,cur+N ∞ ∞ ∞ ∞ ∞ ∞ ∞]T (6.19b)

where xxxe,cur+N is the sample on the trajectory N steps ahead of xxxe,cur.

The problem can then be solved for the whole initial trajectory at once or repeat-
edly using a receding horizon approach (Bergman et al., 2020). An advantage to
the receding horizon approach is its ability to handle unforeseen obstacles since
it updates a section of the initial trajectory at a time. But since the environment
is considered static in this thesis, that advantage is lost.

6.2.3 Receding Horizon

For the receding horizon approach, the trajectory is optimized a short segment
at a time. The segment to be optimized stretches over a time period of Th. After
the segment is optimized, a new segment starting from the next sample on the
trajectory and ending N samples ahead of that one, see Figure 6.2. The receding
horizon approach also results in a suboptimal trajectory (Xu et al., 2010).

In order to maintain a constant planning horizon Th, the part of the trajectory in
Figure 6.2(a) that was optimized and the part that still has to be optimized need

64 6 Trajectory Planning

(a) (b)

Figure 6.2: Example of receding horizon approach. Blue squares are obsta-
cles, blue lines corresponds to the initial trajectory, red lines corresponds to
the part of the trajectory that has been optimized in previous steps, green
line is the segment that is currently being optimized and light blue line is
the trajectory before optimization. The black circles represent the samples
of the trajectory and the cyan dot marks the first sample on the horizon. (a),
Optimize the trajectory over, e.g. three samples, starting at the cyan circle
(xxxe,cur). (b), Replace the old trajectory with the optimized and move on to
the next sample.

to be resampled. This is a consequence of ∆t being a decision variable which
means that ∆t can vary over different segments if a receding horizon approach is
used. Moving one sample forward would not always correspond to a time step
of Ts as in the initial trajectory. Thus, if ∆t < Ts, then Th would decrease and
increase if ∆t > Ts.

However, a problem with resampling is that the new samples may not satisfy the
OCP (6.17). For instance, if one of the vertices in Sb does not satisfy (6.17d) for
the sample that would be xxxe,0 in the next iteration, then (6.17) has no solution, see
Figure 6.3. If sample 1 is the current initial sample, the spatial constraints (6.17d)
cannot be satisfied for i = 0 when resampling and the next sample (sample 2) is
set to the current, since xxxe,0 is fixed. This problem is avoided by not performing
resampling and letting the planning horizon change. It can also be avoided by
optimizing the whole initial trajectory at once.

6.2 Trajectory Optimization 65

(a) Before resampling. (b) After resampling.

Figure 6.3: Trajectory (blue), Sb(xxxe,i) (black), samples (black circles) and ob-
stacle (light blue) for the resampling. Red cross is where vertex in Sb(xxxe,i) is
inside the obstacle.

66 6 Trajectory Planning

0 2 4 6 8 10 12 14 16
0

10

20

q
(t

)
[m

]

Position

0 2 4 6 8 10 12 14 16
0

1

2

d
q

(t
)/

d
t

[m
/s

]

Velocity

0 2 4 6 8 10 12 14 16

Time [s]

-0.5

0

0.5

d
2
q

(t
)/

d
t2

 [
m

/s
2
] Acceleration

SLT

(a)

0 1 2 3 4 5 6
0

2

4

q
(t

)
[m

]

Position

0 1 2 3 4 5 6
0

1

d
q

(t
)/

d
t

[m
/s

]

Velocity

0 1 2 3 4 5 6

Time [s]

-0.5

0

0.5

d
2
q

(t
)/

d
t2

 [
m

/s
2
] Acceleration

SLT

(b)

Figure 6.4: SLT for Mission 5 (a) and SLT with adjusted Vmax due to short
distance (b).

6.3 Trajectory Planning Result

The parameters used for acquiring the auxiliary path are the same as in Sec-
tion 5.4. Two different ship models were examined, one of which is the model es-
timated in Section 4.5.2 (estimated model) and the other is given in Section 4.5.1
but with κ = 0, no wind forces and without the tunnel thruster (simulated model).

6.3.1 SLT and Mapping to Geometric Path

The SLT is generated with Vmax = 2 and amax = 0.7 and the sample time Ts = 0.1
seconds for the simulated model. For the estimated model Vmax = 1, amax = 1
and Ts = 0.1. The SLT of Mission 5 for the simulated model can be seen in Fig-
ure 6.4(a) and the corresponding mapping to geometric path is shown in Fig-
ure 6.5

6.3.2 Optimization

For the estimated model, the planning horizon Th is set to 30 seconds and the
number of control intervals is set to N = 75 for the receding horizon approach
and when optimizing the whole trajectory at once each control interval spans
over 0.4 seconds for the estimated model. The set of control signals is U = {uuue |
lblblbu ≤ uuue ≤ ubububu } and the states are limited by X = {xxxe | lblblbx ≤ xxxe ≤ ubububx } where

lblblbu = −
[

10
9 π

10
9 π

175
2 π 175

2 π 80
3 π

]T
ubububu = −lblblbu

lblblbx = −
[
∞ ∞ ∞ 2 2 1 π π 0 0 140π

]T
ubububx =

[
∞ ∞ ∞ 2 2 1 π π 90π 90π 140π

]T

6.3 Trajectory Planning Result 67

0 2 4 6 8 10 12 14 16

-50

-40

x
 [
m

]

0 2 4 6 8 10 12 14 16
56
58
60
62
64
66

y
 [
m

]

0 2 4 6 8 10 12 14 16

-0.8
-0.6
-0.4
-0.2

0

 [
ra

d
]

0 2 4 6 8 10 12 14 16
0

1

2

u
 [
m

/s
]

0 2 4 6 8 10 12 14 16
-1

0

1

v
 [
m

/s
]

0 2 4 6 8 10 12 14 16
-1

0

1

r
[r

a
d
/s

]

0 2 4 6 8 10 12 14 16
-1

0

1

1
 [
ra

d
]

0 2 4 6 8 10 12 14 16
-1

0

1

2
 [
ra

d
]

0 2 4 6 8 10 12 14 16
-1

0

1

n
1
 [
ra

d
/s

]

0 2 4 6 8 10 12 14 16

Time [s]

-1

0

1

n
2
 [
ra

d
/s

]

Initial trajectory

Figure 6.5: SLT for Mission 5 mapped to the geometric path. The actuator
signals uuu as well as the surge and sway velocities are set to 0 as an initial
guess.

68 6 Trajectory Planning

Table 6.1: Time duration [s] of the optimization (including time for path
smoothing) for the simulated model with receding horizon and whole at once
approaches, both initialized with and without smoothened initial trajectory
(SIT and NSIT).

Mission Receding horizon Whole at once
NSIT SIT NSIT SIT

1 27.34 24.2524.2524.25 236.88 244.63
2 102.95 85.78 307.30 22.6322.6322.63
3 89.33 72.56 18.4218.4218.42 19.08
4 129.85 105.22 862.54 41.4441.4441.44
5 7.95 6.22 5.635.635.63 7.48
6 109.46 118.36 42.7242.7242.72 400.64
7 27.56 21.99 11.81 10.4510.4510.45
8 103.72 100.57 18.2718.2718.27 1580.92
9 51.46 52.40 10.3910.3910.39 10.93

10 85.16 68.6368.6368.63 273.61 212.40

For the simulated model, Th = 16 seconds, N = 40 for the receding horizon and
similarly to the estimated model, for the whole at once optimization approach
each control interval spans over 0.4 seconds. The bounds are

lblblbu = −
[
100 100 200 200 0

]T
ubububu = −lblblbu

lblblbx = −
[
∞ ∞ ∞ 2 2 1 π π 0 0 0

]T
ubububx =

[
∞ ∞ ∞ 2 2 1 π π 300 300 0

]T
The decision variable ∆t ∈ [0, 2Th/N] for receding horizon and ∆t ∈ [0, 2Tf /N]
otherwise, where Tf is the total time of the initial trajectory. For both models
the collision avoidance constraints were calculated using ∆l = 5 initially, with
minimum step length of 0.1 and maximum expansion distance 20.

Data are collected from the same ten missions as in Section 5.4.2 with the connect-
ing method CNE and map type WEO for both receding horizon and the whole
trajectory at once. Also data from optimizing the initial trajectory created from
an auxiliary path that has not been smoothened, was examined. The optimization
was done in Matlab using the CasADi framework (Andersson et al., 2019) with
IPOPT solver (Wächter and Biegler, 2005).

As can be seen in Table 6.1 and Table 6.2, optimizing the whole trajectory at once
is better in terms of computational time with only a few of exceptions. For the
simulated model, initializing with a non-smoothened trajectory is better while
for the estimated model, initiating with a smoothened trajectory result in shorter
computation time. The outliers could be a result from the initial guess (initial

6.3 Trajectory Planning Result 69

Table 6.2: Time duration [s] of the optimization (including time for path
smoothing) for the estimated model with receding horizon and whole at once
approaches, both initialized with and without smoothened initial trajectory
(SIT and NSIT).

Mission Receding horizon Whole at once
NSIT SIT NSIT SIT

1 54.1054.1054.10 55.14 240.34 253.74
2 391.49 1113.02 2107.35 234.54234.54234.54
3 167.84 409.65 173.97 43.4843.4843.48
4 309.35 435.65 38.6038.6038.60 41.03
5 8.65 10.18 8.128.128.12 9.38
6 1370.12 2544.92 55.4455.4455.44 58.94
7 41.20 38.86 6.926.926.92 12.30
8 317.31 2521.31 52.3452.3452.34 137.27
9 135.67 135.26 21.2421.2421.24 21.32

10 170.86 1512.67 38.60 23.8223.8223.82

trajectory) being infeasible or far from optimal, thus struggling to minimize the
objective function. It could also be a consequence of the collision avoidance con-
straints being too tight, leading to local infeasibility. However, to get a better
understanding of this result a deeper knowledge of the IPOPT solver is needed.

The computation time of the receding horizon approach for the estimated model
is not as consistent as for the simulated model. This could be a result from the
planning horizon Th being too short for the estimated model, thus converging to
local infeasibility.

For the receding horizon approach, initializing the problem with an initial trajec-
tory based on a smoothened path decreases the computational time for the simu-
lated model, while it increases the computation time for the estimated model. Ini-
tializing the receding horizon approach with a trajectory based on smooth path
seems very unreliable for the estimated model, see Table 6.2. For the whole at
once approach, both models produces better results when the problem is initial-
ized with the trajectory that is not based on a smooth path.

In Table 6.3 and Table 6.4, the time of the planned trajectory is presented and
both models indicates that the receding horizon approach with smoothened ini-
tial trajectory gives a shortest time trajectory. However, both approaches and
initialization methods result in times that are only a few seconds apart, at most.

Similarly to the time of the trajectory in Table 6.3 and Table 6.4, the distance
of the trajectory presented in Table 6.5 and Table 6.6 are the shortest for the
receding horizon approach initialized with a smooth initial trajectory. This holds
for both models. However, the trajectory length only differs a few meters at most
and since the ship’s length is 0.99 meters the difference is not significant.

70 6 Trajectory Planning

Table 6.3: Total time [s] of the planned trajectory for the simulated model
with the receding horizon and whole at once approaches, both initialized
with and without smoothened initial trajectory (SIT and NSIT).

Mission Receding horizon Whole at once
NSIT SIT NSIT SIT

1 27.3527.3527.35 27.3527.3527.35 27.95 27.95
2 59.23 59.0559.0559.05 61.98 61.41
3 46.89 45.1045.1045.10 49.25 47.27
4 69.69 67.7367.7367.73 73.64 70.30
5 16.83 16.2716.2716.27 17.45 16.90
6 59.2959.2959.29 59.49 60.65 60.64
7 23.68 23.4623.4623.46 24.43 24.07
8 59.98 58.3758.3758.37 62.69 60.99
9 40.7640.7640.76 40.7640.7640.76 41.84 41.84

10 51.67 44.7844.7844.78 47.11 46.40

Table 6.4: Total time [s] of the planned trajectory for the estimated model
with the receding horizon and whole at once approaches, both initialized
with and without smoothened initial trajectory (SIT and NSIT).

Mission Receding horizon Whole at once
NSIT SIT NSIT SIT

1 38.1038.1038.10 38.1038.1038.10 38.76 38.76
2 84.37 84.0084.0084.00 86.69 86.20
3 66.31 64.4664.4664.46 68.96 66.08
4 101.25 96.8996.8996.89 103.53 99.69
5 24.45 24.17 23.60 22.9022.9022.90
6 84.36 83.3783.3783.37 86.78 86.84
7 33.09 32.4732.4732.47 33.71 33.30
8 86.57 83.2683.2683.26 87.84 85.40
9 57.5757.5757.57 57.5757.5757.57 58.93 58.93

10 66.13 63.7463.7463.74 67.92 66.92

6.3 Trajectory Planning Result 71

Table 6.5: Distance [m] of the planned trajectory for the simulated model
with the receding horizon and whole at once approaches, both initialized
with and without smoothened initial trajectory (SIT and NSIT).

Mission Receding horizon Whole at once
NSIT SIT NSIT SIT

1 47.7847.7847.78 47.7847.7847.78 47.7847.7847.78 47.7847.7847.78
2 111.70 111.14111.14111.14 112.45 111.63
3 86.63 83.9883.9883.98 88.53 85.39
4 133.48 129.12129.12129.12 132.13 130.00
5 27.63 26.5926.5926.59 27.68 27.31
6 112.58 110.47110.47110.47 112.31 110.63
7 41.06 40.5640.5640.56 41.86 41.31
8 112.84 110.11110.11110.11 113.73 110.91
9 74.6174.6174.61 74.6174.6174.61 74.63 74.63

10 88.47 83.5983.5983.59 86.39 84.34

Table 6.6: Distance [m] of the planned trajectory for the estimated model
with the receding horizon and whole at once approaches, both initialized
with and without smoothened initial trajectory (SIT and NSIT).

Mission Receding horizon Whole at once
NSIT SIT NSIT SIT

1 47.7847.7847.78 47.7847.7847.78 47.7847.7847.78 47.7847.7847.78
2 111.50 111.02111.02111.02 111.80 111.18
3 86.35 83.7483.7483.74 87.54 84.05
4 134.61 128.76128.76128.76 132.51 129.42
5 27.86 27.76 27.23 26.6626.6626.66
6 111.67 110.10110.10110.10 113.97 112.61
7 40.93 40.0940.0940.09 41.28 40.90
8 113.24 109.90109.90109.90 114.23 110.20
9 74.6174.6174.61 74.6174.6174.61 74.6174.6174.61 74.6174.6174.61

10 86.53 83.2183.2183.21 87.72 85.38

72 6 Trajectory Planning

Table 6.7: Numerical integration of |n3
1| + |n

3
2| + |n

3
t | [M/s2] as a measure of

energy for the simulated model with the receding horizon and whole at once
approaches, both initialized with and without smoothened initial trajectory
(SIT and NSIT).

Mission Receding horizon Whole at once
NSIT SIT NSIT SIT

1 360.26360.26360.26 360.26360.26360.26 361.50 361.50
2 526.72 517.43 488.19 452.90452.90452.90
3 993.99 641.61 586.36 586.02586.02586.02
4 769.96 637.64 549.59549.59549.59 618.33
5 715.50 578.14 301.49301.49301.49 583.89
6 688.44 572.98 590.23 488.59488.59488.59
7 898.48 445.57445.57445.57 473.74 453.14
8 669.20 647.17 547.67 502.94502.94502.94
9 408.80 408.80 405.87405.87405.87 405.87405.87405.87

10 621.44 601.70 591.13 532.02532.02532.02

Table 6.8: Numerical integration of |n3
1| + |n

3
2| + |n

3
t | [M/s2] as a measure of

energy for the estimated model with the receding horizon and whole at once
approaches, both initialized with and without smoothened initial trajectory
(SIT and NSIT).

Mission Receding horizon Whole at once
NSIT SIT NSIT SIT

1 1621.69 1621.69 1621.481621.481621.48 1621.481621.481621.48
2 3713.27 3696.563696.563696.56 3737.03 3708.83
3 2896.87 2813.232813.232813.23 3000.06 2852.66
4 4476.19 4280.044280.044280.04 4496.65 4325.19
5 1037.47 1024.15 997.54 963.27963.27963.27
6 3716.69 3681.363681.363681.36 3801.43 3839.88
7 1405.68 1378.811378.811378.81 1424.04 1418.50
8 3690.66 3663.063663.063663.06 3791.54 3694.00
9 2501.82 2501.82 2500.322500.322500.32 2500.322500.322500.32

10 2904.21 2791.722791.722791.72 2963.31 2934.73

6.3 Trajectory Planning Result 73

In Table 6.7 and Table 6.8, a measure of energy consumption over the planned
trajectory is presented. The cube of the rotational speed of the thrusters are used,
since it is proportional to the energy consumption according to Bärlund (2019).
Contrary to previous tables for the simulated model, the receding horizon ap-
proach initialized with a trajectory based on smoothened path does not outper-
form the other approaches and initializations, whereas for the estimated model,
the receding horizon approach initialized with SIT still performs better.

The vessel effectively avoids the obstacles, see Figure 6.6, Figure 6.7 and Fig-
ure 6.8, for all trajectories. But to keep the vessel away from the obstacles, a
penalty on the distance between obstacles and the vessel could be added to the
objective function Jd in (6.17) (Bergman et al., 2020).

From Figure 6.6, it can be seen that the receding horizon optimization is straighter
than when the trajectory is optimized all at once for the simulated model. This
behavior is also seen in Figure 6.7 and Figure 6.8, for the estimated model.

In Figure 6.7 there are many relatively sharp turns in the trajectory and for Mis-
sion 8, the whole at once approach is even more curvy than the receding horizon
approach. This is strange since the receding horizon approach only optimizes
short segments at a time and is not aware of the whole trajectory. When com-
paring the estimated model initialized with a trajectory based on a smooth path
(Figure 6.8), and without a smooth path (Figure 6.7), it can be seen that initializ-
ing with a smooth path also results in a trajectory that is closer to the obstacles.
One reason for this is that the initial trajectory is smooth and closer to the bound-
ary of the obstacles.

6.3.3 Conclusion

Since the estimated model the receding horizon approach takes unreasonably
long time to calculate and since receding horizon approach is also slower for
the simulated model, optimizing the whole trajectory at once is best suited to
this problem. Initializing the optimization problem with a trajectory based on
a smoothened path reduces the time, distance and energy of the planned trajec-
tory in most of the cases for the estimated model and simulated model. Thus,
initializing with a smooth trajectory increases the performance of the solver.

Why the receding horizon approach performs better than optimizing the whole
trajectory at once is hard to say. Especially since the receding horizon approach
should result in a suboptimal trajectory, while the other method should result in
the optimal solution.

74 6 Trajectory Planning

0 50 100

y [m]

-100

-50

0

x
 [

m
]

Roadmap

Frame

Obstacle

Start

Goal

Land

Trajectory

(a) Mission 4, whole trajectory at once.

0 50 100

y [m]

-100

-50

0

x
 [

m
]

Roadmap

Frame

Obstacle

Start

Goal

Land

Trajectory

(b) Mission 4, receding horizon.

0 50 100

y [m]

-100

-50

0

x
 [

m
]

Roadmap

Frame

Obstacle

Start

Goal

Land

Trajectory

(c) Mission 8, whole trajectory at once.

0 50 100

y [m]

-100

-50

0

x
 [

m
]

Roadmap

Frame

Obstacle

Start

Goal

Land

Trajectory

(d) Mission 8, receding horizon.

Figure 6.6: Optimized trajectory for Mission 4 and 8 with the different op-
timization approaches using the simulated model and a non-smooth initial
trajectory.

6.3 Trajectory Planning Result 75

0 50 100

y [m]

-100

-50

0

x
 [

m
]

Roadmap

Frame

Obstacle

Start

Goal

Land

Trajectory

(a) Mission 4, whole trajectory at once.

0 50 100

y [m]

-100

-50

0

x
 [

m
]

Roadmap

Frame

Obstacle

Start

Goal

Land

Trajectory

(b) Mission 4, receding horizon.

0 50 100

y [m]

-100

-50

0

x
 [

m
]

Roadmap

Frame

Obstacle

Start

Goal

Land

Trajectory

(c) Mission 8, whole trajectory at once.

0 50 100

y [m]

-100

-50

0

x
 [

m
]

Roadmap

Frame

Obstacle

Start

Goal

Land

Trajectory

(d) Mission 8, receding horizon.

Figure 6.7: Optimized trajectory for Mission 4 and 8 with the different op-
timization approaches using the estimated model and a non-smooth initial
trajectory.

76 6 Trajectory Planning

0 50 100

y [m]

-100

-50

0

x
 [

m
]

Roadmap

Frame

Obstacle

Start

Goal

Land

Trajectory

(a) Mission 4, whole trajectory at once.

0 50 100

y [m]

-100

-50

0

x
 [

m
]

Roadmap

Frame

Obstacle

Start

Goal

Land

Trajectory

(b) Mission 4, receding horizon.

0 50 100

y [m]

-100

-50

0

x
 [

m
]

Roadmap

Frame

Obstacle

Start

Goal

Land

Trajectory

(c) Mission 8, whole trajectory at once.

0 50 100

y [m]

-100

-50

0

x
 [

m
]

Roadmap

Frame

Obstacle

Start

Goal

Land

Trajectory

(d) Mission 8, receding horizon.

Figure 6.8: Optimized trajectory for Mission 4 and 8 with the different opti-
mization approaches using the estimated model and a smooth initial trajec-
tory.

7
Conclusion and Future Work

In this thesis, a grey-box model for a ship has been presented, including the dy-
namics of the rudder and wind disturbances. The parameters in the grey-box
model have been estimated using an optimization based system identification
method, both on simulated data and experimentally. For the experimental data,
the dynamics of the rudder and wind was neglected to help convergence of the
NLP. Furthermore, a trajectory planning algorithm was proposed to obtain a dy-
namically feasible trajectory between a start and goal position given a map of
obstacles and a dynamic model of a ship. Firstly, a roadmap is generated uti-
lizing a Voronoi diagram. Then, a geometric path is found by employing the
A*-algorithm to the roadmap. An initial guess for the trajectory optimization is
obtained by mapping a straight line trajectory to the geometric path. From the
optimization an optimal feasible trajectory is found from the start position to
the goal, given the grey-box model and the estimated parameters, such that the
trade-off between time duration and energy consumption is well-balanced.

7.1 Future Work

In this thesis, an system identification method has been used to find a dynamic
model for the small-scale ship. Thereafter, trajectory planning has been devel-
oped, utilizing the dynamic model, to find a feasible path given a start and goal
position and a set of obstacles. An intuitive future development would be to im-
plement the given trajectory planning on the model ship along with a controller
to evaluate its performance in real life applications.

From a system identification perspective it would be interesting to fit a sensor to
measure the exact angle of the azimuth thruster, to get more accurate estimates of

77

78 7 Conclusion and Future Work

the parameters and to validate the model in a more correct manner. Furthermore,
an interesting approach would be to estimate the model parameters at different
sampling frequencies to see if even more of the dynamics could be included in the
model, such as rudder dynamics, wind dynamics and shallow water dynamics.

For the trajectory planning it would be interesting to see if the performance could
be increased with a better initial guess of the trajectory. With a better initial guess
of the trajectory, the NLP is less prone to get trapped at local minima and thus the
planning time will be reduced. Moreover, it would be interesting to investigate
the performance of the trajectory planning in departure and docking situations.
Investigating this would make the trajectory planning algorithm more useful in
real-life applications, where docking and undocking is unavoidable.

Appendix

A
Experiments

In this chapter, the experiments performed in the thesis are described, as well as
a selection of the results.

A.1 System Identification Experiment

In this section the experiments performed to estimate the parameters of the ship
model are described.

A.1.1 Goal

The goal of this experiment is to estimate the parameters ϑϑϑ in (2.24), with µaz and
µt fixed according to the result in Appendix A.2.

A.1.2 Procedure

The experiment is conducted by applying various input signals to the ship and
measure its position and orientation. To estimate all parameters, manuevers at
various speeds in all 3DOF, surge, sway and yaw-rate, are required. The proce-
dure is therefore to operate the ship in a way that such data is obtained.

The experiment is preformed multiple times with various input signals.

A.1.3 Result

The collected data used as estimation and validation data can be seen in Fig-
ure A.1 and A.2, respectively.

81

82 A Experiments

0 50 100 150 200 250
0

1000

2000

3000

R
o

ta
ti
o

n
a

l
s
p

e
e

d
 [

R
P

M
] Thruster 1

0 50 100 150 200 250
0

1000

2000

3000

R
o

ta
ti
o

n
a

l
s
p

e
e

d
 [

R
P

M
] Thruster 2

0 50 100 150 200 250
-5000

0

5000

R
o

ta
ti
o

n
a

l
s
p

e
e

d
 [

R
P

M
] Bow thruster

0 50 100 150 200 250
-100

0

100

A
n

g
le

 [
d

e
g

]

Thruster 1

0 50 100 150 200 250

Time [s]

-100

0

100

A
n

g
le

 [
d

e
g

]

Thruster 2

Control signals

(a)

-20 -15 -10 -5 0 5 10

y-coordinate [m]

-14

-12

-10

-8

-6

-4

-2

0

2

x
-c

o
o

rd
in

a
te

 [
m

]

0 50 100 150 200 250

Time [s]

-20

-10

0

10

H
e
a
d
in

g
 a

n
g
le

 [
d
e
g
]

Output signals

(b)

Figure A.1: Experimental data used in estimation of the parameters. In (a)
the control signals are presented and in (b) the outputs can be seen.

A.1 System Identification Experiment 83

0 50 100 150 200 250
0

1000

2000

3000

R
o

ta
ti
o

n
a

l
s
p

e
e

d
 [

R
P

M
] Thruster 1

0 50 100 150 200 250
0

1000

2000

3000

R
o

ta
ti
o

n
a

l
s
p

e
e

d
 [

R
P

M
] Thruster 2

0 50 100 150 200 250
-1

0

1

R
o

ta
ti
o

n
a

l
s
p

e
e

d
 [

R
P

M
] Bow thruster

0 50 100 150 200 250
-200

-100

0

100

A
n

g
le

 [
d

e
g

]

Thruster 1

0 50 100 150 200 250

Time [s]

-100

0

100

200

A
n

g
le

 [
d

e
g

]

Thruster 2

Control signals

(a)

-4 -2 0 2 4 6 8 10 12

y-coordinate [m]

-10

-9

-8

-7

-6

-5

-4

-3

-2

x
-c

o
o

rd
in

a
te

 [
m

]

0 50 100 150 200 250

Time [s]

-10

-5

0

5

H
e
a
d
in

g
 a

n
g
le

 [
d
e
g
]

Output signals

(b)

Figure A.2: Experimental data used in estimation of the parameters. In (a)
the control signals are presented and in (b) the outputs can be seen.

84 A Experiments

The resulting parameters can be seen in Table 4.3 and more details about the
result can be seen in Section 4.5.2.

A.2 Thruster Identification Experiment

This section describes the experiment to estimate the thruster parameters on the
small-scale ship. This type of experiment is usually called a Bollard Pull test.

A.2.1 Goal

The goal is to estimate the model parameters µaz and µt for the thrusters in (2.13)
and (2.15). The total trust produced by each thruster in stationarity can be ex-
pressed with

τi = µin
2
i . (A.1)

A.2.2 Procedure

The test is conducted by attaching a dynamometer between the ship and a fixed
object, thereafter the thrust for each thruster is measured at various rotor speeds.
During experiments it was found out that the dynamometer could not read forces
below 1 N, therefore it was not possible to measure the force at low rotor speeds.
Furthermore, the bow thruster did not produce a force higher than 1 N, making
its effect impossible to measure. Hence, an experiment was designed where one
azimuth thruster with αi = π

2 was used in combination with the bow thruster
to generate a force in yb-axis. When the ship had a pure sway motion the ro-
tor speeds of the thrusters were noted. Thereafter, knowing the force from the
azimuth thruster, the force produced by the bow thruster could be calculated.
Lastly a least square curve fitting method was used to estimate µaz and µt in
(A.1) from the data.

A.2.3 Result

The results from the Bollard pull tests are described below.

Azimuth thrusters

For the azimuth thrusters the force at various rotor speeds can be observed in
Figure A.3. The model (A.1) is fitted to the measurements, and the parameter µaz
is found to be 1.435 · 10−6.

Bow thruster

For the bow thruster a pure sway motion was found at the rotor speeds shown in
Table A.1.

A.2 Thruster Identification Experiment 85

Bollard Pull test

0 500 1000 1500 2000 2500 3000
0

5

10

15

F
o
rc

e
 [
N

]

Thruster 1

Measurements

Estimated model

0 500 1000 1500 2000 2500 3000

Rotational speed [RPM]

0

5

10

15

F
o
rc

e
 [
N

]

Thruster 2

Measurements

Estimated model

Figure A.3: Results from the Bollard pull test of the azimuth thrusters.

Table A.1: Measured rotor speeds to achieve a pure sway motion.

Thruster 2 Bow thruster

460 RPM 2390 RPM
550 RPM 2840 RPM
735 RPM 4060 RPM

86 A Experiments

0 500 1000 1500 2000 2500 3000 3500 4000

Rotational speed [RPM]

0

0.2

0.4

0.6

0.8

1

F
o
rc

e
 [
N

]

Bow thruster

Measurements

Estimated model

Figure A.4: Results from the Bollard pull test of the bow thrusters.

The thrust produced by the bow thruster was thereafter calculated using the
known µaz, and the result can be seen in Figure A.4. The model (A.1) is fitted
to the measurements, and the parameter µt is found to be 4.840 · 10−8.

A.3 PWM to Angle Mapping

Due to the lack of measurements for the angle of the azimuth thruster, in this
section experiments are performed to estimate the angle on the azimuth thrusters
given a pulse width modulation (PWM) signal from the controller.

A.3.1 Goal

The goal of this experiment is to estimate the angle on the azimuth thrusters
given a PWM signal.

A.3.2 Procedure

The experiment is conducted by applying PWM signals with various pulse widths
to the servos actuating the angle of the azimuth thrusters. Thereafter, a least
square curve fitting method is used to find the relationship between the pulse
width and the angle of the azimuth thruster.

A.3.3 Result

During the experiment it was found that the angle of the azimuth thrusters var-
ied approximately 20 degrees with the same pulse width of the PWM signal. This
was probably due to slack in the drive belts or due to resistance in the servos.
Therefore, the mapping was done from low to high pulse width and vice versa,
obtaining the result shown in Figure A.5. A line has also been fitted to the mea-
sured data.

A.3 PWM to Angle Mapping 87

500 1000 1500 2000 2500
-400

-200

0

200

400

A
n

g
le

 [
d

e
g

]

Thruster 1

Measurements from low pulse width

Measurements from high pulse width

y = -0.33 x + 504.17

y = -0.33 x + 489.64

500 1000 1500 2000 2500

Pulse width of PWM signal

-400

-200

0

200

400

A
n

g
le

 [
d

e
g

]

Thruster 2

Measurements from low pulse width

Measurements from high pulse width

y = -0.33 x + 494.35

y = -0.33 x + 475.48

PWM -> Angle Map

Figure A.5: Results from the PWM to Angle mapping of the azimuth
thrusters.

B
Proofs

In this appendix, various proofs are presented.

B.1 Shortest Distance Between Figures (Obstacles)
Proof of shortest distance between figures: Based on Figure 5.1, let A and B be
two generator points on a figure gi separated by the distance d. Let C be the gen-
erator point on another figure gj that is closest to AB and denote the projection
of C onto AB with D. Also let E be the Voronoi vertex generated by A, B and C
and let F be its projection onto AB. With

a = |AD |, b = |BD |, c = |DF|, d = |AB|
x = |CD |, y = |EF|, z = |AE| = |BE| = |CE|

then

z2 = c2 + (x − y)2 (B.1a)

z2 = y2 + (a + c)2 (B.1b)

z2 = y2 + (b − c)2 (B.1c)

Equation (B.1a) inserted in (B.1b) gives

c2 + (x − y)2 − y2 − (a + c)2 = 0
a>0
⇒ c =

x2 − 2xy − a2

2a
(B.2)

Then, subtracting (B.1c) from (B.1b) gives

(a + c)2 = (b − c)2 ⇒ 2(a + b)c = b2 − a2

a+b>0
⇒ c =

b − a
2

(B.3)

89

90 B Proofs

Now, inserting (B.3) in (B.2) gives

b − a
2

=
x2 − 2xy − a2

2a
⇒ y =

x2 − ab
2x

(B.4)

For the Voronoi vertex E to lie between the figures gi and gj , 0 < y < x. With
this condition, the closest distance x to gj given the distance d between generator
points on gi can be calculated using y > 0 and (B.4) as

x2 − ab
2x

> 0 ⇒ x >
√
ab =

√
a(d − a). (B.5)

B.2 Worst Generator Point Placement
Proof of worst generator point placement: The worst case, i.e., when x in (B.5)
has to be largest can be calculated by setting the derivative d

da (a(d − a)) = 0,

d
da

(a(d − a)) = d − 2a = 0 ⇒ a = d/2

⇒ a = b = d/2
(B.6)

and since
d2

da2 (a(d − a)) = −2 < 0

this is indeed a maximum. Thus, x has to be the largest where a = b.

Bibliography

J. A.E. Andersson, J. Gillis, G. Horn, J. B. Rawlings, and M. Diehl. CasADi
– A software framework for nonlinear optimization and optimal control.
Mathematical Programming Computation, 11(1):1–36, 2019. doi: 10.1007/
s12532-018-0139-4.

K. Bergman, O. Ljungqvist, J. Linder, and D. Axehill. An optimization-based
motion planner for autonomous maneuvering of marine vessels in complex
environments. In 2020 59th IEEE Conference on Decision and Control (CDC),
pages 5283–5290. IEEE, 2020.

P. Bhattacharya and M. L. Gavrilova. Geometric algorithms for clearance based
optimal path computation. In Proceedings of the 15th Annual ACM Interna-
tional Symposium on Advances in Geographic Information Systems, 2007. doi:
10.1145/1341012.1341064.

G. Bitar, A. B. Martinsen, A. M. Lekkas, and M. Breivik. Two-Stage Optimized
Trajectory Planning for ASVs Under Polygonal Obstacle Constraints: Theory
and Experiments. IEEE Access, 8:199953–199969, 2020. doi: 10.1109/ACCESS.
2020.3035256.

H.G. Bock and K.J. Plitt. A Multiple Shooting Algorithm for Direct Solution of
Optimal Control Problems. IFAC Proceedings Volumes, 17(2), 1984. doi: 10.
1016/S1474-6670(17)61205-9.

S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press,
2004. ISBN 9780511804441. doi: 10.1017/CBO9780511804441.

A. Bärlund. Nonlinear MPC for Motion Control and Thruser Allocation of Ships.
Master’s thesis, Linköping University, 2019.

B. H. Eriksen and M. Breivik. MPC-Based mid-level collision avoidance for ASVs
using nonlinear programming. In 2017 IEEE Conference on Control Technol-
ogy and Applications (CCTA), 2017. doi: 10.1109/CCTA.2017.8062554.

European Maritime Safety Agency. Annual Overview of Marine Casualties and
Incidents 2020. 2020.

91

92 Bibliography

T. I. Fossen. Handbook of Marine Craft Hydrodynamics and Motion Control.
John Wiley & Sons, Incorporated, first edition, 2011. ISBN 978-1-119-99149-6.

Masahiko Furuichi and Ryuichi Shibasaki. Cascade strategy of container termi-
nals to maximize their quantitative and qualitative capacity. In Proceedings of
IAME 2015 Conference, Kuala Lumpur, Malaysia, 2015.

F. Gustafsson. Statistical Sensor Fusion. Studentlitteratur, Lund, 2018. ISBN
978-91-44-12724-8.

P. E. Hart, N. J. Nilsson, and B. Raphael. A formal basis for the heuristic deter-
mination of minimum cost paths. IEEE Transactions on Systems Science and
Cybernetics, 4(2):100–107, 1968. doi: 10.1109/TSSC.1968.300136.

U. Jönsson, C. Trygger, and P. Ögren. Optimal Control - Lecture notes. Royal
Institute of Technology, Stockholm, 2010.

D. Kang, V. Nagarajan, K. Hasegawa, and M. Sano. Mathematical model of single-
propeller twin-rudder ship. Journal of Marine Science and Technology, 13,
2008. doi: 10.1007/s00773-008-0027-0.

S. M. LaValle. Planning algorithms. Cambridge university press, 2006. ISBN
978-0-521-86205-9.

E.M. Lewandowski. The Dynamics of Marine Craft: Maneuvering and Seakeep-
ing. Advanced series on ocean engineering. World Scientific, 2004. ISBN
9789810247560.

L. Ljung and T Glad. Modellbygge och simulering. Studentlitteratur, Lund, 2004.
ISBN 978-91-44-02443-1.

F. Ljungberg. Estimation of Nonlinear Greybox Models for Marine Applications.
Licentiate thesis no. 1880, Department of Electrical Engineering, Linköping
University, 2020.

R. Mahony, T. Hamel, and J.-M. Pflimlin. Nonlinear complementary filters on
the special orthogonal group. IEEE Transactions on Automatic Control, pages
1203–1218, 2008. doi: 10.1109/TAC.2008.923738.

P. Mucha. On Simulation-based Ship Maneuvering Prediction in Deep and Shal-
low Water. PhD thesis, University of Duisburg-Essen, 2017.

B.K. Patle, G. Babu L, A. Pandey, D.R.K. Parhi, and A. Jagadeesh. A review: On
path planning strategies for navigation of mobile robot. Defence Technology,
15(4):582–606, 2019. doi: 10.1016/j.dt.2019.04.011.

F. Peralta, M. Arzamendia, D. Gregor, D. G. Reina, and S. Toral. A Comparison
of Local Path Planning Techniques of Autonomous Surface Vehicles for Moni-
toring Applications: The Ypacarai Lake Case-study. Sensors, 20(5), 2020. doi:
10.3390/s20051488.

SNAME. Nomenclature for Treating the Motion of a Submerged Body Through a

Bibliography 93

Fluid. Technical and research bulletin. Society of Naval Architects and Marine
Engineers, 1952.

M.W. Spong and S. Hutchinson. Robot Modeling and Control. Wiley, 2005. ISBN
9780471649908.

K. Sugihara. Approximation of generalized Voronoi diagrams by ordinary
Voronoi diagrams. CVGIP: Graphical Models and Image Processing, 55(6):522–
531, 1993. doi: 10.1006/cgip.1993.1039.

N. W. Teeuwen. On the determination of hydrodynamic coefficients for real time
ship manoeuvring simulation. Master’s thesis, Delft University of Technology,
2018.

UNCTAD. Review of Maritime Transport 2020. United Nations, 2020. ISBN
978-92-1-112993-9.

A. Vagale, R. T. Bye, R. Oucheikh, O. L. Osen, and T. I. Fossen. Path Planning and
Collision Avoidance for Autonomous Surface Vehicles I: A Review. Journal of
Marine Science and Technology, 2020. doi: 10.1007/s00773-020-00787-6.

A. Wächter and L. Biegler. On the implementation of an interior-point filter line-
search algorithm for large-scale nonlinear programming. PhD thesis, Carnegie
Mellon University, 2005.

M. Wingrove. Industry sails course towards au-
tonomous shipping. 2020. URL https://www.
rivieramm.com/news-content-hub/news-content-hub/
industry-sails-course-towards-autonomous-shipping-60359.
Online; accessed 10 June 2021.

Bin Xu, Daniel J Stilwell, and Andrew J Kurdila. A receding horizon controller
for motion planning in the presence of moving obstacles. In 2010 IEEE Inter-
national Conference on Robotics and Automation, pages 974–980. IEEE, 2010.

https://www.rivieramm.com/news-content-hub/news-content-hub/industry-sails-course-towards-autonomous-shipping-60359
https://www.rivieramm.com/news-content-hub/news-content-hub/industry-sails-course-towards-autonomous-shipping-60359
https://www.rivieramm.com/news-content-hub/news-content-hub/industry-sails-course-towards-autonomous-shipping-60359

	Abstract
	Contents
	Notation
	1 Introduction
	1.1 Background
	1.2 Problem Description
	1.3 Goals
	1.4 Limitations
	1.5 Contributions
	1.6 Outline

	2 Modelling
	2.1 Ship Model
	2.1.1 Reference Frames
	2.1.2 Kinematics
	2.1.3 Kinetics

	2.2 External Forces
	2.2.1 Azimuth Thrusters
	2.2.2 Tunnel Thruster
	2.2.3 Rudder Model
	2.2.4 Wind Model

	2.3 State-Space Model

	3 Optimal Control
	3.1 Optimal Control Problem
	3.2 Multiple Shooting

	4 Model Estimation
	4.1 Data Collection
	4.2 Parameter Estimation
	4.2.1 Problem Formulation
	4.2.2 Extended Kalman Filter

	4.3 Model Validation
	4.4 Experimental Platform
	4.5 Estimation Results
	4.5.1 Simulated Data
	4.5.2 Experimental Data

	5 Path Planning
	5.1 Roadmap
	5.1.1 Voronoi Diagram
	5.1.2 Generalized Voronoi Diagram (GVD)
	5.1.3 Generate Roadmap from GVD

	5.2 Connecting Start and Goal Positions
	5.2.1 Connecting to Closest Point
	5.2.2 Connecting to Nearby Edges
	5.2.3 Connecting to Crossroads

	5.3 Auxiliary Path
	5.3.1 Graph Search
	5.3.2 Path Smoothing

	5.4 Path Planning Results
	5.4.1 Roadmap Creation
	5.4.2 Connecting Methods
	5.4.3 Path Smoothing
	5.4.4 Conclusion

	6 Trajectory Planning
	6.1 Initial Trajectory
	6.1.1 Straight Line Trajectory (SLT)
	6.1.2 Mapping SLT to Geometric Path

	6.2 Trajectory Optimization
	6.2.1 Collision Avoidance
	6.2.2 Problem Formulation
	6.2.3 Receding Horizon

	6.3 Trajectory Planning Result
	6.3.1 SLT and Mapping to Geometric Path
	6.3.2 Optimization
	6.3.3 Conclusion

	7 Conclusion and Future Work
	7.1 Future Work

	A Experiments
	A.1 System Identification Experiment
	A.1.1 Goal
	A.1.2 Procedure
	A.1.3 Result

	A.2 Thruster Identification Experiment
	A.2.1 Goal
	A.2.2 Procedure
	A.2.3 Result

	A.3 PWM to Angle Mapping
	A.3.1 Goal
	A.3.2 Procedure
	A.3.3 Result

	B Proofs
	B.1 Shortest Distance Between Figures (Obstacles)
	B.2 Worst Generator Point Placement

	Bibliography

